1
|
Liang F, Wang M, Li J, Guo J. The evolution of S-nitrosylation detection methodology and the role of protein S-nitrosylation in various cancers. Cancer Cell Int 2024; 24:408. [PMID: 39702281 DOI: 10.1186/s12935-024-03568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
S-nitrosylation (SNO) modification, a nitric oxide (NO)-mediated post-translational modification (PTM) of proteins, plays an important role in protein microstructure, degradation, activity, and stability. Due to the presence of reducing agents, the SNO modification process mediated by NO derivatives is often reversible and unstable. This reversible transformation between SNO modification and denitrification often influences the structure, activity, and function of proteins. The reversibility of SNO modifications also poses a challenge when verifying changes in the biological functions of proteins. Moreover, SNO modification of key signaling pathway proteins, such as caspase-3, NF-κB, and Bcl-2, can affect tumor proliferation, invasion, and apoptosis. The SNO-modified proteins play important roles in both promoting and inhibiting cancer, which indirectly confirms the duality and complexity of SNO modification functions. This article reviews the biological significance of various SNO-modified proteins in different cancers, providing a theoretical basis for determining whether the related changes of SNO-modified proteins are universal in cancers. Additionally, this review presents a comprehensive and detailed summary of the evolution of detection methods for SNO-modified proteins, providing a possible methodological basis for future research on SNO-modified proteins.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Jafari SH, Lajevardi ZS, Zamani Fard MM, Jafari A, Naghavi S, Ravaei F, Taghavi SP, Mosadeghi K, Zarepour F, Mahjoubin-Tehran M, Rahimian N, Mirzaei H. Imaging Techniques and Biochemical Biomarkers: New Insights into Diagnosis of Pancreatic Cancer. Cell Biochem Biophys 2024; 82:3123-3144. [PMID: 39026059 DOI: 10.1007/s12013-024-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Pancreatic cancer (PaC) incidence is increasing, but our current screening and diagnostic strategies are not very effective. However, screening could be helpful in the case of PaC, as recent evidence shows that the disease progresses gradually. Unfortunately, there is no ideal screening method or program for detecting PaC in its early stages. Conventional imaging techniques, such as abdominal ultrasound, CT, MRI, and EUS, have not been successful in detecting early-stage PaC. On the other hand, biomarkers may be a more effective screening tool for PaC and have greater potential for further evaluation compared to imaging. Recent studies on biomarkers and artificial intelligence (AI)-enhanced imaging have shown promising results in the early diagnosis of PaC. In addition to proteins, non-coding RNAs are also being studied as potential biomarkers for PaC. This review consolidates the current literature on PaC screening modalities to provide an organized framework for future studies. While conventional imaging techniques have not been effective in detecting early-stage PaC, biomarkers and AI-enhanced imaging are promising avenues of research. Further studies on the use of biomarkers, particularly non-coding RNAs, in combination with imaging modalities may improve the accuracy of PaC screening and lead to earlier detection of this deadly disease.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sadat Lajevardi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroush Naghavi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Kimia Mosadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Girotti AW, Korytowski W. Upregulation of iNOS/NO in Cancer Cells That Survive a Photodynamic Challenge: Role of No in Accelerated Cell Migration and Invasion. Int J Mol Sci 2024; 25:5697. [PMID: 38891885 PMCID: PMC11171770 DOI: 10.3390/ijms25115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Anti-tumor photodynamic therapy (PDT) is a unique modality that employs a photosensitizer (PS), PS-exciting light, and O2 to generate cytotoxic oxidants. For various reasons, not all malignant cells in any given tumor will succumb to a PDT challenge. Previous studies by the authors revealed that nitric oxide (NO) from inducible NO synthase (iNOS/NOS2) plays a key role in tumor cell resistance and also stimulation of migratory/invasive aggressiveness of surviving cells. iNOS was the only NOS isoform implicated in these effects. Significantly, NO from stress-upregulated iNOS was much more important in this regard than NO from preexisting enzymes. Greater NO-dependent resistance, migration, and invasion was observed with at least three different cancer cell lines, and this was attenuated by iNOS activity inhibitors, NO scavengers, or an iNOS transcriptional inhibitor. NO diffusing from PDT-targeted cells also stimulated migration/invasion potency of non-targeted bystander cells. Unless counteracted by appropriate measures, all these effects could seriously compromise clinical PDT efficacy. Here, we will review specific examples of these negative side effects of PDT and how they might be suppressed by adjuvants such as NO scavengers or inhibitors of iNOS activity or expression.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold Korytowski
- Department of Biophysics, Jagiellonian University, 31-007 Krakow, Poland;
| |
Collapse
|
4
|
Khurshid F, Iqbal J, Ahmad FUD, Lodhi AH, Malik A, Akhtar S, Khan AA, Bux MI, Younis M. A combination of generated hydrogen sulfide and nitric oxide activity has a potentiated protectant effect against cisplatin induced nephrotoxicity. Heliyon 2024; 10:e29513. [PMID: 38655296 PMCID: PMC11036060 DOI: 10.1016/j.heliyon.2024.e29513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Aim Hydrogen sulfide and nitric oxide possess cytoprotective activity and in vivo, they are generated from exogenous sodium hydrosulfide and L-arginine respectively. Cisplatin is a major chemotherapeutic agent used to treat cancer and has a high incidence of nephrotoxicity as a side effect. The study aim was to explore the effects of NaHS and L-arginine or their combination on cisplatin induced nephrotoxicity in rats. Methods Wistar Kyoto rats were given a single intraperitoneal dose of cisplatin (5 mg/kg) followed either by NaHS (56 μmol/kg, i. p.), L-arginine (1.25 g/L in drinking water) or their combination daily for 28-days. Post-mortem plasma, urine and kidney samples were collected for biochemical assays and histopathological analysis. Results Cisplatin decreased body weights and increased urinary output, while plasma creatinine and urea levels were elevated, but sodium and potassium concentrations were diminished. The renal function parameters, blood urea nitrogen and creatinine clearance, were raised and decreased respectively. Regarding markers of reactive oxygen species, plasma total superoxide dismutase was reduced, whereas malondiadehyde was augmented.Cisplatin also diminished plasma and urinary H2S as well as plasma NO, while NaHS and L-arginine counteracted this activity on both redox-active molecules. Cisplatin cotreatment with NaHS, and/or L-arginine exhibited a reversal of all other measured parameters. Conclusion In current study, NaHS and L-arginine as monotherapy protected the rats from cisplatin-induced nephrotoxicity but the combination of both worked more effectively suggesting the augmented anti-inflammatory and antioxidative potential of test treatments when administered together.
Collapse
Affiliation(s)
- Faria Khurshid
- Department of Pharmacology, Faculty of Pharmacy, University of Balochistan, Pakistan
| | - Javeid Iqbal
- Department of Pharmacology, Faculty of Pharmacy, University of Balochistan, Pakistan
| | - Fiaz-Ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marvi Imam Bux
- Department of Pharmacology, Faculty of Pharmacy, University of Balochistan, Pakistan
| | - Mohammed Younis
- Department of Pharmacology, Faculty of Pharmacy, University of Balochistan, Pakistan
| |
Collapse
|
5
|
Bui I, Baritaki S, Libra M, Zaravinos A, Bonavida B. Cancer Resistance Is Mediated by the Upregulation of Several Anti-Apoptotic Gene Products via the Inducible Nitric Oxide Synthase/Nitric Oxide Pathway: Therapeutic Implications. Antioxid Redox Signal 2023; 39:853-889. [PMID: 37466477 DOI: 10.1089/ars.2023.0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Significance: Several therapeutic strategies for cancer treatments have been developed with time, and significant milestones have been achieved recently. However, with these novel therapies, not all cancer types respond and in the responding cancer types only a subset is affected. The failure to respond is principally the result that these cancers develop several mechanisms of resistance. Thus, a focus of current research investigations is to unravel the various mechanisms that regulate resistance and identify suitable targets for new therapeutics. Recent Advances: Hence, many human cancer types have been reported to overexpress the inducible nitric oxide synthase (iNOS) and it has been suggested that iNOS/nitric oxide (NO) plays a pivotal role in the regulation of resistance. We have postulated that iNOS overexpression or NO regulates the overexpression of pivotal anti-apoptotic gene products such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma extra large (Bcl-xL), myeloid cell leukemia-1 (Mcl-1), and survivin. In this report, we describe the various mechanisms, transcriptional, post-transcriptional, and post-translational, by which iNOS/NO regulates the expression of the above anti-apoptotic gene products. Critical Issues: The iNOS/NO-mediated regulation of the four gene products is not the same with both specific and overlapping pathways. Our findings are, in large part, validated by bioinformatic analyses demonstrating, in several cancers, several direct correlations between the expression of iNOS and each of the four examined anti-apoptotic gene products. Future Directions: We have proposed that targeting iNOS may be highly efficient since it will result in the underexpression of multiple anti-apoptotic proteins and shifting the balance toward the proapoptotic gene products and reversal of resistance. Antioxid. Redox Signal. 39, 853-889.
