1
|
Dhar SS, Brown C, Rizvi A, Reed L, Kotla S, Zod C, Abraham J, Abe JI, Rajaram V, Chen K, Lee M. Heterozygous Kmt2d loss diminishes enhancers to render medulloblastoma cells vulnerable to combinatory inhibition of lysine demethylation and oxidative phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564587. [PMID: 37961118 PMCID: PMC10634931 DOI: 10.1101/2023.10.29.564587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The histone H3 lysine 4 (H3K4) methyltransferase KMT2D (also called MLL4) is one of the most frequently mutated epigenetic modifiers in medulloblastoma (MB) and other types of cancer. Notably, heterozygous loss of KMT2D is prevalent in MB and other cancer types. However, what role heterozygous KMT2D loss plays in tumorigenesis has not been well characterized. Here, we show that heterozygous Kmt2d loss highly promotes MB driven by heterozygous loss of the MB suppressor gene Ptch in mice. Heterozygous Kmt2d loss upregulated tumor-promoting programs, including oxidative phosphorylation and G-protein-coupled receptor signaling, in Ptch-mutant-driven MB genesis. Mechanistically, both downregulation of the transcription-repressive tumor suppressor gene NCOR2 by heterozygous Kmt2d loss and upregulation of the oncogene MycN by heterozygous Ptch loss increased the expression of tumor-promoting genes. Moreover, heterozygous Kmt2d loss extensively diminished enhancer signals (e.g., H3K27ac) and H3K4me3 signature, including those for tumor suppressor genes (e.g., Ncor2). Combinatory pharmacological inhibition of oxidative phosphorylation and the H3K4 demethylase LSD1 drastically reduced tumorigenicity of MB cells bearing heterozygous Kmt2d loss. These findings reveal the mechanistic basis underlying the MB-promoting effect of heterozygous KMT2D loss, provide a rationale for a therapeutic strategy for treatment of KMT2D-deficient MB, and have mechanistic implications for the molecular pathogenesis of other types of cancer bearing heterozygous KMT2D loss.
Collapse
|
2
|
Teng L, Feng YC, Guo ST, Wang PL, Qi TF, Yue YM, Wang SX, Zhang SN, Tang CX, La T, Zhang YY, Zhao XH, Gao JN, Wei LY, Zhang D, Wang JY, Shi Y, Liu XY, Li JM, Cao H, Liu T, Thorne RF, Jin L, Shao FM, Zhang XD. The pan-cancer lncRNA PLANE regulates an alternative splicing program to promote cancer pathogenesis. Nat Commun 2021; 12:3734. [PMID: 34145290 PMCID: PMC8213729 DOI: 10.1038/s41467-021-24099-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Genomic amplification of the distal portion of chromosome 3q, which encodes a number of oncogenic proteins, is one of the most frequent chromosomal abnormalities in malignancy. Here we functionally characterise a non-protein product of the 3q region, the long noncoding RNA (lncRNA) PLANE, which is upregulated in diverse cancer types through copy number gain as well as E2F1-mediated transcriptional activation. PLANE forms an RNA-RNA duplex with the nuclear receptor co-repressor 2 (NCOR2) pre-mRNA at intron 45, binds to heterogeneous ribonucleoprotein M (hnRNPM) and facilitates the association of hnRNPM with the intron, thus leading to repression of the alternative splicing (AS) event generating NCOR2-202, a major protein-coding NCOR2 AS variant. This is, at least in part, responsible for PLANE-mediated promotion of cancer cell proliferation and tumorigenicity. These results uncover the function and regulation of PLANE and suggest that PLANE may constitute a therapeutic target in the pan-cancer context.
Collapse
Affiliation(s)
- Liu Teng
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Yu Chen Feng
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Su Tang Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Shanxi, China
| | - Pei Lin Wang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Teng Fei Qi
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Yi Meng Yue
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Shi Xing Wang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Sheng Nan Zhang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Cai Xia Tang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Jin Nan Gao
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi, China
| | - Li Yuan Wei
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi, China
| | - Didi Zhang
- Orthopaedics Department, John Hunter Hospital, Hunter New England Health, New Lambton, NSW, Australia
| | - Jenny Y Wang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, Australia
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China
| | - Xiao Ying Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Jin Ming Li
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Lei Jin
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China.
