1
|
Sundararajan R, Hegde SR, Panda AK, Christie J, Gadewal N, Venkatraman P. Loss of correlated proteasomal subunit expression selectively promotes the 20S High state which underlies luminal breast tumorigenicity. Commun Biol 2025; 8:55. [PMID: 39814910 PMCID: PMC11735796 DOI: 10.1038/s42003-024-07432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity. As seen in luminal BrCa cell lines, this imbalance limits the number of double-capped 19S-20S-19S holocomplexes (30S) formed and promotes free 20S catalytic core accumulation that is widely-believed to confer survival advantage to tumors. By retaining connectivity with key tumor 19S:20S interface nodes, the PSMD9 19S subunit chaperone emerges as a crucial regulator of 26S/30S:20S ratios sustaining tumor cell proteasome function. Disrupting this connectivity by depleting PSMD9 in MCF7 cells introduces structural anomalies in the proteasome, and shifts dependence from 20SHigh to a deregulated 26SHigh state invoking anti-tumor responses which opens up clinically-relevant therapeutic possibilities.
Collapse
Affiliation(s)
- Rangapriya Sundararajan
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.
- Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, Mumbai, India.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- School of Biosciences, Chanakya University, Bangalore, India
| | - Ashish Kumar Panda
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Joel Christie
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Nikhil Gadewal
- Bioinformatics Center, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
2
|
Seker S, Sahin B, Yerlikaya A. Comparative Analysis of Acquired Resistance to Bortezomib in Prostate Cancer Cells Using Proteomic and Bioinformatic Tools. J Cell Mol Med 2025; 29:e70254. [PMID: 39799471 PMCID: PMC11725179 DOI: 10.1111/jcmm.70254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025] Open
Abstract
Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours. Despite initial success with the proteasome inhibitor bortezomib, acquired resistance soon after treatment poses a significant challenge to its efficacy. In this study, we explored proteins potentially involved in acquired resistance to bortezomib using label-free nLC-MS/MS proteomic analysis. The investigation revealed 299 proteins with notable differences in expression levels in the bortezomib-resistant PC3 prostate cancer cell line. Using bioinformatics tools, we illustrated the top 10 gene ontology (GO) processes [e.g., translational initiation (p = 5.964E-10), CRD-mediated mRNA stabilisation (p = 1.636E-5), and hydrogen ion transmembrane transport (p = 6.46E-5)] and the top 20 KEGG [e.g., metabolic pathways (p = 7.601E-13), biosynthesis of amino acids (p = 3.834E-12), and chemical carcinogenesis-reactive oxygen species (p = 1.891E-4)] and REACTOME [e.g., metabolism (p = 4.182E-21), translation (p = 9.484E-18), and Nonsense-Mediated Decay (NMD) (p = 1.829E-8)] pathways in the PC3-resistant cells. We further refined our results by comparing them with globally validated TCGA datasets. We correlated the 299 proteins identified through proteomic analysis with tumour aggressiveness and resistance by comparing them with the TCGA nodal metastasis N0 vs. N1 datasets using the UALCAN portal and identified 37 proteins consistent with our results. We believe that a combination of bortezomib with chemotherapeutics targeting these proteins could be effective in overcoming the resistance developed against bortezomib.
Collapse
Affiliation(s)
- Semih Seker
- Department of Medical Biology, Faculty of MedicineKutahya Health Sciences UniversityKutahyaTurkey
| | - Betul Sahin
- Acibadem Labmed Clinical LaboratoriesIstanbulTurkey
| | - Azmi Yerlikaya
- Department of Medical Biology, Faculty of MedicineKutahya Health Sciences UniversityKutahyaTurkey
| |
Collapse
|
3
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
4
|
Makalakshmi MK, Banerjee A, Pathak S, Paul S, Sharma NR, Anandan B. A pilot study on the efficacy of a telomerase activator in regulating the proliferation of A375 skin cancer cell line. Mol Biol Rep 2024; 52:69. [PMID: 39704853 DOI: 10.1007/s11033-024-10161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION The changes in histone modifications are linked to the progression of benign and normal tissue to malignancy. Thus, numerous findings suggest that targeting epigenetic factors might be a focus for anti-cancer treatment. In this study, we tested the hypothesis that telomerase activator might be a potential epigenetic regulator in combatting skin cancer cell proliferation. METHODS Melanoma cell line A375 cells were treated with telomerase activator TA-65. Cell senescence assay was done to evaluate the senescence induction. Morphological changes and differences in expression of HDACs and hTERT genes were studied. Further, hyaluronidase and anti-oxidant assays were also performed. Additionally, telomerase enzyme and 20S proteasome activity was also studied. RESULTS Morphological changes were observed in treated cells and it is evident that telomerase activator induced cellular senescence in high concentrations. From our results, it is evident that HDAC8 and HDAC10 expression was upregulated, whereas hTERT gene expression was downregulated in treated groups. This suggests that the telomerase activator has a regulatory role in skin cancer cells proliferation by targeting the epigenetic factors. CONCLUSION Targeting HDACs and hTERT in the treatment of melanoma is a prominent concern. In our current study, we highlight the most recent research, although in its initial stage, involving various epigenetic factors involved in melanoma cells proliferation.
Collapse
Affiliation(s)
- M K Makalakshmi
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India.
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, 603103, India.
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India.
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, 603103, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Querétaro, CP 76130, Mexico
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - B Anandan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamilnadu, 600113, India.
| |
Collapse
|
5
|
Ali F, Iqbal A, Azhar I, Qayyum A, Hassan SA, Hasan MSA, Jawi M, Hassan HM, Al-Emam A, Sajid M. Exploring a novel four-gene system as a diagnostic and prognostic biomarker for triple-negative breast cancer, using clinical variables. Comput Biol Chem 2024; 113:108247. [PMID: 39427606 DOI: 10.1016/j.compbiolchem.2024.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis. This research aims to find real hub genes for prognostic biomarkers of TNBC therapy. The GEO datasets GSE27447 and GSE233242 were analyzed using R package limma to explore DEGs. The PPI was generated using the STRING database. Cytoscape software plug-ins were used to screen the hub genes. Using the DAVID database, GO functional enrichment and KEGG pathway enrichment analysis were performed. Different online expression databases were employed to investigate the functions of real hub genes in tumor driving, diagnosis, and prognosis in TNBC patients with various clinicopathologic characteristics. A total of one hundred DEGs were identified between both datasets. The seven hub genes were identified after the topological parameter analysis of the PPI network. The KEGG pathway and GO analysis suggest that four genes (PSMB1, PSMC1, PSMF1, and PSMD8) are highly enriched in proteasome and were finally considered as real hub genes. Additionally, the expression analysis demonstrated that hub genes were notably up-regulated in TNBC patients compared to controls. Furthermore, correlational analyses revealed the positive and negative correlations among the expression of the real hub genes and various ancillary data, including tumor purity, promoter methylation status, overall survival (OS), genetic alterations, infiltration of CD8+ T and CD4+ immune cells, and a few more, across TNBC samples. Finally, our analysis identified a couple of significant chemotherapeutic drugs, miRNAs and transcription factors (TFS) with intriguing curative potential. In conclusion, we identified four real hub genes as novel biomarkers to overcome heterogenetic-particular challenges in diagnosis, prognosis, and therapy for TNBC patients.
Collapse
Affiliation(s)
- Faisal Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Azhar Iqbal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Iqra Azhar
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Adiba Qayyum
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Syed Ali Hassan
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science And Technology University, Gopalgonj, Dhaka 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh.
| | - Motasim Jawi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia.
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan.