Collapse
Affiliation(s)
- Indy Bui
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Department of Surgery, School of Medicine, University of Crete, Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Italian League Against Cancer, Catania, Italy
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Van Stappen C, Dai H, Jose A, Tian S, Solomon EI, Lu Y. Primary and Secondary Coordination Sphere Effects on the Structure and Function of S-Nitrosylating Azurin. J Am Chem Soc 2023; 145:20610-20623. [PMID: 37696009 PMCID: PMC10539042 DOI: 10.1021/jacs.3c07399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Much progress has been made in understanding the roles of the secondary coordination sphere (SCS) in tuning redox potentials of metalloproteins. In contrast, the impact of SCS on reactivity is much less understood. A primary example is how copper proteins can promote S-nitrosylation (SNO), which is one of the most important dynamic post-translational modifications, and is crucial in regulating nitric oxide storage and transportation. Specifically, the factors that instill CuII with S-nitrosylating capabilities and modulate activity are not well understood. To address this issue, we investigated the influence of the primary and secondary coordination sphere on CuII-catalyzed S-nitrosylation by developing a series of azurin variants with varying catalytic capabilities. We have employed a multidimensional approach involving electronic absorption, S and Cu K-edge XAS, EPR, and resonance Raman spectroscopies together with QM/MM computational analysis to examine the relationships between structure and molecular mechanism in this reaction. Our findings have revealed that kinetic competency is correlated with three balancing factors, namely Cu-S bond strength, Cu spin localization, and relative S(ps) vs S(pp) contributions to the ground state. Together, these results support a reaction pathway that proceeds through the attack of the Cu-S bond rather than electrophilic addition to CuII or radical attack of SCys. The insights gained from this work provide not only a deeper understanding of SNO in biology but also a basis for designing artificial and tunable SNO enzymes to regulate NO and prevent diseases due to SNO dysregulation.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
| | - Huiguang Dai
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Shiliang Tian
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
7
|
Min JY, Chun KS, Kim DH. The versatile utility of cysteine as a target for cancer treatment. Front Oncol 2023; 12:997919. [PMID: 36741694 PMCID: PMC9893486 DOI: 10.3389/fonc.2022.997919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
Owing to its unique nucleophilicity, cysteine is an attractive sulfhydryl-containing proteinogenic amino acid. It is also utilized in various metabolic pathways and redox homeostasis, as it is used for the component of major endogenous antioxidant glutathione and the generation of sulfur-containing biomolecules. In addition, cysteine is the most nucleophilic amino acid of proteins and can react with endogenous or exogenous electrophiles which can result in the formation of covalent bonds, which can alter the cellular states and functions. Moreover, post-translational modifications of cysteines trigger redox signaling and affect the three-dimensional protein structure. Protein phosphorylation mediated by kinases and phosphatases play a key role in cellular signaling that regulates many physiological and pathological processes, and consequently, the modification of cysteine regulates its activities. The modification of cysteine residues in proteins is critically important for the design of novel types of pharmacological agents. Therefore, in cancer metabolism and cancer cell survival, cysteine plays an essential role in redox regulation of cellular status and protein function. This review summarizes the diverse regulatory mechanisms of cysteine bound to or free from proteins in cancer. Furthermore, it can enhance the comprehension of the role of cysteine in tumor biology which can help in the development of novel effective cancer therapies.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea,*Correspondence: Do-Hee Kim,
| |
Collapse
|
8
|
Wang P, Qian H, Xiao M, Lv J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects. Immun Inflamm Dis 2023; 11:e762. [PMID: 36705417 PMCID: PMC9837938 DOI: 10.1002/iid3.762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Interleukin-1β (IL-1β) is a pro-inflammatory cytokine mainly produced by monocytes and macrophages with a wide range of biological effects. Evidence has shown that IL-1β plays a vital role in the process of apoptosis; however, the specific mechanisms, by which IL-1β induces apoptosis, vary due to different cellular and experimental conditions. Therefore, this present reviewstudy aimed to systematically review the association between the molecular mechanisms of IL-1β-induced apoptosis in pathological processes and the role of signaling pathways. This article also sought to briefly investigate the potential of signaling pathway-targeted therapy in the prevention and treatment of disease. METHODS This is a literature review article. The present discourse aim is first to scrutinize and assess the available literature on IL-1β and apoptosis. The relevant studies using the keywords of "IL-1β-induced apoptosis" and "signaling pathways" were searched in the databases of PubMed, Scopus, Google Scholar, and Web of Science. Gathered relevant material, and extracted information was then assessed. RESULTS IL-1β can induce apoptosis in various types of cells under different external stimuli via the mitochondrial pathway, death receptor pathway and endoplasmic reticulum pathway, and that the different pathways are often interconnected. The NF-kB signaling pathway, p38MAPK, and JNK signaling pathways mainly play a proapoptotic part, and the ERK1/2 pathway has a bidirectional role in regulating apoptosis, while activation of the PI3K-Akt signaling pathway can inhibit apoptosis. CONCLUSION This review indicates that IL-1β-induced apoptosis plays an important role in pathogenesis and development of pathology of many inflammatory diseases. Elucidating the role of the signaling pathways will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Peixuan Wang
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Hong Qian
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Manxue Xiao
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Jingwen Lv
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Doğan N, Yavuz SÇ, Sahin K, Orhan MD, Muhammed HK, Calis S, Küp FÖ, Avsar T, Akkoc S, Tapera M, Sahin O, Kilic T, Durdagi S, Saripinar E. Synthesis, Characterization, Biological Activity and Molecular Modeling Studies of Novel Aminoguanidine Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202202819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Nuriye Doğan
- Department of Chemistry Erciyes University Kayseri Türkiye
| | - Sevtap Çağlar Yavuz
- Department of Medical Services and Technicians İliç Dursun Yıldırım Vocational School Erzincan Binali Yıldırım University 24700 Erzincan Türkiye
| | - Kader Sahin
- Computational Biology and Molecular Simulations Laboratory Department of Biophysics School of Medicine Bahcesehir University Istanbul Türkiye
- Department of Analytical Chemistry School of Pharmacy Bahcesehir University Istanbul Türkiye
| | - Muge Didem Orhan
- Department of Medical Biology School of Medicine Bahcesehir University Istanbul Türkiye
| | | | - Seyma Calis
- Department of Medical Biology School of Medicine Bahcesehir University Istanbul Türkiye
| | - Fatma Öztürk Küp
- Department of Biology Faculty of Science Erciyes University Kayseri Türkiye
| | - Timucin Avsar
- Department of Medical Biology School of Medicine Bahcesehir University Istanbul Türkiye
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences Faculty of Pharmacy Suleyman Demirel University Isparta Türkiye
| | - Michael Tapera
- Department of Chemistry Erciyes University Kayseri Türkiye
| | - Onur Sahin
- Scientific and Technological Research Application and Research Center Sinop University Sinop Türkiye
| | - Turker Kilic
- Deperment of Neurosurgery School of Medicine Bahcesehir University Istanbul Türkiye
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory Department of Biophysics School of Medicine Bahcesehir University Istanbul Türkiye
- Department of Pharmaceutical Chemistry School of Pharmacy Bahcesehir University Istanbul Türkiye
| | - Emin Saripinar
- Department of Chemistry Erciyes University Kayseri Türkiye
| |
Collapse
|
10
|
Girotti AW, Fahey JF, Korytowski W. Role of nitric oxide in hyper-aggressiveness of tumor cells that survive various anti-cancer therapies. Crit Rev Oncol Hematol 2022; 179:103805. [PMID: 36087851 DOI: 10.1016/j.critrevonc.2022.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Low level nitric oxide (NO) produced by inducible NO synthase (iNOS) in many malignant tumors is known to play a key role in the survival and proliferation of tumor cells. NO can also induce or augment resistance to anti-tumor treatments such as platinum-based chemotherapy (CT), ionizing radiotherapy (RT), and non-ionizing photodynamic therapy (PDT). In each of these treatments, tumor cells that survive the challenge may exhibit a striking increase in NO-dependent proliferative, migratory, and invasive aggressiveness compared with non-challenged controls. Moreover, NO from cells directly targeted by PDT can often stimulate aggressiveness in non- or poorly targeted bystander cells. Although NO-mediated resistance to many of these therapies is fairly-well recognized by now, the hyper-aggressiveness of surviving cells and bystander counterparts is not. We will focus on these negative aspects in this review, citing examples from the PDT, CT, and RT publications. Increased aggressiveness of cells that escape therapeutic elimination is a concern because it could enhance tumor progression and metastatic dissemination. Pharmacologic approaches for suppressing these negative responses will also be discussed, e.g., administering inhibitors of iNOS activity or iNOS expression as therapeutic adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Depatrment of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jonathan F Fahey
- Department of Pathology, University of Colorado, Aurora, CO, USA
| | | |
Collapse
|
11
|
Nakamura T, Oh CK, Zhang X, Lipton SA. Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radic Biol Med 2021; 172:562-577. [PMID: 34224817 PMCID: PMC8579830 DOI: 10.1016/j.freeradbiomed.2021.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders like Alzheimer's disease and Parkinson's disease are characterized by progressive degeneration of synapses and neurons. Accumulation of misfolded/aggregated proteins represents a pathological hallmark of most neurodegenerative diseases, potentially contributing to synapse loss and neuronal damage. Emerging evidence suggests that misfolded proteins accumulate in the diseased brain at least in part as a consequence of excessively generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). Mechanistically, not only disease-linked genetic mutations but also known risk factors for neurodegenerative diseases, such as aging and exposure to environmental toxins, can accelerate production of ROS/RNS, which contribute to protein misfolding - in many cases mimicking the effect of rare genetic mutations known to be linked to the disease. This review will focus on the role of RNS-dependent post-translational modifications, such as S-nitrosylation and tyrosine nitration, in protein misfolding and aggregation. Specifically, we will discuss molecular mechanisms whereby RNS disrupt the activity of the cellular protein quality control machinery, including molecular chaperones, autophagy/lysosomal pathways, and the ubiquitin-proteasome system (UPS). Because chronic accumulation of misfolded proteins can trigger mitochondrial dysfunction, synaptic damage, and neuronal demise, further characterization of RNS-mediated protein misfolding may establish these molecular events as therapeutic targets for intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Protein Phosphorylation in Cancer: Role of Nitric Oxide Signaling Pathway. Biomolecules 2021; 11:biom11071009. [PMID: 34356634 PMCID: PMC8301900 DOI: 10.3390/biom11071009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO), a free radical, plays a critical role in a wide range of physiological and pathological processes. Due to its pleiotropic function, it has been widely investigated in various types of cancers and is strongly associated with cancer development. Mounting pieces of evidence show that NO regulates various cancer-related events, which mainly depends on phosphorylating the key proteins in several signaling pathways. However, phosphorylation of proteins modulated by NO signaling pathway may lead to different effects in different types of cancer, which is complex and remains unclear. Therefore, in this review, we focus on the effect of protein phosphorylation modulated by NO signaling pathway in different types of cancers including breast cancer, lung cancer, prostate cancer, colon cancer, gastric cancer, pancreatic cancer, ovarian cancer, and neuroblastoma. Phosphorylation of key proteins, including p38 MAPK, ERK, PI3K, STAT3, and p53, modified by NO in various signaling pathways affects different cancer-related processes including cell apoptosis, proliferation, angiogenesis, metastasis, and several cancer therapies. Our review links the NO signaling pathway to protein phosphorylation in cancer development and provides new insight into potential targets and cancer therapy.
Collapse
|
13
|
Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D, Furuta S. S-Nitrosylation in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094600. [PMID: 33925645 PMCID: PMC8124305 DOI: 10.3390/ijms22094600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
S-nitrosylation is a selective and reversible post-translational modification of protein thiols by nitric oxide (NO), which is a bioactive signaling molecule, to exert a variety of effects. These effects include the modulation of protein conformation, activity, stability, and protein-protein interactions. S-nitrosylation plays a central role in propagating NO signals within a cell, tissue, and tissue microenvironment, as the nitrosyl moiety can rapidly be transferred from one protein to another upon contact. This modification has also been reported to confer either tumor-suppressing or tumor-promoting effects and is portrayed as a process involved in every stage of cancer progression. In particular, S-nitrosylation has recently been found as an essential regulator of the tumor microenvironment (TME), the environment around a tumor governing the disease pathogenesis. This review aims to outline the effects of S-nitrosylation on different resident cells in the TME and the diverse outcomes in a context-dependent manner. Furthermore, we will discuss the therapeutic potentials of modulating S-nitrosylation levels in tumors.