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.
| | - Feng-Min Shao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China.
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China.
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
3
|
Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 2018; 18:696-705. [PMID: 30293088 PMCID: PMC6450507 DOI: 10.1038/s41568-018-0060-1] [Citation(s) in RCA: 976] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) is an expert-curated description of the genes driving human cancer that is used as a standard in cancer genetics across basic research, medical reporting and pharmaceutical development. After a major expansion and complete re-evaluation, the 2018 CGC describes in detail the effect of 719 cancer-driving genes. The recent expansion includes functional and mechanistic descriptions of how each gene contributes to disease generation in terms of the key cancer hallmarks and the impact of mutations on gene and protein function. These functional characteristics depict the extraordinary complexity of cancer biology and suggest multiple cancer-related functions for many genes, which are often highly tissue-dependent or tumour stage-dependent. The 2018 CGC encompasses a second tier, describing an expanding list of genes (currently 145) from more recent cancer studies that show supportive but less detailed indications of a role in cancer.
Collapse
Affiliation(s)
- Zbyslaw Sondka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sally Bamford
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Charlotte G Cole
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sari A Ward
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Simon A Forbes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
4
|
Alam H, Li N, Dhar SS, Wu SJ, Lv J, Chen K, Flores ER, Baseler L, Lee MG. HP1γ Promotes Lung Adenocarcinoma by Downregulating the Transcription-Repressive Regulators NCOR2 and ZBTB7A. Cancer Res 2018; 78:3834-3848. [PMID: 29764865 DOI: 10.1158/0008-5472.can-17-3571] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/09/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
Abstract
Lung adenocarcinoma is a major form of lung cancer, which is the leading cause of cancer death. Histone methylation reader proteins mediate the effect of histone methylation, a hallmark of epigenetic and transcriptional regulation of gene expression. However, their roles in lung adenocarcinoma are poorly understood. Here, our bioinformatic screening and analysis in search of a lung adenocarcinoma-promoting histone methylation reader protein show that heterochromatin protein 1γ (HP1γ; also called CBX3) is among the most frequently overexpressed and amplified histone reader proteins in human lung adenocarcinoma, and that high HP1γ mRNA levels are associated with poor prognosis in patients with lung adenocarcinoma. In vivo depletion of HP1γ reduced K-RasG12D-driven lung adenocarcinoma and lengthened survival of mice bearing K-RasG12D-induced lung adenocarcinoma. HP1γ and its binding activity to methylated histone H3 lysine 9 were required for the proliferation, colony formation, and migration of lung adenocarcinoma cells. HP1γ directly repressed expression of the transcription-repressive regulators NCOR2 and ZBTB7A. Knockdown of NCOR2 or ZBTB7A significantly restored defects in proliferation, colony formation, and migration in HP1γ-depleted lung adenocarcinoma cells. Low NCOR2 or ZBTB7A mRNA levels were associated with poor prognosis in patients with lung adenocarcinoma and correlated with high HP1γ mRNA levels in lung adenocarcinoma samples. NCOR2 and ZBTB7A downregulated expression of tumor-promoting factors such as ELK1 and AXL, respectively. These findings highlight the importance of HP1γ and its reader activity in lung adenocarcinoma tumorigenesis and reveal a unique lung adenocarcinoma-promoting mechanism in which HP1γ downregulates NCOR2 and ZBTB7A to enhance expression of protumorigenic genes.Significance: Direct epigenetic repression of the transcription-repressive regulators NCOR2 and ZBTB7A by the histone reader protein HP1γ leads to activation of protumorigenic genes in lung adenocarcinoma. Cancer Res; 78(14); 3834-48. ©2018 AACR.