| |
Collapse
|
6
|
Sakamoto K, Fujimoto R, Kamiyama-Ando E, Hirokawa T. Anthricin-induced hyperactive proteasome and its molecular mechanism. Biochem Biophys Rep 2024; 40:101830. [PMID: 39386079 PMCID: PMC11462260 DOI: 10.1016/j.bbrep.2024.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Recently, targeted protein degradation has attracted increasing interest as a new drug discovery approach. This method aims to control the function of drug targets by inducing their degradation through protein degradation systems such as the proteasome. Concurrently, compounds that enhance proteasome activity have also garnered attention. In 2023, we reported that anthricin (also known as 4-deoxypodophyllotoxin), a natural product that belongs to the lignan family, enhances proteasome activity. However, whether this enhancement was because of increased proteasome expression or improved proteasome function remains unclear. In this study, we investigated the structure-activity relationship of anthricin and its analogs in enhancing proteasome activity, the effects of anthricin on proteasome-related gene expression, and the direct binding between anthricin and the proteasome using pull-down assay. Moreover, we assessed the interaction between anthricin and the proteasome using molecular dynamics (MD) simulations. The results showed that anthricin does not induce proteasome-related gene expression, but instead binds to the β-subunit of the proteasome, bringing the side chains of three amino acid residues (Thr1, Asp17, and Lys33) at the catalytic site closer together, thereby inducing a hyperactive state. To the best of our knowledge, this study is the first to suggest the mechanism of proteasome activity enhancement by anthricin at the molecular level. The findings could contribute to the development of new chemotypes to enhance the effects of targeted protein degraders by regulating proteasome activity.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Department, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan
| | - Runa Fujimoto
- Research & Development Department, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan
| | - Erina Kamiyama-Ando
- Research & Development Department, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Japan
| |
Collapse
|
7
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Larsson P, Olsson M, Sarathchandra S, Fäldt Beding A, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Multi-omics analysis identifies repurposing bortezomib in the treatment of kidney-, nervous system-, and hematological cancers. Sci Rep 2024; 14:18576. [PMID: 39127727 PMCID: PMC11316778 DOI: 10.1038/s41598-024-62339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/15/2024] [Indexed: 08/12/2024] Open
Abstract
Repurposing of FDA-approved drugs is a quick and cost-effective alternative to de novo drug development. Here, we identify genes involved in bortezomib sensitivity, predict cancer types that may benefit from treatment with bortezomib, and evaluate the mechanism-of-action of bortezomib in breast cancer (BT-474 and ZR-75-30), melanoma (A-375), and glioblastoma (A-172) cells in vitro. Cancer cell lines derived from cancers of the blood, kidney, nervous system, and skin were found to be significantly more sensitive to bortezomib than other organ systems. The in vitro studies confirmed that although bortezomib effectively inhibited the β5 catalytic site in all four cell lines, cell cycle arrest was only induced in G2/M phase and apoptosis in A-375 and A-172 after 24h. The genomic and transcriptomic analyses identified 33 genes (e.g. ALDH18A1, ATAD2) associated with bortezomib resistance. Taken together, we identified biomarkers predictive of bortezomib sensitivity and cancer types that might benefit from treatment with bortezomib.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maxim Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Anna Fäldt Beding
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Southern Älvsborg Hospital, Borås, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
10
|
Liu X, Wang M, Wang Q, Zhang H. A ubiquitin-proteasome system-related signature to predict prognosis, immune infiltration, and therapy efficacy for breast cancer. Immunol Res 2024; 72:368-382. [PMID: 38036900 DOI: 10.1007/s12026-023-09440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an essential regulatory system for maintaining homeostasis, and its dysfunction may cause various diseases. The activity of proteasome and ubiquitin-conjugating enzymes has been found to be greatly increased in breast cancer (BC), indicating that the heterogeneity of UPS may be related to the progression of BC. Gene data was obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases and performed in multiple algorithms to construct a UPS-related signature for BC. Patients in the UPS low-risk group had greater overall and recurrence-free survival probability than those in the UPS high-risk group. This signature was closely associated with functional enrichment. Some high metabolism-related pathways were more active in the UPS high-risk group. The UPS low-risk group had more abundant anti-tumor immune cells, while in the UPS high-risk group, immunosuppressive cells were dominant. More importantly, we found that the UPS low-risk group was more sensitive to immunotherapy, while the UPS high-risk group responded better to radiotherapy. Drug sensitivity analysis identified more effective chemotherapy drugs in different UPS-related risk groups. This UPS-related signature may serve as a novel biomarker and independent prognostic factor for BC. It can effectively predict prognosis, immune infiltration, and therapy efficacy, providing new strategies for individualized treatment.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meihuan Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Larsson P, Pettersson D, Olsson M, Sarathchandra S, Abramsson A, Zetterberg H, Ittner E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Repurposing proteasome inhibitors for improved treatment of triple-negative breast cancer. Cell Death Discov 2024; 10:57. [PMID: 38286854 PMCID: PMC10825133 DOI: 10.1038/s41420-024-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis and limited treatment options due to the lack of important receptors (estrogen receptor [ER], progesterone receptor [PR], and human epidermal growth factor receptor 2 [HER2]) used for targeted therapy. However, high-throughput in vitro drug screening of cell lines is a powerful tool for identifying effective drugs for a disease. Here, we determine the intrinsic chemosensitivity of TNBC cell lines to proteasome inhibitors (PIs), thereby identifying potentially potent 2-drug combinations for TNBC. Eight TNBC cell lines (BT-549, CAL-148, HCC1806, HCC38, HCC70, MDA-MB-436, MDA-MB-453, and MDA-MB-468) and two controls (MCF-10A and MCF-7) were first exposed to 18 drugs (11 PIs and 7 clinically relevant chemotherapeutic agents) as monotherapy, followed by prediction of potent 2-drug combinations using the IDACombo pipeline. The synergistic effects of the 2-drug combinations were evaluated with SynergyFinder in four TNBC cell lines (CAL-148, HCC1806, HCC38, and MDA-MB-468) and three controls (BT-474, MCF-7, and T47D) in vitro, followed by further evaluation of tumor regression in zebrafish tumor models established using HCC1806 and MCF-7 cells. Monotherapy identified nine effective drugs (bortezomib, carfilzomib, cisplatin, delanzomib, docetaxel, epoxomicin, MLN-2238, MLN-9708, and nedaplatin) across all cell lines. PIs (e.g., bortezomib, delanzomib, and epoxomicin) were highly potent drugs in TNBC cells, of which bortezomib and delanzomib inhibited the chymotrypsin-like activity of the 20 S proteasome by 100% at 10 µM. Moreover, several potent 2-drug combinations (e.g., bortezomib+nedaplatin and epoxomicin+epirubicin) that killed virtually 100% of cells were also identified. Although HCC1806- and MCF-7-derived xenografts treated with bortezomib+nedaplatin and carboplatin+paclitaxel were smaller, HCC1806 cells frequently metastasized to the trunk region. Taken together, we show that PIs used in combination with platinum agents or topoisomerase inhibitors exhibit increased efficiency with almost 100% inhibition in TNBC cell lines, indicating that PIs are therefore promising compounds to use as combination therapy for TNBC.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniella Pettersson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maxim Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Dementia Research Institute, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ella Ittner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Wang H, Bai C, Dang X, Wang H. MiR-383 sensitizes osteosarcoma cells to bortezomib treatment via down-regulating PSMB5. Mol Biol Rep 2024; 51:170. [PMID: 38252234 DOI: 10.1007/s11033-023-08964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Proteasome inhibition is a promising strategy for cancer therapy. Bortezomib, which primarily targets the chymotrypsin-like activity of PSMB5, has demonstrated efficacy in various tumors. However, there is variable sensitivity to bortezomib, which could be attributed, in part, to variations in the expression of proteasome subunits. METHODS AND RESULTS In this study, we investigated whether miR-383 affects the expression of proteasome subunits in osteosarcoma (OS) cells, and if so, whether OS cells display differential sensitivity to bortezomib concerning miR-383 expression. We detected a decreased miR-383 expression in OS cells and tissues. Then we found a negative correlation between the cytotoxicity of bortezomib and the expression level of the proteasome 20S core particle subunit β5 (PSMB5). Intriguingly, we identified PSMB5 as a direct target of miR-383. Increased expression of miR-383 resulted in decreased PSMB5 expression and increased sensitivity to bortezomib in OS cells. CONCLUSIONS In summary, our findings present the initial comprehensive analysis of the function of miR-383 in OS. The outcomes indicate that miR-383 may augment the anticancer effect of bortezomib through PSMB5 repression, offering a novel therapeutic approach in OS and a fresh pathway for proteasome regulation.
Collapse
Affiliation(s)
- Haifan Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Chuanyi Bai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haoyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
13
|
Bidooki SH, Sánchez-Marco J, Martínez-Beamonte R, Herrero-Continente T, Navarro MA, Rodríguez-Yoldi MJ, Osada J. Endoplasmic Reticulum Protein TXNDC5 Interacts with PRDX6 and HSPA9 to Regulate Glutathione Metabolism and Lipid Peroxidation in the Hepatic AML12 Cell Line. Int J Mol Sci 2023; 24:17131. [PMID: 38138960 PMCID: PMC10743020 DOI: 10.3390/ijms242417131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Non-alcoholic fatty liver disease or steatosis is an accumulation of fat in the liver. Increased amounts of non-esterified fatty acids, calcium deficiency, or insulin resistance may disturb endoplasmic reticulum (ER) homeostasis, which leads to the abnormal accumulation of misfolded proteins, activating the unfolded protein response. The ER is the primary location site for chaperones like thioredoxin domain-containing 5 (TXNDC5). Glutathione participates in cellular oxidative stress, and its interaction with TXNDC5 in the ER may decrease the disulfide bonds of this protein. In addition, glutathione is utilized by glutathione peroxidases to inactivate oxidized lipids. To characterize proteins interacting with TXNDC5, immunoprecipitation and liquid chromatography-mass spectrometry were used. Lipid peroxidation, reduced glutathione, inducible phospholipase A2 (iPLA2) and hepatic transcriptome were assessed in the AML12 and TXNDC5-deficient AML12 cell lines. The results showed that HSPA9 and PRDX6 interact with TXNDC5 in AML12 cells. In addition, TXNDC5 deficiency reduced the protein levels of PRDX6 and HSPA9 in AML12. Moreover, lipid peroxidation, glutathione and iPLA2 activities were significantly decreased in TXNDC5-deficient cells, and to find the cause of the PRDX6 protein reduction, proteasome suppression revealed no considerable effect on it. Finally, hepatic transcripts connected to PRDX6 and HSPA9 indicated an increase in the Dnaja3, Mfn2 and Prdx5 and a decrease in Npm1, Oplah, Gstp3, Gstm6, Gstt1, Serpina1a, Serpina1b, Serpina3m, Hsp90aa1 and Rps14 mRNA levels in AML12 KO cells. In conclusion, the lipid peroxidation system and glutathione mechanism in AML12 cells may be disrupted by the absence of TXNDC5, a novel protein-protein interacting partner of PRDX6 and HSPA9.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- CNRS, IPREM, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María J. Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
14
|
Coxon M, Dennis MA, Dananberg A, Collins C, Wilson H, Meekma J, Savenkova M, Ng D, Osbron C, Mertz T, Goodman A, Duttke S, Maciejowski J, Roberts S. An impaired ubiquitin-proteasome system increases APOBEC3A abundance. NAR Cancer 2023; 5:zcad058. [PMID: 38155930 PMCID: PMC10753533 DOI: 10.1093/narcan/zcad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.