Collapse
|
14
|
Maiuthed A, Prakhongcheep O, Chanvorachote P. Microarray-based Analysis of Genes, Transcription Factors, and Epigenetic Modifications in Lung Cancer Exposed to Nitric Oxide. Cancer Genomics Proteomics 2021; 17:401-415. [PMID: 32576585 DOI: 10.21873/cgp.20199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM Nitric oxide (NO) is recognized as an important biological mediator that exerts several human physiological functions. As its nature is an aqueous soluble gas that can diffuse through cells and tissues, NO can affect cell signaling, the phenotype of cancer and modify surrounding cells. The variety of effects of NO on cancer cell biology has convinced researchers to determine the defined mechanisms of these effects and how to control this mediator for a better understanding as well as for therapeutic gain. MATERIALS AND METHODS We used bioinformatics and pharmacological experiments to elucidate the potential regulation and underlying mechanisms of NO in non-small a lung cancer cell model. RESULTS Using microarrays, we identified a total of 151 NO-regulated genes (80 up-regulated genes, 71 down-regulated genes) with a strong statistically significant difference compared to untreated controls. Among these, the genes activated by a factor of more than five times were: DCBLD2, MGC24975, RAB40AL, PER3, RCN1, MRPL51, PTTG1, KLF5, NFIX. On the other hand, the expression of RBMS2, PDP2, RBAK, ORMDL2, GRPEL2, ZNF514, MTHFD2, POLR2D, RCBTB1, JOSD1, RPS27, GPR4 genes were significantly decreased by a factor of more than five times. Bioinformatics further revealed that NO exposure of lung cancer cells resulted in a change in transcription factors (TFs) and epigenetic modifications (histone modification and miRNA). Interestingly, NO treatment was shown to potentiate cancer stem cell-related genes and transcription factors Oct4, Klf4, and Myc. CONCLUSION Through this comprehensive approach, the present study illustrated the scheme of how NO affects molecular events in lung cancer cells.
Collapse
Affiliation(s)
- Arnatchai Maiuthed
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Ornjira Prakhongcheep
- Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand .,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Ramalingam V, Rajaram R. A paradoxical role of reactive oxygen species in cancer signaling pathway: Physiology and pathology. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Fan L, Zheng N, Peng F, Zhao Z, Fan D, Cai S, Tao L, Wang Q. Nitric oxide affects cisplatin cytotoxicity oppositely in A2780 and A2780-CDDP cells via the connexin32/gap junction. Cancer Sci 2020; 111:2779-2788. [PMID: 32342615 PMCID: PMC7419057 DOI: 10.1111/cas.14436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023] Open
Abstract
Chemoresistance is a main obstacle in ovarian cancer therapy and new treatment strategies and further information regarding the mechanism of the medication cisplatin are urgently needed. Nitric oxide has a critical role in modulating the activity of chemotherapeutic drugs. Our previous work showed that connexin32 contributed to cisplatin resistance. However, whether nitric oxide is involved in connexin32-mediated cisplatin resistance remains unknown. In this study, using A2780 and A2780 cisplatin-resistant cells, we found that S-nitroso-N-acetyl-penicillamine, a nitric oxide donor, attenuated cisplatin toxicity by decreasing gap junctions in A2780 cells. Enhancement of gap junctions using retinoic acid reversed the effects of S-nitroso-N-acetyl-penicillamine on cisplatin toxicity. In A2780 cisplatin-resistant cells, however, S-nitroso-N-acetyl-penicillamine enhanced cisplatin toxicity by decreasing connexin32 expression. Downregulation of connexin32 expression by small interfering RNA exacerbated the effects of S-nitroso-N-acetyl-penicillamine on cisplatin cytotoxicity and upregulation of connexin32 expression by pcDNA transfection reversed the effects of S-nitroso-N-acetyl-penicillamine on cisplatin cytotoxicity. Our study suggests for the first time that combining cisplatin with nitric oxide in clinical therapies for ovarian cancer should be avoided before cisplatin resistance emerges. The present study provides a productive area of further study for increasing the efficacy of cisplatin by combining cisplatin with the specific inhibitors or enhancers of nitric oxide in clinical treatment.
Collapse
Affiliation(s)
- Lixia Fan
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
- Department of Basic Medicine and Biomedical EngineeringSchool of Stomatology and MedicineFoshan UniversityFoshanPeople’s Republic of China
| | - Ningze Zheng
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Fuhua Peng
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Ziyu Zhao
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Di Fan
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Shaoyi Cai
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Liang Tao
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Qin Wang
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| |
Collapse
|
17
|
Li Z, Hao H, Tian W, Jiao Y, Deng X, Han S, Han J. Nitric oxide, a communicator between tumor cells and endothelial cells, mediates the anti-tumor effects of Marsdenia Tenacissima Extract (MTE). JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112524. [PMID: 31884032 DOI: 10.1016/j.jep.2019.112524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/03/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima (Roxb.) Wight & Arn is a well-known traditional Chinese medicine for treating cancer. The anti-tumor effects of the water soluble component of M. tenacissima (MTE, M. Tenacissima Extract) have been intensely studied. However, the roles of microenvironmental cells in mediating the anti-tumor actions of MTE remain to be defined. AIM OF THE STUDY To determine the roles of nitric oxide (NO) released by endothelial cells (ECs), an important component of tumor microenvironment, in regulating the anti-cancer effects of MTE, and to explore the underlying mechanisms. MATERIALS AND METHODS Co-culture system of ECs and A549 non-small cell lung cancer (NSCLC) cells was established for determining the interactions of ECs and lung cancer cells. Nitro-L-arginine methyl ester hydrochloride (L-NAME) was used to inhibit the production of NO. Cell viability was examined using cell counting kit 8 and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. NO assay and Western blot were used to determine the involved signaling pathway. Primary lung microenvironmental cells (PLMCs) were cultured to examine the roles of NO released from the lung microenvironment in regulating the anti-cancer effects of MTE. A subcutaneous xenograft model was established to determine the involvement of NO in effects of MTE against NSCLCs in vivo. RESULTS In the co-culture system of ECs and A549 NSCLC cells, MTE (30 mg/mL) treatment reduced viability of lung cancer cells. However, when L-NAME (a nitric oxide synthase (NOS) inhibitor, 300 μM) was introduced into the co-culture system, the NSCLC-inhibiting effects of MTE were significantly suppressed. By contrast, addition of L-NAME (300 μM) did not affect the anti-cancer efficiency of MTE when ECs were not present. Mechanistically, MTE enhanced endothelial production of NO via stimulating PKA-endothelial nitric oxide synthase (eNOS) signaling. Elevated levels of NO inhibited proliferation and promoted apoptosis of the A549 NSCLC cells. Importantly, PKA-eNOS-NO signaling was effective in mediating the anti-cancer effects of MTE, when lung cancer cells were co-cultured with PLMCs. Finally, oral administration of MTE to the subcutaneous xenograft mice significantly suppressed tumor growth, while elevated NO productions. Plasma NO was also revealed to be negatively correlated with the tumor weight. CONCLUSIONS ECs significantly contributed to anti-cancer effects of MTE by elevating production of NO, in a PKA-dependent manner. The present study revealed a novel anti-cancer mechanism of MTE through regulating the function of ECs, an important component of tumor microenvironment.
Collapse
Affiliation(s)
- Zhandong Li
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, PR China.
| | - Huifeng Hao
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, PR China.
| | - Wenjia Tian
- Department of Gastroenterology, Peking University International Hospital, Beijing, 102206, PR China.
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, PR China.
| | - Xinxin Deng
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, 750004, PR China.
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, PR China.
| | - Jingyan Han
- Tasly Microcirculation Research Center, Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
18
|
Tan C, Li Y, Huang X, Wei M, Huang Y, Tang Z, Huang H, Zhou W, Wang Y, Hu J. Extensive protein S-nitrosylation associated with human pancreatic ductal adenocarcinoma pathogenesis. Cell Death Dis 2019; 10:914. [PMID: 31801946 PMCID: PMC6892852 DOI: 10.1038/s41419-019-2144-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
Abstract
NO (nitric oxide)-mediated protein S-nitrosylation has been established as one major signaling mechanism underlying cancer initiation and development, but its roles in PDAC (pancreatic ductal adenocarcinoma) pathogenesis still remain largely unexplored. In this study, we identified 585 unique S-nitrosylation sites among 434 proteins in PDAC patients and PANC-1 cell line by a site-specific proteomics. Larger number of S-nitrosylated proteins were identified in PDAC tissues and PANC-1 cells than adjacent non-cancerous tissues. These S-nitrosylated proteins are significantly enriched in a multitude of biological processes associated with tumorigenesis, including carbohydrate metabolism, cytoskeleton regulation, cell cycle, focal adhesion, adherent junctions, and cell migration. Components of the pancreatic cancer pathway were extensively S-nitrosylated, such as v-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) and Signal transducer and activator of transcription 3 (STAT3). Moreover, NOS (NO synthase) inhibitor significantly repressed STAT3 S-nitrosylation in PANC-1 cells, which caused significant increase of STAT3 phosphorylation and PANC-1 cell viability, suggesting important roles of protein S-nitrosylation in PDAC development. These results revealed extensive protein S-nitrosylation associated with PDAC pathogenesis, which provided a basis for protein modification-based cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
- Clinical Laboratory of Translational Medicine Research Institute, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
| | - Yunfeng Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijin Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhouqin Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of Histology and Embryology, School of Pre-clinical Medicine, Xinjiang Medical University, Urumqi, 830011, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic dysregulation is an appreciated hallmark of cancer and a target for therapeutic intervention. Cellular metabolism involves a series of oxidation/reduction (redox) reactions that yield the energy and biomass required for tumor growth. Cells require diverse molecular species with constituent sulfur atoms to facilitate these processes. For humans, this sulfur is derived from the dietary consumption of the proteinogenic amino acids cysteine and methionine, as only lower organisms (e.g., bacteria, fungi, and plants) can synthesize them de novo. In addition to providing the sulfur required to sustain redox chemistry, the metabolism of these sulfur-containing amino acids yield intermediate metabolites that constitute the cellular antioxidant system, mediate inter- and intracellular signaling, and facilitate the epigenetic regulation of gene expression, all of which contribute to tumorigenesis.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|
20
|
Ren X, Sengupta R, Lu J, Lundberg JO, Holmgren A. Characterization of mammalian glutaredoxin isoforms as S‐denitrosylases. FEBS Lett 2019; 593:1799-1806. [DOI: 10.1002/1873-3468.13454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Rajib Sengupta
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
- Amity Institute of Biotechnology Amity University Kolkata India
| | - Jun Lu
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
- School of Pharmaceutical Sciences Southwest University Chongqing China
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| |
Collapse
|
21
|
Losuwannarak N, Sritularak B, Chanvorachote P. Cycloartobiloxanthone Induces Human Lung Cancer Cell Apoptosis via Mitochondria-dependent Apoptotic Pathway. ACTA ACUST UNITED AC 2018; 32:71-78. [PMID: 29275301 DOI: 10.21873/invivo.11206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Lung cancer is one of most malignant types of cancer and new anticancer agents are still required. Cycloartobiloxanthone, a flavonoid isolated from stem bark of Artocarpus gomezianus, has potential for being developed for anticancer therapy. MATERIALS AND METHODS Cytotoxicity of cycloartobiloxanthone was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay against four human lung cancer cell lines (H23, H460, H292 and A549) and their half-maximal inhibitory concentrations (IC50) were assessed. Apoptotic induction in H460 cells was investigated by Hoechst 33342/propidium iodide (PI) staining assay and protein hallmarks of mitochondria-dependent apoptotic pathway were examined by western blot analysis. RESULTS Cycloartobiloxanthone exhibited potent cytotoxic effect on both small and non-small cell lung cancer cells. Nuclear Hoechst/PI staining revealed that apoptotic cell death was the main mechanism of toxicity of cycloartobiloxanthone. The apoptosis-inducing potency of cycloartobiloxanthone was comparable to those of standard anticancer drugs cisplatin and etoposide at the same concentration. Protein analysis further showed that apoptosis was mediated via mitochondria-dependent pathway. p53 was activated in cells treated with cycloartobiloxanthone. Subsequently, pro-apoptotic protein B-cell lymphoma 2 (BCL2)-associated X protein (BAX) was found to be significantly increased, concomitantly with the decrease of anti-apoptotic proteins BCL2 and myeloid cell leukemia 1 (MCL1). Moreover, markers of the intrinsic apoptosis pathway, namely activated caspase-9, activated caspase-3, and cleaved poly(ADP-ribose)polymerase (PARP), dramatically increased in cycloartobiloxanthone-treated cells compared to the non-treated controls. CONCLUSION Cycloartobiloxanthone has anticancer activity against human lung cancer cells by triggering mitochondrial apoptotic caspase-dependent mechanism. This compound might have promising effects for cancer therapy.