Collapse
Affiliation(s)
- Hunain Alam
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Li
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shilpa S Dhar
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah J Wu
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Jie Lv
- Institute for Academic Medicine, the Methodist Hospital Research Institute, Houston, Texas.,Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, the Methodist Hospital Research Institute, Houston, Texas.,Weill Cornell Medical College, Cornell University, New York, New York
| | - Kaifu Chen
- Institute for Academic Medicine, the Methodist Hospital Research Institute, Houston, Texas.,Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, the Methodist Hospital Research Institute, Houston, Texas.,Weill Cornell Medical College, Cornell University, New York, New York
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Laura Baseler
- Department of Veterinary Medicine and Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
5
|
Rigalli JP, Reichel M, Reuter T, Tocchetti GN, Dyckhoff G, Herold-Mende C, Theile D, Weiss J. The pregnane X receptor (PXR) and the nuclear receptor corepressor 2 (NCoR2) modulate cell growth in head and neck squamous cell carcinoma. PLoS One 2018; 13:e0193242. [PMID: 29470550 PMCID: PMC5823449 DOI: 10.1371/journal.pone.0193242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/07/2018] [Indexed: 01/19/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer worldwide. The pregnane X receptor (PXR) is a nuclear receptor regulating several target genes associated with cancer malignancy. We here demonstrated a significant effect of PXR on HNSCC cell growth, as evidenced in PXR knock-down experiments. PXR transcriptional activity is more importantly regulated by the presence of coactivators and corepressors than by PXR protein expression. To date, there is scarce information on the regulation of PXR in HNSCC and on its role in the pathogenesis of this disease. Coactivator and corepressor expression was screened through qRT-PCR in 8 HNSCC cell lines and correlated to PXR activity, determined by using a reporter gene assay. All cell lines considerably expressed all the cofactors assessed. PXR activity negatively correlated with nuclear receptor corepressor 2 (NCoR2) expression, indicating a major role of this corepressor in PXR modulation and suggesting its potential as a surrogate for PXR activity in HNSCC. To test the association of NCoR2 with the malignant phenotype, a subset of three cell lines was transfected with an over-expression plasmid for this corepressor. Subsequently, cell growth and chemoresistance assays were performed. To elucidate the mechanisms underlying NCoR2 effects on cell growth, caspase 3/7 activity and protein levels of cleaved caspase 3 and PARP were evaluated. In HNO97 cells, NCoR2 over-expression decreased cell growth, chemoresistance and increased cleaved caspase 3 levels, caspase activity and cleaved PARP levels. On the contrary, in HNO124 and HNO210 cells, NCoR2 over-expression increased cell growth, drug resistance and decreased cleaved caspase 3 levels, caspase activity and cleaved PARP levels. In conclusion, we demonstrated a role of PXR and NCoR2 in the modulation of cell growth in HNSCC. This may contribute to a better understanding of the highly variable HNSCC therapeutic response.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Reichel
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Tasmin Reuter
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
- Institute of Experimental Physiology (IFISE-CONICET), Rosario, Argentina
| | - Gerhard Dyckhoff
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
6
|
Mahas A, Potluri K, Kent MN, Naik S, Markey M. Copy number variation in archival melanoma biopsies versus benign melanocytic lesions. Cancer Biomark 2017; 16:575-97. [PMID: 27002761 DOI: 10.3233/cbm-160600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skin melanocytes can give rise to benign and malignant neoplasms. Discrimination of an early melanoma from an unusual/atypical benign nevus can represent a significant challenge. However, previous studies have shown that in contrast to benign nevi, melanoma demonstrates pervasive chromosomal aberrations. OBJECTIVE This substantial difference between melanoma and benign nevi can be exploited to discriminate between melanoma and benign nevi. METHODS Array-comparative genomic hybridization (aCGH) is an approach that can be used on DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues to assess the entire genome for the presence of changes in DNA copy number. In this study, high resolution, genome-wide single-nucleotide polymorphism (SNP) arrays were utilized to perform comprehensive and detailed analyses of recurrent copy number aberrations in 41 melanoma samples in comparison with 21 benign nevi. RESULTS We found statistically significant copy number gains and losses within melanoma samples. Some of the identified aberrations are previously implicated in melanoma. Moreover, novel regions of copy number alterations were identified, revealing new candidate genes potentially involved in melanoma pathogenesis. CONCLUSIONS Taken together, these findings can help improve melanoma diagnosis and introduce novel melanoma therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Mahas