Collapse
Affiliation(s)
- Margo Coxon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Madeline A Dennis
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher D Collins
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Hannah E Wilson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Jordyn Meekma
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Marina I Savenkova
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Daniel Ng
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Chelsea A Osbron
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Tony M Mertz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Alan G Goodman
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
15
|
Tailor D, Garcia-Marques FJ, Bermudez A, Pitteri SJ, Malhotra SV. Guanylate-binding protein 1 modulates proteasomal machinery in ovarian cancer. iScience 2023; 26:108292. [PMID: 38026225 PMCID: PMC10665831 DOI: 10.1016/j.isci.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Guanylate-binding protein 1 (GBP1) is known as an interferon-γ-induced GTPase. Here, we used genetically modified ovarian cancer (OC) cells to study the role of GBP1. The data generated show that GBP1 inhibition constrains the clonogenic potential of cancer cells. In vivo studies revealed that GBP1 overexpression in tumors promotes tumor progression and reduces median survival, whereas GBP1 inhibition delayed tumor progression with longer median survival. We employed proteomics-based thermal stability assay (CETSA) on GBP1 knockdown and overexpressed OC cells to study its molecular functions. CETSA results show that GBP1 interacts with many members of the proteasome. Furthermore, GBP1 inhibition sensitizes OC cells to paclitaxel treatment via accumulated ubiquitinylated proteins where GBP1 inhibition decreases the overall proteasomal activity. In contrast, GBP1-overexpressing cells acquired paclitaxel resistance via boosted cellular proteasomal activity. Overall, these studies expand the role of GBP1 in the activation of proteasomal machinery to acquire chemoresistance.
Collapse
Affiliation(s)
- Dhanir Tailor
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Fernando Jose Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sharon J. Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sanjay V. Malhotra
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
16
|
Byers HA, Brooks AN, Vangala JR, Grible JM, Feygin A, Clevenger CV, Harrell JC, Radhakrishnan SK. Evaluation of the NRF1-proteasome axis as a therapeutic target in breast cancer. Sci Rep 2023; 13:15843. [PMID: 37739987 PMCID: PMC10516926 DOI: 10.1038/s41598-023-43121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
Proteasomes are multi-subunit complexes that specialize in protein degradation. Cancer cells exhibit a heightened dependence on proteasome activity, presumably to support their enhanced proliferation and other cancer-related characteristics. Here, a systematic analysis of TCGA breast cancer datasets revealed that proteasome subunit transcript levels are elevated in all intrinsic subtypes (luminal, HER2-enriched, and basal-like/triple-negative) when compared to normal breast tissue. Although these observations suggest a pan-breast cancer utility for proteasome inhibitors, our further experiments with breast cancer cell lines and patient-derived xenografts (PDX) pointed to triple-negative breast cancer (TNBC) as the most sensitive subtype to proteasome inhibition. Finally, using TNBC cells, we extended our studies to in vivo xenograft experiments. Our previous work has firmly established a cytoprotective role for the transcription factor NRF1 via its ability to upregulate proteasome genes in response to proteasome inhibition. In further support of this notion, we show here that NRF1 depletion significantly reduced tumor burden in an MDA-MB-231 TNBC xenograft mouse model treated with carfilzomib. Taken together, our results point to TNBC as a particularly vulnerable breast cancer subtype to proteasome inhibition and provide a proof-of-principle for targeting NRF1 as a viable means to increase the efficacy of proteasome inhibitors in TNBC tumors.
Collapse
Affiliation(s)
- Holly A Byers
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy N Brooks
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Janakiram R Vangala
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jacqueline M Grible
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Alex Feygin
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles V Clevenger
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Senthil K Radhakrishnan
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Yan C, Xiong J, Zhou Z, Li Q, Gao C, Zhang M, Yu L, Li J, Hu MM, Zhang CS, Cai C, Zhang H, Zhang J. A cleaved METTL3 potentiates the METTL3-WTAP interaction and breast cancer progression. eLife 2023; 12:RP87283. [PMID: 37589705 PMCID: PMC10435237 DOI: 10.7554/elife.87283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
N6-methyladenosine (m6A) methylation of RNA by the methyltransferase complex (MTC), with core components including METTL3-METTL14 heterodimers and Wilms' tumor 1-associated protein (WTAP), contributes to breast tumorigenesis, but the underlying regulatory mechanisms remain elusive. Here, we identify a novel cleaved form METTL3a (residues 239-580 of METTL3). We find that METTL3a is required for the METTL3-WTAP interaction, RNA m6A deposition, as well as cancer cell proliferation. Mechanistically, we find that METTL3a is essential for the METTL3-METTL3 interaction, which is a prerequisite step for recruitment of WTAP in MTC. Analysis of m6A sequencing data shows that depletion of METTL3a globally disrupts m6A deposition, and METTL3a mediates mammalian target of rapamycin (mTOR) activation via m6A-mediated suppression of TMEM127 expression. Moreover, we find that METTL3 cleavage is mediated by proteasome in an mTOR-dependent manner, revealing positive regulatory feedback between METTL3a and mTOR signaling. Our findings reveal METTL3a as an important component of MTC, and suggest the METTL3a-mTOR axis as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Chaojun Yan
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jingjing Xiong
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Zirui Zhou
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Qifang Li
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Chuan Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Mengyao Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Liya Yu
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ming-Ming Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhanChina
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network School of Life Sciences, Xiamen UniversityFujianChina
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhanChina
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| |
Collapse
|
18
|
Ishii K, Hido M, Sakamura M, Virgona N, Yano T. α-Tocotrienol and Redox-Silent Analogs of Vitamin E Enhances Bortezomib Sensitivity in Solid Cancer Cells through Modulation of NFE2L1. Int J Mol Sci 2023; 24:ijms24119382. [PMID: 37298331 DOI: 10.3390/ijms24119382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Proteasome inhibitors (PIs) have emerged as an attractive novel cancer therapy. However, most solid cancers are seemingly resistant to PIs. The activation of transcription factor Nuclear factor erythroid 2 related factor-1 (NFE2L1) has been characterized as a potential resistance response to protect and restore proteasome activity in cancer cells. In this study, we demonstrated that α-Tocotrienol (T3) and redox-silent analogs of vitamin E (TOS, T3E) enhanced the sensitivity of bortezomib (BTZ), a proteasome inhibitor, in solid cancers through modulation of NFE2L1. In BTZ treatment, all of T3, TOS, and T3E inhibited an increase in the protein levels of NFE2L1, the expression levels of proteasome-related proteins, as well as the recovery of proteasome activity. Moreover, the combination of one of T3, TOS, or T3E and BTZ induced a significant decrease in cell viability in solid cancer cell lines. These findings suggested that the inactivation of NFE2L1 by T3, TOS, and T3E is essential to potentiate the cytotoxic effect of the proteasome inhibitor, BTZ, in solid cancers.
Collapse
Affiliation(s)
- Kyota Ishii
- Laboratory of Molecular Bromacology, Graduate School of Sports Health, Toyo University, Akabane City 115-8650, Japan
| | - Mayuko Hido
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Itakura 374-0193, Japan
| | - Misaki Sakamura
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Itakura 374-0193, Japan
| | - Nantiga Virgona
- Research Institute of Life Innovation, Toyo University, Akabane City 115-8650, Japan
| | - Tomohiro Yano
- Research Institute of Life Innovation, Toyo University, Akabane City 115-8650, Japan
| |
Collapse
|
19
|
Adler J, Oren R, Shaul Y. Depleting the 19S proteasome regulatory PSMD1 subunit as a cancer therapy strategy. Cancer Med 2023; 12:10781-10790. [PMID: 36934426 DOI: 10.1002/cam4.5775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Proteasome inhibitors are in use in treating certain types of cancers. These drugs inhibit the catalytic activity of the 20S proteasome, shared by all the different proteasome complexes. Inhibitors of the 26S-associated deubiquitinating activity explicitly inhibit the 26S proteasomal degradation of ubiquitinylated substrates. We have previously reported an alternative strategy that is based on reducing the 26S/20S ratio by depleting PSMD1, 6, and 11, the subunits of the 19S proteasome regulatory complex. Given the addiction of the many cancer types to a high 26S/20S ratio, the depletion strategy is highly effective in killing many aggressive cancer cell lines but not mouse and human immortalized and normal cells. METHODS We used two aggressive cell lines, MDA-MB-231, a triple-negative breast tumor cell line, and OVCAR8, a high-grade ovary adenocarcinoma. Cell culture, mouse MDA-MB-231, OVCAR8 xenografts, and patient-derived ovarian cancer xenograft (PDX) models were transduced with lentivectors expressing PSMD1 shRNA. Tumor size was measured to follow treatment efficacy. RESULTS Using different experimental strategies of expressing shRNA, we found that PSMD1 depletion, either by expressing PSMD1 shRNA in an inducible manner or in a constitutive manner, robustly inhibited MDA-MB-231, and OVCAR8 xenograft tumor growth. Furthermore, the PSMD1 depletion strategy compromised the growth of the PDX of primary ovarian cancer. CONCLUSION Our results suggest that reducing the 26S/20S ratio might be a valuable strategy for treating drug-resistant aggressive types of cancers.