Collapse
Affiliation(s)
- Nattanan Losuwannarak
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand .,Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Maiuthed A, Bhummaphan N, Luanpitpong S, Mutirangura A, Aporntewan C, Meeprasert A, Rungrotmongkol T, Rojanasakul Y, Chanvorachote P. Nitric oxide promotes cancer cell dedifferentiation by disrupting an Oct4:caveolin-1 complex: A new regulatory mechanism for cancer stem cell formation. J Biol Chem 2018; 293:13534-13552. [PMID: 29986880 DOI: 10.1074/jbc.ra117.000287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/19/2018] [Indexed: 01/11/2023] Open
Abstract
Cancer stem cells (CSCs) are unique populations of cells that can self-renew and generate different cancer cell lineages. Although CSCs are believed to be a promising target for novel therapies, the specific mechanisms by which these putative therapeutics could intervene are less clear. Nitric oxide (NO) is a biological mediator frequently up-regulated in tumors and has been linked to cancer aggressiveness. Here, we search for targets of NO that could explain its activity. We find that it directly affects the stability and function of octamer-binding transcription factor 4 (Oct4), known to drive the stemness of lung cancer cells. We demonstrated that NO promotes the CSC-regulatory activity of Oct4 through a mechanism that involves complex formation between Oct4 and the scaffolding protein caveolin-1 (Cav-1). In the absence of NO, Oct4 forms a molecular complex with Cav-1, which promotes the ubiquitin-mediated proteasomal degradation of Oct4. NO promotes Akt-dependent phosphorylation of Cav-1 at tyrosine 14, disrupting the Cav-1:Oct4 complex. Site-directed mutagenesis and computational modeling studies revealed that the hydroxyl moiety at tyrosine 14 of Cav-1 is crucial for its interaction with Oct4. Both removal of the hydroxyl via mutation to phenylalanine and phosphorylation lead to an increase in binding free energy (ΔGbind) between Oct4 and Cav-1, destabilizing the complex. Together, these results unveiled a novel mechanism of CSC regulation through NO-mediated stabilization of Oct4, a key stem cell transcription factor, and point to new opportunities to design CSC-related therapeutics.
Collapse
Affiliation(s)
- Arnatchai Maiuthed
- From the Department of Pharmacology and Physiology.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences
| | - Narumol Bhummaphan
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences.,the Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sudjit Luanpitpong
- the Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand, and
| | - Apiwat Mutirangura
- the Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, and
| | | | - Arthitaya Meeprasert
- Structural and Computational Biology Research Group, and Department of Biochemistry, Faculty of Science
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, and Department of Biochemistry, Faculty of Science.,Ph.D. Program in Bioinformatics and Computational Biology
| | - Yon Rojanasakul
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506
| | - Pithi Chanvorachote
- From the Department of Pharmacology and Physiology, .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences
| |
Collapse
|
23
|
Salucci S, Burattini S, Buontempo F, Orsini E, Furiassi L, Mari M, Lucarini S, Martelli AM, Falcieri E. Marine bisindole alkaloid: A potential apoptotic inducer in human cancer cells. Eur J Histochem 2018; 62:2881. [PMID: 29943949 PMCID: PMC6038113 DOI: 10.4081/ejh.2018.2881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Marine organisms such as corals, sponges and tunicates produce active molecules which could represent a valid starting point for new drug development processes. Among the various structural classes, the attention has been focused on 2,2-bis(6-bromo-3-indolyl) ethylamine, a marine alkaloid which showed a good anticancer activity against several tumor cell lines. Here, for the first time, the mechanisms of action of 2,2-bis(6-bromo-3-indolyl) ethylamine have been evaluated in a U937 tumor cell model. Morpho-functional and molecular analyses, highlighting its preferred signaling pathway, demonstrated that apoptosis is the major death response induced by this marine compund. Chromatin condensation, micronuclei formation, blebbing and in situ DNA fragmentation, occurring through caspase activation (extrinsic and intrinsic pathways), were observed. In particular, the bisindole alkaloid induces a mitochondrial involvement in apoptosis machinery activation with Blc-2/Bcl-x down-regulation and Bax up-regulation. These findings demonstrated that 2,2-bis(6-bromo-3-indolyl) ethylamine alkaloid-induced apoptosis is regulated by the Bcl-2 protein family upstream of caspase activation.
Collapse
Affiliation(s)
- Sara Salucci
- University of Urbino, Department of Biomolecular Sciences.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jin L, Cao Y, Zhang T, Wang P, Ji D, Liu X, Shi H, Hua L, Yu R, Gao S. Effects of ERK1/2 S-nitrosylation on ERK1/2 phosphorylation and cell survival in glioma cells. Int J Mol Med 2017; 41:1339-1348. [PMID: 29286066 PMCID: PMC5819938 DOI: 10.3892/ijmm.2017.3334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/01/2017] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of extracellular signal-regulated kinase 1/2 (ERK1/2) by phosphorylation modification can trigger tumor cell development in glioma. S-nitrosylation, which refers to the covalent addition of a nitric oxide (NO) group to a cysteine (Cys) thiol, is an important post-translational modification that occurs on numerous cancer-associated proteins. Protein S-nitrosylation can increase or decrease protein activity and stability, and subsequent signal transduction and cellular processes. However, the association between ERK1/2 S-nitrosylation and ERK1/2 phosphorylation, and the effects of ERK1 S-nitrosylation on glioma cell survival are currently unknown. U251 glioma cells were treated with NO donors sodium nitroprusside (SNP) or S-nitrosoglutathione (GSNO). CCK8 assay was used to assess the cell viability. NO levels in the medium were detected by Griess assay. Western blot analysis and biotin switch assay were employed to detect the ERK1/2 phosphorylation and S-nitrosylation. ERK1 wild-type and mutant plasmids were constructed, and used to transfect the U251 cells. Caspase-3 western blot analysis and flow cytometry were employed to assess cell apoptosis. The present study demonstrated that treatment with the NO donors SNP or GSNO led to an increase in ERK1/2 S-nitrosylation, and a reduction in ERK1/2 phosphorylation, which was accompanied by growth inhibition of U251 glioma cells. Mutational analysis demonstrated that Cys183 was vital for S-nitrosylation of ERK1, and that preventing ERK1 S-nitrosylation by replacing Cys183 with alanine partially reversed GSNO-induced cell apoptosis, and reductions in cell viability and ERK1/2 phosphorylation. In addition, increased ERK1/2 phosphorylation was associated with decreased ERK1/2 S-nitrosylation in human glioma tissues. These findings identified the relationship between ERK1/2 S-nitrosylation and phosphorylation in vitro and in vivo, and revealed a novel mechanism of ERK1/2 underlying tumor cell development and apoptotic resistance of glioma.
Collapse
Affiliation(s)
- Lei Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yujia Cao
- Department of Neurosurgery, People's Hospital of Gaoxin District, Suzhou, Jiangsu 215011, P.R. China
| | - Tong Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Peng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Daofei Ji
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Hengliang Shi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lei Hua
- Department of Neurosurgery, Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
25
|
Grimm EA. Immunology Comes Full Circle in Melanoma While Specific Immunity Is Unleashed to Eliminate Metastatic Disease, Inflammatory Products of Innate Immunity Promote Resistance. Crit Rev Oncog 2017; 21:57-63. [PMID: 27481002 DOI: 10.1615/critrevoncog.2016016901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Melanoma and many other cancers often express cells and molecular features of inflammation. Intrinsic to melanoma is the expression of a continuous cycle of cytokines and oxidative stress markers. The oxidative stress of inflammation is proposed to drive a metastatic process, not only of DNA adducts and crosslinks, but also of posttranslational oxidative modifications to lipids and proteins that we argue support growth and survival. Fortunately, numerous antioxidant agents are available clinically and we further propose that the pharmacological attenuation of these inflammatory processes, particularly the reactive nitrogen species, will restore the cancer cells to an apoptosis-permissive and growth-inhibitory state. Experimental model data using a small-molecule arginine antagonist that prevents enzymatic production of nitric oxide supports this view directly. I propose that the recognition, measurement, and regulation of such carcinogenic inflammation be considered as part of the approach to the treatment of cancer.