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Keerti Potluri
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael N Kent
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.,Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Sameep Naik
- Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
7
|
Liao S, Desouki MM, Gaile DP, Shepherd L, Nowak NJ, Conroy J, Barry WT, Geradts J. Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer 2012; 51:1067-78. [PMID: 22887771 DOI: 10.1002/gcc.21991] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/06/2012] [Indexed: 12/21/2022] Open
Abstract
Only a minority of intraductal carcinomas of the breast give rise to stromally invasive disease. We microdissected 206 paraffin blocks representing 116 different cases of low-grade ductal carcinoma in situ (DCIS). Fifty-five were pure DCIS (PD) cases without progression to invasive carcinoma. Sixty-one cases had a small invasive component. DNA was extracted from microdissected sections and hybridized to high-density bacterial artificial chromosome arrays. Array comparative genomic hybridization analysis of 118 hybridized DNA samples yielded data on 69 samples that were suitable for further statistical analysis. This cohort included 20 pure DCIS cases, 25 mixed DCIS (MD), and 24 mixed invasive carcinoma samples. PD cases had a higher frequency of DNA copy number changes than MD cases, and the latter had similar DNA profiles compared to paired invasive carcinomas. Copy number changes on 13 chromosomal arms occurred at different rates in PD versus MD lesions. Eight of 19 candidate genes residing at those loci were confirmed to have differential copy number changes by quantitative PCR. NCOR2/SMRT and NR4A1 (both on 12q), DYNLRB2 (16q), CELSR1, UPK3A, and ST13 (all on 22q) were more frequently amplified in PD. Moreover, NCOR2, NR4A1, and DYNLRB2 showed more frequent copy number losses in MD. GRAP2 (22q) was more often amplified in MD, whereas TAF1C (16q) was more commonly deleted in PD. A multigene model comprising these candidate genes discriminated between PD and MD lesions with high accuracy. These findings suggest that the propensity to invade the stroma may be encoded in the genome of intraductal carcinomas.
Collapse
Affiliation(s)
- Shaoxi Liao
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Godoy AS, Sotomayor PC, Villagran M, Yacoub R, Montecinos VP, McNerney EM, Moser M, Foster BA, Onate SA. Altered corepressor SMRT expression and recruitment to target genes as a mechanism that change the response to androgens in prostate cancer progression. Biochem Biophys Res Commun 2012; 423:564-70. [PMID: 22695118 DOI: 10.1016/j.bbrc.2012.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/06/2023]
Abstract
Androgen receptor (AR) is required for the development and progression of prostate cancer (CaP) from androgen-dependence to androgen-resistance. Both corepressors and coactivators regulate AR-mediated transcriptional activity, and aberrant expression or activity due to mutation(s) contributes to changes in AR function in the progression to androgen resistance acquired during hormonal ablation therapies. Primary culture of epithelial cells from androgen-dependent CWR22 and androgen-resistant CWR22R xenograft tumors were used to evaluate the effect of androgens on AR function, and the association with coactivators (SRC-1 and TIF-2) and corepressors (SMRT and NCoR). Both androgen-dependent CWR22 and androgen-resistant CWR22R cells expressed functional AR as the receptor bind ligand with high affinity and increased trafficking to the nuclei in the presence of androgens. However, in the presence of androgens, AR-mediated transcriptional activity in androgen-sensitive CWR22 cells was limited to a 2-fold increase, as compared to a 6-fold increase in androgen-resistance CWR22R cells. In androgen-sensitive CWR22 cells, immunoblot, confocal microscopy, and chromatin immunoprecipitation assays indicated that the androgen bound AR transcriptional initiation complex in the PSA promoter contained corepressor SMRT, resulting in limited receptor transcriptional activity. In contrast, increased AR-mediated transcriptional activity in the CWR22R cells was consistent with decreased expression and recruitment of the corepressors SMRT/NCoR, as well as increased recruitment of the coactivator TIF-2 to the receptor complex. Similar changes in the response to androgens were observed in the LNCaP/C4-2 model of androgen resistance prostate cancer. Thus, altered recruitment and loss of corepressors SMRT/NCoR may provide a mechanism that changes the response of AR function to ligands and contributes to the progression of the advanced stages of human prostate cancer.