Collapse
Affiliation(s)
- Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Rashid MU, Lorzadeh S, Gao A, Ghavami S, Coombs KM. PSMA2 knockdown impacts expression of proteins involved in immune and cellular stress responses in human lung cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166617. [PMID: 36481484 DOI: 10.1016/j.bbadis.2022.166617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Proteasome subunit alpha type-2 (PSMA2) is a critical component of the 20S proteasome, which is the core particle of the 26S proteasome complex and is involved in cellular protein quality control by recognizing and recycling defective proteins. PSMA2 expression dysregulation has been detected in different human diseases and viral infections. No study yet has reported PSMA2 knockdown (KD) effects on the cellular proteome. METHODS We used SOMAScan, an aptamer-based multiplexed technique, to measure >1300 human proteins to determine the impact of PSMA2 KD on A549 human lung epithelial cells. RESULTS PSMA2 KD resulted in significant dysregulation of 52 cellular proteins involved in different bio-functions, including cellular movement and development, cell death and survival, and cancer. The immune system and signal transduction were the most affected cellular functions. PSMA2 KD caused dysregulation of several signaling pathways involved in immune response, cytokine signaling, organismal growth and development, cellular stress and injury (including autophagy and unfolded protein response), and cancer responses. CONCLUSIONS In summary, this study helps us better understand the importance of PSMA2 in different cellular functions, signaling pathways, and human diseases.
Collapse
Affiliation(s)
- Mahamud-Ur Rashid
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kevin M Coombs
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada; Children's Hospital Research Institute of Manitoba, Room 513, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
21
|
The unfolded protein response (UPR) pathway: the unsung hero in breast cancer management. Apoptosis 2022; 28:263-276. [PMID: 36536258 DOI: 10.1007/s10495-022-01803-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Tumor cells always have the need to produce an increased amount of proteins in the cells. This elevated amount of proteins increases the pressure on the organelles of the cell such as the endoplasmic reticulum and compels it to increase its protein folding efficiency. However, it is by a matter of fact, that the amount of proteins synthesized outweighs the protein folding capacity of the ER which in turn switches on the UPR pathway by activating the three major molecular sensors and other signaling cascades, which helps in cell survival instead of instant death. However, if this pathway is active for a prolonged period of time the tumor cells heads toward apoptosis. Again, interestingly this is not the same as in case of non- tumorogenic cells. This exhibit a straight natural pathway for tumor cells-specific destruction which has a great implication in today's world where hormone therapies and chemo-therapies are non-effective for various types of breast cancer, a major type being Triple Negative Breast Cancer. Thus a detailed elucidation of the molecular involvement of the UPR pathway in breast cancer may open new avenues for management and attract novel chemotherapeutic targets providing better hopes to patients worldwide.
Collapse
|
22
|
Larsson P, Pettersson D, Engqvist H, Werner Rönnerman E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Pan-cancer analysis of genomic and transcriptomic data reveals the prognostic relevance of human proteasome genes in different cancer types. BMC Cancer 2022; 22:993. [PMID: 36123629 PMCID: PMC9484138 DOI: 10.1186/s12885-022-10079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The human proteasome gene family (PSM) consists of 49 genes that play a crucial role in cancer proteostasis. However, little is known about the effect of PSM gene expression and genetic alterations on clinical outcome in different cancer forms. Methods Here, we performed a comprehensive pan-cancer analysis of genetic alterations in PSM genes and the subsequent prognostic value of PSM expression using data from The Cancer Genome Atlas (TCGA) containing over 10,000 samples representing up to 33 different cancer types. External validation was performed using a breast cancer cohort and KM plotter with four cancer types. Results The PSM genetic alteration frequency was high in certain cancer types (e.g. 67%; esophageal adenocarcinoma), with DNA amplification being most common. Compared with normal tissue, most PSM genes were predominantly overexpressed in cancer. Survival analysis also established a relationship with PSM gene expression and adverse clinical outcome, where PSMA1 and PSMD11 expression were linked to more unfavorable prognosis in ≥ 30% of cancer types for both overall survival (OS) and relapse-free interval (PFI). Interestingly, PSMB5 gene expression was associated with OS (36%) and PFI (27%), and OS for PSMD2 (42%), especially when overexpressed. Conclusion These findings indicate that several PSM genes may potentially be prognostic biomarkers and novel therapeutic targets for different cancer forms. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10079-4.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Daniella Pettersson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Zhang C, Huang C, Xia H, Xu H, Tang Q, Bi F. Autophagic sequestration of SQSTM1 disrupts the aggresome formation of ubiquitinated proteins during proteasome inhibition. Cell Death Dis 2022; 13:615. [PMID: 35840557 PMCID: PMC9287315 DOI: 10.1038/s41419-022-05061-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Aggresome formation is a protective cellular response to counteract proteasome dysfunction by sequestering misfolded proteins and reducing proteotoxic stress. Autophagic degradation of the protein aggregates is considered to be a key compensating mechanism for balancing proteostasis. However, the precise role of autophagy in proteasome inhibition-induced aggresome biogenesis remains unclear. Herein, we demonstrate that in the early stage of proteasome inhibition, the maturation of the autophagosome is suppressed, which facilitates aggresome formation of misfolded proteins. Proteasome inhibition-induced phosphorylation of SQSTM1 T269/S272 inhibits its autophagic receptor activity and promotes aggresome formation of misfolded proteins. Inhibiting SQSTM1 T269/S272 phosphorylation using Doramapimod aggravates proteasome inhibitor-mediated cell damage and tumor suppression. Taken together, our data reveal a negative effect of autophagy on aggresome biogenesis and cell damage upon proteasome inhibition. Our study suggests a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.
Collapse
Affiliation(s)
- Chenliang Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Chen Huang
- grid.412901.f0000 0004 1770 1022Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hongwei Xia
- grid.412901.f0000 0004 1770 1022Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Huanji Xu
- grid.412901.f0000 0004 1770 1022Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiulin Tang
- grid.412901.f0000 0004 1770 1022Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Bi
- grid.412901.f0000 0004 1770 1022Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital of Sichuan University, Chengdu, China ,grid.412901.f0000 0004 1770 1022Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
24
|
PSMB2 knockdown suppressed proteasome activity and cell proliferation, promoted apoptosis, and blocked NRF1 activation in gastric cancer cells. Cytotechnology 2022; 74:491-502. [PMID: 36110152 PMCID: PMC9374866 DOI: 10.1007/s10616-022-00538-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/18/2022] [Indexed: 11/03/2022] Open
Abstract
Proteasome 20S Subunit Beta 2 (PSMB2) has been suggested to play several roles in cancer. However, the role of PSMB2 and its underlying mechanisms in gastric cancer have not been studied. In this study, qRT-PCR was employed to detect the expression of genes that encode for 26 s proteasome subunit proteins. PSMB2 expression and its prognostic ability were assessed by collecting patient tissue samples and reviewing the TCGA and Kaplan-Meier Plotter databases. Immunofluorescence and western blotting experiments were performed to evaluate the expression of PSMB2 in human gastric cancer cells and normal gastric epithelial cells. Subsequently, PSMB2 was knocked down in HGC-27 and SNU-1 cells and overexpressed in N-87 and AGS cells. Proteasome activity assays, 5-Ethynyl-2'-deoxyuridine staining, and TUNEL assays were used to assess proteasome activity, cell proliferation, and apoptosis. Tumor xenograft assays were conducted to evaluate PSMB2 function in vivo. Our results showed that a total of 8 genes encoding for the 26 s proteasome subunit protein were highly expressed in a variety of gastric cancer cells. Next, PSMB2 was selected as the focus of subsequent studies which showed that PSMB2 was highly expressed in samples of gastric cancer tissue. Furthermore, a review of the TCGA database revealed that a high level of PSMB2 expression was associated with a poor clinical prognosis. Our results indicated that PSMB2 overexpression promoted proteasome activity, cell proliferation, and suppressed the apoptosis of gastric cancer cells, while those effects were reversed by treatment with a proteasome inhibitor (MG132). In contrast, PSMB2 knockdown produced the opposite effects and also blocked NRF1 activation. Moreover, PSMB2 knockdown inhibited tumor growth in vivo, decreased PSMB2 expression and cell proliferation, and promoted apoptosis in tumor tissues. Our findings revealed the role played by PSMB2 in gastric cancer and suggest PSMB2 as a new target molecule for use in diagnosing and treating gastric cancer.