Collapse
Affiliation(s)
- Elizabeth A Grimm
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Avenue, Mail Unit 421, Room FC 11.2048, Houston, TX 77030
| |
Collapse
|
26
|
Luanpitpong S, Angsutararux P, Samart P, Chanthra N, Chanvorachote P, Issaragrisil S. Hyper-O-GlcNAcylation induces cisplatin resistance via regulation of p53 and c-Myc in human lung carcinoma. Sci Rep 2017; 7:10607. [PMID: 28878262 PMCID: PMC5587763 DOI: 10.1038/s41598-017-10886-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Aberrant metabolism in hexosamine biosynthetic pathway (HBP) has been observed in several cancers, affecting cellular signaling and tumor progression. However, the role of O-GlcNAcylation, a post-translational modification through HBP flux, in apoptosis remains unclear. Here, we found that hyper-O-GlcNAcylation in lung carcinoma cells by O-GlcNAcase inhibition renders the cells to apoptosis resistance to cisplatin (CDDP). Profiling of various key regulatory proteins revealed an implication of either p53 or c-Myc in the apoptosis regulation by O-GlcNAcylation, independent of p53 status. Using co-immunoprecipitation and correlation analyses, we found that O-GlcNAcylation of p53 under certain cellular contexts, i.e. high p53 activation, promotes its ubiquitin-mediated proteasomal degradation, resulting in a gain of oncogenic and anti-apoptotic functions. By contrast, O-GlcNAcylation of c-Myc inhibits its ubiquitination and subsequent proteasomal degradation. Gene manipulation studies revealed that O-GlcNAcylation of p53/c-Myc is in part a regulator of CDDP-induced apoptosis. Accordingly, we classified CDDP resistance by hyper-O-GlcNAcylation in lung carcinoma cells as either p53 or c-Myc dependence based on their molecular targets. Together, our findings provide novel mechanisms for the regulation of lung cancer cell apoptosis that could be important in understanding clinical drug resistance and suggest O-GlcNAcylation as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Paweorn Angsutararux
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Parinya Samart
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Nawin Chanthra
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, 10310, Thailand.
| |
Collapse
|
27
|
Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 2017; 84:453-469. [PMID: 28789902 DOI: 10.1016/j.neubiorev.2017.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/02/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, United Kingdom
| | - Ken Walder
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil
| | - Susannah J Tye
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia; Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil; Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia.
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
28
|
Sinha BK, Kumar A, Mason RP. Nitric oxide inhibits ATPase activity and induces resistance to topoisomerase II-poisons in human MCF-7 breast tumor cells. Biochem Biophys Rep 2017; 10:252-259. [PMID: 28955753 PMCID: PMC5614683 DOI: 10.1016/j.bbrep.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
Background Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide (•NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. Methods Here, we have evaluated the roles of •NO/•NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of •NO on the ATPase activity of topo II. Results Treatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. •NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. Conclusion PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. General significance As tumors express nitric oxide synthase and generate •NO, inhibition of topo II functions by •NO/•NO-derived species could render tumors resistant to certain topo II-poisons in the clinic. Nitric oxide (•NO) induces nitrosylation of many proteins, including topoisomerases. Nitrosation of topo II inhibited catalytic-, and ATPase activities of topo II. Inhibition of topo II activity resulted in resistance to topoisomerase II poisons.
Collapse
|
29
|
Sinha BK. Nitric oxide: Friend or Foe in Cancer Chemotherapy and Drug Resistance: A Perspective. ACTA ACUST UNITED AC 2016; 8:244-251. [PMID: 31844487 DOI: 10.4172/1948-5956.1000421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A successful treatment of cancers in the clinic has been difficult to achieve because of the emergence of drug resistant tumor cells. While various approaches have been tried to overcome multi-drug resistance, it has remained a major road block in achieving complete success in the clinic. Extensive research has identified various mechanisms, including overexpression of P-glycoprotein 170, modifications in activating or detoxification enzymes (phase I and II enzymes), and mutation and/or decreases in target enzymes in cancer cells. However, nitric oxide and/or nitric oxide-related species have not been considered an important player in cancer treatment and or drug resistance. Here, we examine the significance of nitric oxide in the treatment and resistance mechanisms of various anticancer drugs. Furthermore, we describe the significance of recently reported effects of nitric oxide on topoisomerases and the development of resistance to topoisomerase-poisons in tumor cells.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
30
|
Plenchette S, Romagny S, Laurens V, Bettaieb A. [NO and cancer: itinerary of a double agent]. Med Sci (Paris) 2016; 32:625-33. [PMID: 27406774 DOI: 10.1051/medsci/20163206027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein S-nitrosylation is now recognized as a ubiquitous regulatory mechanism. Like any post-translational modifications, S-nitrosylation is critical for the control of numerous cellular processes. It is now clear that S-nitrosylation is playing a double game, enhancing or inhibiting the tumor growth or the induction of cell death. Thanks to research aimed at demonstrating NO cytotoxic effects, new therapeutic strategies based on NO donor drugs have emerged. Although therapeutic NO donors can target a large number of proteins, the cellular mechanism is still not fully understood. This review reflects the current state of knowledge on S-nitrosylated proteins that take part of the oncogenic and apoptotic signaling, putting forward proteins with potential interest in cancer therapy.
Collapse
Affiliation(s)
- Stéphanie Plenchette
- Université de Bourgogne Franche-Comté, LIIC EA7269, 7, boulevard Jeanne d'Arc, F-21000 Dijon, France - EPHE, PSL Research University, F-75014 Paris, France
| | - Sabrina Romagny
- Université de Bourgogne Franche-Comté, LIIC EA7269, 7, boulevard Jeanne d'Arc, F-21000 Dijon, France - EPHE, PSL Research University, F-75014 Paris, France
| | - Véronique Laurens
- Université de Bourgogne Franche-Comté, LIIC EA7269, 7, boulevard Jeanne d'Arc, F-21000 Dijon, France - EPHE, PSL Research University, F-75014 Paris, France
| | - Ali Bettaieb
- Université de Bourgogne Franche-Comté, LIIC EA7269, 7, boulevard Jeanne d'Arc, F-21000 Dijon, France - EPHE, PSL Research University, F-75014 Paris, France
| |
Collapse
|
31
|
Saisongkorh V, Maiuthed A, Chanvorachote P. Nitric oxide increases the migratory activity of non-small cell lung cancer cells via AKT-mediated integrin αv and β1 upregulation. Cell Oncol (Dordr) 2016; 39:449-462. [PMID: 27376838 DOI: 10.1007/s13402-016-0287-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previously, nitric oxide (NO) has been found to affect the metastatic behavior of various types of cancer. In addition, it has been found that alterations in integrin expression may have profound effects on cancer cell survival and migration. Here, we aimed at assessing the effects of non-toxic concentrations of NO on human non-small cell lung cancer (NSCLC) cells, including the expression of integrins and the migration of these cells. METHODS The cytotoxic and proliferative effects of NO on human NSCLC-derived H460, H292 and H23 cells were tested by MTT assay. The migration capacities of these cells was evaluated by wound healing and transwell migration assays. The expression of integrins and migration-associated proteins was determined by Western blot analyses. RESULTS We found that NO treatment caused a significant increase in the expression of integrin αv and β1 in all three NSCLC-derived cell lines tested. Known migration-associated proteins acting downstream of these integrins, including focal adhesion kinase (FAK), active RhoA (Rho-GTP) and active cell division control 42 (Cdc42-GTP), were found to be significantly activated in response to NO. In addition, we found that NO-treated cells showed an increased motility and that this motility was associated with a significant increase in the number of filopodia per cell. We also found that NO-treated cells exhibited increased active protein kinase G (PKG), protein kinase B (AKT) and FAK expression levels. Using a pharmacological approach, we found that the integrin-modulating effect of NO is most likely brought about by a PKG/AKT-dependent mechanism, since the observed changes in integrin expression were abolished by AKT inhibitors, but not by FAK inhibitors. CONCLUSION Our data suggest a novel role of NO in the regulation of integrin expression and, concomitantly, the migratory capacity of NSCLC cells.
Collapse
Affiliation(s)
- Vhudhipong Saisongkorh
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Arnatchai Maiuthed
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
32
|
Kumar A, Ehrenshaft M, Tokar EJ, Mason RP, Sinha BK. Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:1519-27. [PMID: 27095671 PMCID: PMC4909546 DOI: 10.1016/j.bbagen.2016.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. METHODS Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. RESULTS Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. CONCLUSION Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. GENERAL SIGNIFICANCE As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Immunity, Inflammation and Disease Laboratory, NIH, Research Triangle Park, North Carolina, USA
| | - Marilyn Ehrenshaft
- Immunity, Inflammation and Disease Laboratory, NIH, Research Triangle Park, North Carolina, USA
| | - Erik J Tokar
- National Toxicology Program National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, NIH, Research Triangle Park, North Carolina, USA
| | - Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, NIH, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
33
|
Brasseur K, Fabi F, Adam P, Parent S, Lessard L, Asselin E. Post-translational regulation of the cleaved fragment of Par-4 in ovarian and endometrial cancer cells. Oncotarget 2016; 7:36971-36987. [PMID: 27175591 PMCID: PMC5095052 DOI: 10.18632/oncotarget.9235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/24/2016] [Indexed: 11/25/2022] Open
Abstract
We recently reported the caspase3-dependent cleavage of Par-4 resulting in the accumulation of a 25kDa cleaved-Par-4 (cl-Par-4) fragment and we investigated in the present study the mechanisms regulating this fragment using cl-Par-4-expressing stable clones derived from ovarian and endometrial cancer cell lines.Cl-Par-4 protein was weakly express in all stable clones despite constitutive expression. However, upon cisplatin treatment, cl-Par-4 levels increased up to 50-fold relative to baseline conditions. Treatment of stable clones with proteasome and translation inhibitors revealed that cisplatin exposure might in fact protect cl-Par-4 from proteasome-dependent degradation. PI3K and MAPK pathways were also implicated as evidenced by an increase of cl-Par-4 in the presence of PI3K inhibitors and a decrease using MAPK inhibitors. Finally using bioinformatics resources, we found diverse datasets showing similar results to those we observed with the proteasome and cl-Par-4 further supporting our data.These new findings add to the complex mechanisms regulating Par-4 expression and activity, and justify further studies addressing the biological significance of this phenomenon in gynaecological cancer cells.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - François Fabi
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Pascal Adam
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Sophie Parent
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Laurent Lessard
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| |
Collapse
|
34
|
Luke JJ, LoRusso P, Shapiro GI, Krivoshik A, Schuster R, Yamazaki T, Arai Y, Fakhoury A, Dmuchowski C, Infante JR. ASP9853, an inhibitor of inducible nitric oxide synthase dimerization, in combination with docetaxel: preclinical investigation and a Phase I study in advanced solid tumors. Cancer Chemother Pharmacol 2016; 77:549-58. [PMID: 26811179 DOI: 10.1007/s00280-016-2967-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE ASP9853 is an inhibitor of inducible nitric oxide (NO) synthase (iNOS) dimerization, which results in decreased NO production. Here, we report preclinical pharmacology of ASP9853 and the impact of ASP9853 in combination with a taxane on tumor volume in vivo. In addition, a Phase I open-label study of ASP9853 plus docetaxel was conducted to assess this combination in patients with advanced solid tumors. METHODS The preclinical efficacy of ASP9853 in combination with a taxane was studied in tumor-bearing mice. In the clinic, patients with solid tumors that had progressed or failed to respond to previous therapies were treated with once-daily ASP9853 in combination with docetaxel once every 3 weeks to assess safety and tolerability and to determine the maximum tolerated dose (MTD) and the recommended Phase II dose (RP2D) of the combination. RESULTS ASP9853 in combination with docetaxel showed greater tumor growth inhibition than docetaxel alone against non-small lung cancer xenografts. Twenty patients were treated with ASP9853 and docetaxel. Five patients experienced neutropenic dose-limiting toxicities. Owing to overall toxicity that limited further dose escalation, the ASP9853 concentrations predicted for efficacy, based on the preclinical data, were not achieved. Due to toxicity and lack of clear efficacy, the study was terminated without determination of MTD or RP2D. CONCLUSIONS Inhibition of iNOS by ASP9853 in combination with docetaxel was not tolerable and resulted in the possible potentiation of neutropenia. Manipulation of the iNOS pathway, with or without chemotherapy, appears to be more complicated than initially expected.