Collapse
Affiliation(s)
- Alejandro S Godoy
- Department of Physiopathology, University of Concepcion, Concepcion, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rentas S, Saberianfar R, Grewal C, Kanippayoor R, Mishra M, McCollum D, Karagiannis J. The SET domain protein, Set3p, promotes the reliable execution of cytokinesis in Schizosaccharomyces pombe. PLoS One 2012; 7:e31224. [PMID: 22347452 PMCID: PMC3275627 DOI: 10.1371/journal.pone.0031224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
In response to perturbation of the cell division machinery fission yeast cells activate regulatory networks that ensure the faithful completion of cytokinesis. For instance, when cells are treated with drugs that impede constriction of the actomyosin ring (low doses of Latrunculin A, for example) these networks ensure that cytokinesis is complete before progression into the subsequent mitosis. Here, we identify three previously uncharacterized genes, hif2, set3, and snt1, whose deletion results in hyper-sensitivity to LatA treatment and in increased rates of cytokinesis failure. Interestingly, these genes are orthologous to TBL1X, MLL5, and NCOR2, human genes that encode components of a histone deacetylase complex with a known role in cytokinesis. Through co-immunoprecipitation experiments, localization studies, and phenotypic analysis of gene deletion mutants, we provide evidence for an orthologous complex in fission yeast. Furthermore, in light of the putative role of the complex in chromatin modification, together with our results demonstrating an increase in Set3p levels upon Latrunculin A treatment, global gene expression profiles were generated. While this analysis demonstrated that the expression of cytokinesis genes was not significantly affected in set3Δ backgrounds, it did reveal defects in the ability of the mutant to regulate genes with roles in the cellular response to stress. Taken together, these findings support the existence of a conserved, multi-protein complex with a role in promoting the successful completion of cytokinesis.
Collapse
Affiliation(s)
- Stefan Rentas
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Reza Saberianfar
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Charnpal Grewal
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Mithilesh Mishra
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore, Singapore
| | - Dannel McCollum
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
10
|
Jin KS, Park CM, Lee YW. Identification of differentially expressed genes by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human bronchial epithelial cells. Hum Exp Toxicol 2011; 31:107-12. [DOI: 10.1177/0960327111417266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- K-S Jin
- Department of Biomedical Laboratory Science, Inje University, Gimhae, Gyeongnam, Korea
- Blue-Bio Industry Regional Innovation Center, Dongeui University, Busan, Korea
| | - CM Park
- Department of Biomedical Laboratory Science, Inje University, Gimhae, Gyeongnam, Korea
- Department of Pathology, College of Medicine, Inje University, Busan, Korea
| | - Y-W Lee
- Department of Biomedical Laboratory Science, Inje University, Gimhae, Gyeongnam, Korea
| |
Collapse
|
11
|
Thyroid hormone receptor β1 domains responsible for the antagonism with the ras oncogene: role of corepressors. Oncogene 2010; 30:854-64. [DOI: 10.1038/onc.2010.464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Ghoshal P, Nganga AJ, Moran-Giuati J, Szafranek A, Johnson TR, Bigelow AJ, Houde CM, Avet-Loiseau H, Smiraglia DJ, Ersing N, Chanan-Khan AA, Coignet LJ. Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma. Cancer Res 2009; 69:4380-7. [PMID: 19417136 DOI: 10.1158/0008-5472.can-08-3467] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) is a clonal B-cell neoplasm that accounts for 10% of all malignant hematologic neoplasms and that affects terminally differentiated B cells (i.e., plasma cells). It is now well recognized that the cytokine interleukin-6 (IL-6) is a major cytokine that promotes the proliferation of malignant plasma cells in MM. The IL-6 gene can be regulated by the NOTCH genes products. We have previously shown that the NOTCH ligand, JAG2, is overexpressed in MM. To investigate the mechanism(s) leading to JAG2 overexpression in MM, we assessed potential epigenetic modifications of the JAG2 promoter. We showed that the JAG2 promoter region is aberrantly acetylated in MM cell lines and patient samples. The acetylation state of histones is regulated by the recruitment of histone deacetylases (HDAC). HDACs are typically recruited to promoter regions through interaction with nuclear corepressors such as SMRT. SMRT levels were therefore investigated. Interestingly, MM cell lines and patient samples presented significantly reduced SMRT levels. The experiments suggest a correlation between constitutive acetylation of the JAG2 core promoter in the MM cell lines and reduced levels of the SMRT corepressor that recruits HDAC to promoter regions. Finally, SMRT function restoration induced JAG2 down-regulation as well as MM cell apoptosis.