Collapse
|
25
|
Yerlikaya A. Heme-regulated inhibitor: an overlooked eIF2α kinase in cancer investigations. Med Oncol 2022; 39:73. [PMID: 35568791 DOI: 10.1007/s12032-022-01668-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022]
Abstract
Heme-regulated inhibitor (HRI) kinase is a serine-threonine kinase, controlling the initiation of protein synthesis via phosphorylating α subunit of eIF2 on serine 51 residue, mainly in response to heme deprivation in erythroid cells. However, recent studies showed that HRI is also activated by several diverse signals, causing dysregulations in intracellular homeostatic mechanisms in non-erythroid cells. For instance, it was reported that the decrease in protein synthesis upon the 26S proteasomal inhibition by MG132 or bortezomib is mediated by increased eIF2α phosphorylation in an HRI-dependent manner in mouse embryonic fibroblast cells. The increase in eIF2α phosphorylation level through the activation of HRI upon 26S proteasomal inhibition is believed to protect cells against the buildup of misfolded and ubiquitinated proteins, having the potential to trigger the apoptotic response. In contrast, prolonged and sustained HRI-mediated eIF2α phosphorylation can induce cell death, which may involve ATF4 and CHOP expression. Altogether, these studies suggest that HRI-mediated eIF2α phosphorylation may be cytoprotective or cytotoxic depending on the cells, type, and duration of pharmacological agents used. It is thus hypothesized that both HRI activators, inducing eIF2α phosphorylation or HRI inhibitors causing disturbances in eIF2α phosphorylation, may be effective as novel strategies in cancer treatment if the balance in eIF2α phosphorylation is shifted in favor of autophagic or apoptotic response in cancer cells. It is here aimed to review the role of HRI in various biological mechanisms as well as the therapeutic potentials of recently developed HRI activators and inhibitors, targeting eIF2α phosphorylation in cancer cells.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
| |
Collapse
|
26
|
Upregulated Proteasome Subunits in COVID-19 Patients: A Link with Hypoxemia, Lymphopenia and Inflammation. Biomolecules 2022; 12:biom12030442. [PMID: 35327634 PMCID: PMC8946050 DOI: 10.3390/biom12030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Severe COVID-19 disease leads to hypoxemia, inflammation and lymphopenia. Viral infection induces cellular stress and causes the activation of the innate immune response. The ubiquitin-proteasome system (UPS) is highly implicated in viral immune response regulation. The main function of the proteasome is protein degradation in its active form, which recognises and binds to ubiquitylated proteins. Some proteasome subunits have been reported to be upregulated under hypoxic and hyperinflammatory conditions. Here, we conducted a prospective cohort study of COVID-19 patients (n = 44) and age-and sex-matched controls (n = 20). In this study, we suggested that hypoxia could induce the overexpression of certain genes encoding for subunits from the α and β core of the 20S proteasome and from regulatory particles (19S and 11S) in COVID-19 patients. Furthermore, the gene expression of proteasome subunits was associated with lymphocyte count reduction and positively correlated with inflammatory molecular and clinical markers. Given the importance of the proteasome in maintaining cellular homeostasis, including the regulation of the apoptotic and pyroptotic pathways, these results provide a potential link between COVID-19 complications and proteasome gene expression.
Collapse
|
27
|
Zhang L, Wu M, Su R, Zhang D, Yang G. The efficacy and mechanism of proteasome inhibitors in solid tumor treatment. Recent Pat Anticancer Drug Discov 2021; 17:268-283. [PMID: 34856915 DOI: 10.2174/1574892816666211202154536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) is critical in cellular protein degradation and widely involved in the regulations of cancer hallmarks. Targeting the UPS pathway has emerged as a promising novel treatment in hematological malignancies and solid tumors. OBJECTIVE This review mainly focuses on the preclinical results of proteasome inhibitors in solid tumors. METHODS We analyzed the published articles associated with the anticancer results of proteasome inhibitors alone or combination chemotherapy in solid tumors. Important data presented in abstract form were also discussed in this review. RESULTS/CONCLUSION Proteasome inhibitors, such as bortezomib and carfilzomib, are highly effective in treating solid tumors. The anticancer efficacy is not limited to affect the proteasomal inhibition-associated signaling pathways but also widely involves the signaling pathways related to cell cycle, apoptosis, and epithelial-mesenchymal transition (EMT). In addition, proteasome inhibitors overcome the conventional chemo-resistance of standard chemotherapeutics by inhibiting signaling pathways, such as NF-κB or PI3K/Akt. Combination chemotherapy of proteasome inhibitors and standard chemotherapeutics are widely investigated in multiple relapsed or chemo-resistant solid tumor types, such as breast cancer and pancreatic cancer. The proteasome inhibitors re-sensitize the standard chemotherapeutic regimens and induce synergistic anticancer effects. The development of novel proteasome inhibitors and delivery systems also improves the proteasome inhibitors' anticancer efficacy in solid tumors. This review summarizes the current preclinical results of proteasome inhibitors in solid tumors and reveals the potential anticancer mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| | - Mengyang Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| | - Ruicong Su
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| |
Collapse
|
28
|
Ziemann M, Lim SC, Kang Y, Samuel S, Sanchez IL, Gantier M, Stojanovski D, McKenzie M. MicroRNA-101-3p Modulates Mitochondrial Metabolism via the Regulation of Complex II Assembly. J Mol Biol 2021; 434:167361. [PMID: 34808225 DOI: 10.1016/j.jmb.2021.167361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022]
Abstract
MicroRNA-101-3p (miR-101-3p) is a tumour suppressor that regulates cancer proliferation and apoptotic signalling. Loss of miR-101-3p increases the expression of the Polycomb Repressive Complex 2 (PRC2) subunit enhancer of zeste homolog 2 (EZH2), resulting in alterations to the epigenome and enhanced tumorigenesis. MiR-101-3p has also been shown to modulate various aspects of cellular metabolism, however little is known about the mechanisms involved. To investigate the metabolic pathways that are regulated by miR-101-3p, we performed transcriptome and functional analyses of osteosarcoma cells transfected with miR-101-3p. We found that miR-101-3p downregulates multiple mitochondrial processes, including oxidative phosphorylation, pyruvate metabolism, the citric acid cycle and phospholipid metabolism. We also found that miR-101-3p transfection disrupts the transcription of mitochondrial DNA (mtDNA) via the downregulation of the mitochondrial transcription initiation complex proteins TFB2M and Mic60. These alterations in transcript expression disrupt mitochondrial function, with significant decreases in both basal (54%) and maximal (67%) mitochondrial respiration rates. Native gel electrophoresis revealed that this diminished respiratory capacity was associated with reduced steady-state levels of mature succinate dehydrogenase (complex II), with a corresponding reduction of complex II enzymatic activity. Furthermore, miR-101-3p transfection reduced the expression of the SDHB subunit, with a concomitant disruption of the assembly of the SDHC subunit into mature complex II. Overall, we describe a new role for miR-101-3p as a modulator of mitochondrial metabolism via its regulation of multiple mitochondrial processes, including mtDNA transcription and complex II biogenesis.
Collapse
Affiliation(s)
- Mark Ziemann
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 3216 Geelong, Australia. https://twitter.com/@mdziemann
| | - Sze Chern Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 3168 Melbourne, Australia
| | - Yilin Kang
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 3052 Melbourne, Australia
| | - Sona Samuel
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia
| | - Isabel Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia; Ophthalmology, University of Melbourne, Department of Surgery Melbourne, Victoria 3000, Australia. https://twitter.com/@DrIsabelLopez
| | - Michael Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 3168 Melbourne, Australia; Department of Molecular and Translational Science, Monash University, 3168 Melbourne, Australia. https://twitter.com/@GantierLab
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 3052 Melbourne, Australia
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 3216 Geelong, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 3168 Melbourne, Australia; Department of Molecular and Translational Science, Monash University, 3168 Melbourne, Australia.
| |
Collapse
|
29
|
Jiang Z, Generoso SF, Badia M, Payer B, Carey LB. A conserved expression signature predicts growth rate and reveals cell & lineage-specific differences. PLoS Comput Biol 2021; 17:e1009582. [PMID: 34762642 PMCID: PMC8610284 DOI: 10.1371/journal.pcbi.1009582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/23/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine the differences between fast and slow-proliferating cells, we developed a method to sort cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found that slowly proliferating mESCs have a more naïve pluripotent character. We identified an evolutionarily conserved proliferation-correlated transcriptomic signature that is common to all eukaryotes: fast cells have higher expression of genes for protein synthesis and protein degradation. This signature accurately predicted growth rate in yeast and cancer cells, and identified lineage-specific proliferation dynamics during development, using C. elegans scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a highly cell-type specific mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast proliferating, while the opposite is true for fibroblasts. The mitochondrial electron transport chain inhibitor antimycin affected slow and fast subpopulations differently. While a major transcriptional-signature associated with cell-to-cell heterogeneity in proliferation is conserved, the metabolic and energetic dependency of cell proliferation is cell-type specific. By performing RNA sequencing on cells sorted by their proliferation rate, this study identifies a gene expression signature capable of predicting proliferation rates in diverse eukaryotic cell types and species. This signature, applied to single-cell RNA sequencing data from embryos of the roundworm C. elegans, reveals lineage-specific proliferation differences during development. In contrast to the universality of the proliferation signature, mitochondria and metabolism related genes show a high degree of cell-type specificity; mouse pluripotent stem cells (mESCs) and differentiated cells (fibroblasts) exhibit opposite relations between mitochondria state and proliferation. Furthermore, we identified a slow proliferating subpopulation of mESCs with higher expression of pluripotency genes. Finally, we show that fast and slow proliferating subpopulations are differentially sensitive to mitochondria inhibitory drugs in different cell types. Highlights:
A FACS-based method to determine the transcriptomes of fast and slow proliferating subpopulations. A universal proliferation-correlated transcriptional signature indicates high protein synthesis and degradation in fast proliferating cells across cell types and species. Applied to scRNA-seq, the expression signature predicts the global proliferation slowdown during C. elegans development. Mitochondria membrane potential predicts proliferation rate in a cell-type specific manner, with ETC complex III inhibitor having distinct effects on fibroblasts vs mESCs.