Collapse
Affiliation(s)
- Jason J Luke
- Section of Hematology/Oncology, The University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew Krivoshik
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Robin Schuster
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Takao Yamazaki
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Yukinori Arai
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, Japan
| | - Allam Fakhoury
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Carl Dmuchowski
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Jeffrey R Infante
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| |
Collapse
|
35
|
Sharma NK, Kumar A, Kumari A, Tokar EJ, Waalkes MP, Bortner CD, Williams J, Ehrenshaft M, Mason RP, Sinha BK. Nitric Oxide Down-Regulates Topoisomerase I and Induces Camptothecin Resistance in Human Breast MCF-7 Tumor Cells. PLoS One 2015; 10:e0141897. [PMID: 26540186 PMCID: PMC4635000 DOI: 10.1371/journal.pone.0141897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
Camptothecin (CPT), a topoisomerase I poison, is an important drug for the treatment of solid tumors in the clinic. Nitric oxide (·NO), a physiological signaling molecule, is involved in many cellular functions, including cell proliferation, survival and death. We have previously shown that ·NO plays a significant role in the detoxification of etoposide (VP-16), a topoisomerase II poison in vitro and in human melanoma cells. ·NO/·NO-derived species are reported to modulate activity of several important cellular proteins. As topoisomerases contain a number of free sulfhydryl groups which may be targets of ·NO/·NO-derived species, we have investigated the roles of ·NO/·NO-derived species in the stability and activity of topo I. Here we show that ·NO/·NO-derived species induces a significant down-regulation of topoisomerase I protein via the ubiquitin/26S proteasome pathway in human colon (HT-29) and breast (MCF-7) cancer cell lines. Importantly, ·NO treatment induced a significant resistance to CPT only in MCF-7 cells. This resistance to CPT did not result from loss of topoisomerase I activity as there were no differences in topoisomerase I-induced DNA cleavage in vitro or in tumor cells, but resulted from the stabilization/induction of bcl2 protein. This up-regulation of bcl2 protein in MCF-7 cells was wtp53 dependent as pifithrine-α, a small molecule inhibitor of wtp53 function, completely reversed CPT resistance, suggesting that wtp53 and bcl2 proteins played important roles in CPT resistance. Because tumors in vivo are heterogeneous and contaminated by infiltrating macrophages, ·NO-induced down-regulation of topoisomerase I protein combined with bcl2 protein stabilization could render certain tumors highly resistant to CPT and drugs derived from it in the clinic.
Collapse
Affiliation(s)
- Nilesh K. Sharma
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Ashutosh Kumar
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Amrita Kumari
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Erik J. Tokar
- National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Michael P. Waalkes
- National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Carl D. Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Jason Williams
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Marilyn Ehrenshaft
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Ronald P. Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Birandra K. Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| |
Collapse
|
36
|
Cai Z, Lu Q, Ding Y, Wang Q, Xiao L, Song P, Zou MH. Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Prevents Dihydrofolate Reductase Degradation via Promoting S-Nitrosylation. Arterioscler Thromb Vasc Biol 2015; 35:2366-73. [PMID: 26381869 PMCID: PMC4758687 DOI: 10.1161/atvbaha.115.305796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Dihydrofolate reductase (DHFR) is a key protein involved in tetrahydrobiopterin (BH4) regeneration from 7,8-dihydrobiopterin (BH2). Dysfunctional DHFR may induce endothelial nitric oxide (NO) synthase (eNOS) uncoupling resulting in enzyme production of superoxide anions instead of NO. The mechanism by which DHFR is regulated is unknown. Here, we investigate whether eNOS-derived NO maintains DHFR stability. APPROACH AND RESULTS DHFR activity, BH4 content, eNOS activity, and S-nitrosylation were assessed in human umbilical vein endothelial cells and in aortas isolated from wild-type and eNOS knockout mice. In human umbilical vein endothelial cells, depletion of intracellular NO by transfection with eNOS-specific siRNA or by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)-both of which had no effect on DHFR mRNA levels-markedly reduced DHFR protein levels in parallel with increased DHFR polyubiquitination. Supplementation of S-nitroso-l-glutathione (GSNO), a NO donor, or MG132, a potent inhibitor of the 26S proteasome, prevented eNOS silencing and PTIO-induced DHFR reduction in human umbilical vein endothelial cells. PTIO suppressed S-nitrosylation of DHFR, whereas GSNO promoted DHFR S-nitrosylation. Mutational analysis confirmed that cysteine 7 of DHFR was S-nitrosylated. Cysteine 7 S-nitrosylation stabilized DHFR from ubiquitination and degradation. Experiments performed in aortas confirmed that PTIO or eNOS deficiency reduces endothelial DHFR, which can be abolished by MG132 supplementation. CONCLUSIONS We conclude that S-nitrosylation of DHFR at cysteine 7 by eNOS-derived NO is crucial for DHFR stability. We also conclude that NO-induced stabilization of DHFR prevents eNOS uncoupling via regeneration of BH4, an essential eNOS cofactor.
Collapse
Affiliation(s)
- Zhejun Cai
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Q.L., Y.D., Q.W., L.X., P.S., M.-H.Z.); and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Zhejiang, China (Z.C.)
| | - Qiulun Lu
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Q.L., Y.D., Q.W., L.X., P.S., M.-H.Z.); and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Zhejiang, China (Z.C.)
| | - Ye Ding
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Q.L., Y.D., Q.W., L.X., P.S., M.-H.Z.); and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Zhejiang, China (Z.C.)
| | - Qilong Wang
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Q.L., Y.D., Q.W., L.X., P.S., M.-H.Z.); and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Zhejiang, China (Z.C.)
| | - Lei Xiao
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Q.L., Y.D., Q.W., L.X., P.S., M.-H.Z.); and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Zhejiang, China (Z.C.)
| | - Ping Song
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Q.L., Y.D., Q.W., L.X., P.S., M.-H.Z.); and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Zhejiang, China (Z.C.)
| | - Ming-Hui Zou
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Q.L., Y.D., Q.W., L.X., P.S., M.-H.Z.); and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Zhejiang, China (Z.C.).
| |
Collapse
|
37
|
Raghunathan K, Ahsan A, Ray D, Nyati MK, Veatch SL. Membrane Transition Temperature Determines Cisplatin Response. PLoS One 2015; 10:e0140925. [PMID: 26484687 PMCID: PMC4618528 DOI: 10.1371/journal.pone.0140925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Cisplatin is a classical chemotherapeutic agent used in treating several forms of cancer including head and neck. However, cells develop resistance to the drug in some patients through a range of mechanisms, some of which are poorly understood. Using isolated plasma membrane vesicles as a model system, we present evidence suggesting that cisplatin induced resistance may be due to certain changes in the bio-physical properties of plasma membranes. Giant plasma membrane vesicles (GPMVs) isolated from cortical cytoskeleton exhibit a miscibility transition between a single liquid phase at high temperature and two distinct coexisting liquid phases at low temperature. The temperature at which this transition occurs is hypothesized to reflect the magnitude of membrane heterogeneity at physiological temperature. We find that addition of cisplatin to vesicles isolated from cisplatin-sensitive cells result in a lowering of this miscibility transition temperature, whereas in cisplatin-resistant cells such treatment does not affect the transition temperature. To explore if this is a cause or consequence of cisplatin resistance, we tested if addition of cisplatin in combination with agents that modulate GPMV transition temperatures can affect cisplatin sensitivity. We found that cells become more sensitive to cisplatin when isopropanol, an agent that lowers GPMV transition temperature, was combined with cisplatin. Conversely, cells became resistant to cisplatin when added in combination with menthol that raises GPMV transition temperatures. These data suggest that changes in plasma membrane heterogeneity augments or suppresses signaling events initiated in the plasma membranes that can determine response to cisplatin. We postulate that desired perturbations of membrane heterogeneity could provide an effective therapeutic strategy to overcome cisplatin resistance for certain patients.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mukesh K. Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
38
|
Brinkmann K, Schell M, Hoppe T, Kashkar H. Regulation of the DNA damage response by ubiquitin conjugation. Front Genet 2015; 6:98. [PMID: 25806049 PMCID: PMC4354423 DOI: 10.3389/fgene.2015.00098] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
In response to DNA damage, cells activate a highly conserved and complex kinase-based signaling network, commonly referred to as the DNA damage response (DDR), to safeguard genomic integrity. The DDR consists of a set of tightly regulated events, including detection of DNA damage, accumulation of DNA repair factors at the site of damage, and finally physical repair of the lesion. Upon overwhelming damage the DDR provokes detrimental cellular actions by involving the apoptotic machinery and inducing a coordinated demise of the damaged cells (DNA damage-induced apoptosis, DDIA). These diverse actions involve transcriptional activation of several genes that govern the DDR. Moreover, recent observations highlighted the role of ubiquitylation in orchestrating the DDR, providing a dynamic cellular regulatory circuit helping to guarantee genomic stability and cellular homeostasis (Popovic et al., 2014). One of the hallmarks of human cancer is genomic instability (Hanahan and Weinberg, 2011). Not surprisingly, deregulation of the DDR can lead to human diseases, including cancer, and can induce resistance to genotoxic anti-cancer therapy (Lord and Ashworth, 2012). Here, we summarize the role of ubiquitin-signaling in the DDR with special emphasis on its role in cancer and highlight the therapeutic value of the ubiquitin-conjugation machinery as a target in anti-cancer treatment strategy.