Collapse
Affiliation(s)
- Pushpankur Ghoshal
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Phillips JM, Goodman JI. Identification of genes that may play critical roles in phenobarbital (PB)-induced liver tumorigenesis due to altered DNA methylation. Toxicol Sci 2008; 104:86-99. [PMID: 18359763 DOI: 10.1093/toxsci/kfn063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aberrant DNA methylation plays important roles in tumorigenesis, and the nongenotoxic rodent tumor promoter phenobarbital (PB) alters methylation patterns to a greater extent in liver tumor susceptible as compared to resistant mice (Watson and Goodman, 2002). Unique hepatic regions of altered DNA methylation (RAMs) were identified in sensitive B6C3F1, as compared to resistant C57BL/6, mice at 2 or 4 weeks of PB treatment using a novel approach involving methylation-sensitive restriction digestion, arbitrarily primed PCR, and capillary electrophoresis (Bachman et al., 2006b). PCR products representing 90 of 170 (53%) total unique B6C3F1 RAMs at 2 or 4 weeks were cloned and subjected to BLAST-like alignment tool searches that resulted in 51 gene matches; some of these have documented oncogenic or tumor suppressor roles. Importantly, uniquely hypomethylated genes play roles in angiogenesis (e.g., chymase 1, tyrosine kinase nonreceptor 2, and possibly ephrin B2 and triple functional domain, PTPRF interacting) and invasion and metastasis, including those involved in the epithelial-mesenchymal transition (transcription factor 4, transforming growth factor beta receptor II, and ral guanine nucleotide dissociation stimulator). Common cellular targets and regulators of the genes representing unique B6C3F1 RAMs were uncovered, indicating that they might act in concert to more efficiently promote tumorigenesis. Genes not previously associated with mouse liver tumorigenesis exhibited altered methylation at these very early times following PB treatment. We hypothesize that at least some of the unique PB-induced B6C3F1 RAMs represent key events facilitating transformation, which is consistent with a causative role of altered DNA methylation during early stages of tumorigenesis.
Collapse
Affiliation(s)
- Jennifer M Phillips
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
14
|
Fitzgibbon J, Iqbal S, Davies A, O'shea D, Carlotti E, Chaplin T, Matthews J, Raghavan M, Norton A, Lister TA, Young BD. Genome-wide detection of recurring sites of uniparental disomy in follicular and transformed follicular lymphoma. Leukemia 2007; 21:1514-20. [PMID: 17495976 DOI: 10.1038/sj.leu.2404696] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single-nucleotide polymorphism (SNP) array analysis was performed using the 10K GeneChip array on a series of 26 paired follicular lymphoma (FL) and transformed-FL (t-FL) biopsies and the lymphoma cell lines SCI-1, DoHH2 and RL2261. Regions of acquired homozygosity were detected in 43/52 (83%) primary specimens with a mean of 1.7 and 3.0 aberrations in the FL and t-FL, respectively. A notable feature was the occurrence of recurring sites of acquired uniparental disomy (aUDP) on 6p, 9p, 12q and 17p in cell lines and primary samples. Homozygosity of 9p and 17p arose predominantly in t-FL and in three cases rendered the cell homozygous for a pre-existing mutation of either CDKN2A or TP53. These data suggest that mutation precedes mitotic recombination, which leads to the removal of the remaining wild-type allele. In all, 18 cases exhibited abnormalities in both FL and t-FL samples. In 10 cases blocks of homozygosity were detected in FL that were absent in the subsequent t-FL sample. These differences support the notion that FL and t-FL may arise in a proportion of patients by divergence from a common malignant ancestor cell rather than by clonal evolution from an antecedent FL.