Collapse
Affiliation(s)
- Zhisheng Jiang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Serena F. Generoso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Badia
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (BP); (LBC)
| | - Lucas B. Carey
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (BP); (LBC)
| |
Collapse
|
30
|
Ragusi MAA, Bismeijer T, van der Velden BHM, Loo CE, Canisius S, Wesseling J, Wessels LFA, Elias SG, Gilhuijs KGA. Contralateral parenchymal enhancement on MRI is associated with tumor proteasome pathway gene expression and overall survival of early ER+/HER2-breast cancer patients. Breast 2021; 60:230-237. [PMID: 34763270 PMCID: PMC8591464 DOI: 10.1016/j.breast.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose To assess whether contralateral parenchymal enhancement (CPE) on MRI is associated with gene expression pathways in ER+/HER2-breast cancer, and if so, whether such pathways are related to survival. Methods Preoperative breast MRIs were analyzed of early ER+/HER2-breast cancer patients eligible for breast-conserving surgery included in a prospective observational cohort study (MARGINS). The contralateral parenchyma was segmented and CPE was calculated as the average of the top-10% delayed enhancement. Total tumor RNA sequencing was performed and gene set enrichment analysis was used to reveal gene expression pathways associated with CPE (N = 226) and related to overall survival (OS) and invasive disease-free survival (IDFS) in multivariable survival analysis. The latter was also done for the METABRIC cohort (N = 1355). Results CPE was most strongly correlated with proteasome pathways (normalized enrichment statistic = 2.04, false discovery rate = .11). Patients with high CPE showed lower tumor proteasome gene expression. Proteasome gene expression had a hazard ratio (HR) of 1.40 (95% CI = 0.89, 2.16; P = .143) for OS in the MARGINS cohort and 1.53 (95% CI = 1.08, 2.14; P = .017) for IDFS, in METABRIC proteasome gene expression had an HR of 1.09 (95% CI = 1.01, 1.18; P = .020) for OS and 1.10 (95% CI = 1.02, 1.18; P = .012) for IDFS. Conclusion CPE was negatively correlated with tumor proteasome gene expression in early ER+/HER2-breast cancer patients. Low tumor proteasome gene expression was associated with improved survival in the METABRIC data. Contralateral parenchymal enhancement on MRI was associated with tumor proteasome gene expression in ER+/HER2-breast cancer. A high contralateral parenchymal enhancement was associated with a low proteasome gene expression in the breast cancer. Low proteasome tumor gene expression was associated with improved survival in an independent patient cohort.
Collapse
Affiliation(s)
- Max A A Ragusi
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| | - Tycho Bismeijer
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bas H M van der Velden
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Claudette E Loo
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sander Canisius
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Mekelweg 5, 2628 CD Delft, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Kenneth G A Gilhuijs
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
31
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
32
|
El Yaagoubi OM, Oularbi L, Bouyahya A, Samaki H, El Antri S, Aboudkhil S. The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biol Ther 2021; 22:479-492. [PMID: 34583610 DOI: 10.1080/15384047.2021.1978785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ubiquitin-Proteasome System plays a central role in signal transduction associated with stress, in the skin in particular by the control of NF-κB pathways. Under normal conditions, the inhibitory protein IκB is phosphorylated by kinases, then ubiquitinated and ends up at the proteasome to be degraded. The present short review discusses recent progress in the inhibition of NF-κB activation by proteasome inhibitors prevents the degradation of protein IκB, which accumulates in the cytosol, and there by the activation of NF-κB. Moreover, would not only limit the expression of adhesion molecules and cytokines involved in metastatic processes, but also increase the sensitivity of cancer cells to apoptosis. Considering this fact, the activity of NF-κB is regulated by the phosphorylation and proteasome-dependent degradation of its inhibitor Iκb. In this scenario, the use of a proteasome inhibitor might be an effective strategy in the treatment of skin cancer with constitutive activation of NF-κB.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials, Membranes, and Environment, Faculty of Science and Technology-Mohammedia, Hassan II University, Casablanca, Morocco.,Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Said El Antri
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
33
|
Yerlikaya A, Kanbur E. The Ubiquitin-Proteasome Pathway and Resistance Mechanisms Developed Against the Proteasomal Inhibitors in Cancer Cells. Curr Drug Targets 2021; 21:1313-1325. [PMID: 32448101 DOI: 10.2174/1389450121666200525004714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The ubiquitin-proteasome pathway is crucial for all cellular processes and is, therefore, a critical target for the investigation and development of novel strategies for cancer treatment. In addition, approximately 30% of newly synthesized proteins never attain their final conformations due to translational errors or defects in post-translational modifications; therefore, they are also rapidly eliminated by the ubiquitin-proteasome pathway. OBJECTIVE Here, an effort was made to outline the recent findings deciphering the new molecular mechanisms involved in the regulation of ubiquitin-proteasome pathway as well as the resistance mechanisms developed against proteasome inhibitors in cell culture experiments and in the clinical trials. RESULTS Since cancer cells have higher proliferation rates and are more prone to translational errors, they require the ubiquitin-proteasome pathway for selective advantage and sustained proliferation. Therefore, drugs targeting the ubiquitin-proteasome pathway are promising agents for the treatment of both hematological and solid cancers. CONCLUSION A number of proteasome inhibitors are approved and used for the treatment of advanced and relapsed multiple myeloma. Unfortunately, drug resistance mechanisms may develop very fast within days of the start of the proteasome inhibitor-treatment either due to the inherent or acquired resistance mechanisms under selective drug pressure. However, a comprehensive understanding of the mechanisms leading to the proteasome inhibitor-resistance will eventually help the design and development of novel strategies involving new drugs and/or drug combinations for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Kutahya Health Sciences University, Faculty of Medicine, Department of Medical Biology, Kütahya, Turkey
| | - Ertan Kanbur
- Bursa Uludag University, Faculty of Medicine, Department of Immunology, Bursa, Turkey
| |
Collapse
|
34
|
Rubio AJ, Bencomo-Alvarez AE, Young JE, Velazquez VV, Lara JJ, Gonzalez MA, Eiring AM. 26S Proteasome Non-ATPase Regulatory Subunits 1 (PSMD1) and 3 (PSMD3) as Putative Targets for Cancer Prognosis and Therapy. Cells 2021; 10:2390. [PMID: 34572038 PMCID: PMC8472613 DOI: 10.3390/cells10092390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Ever since the ubiquitin proteasome system was characterized, efforts have been made to manipulate its function to abrogate the progression of cancer. As a result, the anti-cancer drugs bortezomib, carfilzomib, and ixazomib targeting the 26S proteasome were developed to treat multiple myeloma, mantle cell lymphoma, and diffuse large B-cell lymphoma, among others. Despite success, adverse side effects and drug resistance are prominent, raising the need for alternative therapeutic options. We recently demonstrated that knockdown of the 19S regulatory components, 26S proteasome non-ATPase subunits 1 (PSMD1) and 3 (PSMD3), resulted in increased apoptosis of chronic myeloid leukemia (CML) cells, but had no effect on normal controls, suggesting they may be good targets for therapy. Therefore, we hypothesized that PSMD1 and PSMD3 are potential targets for anti-cancer therapeutics and that their relevance stretches beyond CML to other types of cancers. In the present study, we analyzed PSMD1 and PSMD3 mRNA and protein expression in cancerous tissue versus normal controls using data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), comparing expression with overall survival. Altogether, our data suggest that PSMD1 and PSMD3 may be novel putative targets for cancer prognosis and therapy that are worthy of future investigation.