Collapse
Affiliation(s)
- Kerstin Brinkmann
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of CologneCologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of CologneCologne, Germany
| | - Michael Schell
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of CologneCologne, Germany
- Institute for Genetics, University of CologneCologne, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of CologneCologne, Germany
- Institute for Genetics, University of CologneCologne, Germany
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of CologneCologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital of CologneCologne, Germany
| |
Collapse
|
39
|
Yongsanguanchai N, Pongrakhananon V, Mutirangura A, Rojanasakul Y, Chanvorachote P. Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. Am J Physiol Cell Physiol 2014; 308:C89-100. [PMID: 25411331 DOI: 10.1152/ajpcell.00187.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Even though tremendous advances have been made in the treatment of cancers during the past decades, the success rate among patients with cancer is still dismal, largely because of problems associated with chemo/radioresistance and relapse. Emerging evidence has indicated that cancer stem cells (CSCs) are behind the resistance and recurrence problems, but our understanding of their regulation is limited. Rapid reversible changes of CSC-like cells within tumors may result from the effect of biological mediators found in the tumor microenvironment. Here we show how nitric oxide (NO), a key cellular modulator whose level is elevated in many tumors, affects CSC-like phenotypes of human non-small cell lung carcinoma H292 and H460 cells. Exposure of NO gradually altered the cell morphology toward mesenchymal stem-like shape. NO exposure promoted CSC-like phenotype, indicated by increased expression of known CSC markers, CD133 and ALDH1A1, in the exposed cells. These effects of NO on stemness were reversible after cessation of the NO treatment for 7 days. Furthermore, such effect was reproducible using another NO donor, S-nitroso-N-acetylpenicillamine. Importantly, inhibition of NO by the known NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5 tetramethylimidazoline-1-oxy-3-oxide strongly inhibited CSC-like aggressive cellular behavior and marker expression. Last, we unveiled the underlying mechanism of NO action through the activation of caveolin-1 (Cav-1), which is upregulated by NO and is responsible for the aggressive behavior of the cells, including anoikis resistance, anchorage-independent cell growth, and increased cell migration and invasion. These findings indicate a novel role of NO in CSC regulation and its importance in aggressive cancer behaviors through Cav-1 upregulation.
Collapse
Affiliation(s)
- Nuttida Yongsanguanchai
- Pharmaceutical Technology (International) Program, Chulalongkorn University, Bangkok, Thailand
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cell-Based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yon Rojanasakul
- School of Pharmacy, West Virginia University, Morgantown, West Virginia
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cell-Based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand;
| |
Collapse
|
40
|
Turrini E, Ferruzzi L, Fimognari C. Natural compounds to overcome cancer chemoresistance: toxicological and clinical issues. Expert Opin Drug Metab Toxicol 2014; 10:1677-90. [PMID: 25339439 DOI: 10.1517/17425255.2014.972933] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Defects in initiating or executing cell death programs are responsible for cancer chemoresistance. The growing understanding of apoptotic programs suggests that compounds simultaneously inhibiting multiple signaling pathways might provide a better therapeutic outcome than that of individual inhibitors. AREAS COVERED Natural compounds can modulate different survival pathways, thus enhancing the therapeutic effects of anticancer treatments. This review provides an overview of the preclinical and clinical relevance of chemosensitization, giving special reference to curcumin (CUR) and sulforaphane (SFN) as agents to overcome apoptosis resistance against chemotherapy. EXPERT OPINION Even if CUR and SFN are common dietary constituents, they are characterized by several problems still unresolved and hampering their development as anticancer drugs. For a drug to be safe, it must be devoid of toxicity, and some studies conducted to date raises concern about CUR and SFN safety. Moreover, the efficacy of a drug, alone or in association, is usually determined by randomized, placebo-controlled, double-blind clinical trials. No such trials have shown CUR and SFN to be effective so far. Thus, caution should be exercised when suggesting the use of CUR or SFN for cancer-related therapeutic purpose, especially for very early stage of malignancy, or in patients who are undergoing chemotherapy.
Collapse
Affiliation(s)
- Eleonora Turrini
- Alma Mater Studiorum-University of Bologna, Department for Life Quality Studies , Rimini , Italy +39 0541 434658 ; +39 051 2095624 ;
| | | | | |
Collapse
|
41
|
Matsunaga T, Yamaji Y, Tomokuni T, Morita H, Morikawa Y, Suzuki A, Yonezawa A, Endo S, Ikari A, Iguchi K, El-Kabbani O, Tajima K, Hara A. Nitric oxide confers cisplatin resistance in human lung cancer cells through upregulation of aldo-keto reductase 1B10 and proteasome. Free Radic Res 2014; 48:1371-85. [PMID: 25156503 DOI: 10.3109/10715762.2014.957694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we show that exposure of human lung cancer A549 cells to cisplatin (cis-diamminedichloroplatinum, CDDP) promotes production of nitric oxide (NO) through generation of reactive oxygen species (ROS) and resulting upregulation of inducible NO synthase (iNOS). The incubation of the cells with a NO donor, diethylenetriamine NONOate, not only reduced the CDDP-induced cell death and apoptotic alterations (induction of CCAAT-enhancer-binding protein homologous protein and caspase-3 activation), but also elevated proteolytic activity of 26S proteasome, suggesting that the activation of proteasome function contributes to the reduction of CDDP sensitivity by NO. Monitoring expression levels of six aldo-keto reductases (AKRs) (1A1, 1B1, 1B10, 1C1, 1C2, and 1C3) during the treatment with the NO donor and subsequent CDDP sensitivity test using the specific inhibitors also proposed that upregulation of AKR1B10 by NO is a key process for acquiring the CDDP resistance in A549 cells. Treatment with CDDP and NO increased amounts of nitrotyrosine protein adducts, indicative of peroxynitrite formation, and promoted the induction of AKR1B10, inferring a relationship between peroxynitrite formation and the enzyme upregulation in the cells. The treatment with CDDP or a ROS-related lipid aldehyde, 4-hydroxy-2-nonenal, facilitated the iNOS upregulation, which was restored by increasing the AKR1B10 expression. In contrast, the facilitation of NO production by CDDP treatment was hardly observed in AKR1B10-overexpressing A549 cells and established CDDP-resistant cancer cells (A549, LoVo, and PC3). Collectively, these results suggest the NO functions as a key regulator controlling AKR1B10 expression and 26S proteasome function leading to gain of the CDDP resistance.
Collapse
Affiliation(s)
- T Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arsenic modulates posttranslational S-nitrosylation and translational proteome in keratinocytes. ScientificWorldJournal 2014; 2014:360153. [PMID: 25110733 PMCID: PMC4119667 DOI: 10.1155/2014/360153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a class I human carcinogen (such as inducing skin cancer) by its prominent chemical interaction with protein thio (-SH) group. Therefore, arsenic may compromise protein S-nitrosylation by competing the -SH binding activity. In the present study, we aimed to understand the influence of arsenic on protein S-nitrosylation and the following proteomic changes. By using primary human skin keratinocyte, we found that arsenic treatment decreased the level of protein S-nitrosylation. This was coincident to the decent expressions of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS). By using LC-MS/MS, around twenty S-nitrosoproteins were detected in the biotin-switched eluent. With the interest that arsenic not only regulates posttranslational S-nitrosylation but also separately affects protein's translation expression, we performed two-dimensional gel electrophoresis and found that 8 proteins were significantly decreased during arsenic treatment. Whether these decreased proteins are the consequence of protein S-nitrosylation will be further investigated. Taken together, these results provide a finding that arsenic can deplete the binding activity of NO and therefore reduce protein S-nitrosylation.
Collapse
|
43
|
Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:941359. [PMID: 24967418 PMCID: PMC4055163 DOI: 10.1155/2014/941359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/01/2014] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) in tumor microenvironment may have a significant impact on metastatic behaviors of cancer. Noncytotoxic doses of NO enhanced anoikis resistance and migration in lung cancer H23 cells via an increase in lamellipodia, epithelial-mesenchymal transition (EMT) markers including vimentin and snail, and caveolin-1 (Cav-1). However, the induction of EMT was found in Cav-1-knock down cells treated with NO, suggesting that EMT was through Cav-1-independent pathway. These effects of NO were consistently observed in other lung cancer cells including H292 and H460 cells. These findings highlight the novel role of NO on EMT and metastatic behaviors of cancer cells.
Collapse
|
44
|
Nitric oxide mediates cell aggregation and mesenchymal to epithelial transition in anoikis-resistant lung cancer cells. Mol Cell Biochem 2014; 393:237-45. [PMID: 24771070 DOI: 10.1007/s11010-014-2066-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/12/2014] [Indexed: 12/30/2022]
Abstract
Cancer cell aggregation has been long known to facilitate metastatic potential of cancer cells. In addition, the presence of nitric oxide (NO) in cancer area may have a significant impact on aggregation behavior of the cells. We show herein that lung cancer H460 cells possessing high ability of anoikis resistance formed loose aggregates in detached condition. Importantly, NO treatment tightened the aggregates by enhancing cell-cell interaction via E-cadherin-dependent mechanism, and such E-cadherin contact increased anoikis resistance potential by up-regulating pro-survival signals of the cells including active ATP-dependent tyrosine kinase and extracellular-regulated protein kinases (ERK1/2). Since an increase of E-cadherin was frequently found in mesenchymal to epithelial transition (MET) process, we further tested the cells for MET markers and found that NO treatment of these cells significantly enhanced MET. As aggregation and MET of cancer cells may facilitate cancer metastasis by many means, the insights gained from the present study could benefit the deep understanding in the biology of cancer cell metastasis.
Collapse
|
45
|
Giuliani CM, Dass CR. Metabolic stress and cancer: is autophagy the common denominator and a feasible target? ACTA ACUST UNITED AC 2013; 66:597-614. [PMID: 24341996 DOI: 10.1111/jphp.12191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Autophagy facilitates the degradation of proteins or organelles into recyclable molecules, which are released into the cell to foster cell survival under energetic stress. Furthermore, autophagy has been associated with cancer cell survival and chemoresistance, and as such, it is an area of increasing interest. As autophagic activity and its regulation are related to metabolism and energy stress, it is critical to elucidate the exact molecular mechanisms that drive it. KEY FINDINGS Cancer is recognised to have specific metabolic changes, which include the switch from oxidative phosphorylation to glycolysis. Although the exact rationale is yet to be determined, it is proposed to limit hypoxic stress and generate substrates for biosynthesis. The various forms of energetic stress including hypoxia, glucose and amino acid deprivation have been reviewed in relation to their effect on autophagy and certain key molecules identified to date. These key molecules, which include AMP-activated protein kinase, mammalian target of rapamycin complex 1, adenosine triphosphate and reactive oxygen species, are all implicated as key stimuli of autophagic activity, as will be discussed in this review. SUMMARY These findings indicate that autophagic regulation could be a means to better cancer treatment.