Collapse
Affiliation(s)
- J Fitzgibbon
- Cancer Research UK, Centre for Medical Oncology, Barts and the London School of Medicine and Dentistry, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Peterson LF, Boyapati A, Ahn EY, Biggs JR, Okumura AJ, Lo MC, Yan M, Zhang DE. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 2007; 110:799-805. [PMID: 17412887 PMCID: PMC1924771 DOI: 10.1182/blood-2006-11-019265] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonrandom and somatically acquired chromosomal translocations can be identified in nearly 50% of human acute myeloid leukemias. One common chromosomal translocation in this disease is the 8q22;21q22 translocation. It involves the AML1 (RUNX1) gene on chromosome 21 and the ETO (MTG8, RUNX1T1) gene on chromosome 8 generating the AML1-ETO fusion proteins. In this review, we survey recent advances made involving secondary mutational events and alternative t(8;21) transcripts in relation to understanding AML1-ETO leukemogenesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/metabolism
- Core Binding Factor Alpha 2 Subunit/biosynthesis
- Core Binding Factor Alpha 2 Subunit/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- RUNX1 Translocation Partner 1 Protein
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- Luke F Peterson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fernández-Majada V, Aguilera C, Villanueva A, Vilardell F, Robert-Moreno A, Aytés A, Real FX, Capella G, Mayo MW, Espinosa L, Bigas A. Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci U S A 2006; 104:276-81. [PMID: 17190815 PMCID: PMC1765449 DOI: 10.1073/pnas.0606476104] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear functions for IkappaB kinase (IKK), including phosphorylation of histone H3 and nuclear corepressors, have been recently described. Here, we show that IKK is activated in colorectal tumors concomitant with the presence of phosphorylated SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) corepressor that is aberrantly localized in the cytoplasm. In these tumors, IKKalpha associates to the chromatin of specific Notch targets, leading to the release of SMRT. Abrogation of IKK activity by BAY11-7082 or by expressing dominant negative IKKalpha restores the association of SMRT with Notch target genes, resulting in specific gene repression. Finally, BAY11-7082 significantly reduces tumor size in colorectal cancer xenografts (CRC-Xs) implanted in nude mice.
Collapse
Affiliation(s)
- V. Fernández-Majada
- *Centre Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
| | - C. Aguilera
- *Centre Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
| | - A. Villanueva
- Laboratori de Recerca Translacional, Institut d'Investigació Biomèdica de Bellvitge-Institut Català de Oncologia, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
| | - F. Vilardell
- Laboratori de Recerca Translacional, Institut d'Investigació Biomèdica de Bellvitge-Institut Català de Oncologia, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
| | - A. Robert-Moreno
- *Centre Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
| | - A. Aytés
- Laboratori de Recerca Translacional, Institut d'Investigació Biomèdica de Bellvitge-Institut Català de Oncologia, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
| | - F. X. Real
- Unitat de Biologia Celular i Molecular, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, 08003 Barcelona, Spain; and
| | - G. Capella
- Laboratori de Recerca Translacional, Institut d'Investigació Biomèdica de Bellvitge-Institut Català de Oncologia, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
| | - M. W. Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - L. Espinosa
- *Centre Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
- To whom correspondence may be addressed. E-mail:
or
| | - A. Bigas
- *Centre Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge, Gran Via Km 2.7, Hospitalet, 08907 Barcelona, Spain
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
17
|
Abstract
Abstract
The evolution of indolent lymphomas to aggressive histologies, known as histologic transformation (HT), is a frequent occurrence for all subtypes of low grade B cell lymphoproliferative disorders. The risk of developing HT is approximately 3% per year for patients with indolent lymphoma. Clinically these present with a rapid change in the behavior of the disease, with evidence of a highly proliferative malignancy with a propensity to involve extranodal sites. The prognosis of patients following transformation is generally poor, with median survival of about 12 months. Recent studies suggest that the development of HT is very complex with the acquisition of multiple cytogenetic abnormalities in the low-grade lymphoma cells prior to HT. To date, there are no biologic or genetic parameters predictive of the development of HT. A myriad of genetic lesions have been identified in HT, and provide insight into its pathogenesis. These include genes regulating proliferation (C-MYC and C-MYC-regulated genes); control of the cell cycle (CDKN2a and CDKN2B); and programmed cell death (TP53, C-MYC, and BCL2). Gene expression profiling has been applied to the study of HT and has increased our understanding of the transformation process. There has been limited progress in the treatment of patients with HT. Conventional chemotherapy is generally of limited benefit, although a subset of patients are long-term survivors following high-dose therapy and autologous stem cell transplantation. The use of radioimmunotherapy and new agents targeting specific lesions or aberrant pathways may impact on the management of these aggressive diseases.
Collapse
MESH Headings
- Cell Cycle/genetics
- Cell Death/genetics
- Cell Division/genetics
- Cell Transformation, Neoplastic
- Chromosome Aberrations
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Gene Expression Profiling
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/mortality
- Lymphoma, B-Cell/pathology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/mortality
- Lymphoma, Non-Hodgkin/pathology
- Mutation
- Prognosis
- Survival Analysis
- Time Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- Arnold S Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|