Collapse
Affiliation(s)
- Andres J Rubio
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Alfonso E Bencomo-Alvarez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - James E Young
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Vanessa V Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Joshua J Lara
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Mayra A Gonzalez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Anna M Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
35
|
Molecular analysis of cell survival and death pathways in the proteasome inhibitor bortezomib-resistant PC3 prostate cancer cell line. Med Oncol 2021; 38:112. [PMID: 34363546 DOI: 10.1007/s12032-021-01563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
The ubiquitin-proteasome pathway is an important protein quality control system involved in intracellular homeostasis. To achieve intracellular homeostasis, proteins that are misfolded as a result of translational errors or genetic mutations must be eliminated by the ubiquitin-proteasome pathway. In our previous publications, we determined that 4T1 breast and B16F10 melanoma cancer cells have differential levels of resistance to proteasome inhibitors. Again, in the previous studies, we reported that 4T1 cell cultures, despite being p53-mutant, underwent apoptosis as a result of bortezomib treatment. The first goal of this study was to verify the resistance levels of parental and resistant PC3 prostate cancer cells to bortezomib using WST-1 test. As a result of treatment with different bortezomib concentrations for 48 h, the IC50 value of the parental cells was determined as 32.8 nM and that of the resistant cells was determined as 346 nM. This result showed that the resistant cells were at least 10.5 times more resistant. In addition, to determine whether the resistance gained was reversible or not, the cells were passaged in a medium without bortezomib for one month. The IC50 value determination by WST-1 test showed that the resistant PC3 cells gained an irreversible bortezomib resistance phenotype. The results of the 3D spheroid experiment showed that the 3D spheroid diameter of resistant cells was significantly higher than that of the parental cells. The studies conducted with Western blot showed that ERK1 MAPK T202 phosphorylation and the conversion of autophagy marker LC3-I to LC3-II were significantly increased in parental cells as compared to the resistant cells. Finally, the results showed that while both maternal embryonic leucine zipper kinase (MELK) inhibitor OTSSP167 and Ca2+ chelator BAPTA-AM (also an inhibitor of the expression of antiapoptotic protein GRP78) are promising agents for cancer cells resistant to the proteasome inhibitors, CDK2 inhibitor CVT-313 was found ineffective in both parental and the resistant cells.
Collapse
|
36
|
Northrop A, Byers HA, Radhakrishnan SK. Regulation of NRF1, a master transcription factor of proteasome genes: implications for cancer and neurodegeneration. Mol Biol Cell 2021; 31:2158-2163. [PMID: 32924844 PMCID: PMC7550695 DOI: 10.1091/mbc.e20-04-0238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to sense proteasome insufficiency and respond by directing the transcriptional synthesis of de novo proteasomes is a trait that is conserved in evolution and is found in organisms ranging from yeast to humans. This homeostatic mechanism in mammalian cells is driven by the transcription factor NRF1. Interestingly, NRF1 is synthesized as an endoplasmic reticulum (ER) membrane protein and when cellular proteasome activity is sufficient, it is retrotranslocated into the cytosol and targeted for destruction by the ER-associated degradation pathway (ERAD). However, when proteasome capacity is diminished, retrotranslocated NRF1 escapes ERAD and is activated into a mature transcription factor that traverses to the nucleus to induce proteasome genes. In this Perspective, we track the journey of NRF1 from the ER to the nucleus, with a special focus on the various molecular regulators it encounters along its way. Also, using human pathologies such as cancer and neurodegenerative diseases as examples, we explore the notion that modulating the NRF1-proteasome axis could provide the basis for a viable therapeutic strategy in these cases.
Collapse
Affiliation(s)
- Amy Northrop
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298
| | - Holly A Byers
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298
| | | |
Collapse
|
37
|
Initial proteomic characterization of IMMODIN, commercially available dialysable leukocytes extract. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Wu A, Tang J, Guo Z, Dai Y, Nie J, Hu W, Liu N, Ye C, Li S, Pei H, Zhou G. Long Non-Coding RNA CRYBG3 Promotes Lung Cancer Metastasis via Activating the eEF1A1/MDM2/MTBP Axis. Int J Mol Sci 2021; 22:3211. [PMID: 33809929 PMCID: PMC8048704 DOI: 10.3390/ijms22063211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of distant tumor metastases is a major barrier in non-small cell lung cancer (NSCLC) therapy, and seriously affects clinical treatment and patient prognosis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be crucial regulators of metastasis in lung cancer. The aim of this study was to reveal the underlying mechanisms of a novel lncRNA LNC CRYBG3 in regulating NSCLC metastasis. Experimental results showed that LNC CRYBG3 was upregulated in NSCLC cells compared with normal tissue cells, and its level was involved in these cells' metastatic ability. Exogenously overexpressed LNC CRYBG3 increased the metastatic ability and the protein expression level of the metastasis-associated proteins Snail and Vimentin in low metastatic lung cancer HCC827 cell line. In addition, LNC CRYBG3 contributed to HCC827 cell metastasis in vivo. Mechanistically, LNC CRYBG3 could directly combine with eEF1A1 and promote it to move into the nucleus to enhance the transcription of MDM2. Overexpressed MDM2 combined with MDM2 binding protein (MTBP) to reduce the binding of MTBP with ACTN4 and consequently increased cell migration mediated by ACTN4. In conclusion, the LNC CRYBG3/eEF1A1/MDM2/MTBP axis is a novel signaling pathway regulating tumor metastasis and may be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jiaxin Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ningang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Shihong Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
39
|
Uranga J, Hasecke L, Proppe J, Fingerhut J, Mata RA. Theoretical Studies of the Acid-Base Equilibria in a Model Active Site of the Human 20S Proteasome. J Chem Inf Model 2021; 61:1942-1953. [PMID: 33719420 DOI: 10.1021/acs.jcim.0c01459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 20S proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells and in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome (caspase-like), an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy- and boronic acid-containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics, and Bayesian optimization of nonbonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach for the reevaluation of nonbonded potentials making use of the hybrid quantum mechanics molecular mechanics dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the studied inhibitors.
Collapse
Affiliation(s)
- Jon Uranga
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Lukas Hasecke
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Jonny Proppe
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Jan Fingerhut
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Zagirova D, Autenried R, Nelson ME, Rezvani K. Proteasome Complexes and Their Heterogeneity in Colorectal, Breast and Pancreatic Cancers. J Cancer 2021; 12:2472-2487. [PMID: 33854609 PMCID: PMC8040722 DOI: 10.7150/jca.52414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Targeting the ubiquitin-proteasome system (UPS) - in particular, the proteasome complex - has emerged as an attractive novel cancer therapy. While several proteasome inhibitors have been successfully approved by the Food and Drug Administration for the treatment of hematological malignancies, the clinical efficacy of these inhibitors is unexpectedly lower in the treatment of solid tumors due to the functional and structural heterogeneity of proteasomes in solid tumors. There are ongoing trials to examine the effectiveness of compound and novel proteasome inhibitors that can target solid tumors either alone or in combination with conventional chemotherapeutic agents. The modest therapeutic efficacy of proteasome inhibitors such as bortezomib in solid malignancies demands further research to clarify the exact effects of these proteasome inhibitors on different proteasomes present in cancer cells. The structural, cellular localization and functional analysis of the proteasome complexes in solid tumors originated from different tissues provides new insights into the diversity of proteasomes' responses to inhibitors. In this study, we used an optimized iodixanol gradient ultracentrifugation to purify a native form of proteasome complexes with their intact associated protein partners enriched within distinct cellular compartments. It is therefore possible to isolate proteasome subcomplexes with far greater resolution than sucrose or glycerol fractionations. We have identified differences in the catalytic activities, subcellular distribution, and inhibitor sensitivity of cytoplasmic proteasomes isolated from human colon, breast, and pancreatic cancer cell lines. Our developed techniques and generated results will serve as a valuable guideline for investigators developing a new generation of proteasome inhibitors as an effective targeted therapy for solid tumors.
Collapse
Affiliation(s)
- Diana Zagirova
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rebecca Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan E Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| |
Collapse
|
41
|
Huang M, Zhou Y, Duan D, Yang C, Zhou Z, Li F, Kong Y, Hsieh YC, Zhang R, Ding W, Xiao W, Puno P, Chen C. Targeting ubiquitin conjugating enzyme UbcH5b by a triterpenoid PC3-15 from Schisandra plants sensitizes triple-negative breast cancer cells to lapatinib. Cancer Lett 2021; 504:125-136. [PMID: 33607208 DOI: 10.1016/j.canlet.2021.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022]
Abstract
Increasing evidence suggested that a number of ubiquitin enzymes, including ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, E3 ubiquitin ligases and deubiquitination enzymes contribute to therapeutic resistance in triple-negative breast cancer (TNBC) cells. Inhibition of these enzymes with small molecule inhibitors may restore therapeutic sensitivity. Here, we demonstrated ubiquitin conjugating enzyme UbcH5b strongly supports HECTD3 auto-ubiquitination in vitro. Based on this, we developed a Fluorescence Resonance Energy Transfer (FRET) assay and identified three Schisandraceae triterpenoids, including PC3-15, to block HECTD3/UbcH5b auto-ubiquitination. Furthermore, we revealed that PC3-15 directly binds to UbcH5b and also inhibits UbcH5b-mediated p62 ubiquitination. We found that the UbcH5b-p62 axis confers TNBC cells resistance to lapatinib by promoting autophagy. Consistently, PC3-15 inhibits lapatinib-induced autophagy and increases lapatinib sensitivity in TNBC in vitro and in mouse xenografts. These findings suggest that the UbcH5b-p62 axis provides potential therapeutic targets and that Schisandraceae triterpenoids may be used for TNBC treatment in combination with lapatinib.