Collapse
Affiliation(s)
- Charlett M Giuliani
- School of Biomedical and Health Sciences, Victoria University, St Albans, Victoria, Australia
| | | |
Collapse
|
46
|
Sinha BK, Kumar A, Bhattacharjee S, Espey MG, Mason RP. Effect of nitric oxide on the anticancer activity of the topoisomerase-active drugs etoposide and adriamycin in human melanoma cells. J Pharmacol Exp Ther 2013; 347:607-14. [PMID: 24049059 PMCID: PMC3836306 DOI: 10.1124/jpet.113.207928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/18/2013] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (·NO) was originally identified as an innate cytotoxin. However, in tumors it can enhance resistance to chemotherapy and exacerbate cancer progression. Our previous studies indicated that (·NO/·NO-derived species react with etoposide (VP-16) in vitro and form products that show significantly reduced activity toward HL60 cells and lipopolysaccharide (LPS)-induced macrophages. Here, we further confirm the hypothesis that (÷)NO generation contributes to VP-16 resistance by examining interactions of ·NO with VP-16 in inducible nitric-oxide synthase (iNOS)-expressing human melanoma A375 cells. Inhibition of iNOS catalysis by N(6)-(1-iminoethyl)-L-lysine dihydrochloride (L-NIL) in human melanoma A375 cells reversed VP-16 resistance, leading to increased DNA damage and apoptosis. Furthermore, we found that coculturing A375 melanoma cells with LPS-induced macrophage RAW cells also significantly reduced VP-16 cytotoxicity and DNA damage in A375 cells. We also examined the interactions of (·)NO with another topoisomerase active drug, Adriamycin, in A375 cells. In contrast, to VP-16, (·)NO caused no significant modulation of cytotoxicity or Adriamycin-dependent apoptosis, suggesting that (⋅)NO does not interact with Adriamycin. Our studies support the hypothesis that (·)NO oxidative chemistry can detoxify VP-16 through direct nitrogen oxide radical attack. Our results provide insights into the pharmacology and anticancer mechanisms of VP-16 that may ultimately contribute to increased resistance, treatment failure, and induction of secondary leukemia in VP-16-treated patients.
Collapse
Affiliation(s)
- Birandra K Sinha
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (B.K.S., A.K., S.B., R.P.M.); and National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (M.G.E.)
| | | | | | | | | |
Collapse
|
47
|
Grimm EA, Sikora AG, Ekmekcioglu S. Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin Cancer Res 2013; 19:5557-63. [PMID: 23868870 DOI: 10.1158/1078-0432.ccr-12-1554] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is widely accepted that many cancers express features of inflammation, driven by both microenvironmental cells and factors, and the intrinsic production of inflammation-associated mediators from malignant cells themselves. Inflammation results in intracellular oxidative stress with the ultimate biochemical oxidants composed of reactive nitrogens and oxygens. Although the role of inflammation in carcinogensis is well accepted, we now present data showing that inflammatory processes are also active in the maintenance phase of many aggressive forms of cancer. The oxidative stress of inflammation is proposed to drive a continuous process of DNA adducts and crosslinks, as well as posttranslational modifications to lipids and proteins that we argue support growth and survival. In this perspective, we introduce data on the emerging science of inflammation-driven posttranslational modifications on proteins responsible for driving growth, angiogenesis, immunosuppression, and inhibition of apoptosis. Examples include data from human melanoma, breast, head and neck, lung, and colon cancers. Fortunately, numerous antioxidant agents are clinically available, and we further propose that the pharmacologic attenuation of these inflammatory processes, particularly the reactive nitrogen species, will restore the cancer cells to an apoptosis-permissive and growth-inhibitory state. Our mouse model data using an arginine antagonist that prevents enzymatic production of nitric oxide directly supports this view. We contend that selected antioxidants be considered as part of the cancer treatment approach, as they are likely to provide a novel and mechanistically justified addition for therapeutic benefit.
Collapse
Affiliation(s)
- Elizabeth A Grimm
- Authors' Affiliations: Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; and Departments of Otolaryngology, Immunology, Oncological Science, and Dermatology, Mount Sinai School of Medicine, New York, New York
| | | | | |
Collapse
|
48
|
Methods for detection and characterization of protein S-nitrosylation. Methods 2013; 62:138-50. [PMID: 23628946 DOI: 10.1016/j.ymeth.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/24/2022] Open
Abstract
Reversible protein S-nitrosylation, defined as the covalent addition of a nitroso moiety to the reactive thiol group on a cysteine residue, has received increasing recognition as a critical post-translational modification that exerts ubiquitous influence in a wide range of cellular pathways and physiological processes. Due to the lability of the S-NO bond, which is a dynamic modification, and the low abundance of endogenously S-nitrosylated proteins in vivo, unambiguous identification of S-nitrosylated proteins and S-nitrosylation sites remains methodologically challenging. In this review, we summarize recent advancements and the use of state-of-art approaches for the enrichment, systematic identification and quantitation of S-nitrosylation protein targets and their modification sites at the S-nitrosoproteome scale. These advancements have facilitated the global identification of >3000 S-nitrosylated proteins that are associated with wide range of human diseases. These strategies hold promise to site-specifically unravel potential molecular targets and to change S-nitrosylation-based pathophysiology, which may further the understanding of the potential role of S-nitrosylation in diseases.
Collapse
|
49
|
Wong JC, Bathina M, Fiscus RR. Cyclic GMP/protein kinase G type-Iα (PKG-Iα) signaling pathway promotes CREB phosphorylation and maintains higher c-IAP1, livin, survivin, and Mcl-1 expression and the inhibition of PKG-Iα kinase activity synergizes with cisplatin in non-small cell lung cancer cells. J Cell Biochem 2013; 113:3587-98. [PMID: 22740515 DOI: 10.1002/jcb.24237] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Previously, our laboratory showed that nitric oxide (NO)/cyclic GMP (cGMP)/protein kinase G type-Iα (PKG-Iα) signaling pathway plays an important role in preventing spontaneous apoptosis and promoting cell proliferation in both normal cells (bone marrow stromal cells and vascular smooth muscle cells) and certain cancer cells (ovarian cancer cells). In the present study, we investigated the novel role of the cGMP/PKG-Iα pathway in preventing spontaneous apoptosis, promoting colony formation and regulating phosphorylation of cAMP response element binding (CREB) protein and protein expression of inhibitor of apoptosis proteins (IAPs) and anti-apoptotic Bcl-2-related proteins in NCI-H460 and A549 non-small cell lung cancer (NSCLC) cells. 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), which blocks endogenous NO-induced activation of cGMP/PKG-Iα, induced apoptosis and decreased colony formation. ODQ also decreased CREB ser133 phosphorylation and protein expression of c-IAP1, livin, and survivin. DT-2 (inhibitor of PKG-Iα kinase activity) increased apoptosis by twofold and decreased CREB ser133 phosphorylation and c-IAP1, livin, and survivin expression. Gene knockdown of PKG-Iα expression using small-interfering RNA increased apoptosis and decreased CREB ser133 phosphorylation, and c-IAP1, livin, survivin, and Mcl-1 expression. Inhibition of PKG-Iα kinase activity with DT-2 dramatically enhanced pro-apoptotic effects of the chemotherapeutic agent cisplatin. Combined treatment of DT-2 and cisplatin increased apoptosis compared with cisplatin or DT-2 alone, showing a synergistic effect. The data suggest that the PKG-Iα kinase activity is necessary for maintaining higher levels of CREB phosphorylation at ser133 and protein expression of c-IAP1, livin, survivin, and Mcl-1, preventing spontaneous apoptosis and promoting colony formation in NSCLC cells, which may limit the effectiveness of chemotherapeutic agents like cisplatin.
Collapse
Affiliation(s)
- Janica C Wong
- Center for Diabetes and Obesity Prevention, Treatment, Research and Education, and College of Pharmacy, Roseman University of Health Sciences, Henderson, Nevada 89014, USA
| | | | | |
Collapse
|
50
|
Luanpitpong S, Chanvorachote P, Stehlik C, Tse W, Callery PS, Wang L, Rojanasakul Y. Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Biol Cell 2013; 24:858-69. [PMID: 23363601 PMCID: PMC3596255 DOI: 10.1091/mbc.e12-10-0747] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bcl-2 interacts with ERK to suppress apoptosis. Hydrogen peroxide disrupts the interaction through Bcl-2 cysteine oxidation, which promotes apoptosis. These findings provide a novel redox regulatory mechanism that controls apoptosis via Bcl-2 cysteine oxidation, which could aid in the understanding of pathogenesis under oxidative stress conditions. Hydrogen peroxide is a key mediator of oxidative stress known to be important in various cellular processes, including apoptosis. B-cell lymphoma-2 (Bcl-2) is an oxidative stress–responsive protein and a key regulator of apoptosis; however, the underlying mechanisms of oxidative regulation of Bcl-2 are not well understood. The present study investigates the direct effect of H2O2 on Bcl-2 cysteine oxidation as a potential mechanism of apoptosis regulation. Exposure of human lung epithelial cells to H2O2 induces apoptosis concomitant with cysteine oxidation and down-regulation of Bcl-2. Inhibition of Bcl-2 oxidation by antioxidants or by site-directed mutagenesis of Bcl-2 at Cys-158 and Cys-229 abrogates the effects of H2O2 on Bcl-2 and apoptosis. Immunoprecipitation and confocal microscopic studies show that Bcl-2 interacts with mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2 [ERK1/2]) to suppress apoptosis and that this interaction is modulated by cysteine oxidation of Bcl-2. The H2O2-induced Bcl-2 cysteine oxidation interferes with Bcl-2 and ERK1/2 interaction. Mutation of the cysteine residues inhibits the disruption of Bcl-2–ERK complex, as well as the induction of apoptosis by H2O2. Taken together, these results demonstrate the critical role of Bcl-2 cysteine oxidation in the regulation of apoptosis through ERK signaling. This new finding reveals crucial redox regulatory mechanisms that control the antiapoptotic function of Bcl-2.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | | | | | |
Collapse
|