Collapse
Affiliation(s)
- Maobo Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yuanfei Zhou
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Fubing Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yanjie Kong
- Biobank, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yi-Ching Hsieh
- The Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University, 2 North Cuihu Road, Kunming, 650091, China
| | - Wenping Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University, 2 North Cuihu Road, Kunming, 650091, China
| | - PemaTenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
42
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
43
|
JANNUZZI AT, ARSLAN S, ALPERTUNGA B, KARADEMİR YILMAZ B. Proteasomal system related stress response in different cancer cell lines. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.802815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
The Nrf2/PGC1 α Pathway Regulates Antioxidant and Proteasomal Activity to Alter Cisplatin Sensitivity in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4830418. [PMID: 33294122 PMCID: PMC7714579 DOI: 10.1155/2020/4830418] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
Drug resistance remains a barrier in the clinical treatment of ovarian cancer. Proteasomal and antioxidant activities play important roles in tumor drug resistance, and increasing evidence suggests the existence of an interaction between antioxidant and proteasomal activities. However, the mechanism of the synergistic effects of proteasomal activity and antioxidation on tumor drug resistance is not completely clear. In this study, we compared two ovarian cancer cells, A2780 and SKOV3 cells. Among them, SKOV3 cell is a human clear cell carcinoma cell line that is resistant to platinum. We found that compared with the findings in A2780 cells, SKOV3 cells were less sensitive to both proteasomal inhibitor and cisplatin. Proteasomal inhibition enhanced the sensitivity of A2780 cells, but not SKOV3 cells, to cisplatin. Notably, the Nrf2-mediated antioxidant pathway was identified as a resistance mechanism in proteasome inhibitor-resistant cells, but this was not the only factor identified in our research. In SKOV3 cells, PGC1α regulated the antioxidant activity of Nrf2 by increasing the phosphorylation of GSK3β, and in turn, Nrf2 regulated the transcriptional activity of PGC1α. Thus, Nrf2 and PGC1α synergistically participate in the regulation of proteasomal activity. Furthermore, the Nrf2/PGC1α pathway participated in the regulation of mitochondrial function and homeostasis, further regulating proteasomal activity in SKOV3 cells. Therefore, exploring the roles of PGC1α and Nrf2 in the regulation of proteasomal activity by antioxidant and mitochondrial functions may provide new avenues for reversing drug resistance in ovarian cancer.
Collapse
|
45
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
46
|
Targeting poor proteasomal function with radioiodine eliminates CT26 colon cancer stem cells resistant to bortezomib therapy. Sci Rep 2020; 10:14308. [PMID: 32868872 PMCID: PMC7459321 DOI: 10.1038/s41598-020-71366-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
We tested the hypothesis that tumor response to conventional bortezomib (BTZ) treatment is enhanced by targeted radiotherapy of resistant cancer stem cells (CSCs) that have characteristically poor proteasome function. This was accomplished by augmenting 131I uptake through expression of a sodium-iodide symporter (NIS) fusion protein that accumulates in cells with low proteasome activity. The NIS gene fused with the C-terminal of ornithine decarboxylase degron (NIS-cODC) was cloned. Stably expressing CT26/NIS-cODC cells and tumorsphere-derived CSCs were evaluated for NIS expression and radioiodine uptake. CT26/NIS-cODC cells implanted into mice underwent PET imaging, and tumor-bearing mice were treated with BTZ alone or with BTZ plus 131I. CT26/NIS-cODC cells accumulated NIS protein, which led to high radioiodine uptake when proteasome activity was inhibited or after enrichment for stemness. The cell population that survived BTZ treatment was enriched with CSCs that were susceptible to 131I treatment, which suppressed stemness features. Positron emission tomography and uptake measurements confirmed high 124I and 131I uptake of CT26/NIS-cODC CSCs implanted in living mice. In CT26/NIS-cODC tumor-bearing mice, whereas BTZ treatment modestly retarded tumor growth and increased stemness markers, combining 131I therapy suppressed stemness features and achieved greater antitumor effects. The NIS-cODC system offer radioiodine-targeted elimination of CSCs that are tolerant to proteasome inhibition therapy.
Collapse
|
47
|
Chen NX, Liu K, Liu X, Zhang XX, Han DY. Induction and Regulation of the Immunoproteasome Subunit β5i (PSMB8) in Laryngeal and Hypopharyngeal Carcinoma Cells. Med Sci Monit 2020; 26:e923621. [PMID: 32680979 PMCID: PMC7366787 DOI: 10.12659/msm.923621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The ubiquitin–proteasome pathway (UPP) is closely associated with the occurrence and progression of cancer, and the 5i immunoproteasome subunit is an important antitumor target in UPP. This study aimed to characterize the regulation of the immunoproteasome subunit β5i (PSMB8) in JHU-011 laryngeal carcinoma cells and FaDu hypopharyngeal carcinoma cells to explore a new target for the treatment of laryngeal and hypopharyngeal carcinomas. Material/Methods JHU-011 and FaDu cells were used as effector cells in this study. By means of 60Co γ-irradiation, the construction of stable cell lines of the silenced proto-oncogene c-Abl, and the addition of exogenous tyrosine kinase inhibitor (TKI) and activator, the transcription and protein expression levels of PSMB8 and its alternatively spliced isoforms in both cell lines were detected by real-time fluorescence quantitative polymerase chain reaction (RT-PCR) and Western blot. Results Ionizing radiation upregulated the transcription level of the alternatively spliced isoform of PSMB8, E2, in both cell lines, thereby upregulating the mRNA and protein levels of PSMB8. The silencing of the proto-oncogene c-Abl and the activation and inhibition of its kinetic kinase product can affect the transcription and protein levels of PSMB8. Conclusions Ionizing radiation can significantly upregulate the mRNA and protein levels of PSMB8, which happens through the upregulation of its splicing isoform E2. The proto-oncogene c-Abl and its kinetic kinase protein product can regulate the transcription and protein expression levels of PSMB8 and its alternatively spliced isoforms.
Collapse
Affiliation(s)
- Nan-Xiang Chen
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Kun Liu
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Xuan Liu
- Department of Biotechnology, Beijing Institute of Biotechnology, Beijing, China (mainland)
| | - Xin-Xin Zhang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Dong-Yi Han
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| |
Collapse
|
48
|
Hashimoto E, Okuno S, Hirayama S, Arata Y, Goto T, Kosako H, Hamazaki J, Murata S. Enhanced O-GlcNAcylation Mediates Cytoprotection under Proteasome Impairment by Promoting Proteasome Turnover in Cancer Cells. iScience 2020; 23:101299. [PMID: 32634741 PMCID: PMC7338785 DOI: 10.1016/j.isci.2020.101299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/27/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The proteasome is a therapeutic target in cancer, but resistance to proteasome inhibitors often develops owing to the induction of compensatory pathways. Through a genome-wide siRNA screen combined with RNA sequencing analysis, we identified hexokinase and downstream O-GlcNAcylation as cell survival factors under proteasome impairment. The inhibition of O-GlcNAcylation synergistically induced massive cell death in combination with proteasome inhibition. We further demonstrated that O-GlcNAcylation was indispensable for maintaining proteasome activity by enhancing biogenesis as well as proteasome degradation in a manner independent of Nrf1, a well-known compensatory transcription factor that upregulates proteasome gene expression. Our results identify a pathway that maintains proteasome function under proteasome impairment, providing potential targets for cancer therapy. O-GlcNAcylation suppresses cell death under proteasome impairment Combined inhibition of O-GlcNAcylation and proteasome induces massive tumor cell death O-GlcNAcylation maintains proteasome activity independently of Nrf1 O-GlcNAcylation enhances proteasome turnover under the proteasome impairment
Collapse
Affiliation(s)
- Eiichi Hashimoto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shota Okuno
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Yoshiyuki Arata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Tsuyoshi Goto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Kuramoto-cho, Tokushima 7708503, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan.
| |
Collapse
|
49
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
50
|
Hamazaki J, Murata S. ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. Int J Mol Sci 2020; 21:ijms21103683. [PMID: 32456207 PMCID: PMC7279161 DOI: 10.3390/ijms21103683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Protein folding is a substantively error prone process, especially when it occurs in the endoplasmic reticulum (ER). The highly exquisite machinery in the ER controls secretory protein folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol; these misfolded proteins are then degraded by the ubiquitin–proteasome system termed as the ER-associated degradation (ERAD). The 26S proteasome is a multisubunit protease complex that recognizes and degrades ubiquitinated proteins in an ATP-dependent manner. The complex structure of the 26S proteasome requires exquisite regulation at the transcription, translation, and molecular assembly levels. Nuclear factor erythroid-derived 2-related factor 1 (Nrf1; NFE2L1), an ER-resident transcription factor, has recently been shown to be responsible for the coordinated expression of all the proteasome subunit genes upon proteasome impairment in mammalian cells. In this review, we summarize the current knowledge regarding the transcriptional regulation of the proteasome, as well as recent findings concerning the regulation of Nrf1 transcription activity in ER homeostasis and metabolic processes.
Collapse
|