1
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
2
|
Cai E, Barba MG, Ge X. Hedgehog Signaling in Cortical Development. Cells 2023; 13:21. [PMID: 38201225 PMCID: PMC10778342 DOI: 10.3390/cells13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The Hedgehog (Hh) pathway plays a crucial role in embryonic development, acting both as a morphogenic signal that organizes tissue formation and a potent mitogenic signal driving cell proliferation. Dysregulated Hh signaling leads to various developmental defects in the brain. This article aims to review the roles of Hh signaling in the development of the neocortex in the mammalian brain, focusing on its regulation of neural progenitor proliferation and neuronal production. The review will summarize studies on genetic mouse models that have targeted different components of the Hh pathway, such as the ligand Shh, the receptor Ptch1, the GPCR-like transducer Smo, the intracellular transducer Sufu, and the three Gli transcription factors. As key insights into the Hh signaling transduction mechanism were obtained from mouse models displaying neural tube defects, this review will also cover some studies on Hh signaling in neural tube development. The results from these genetic mouse models suggest an intriguing hypothesis that elevated Hh signaling may play a role in the gyrification of the brain in certain species. Additionally, the distinctive production of GABAergic interneurons in the dorsal cortex in the human brain may also be linked to the extension of Hh signaling from the ventral to the dorsal brain region. Overall, these results suggest key roles of Hh signaling as both a morphogenic and mitogenic signal during the forebrain development and imply the potential involvement of Hh signaling in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
| | | | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95340, USA
| |
Collapse
|
3
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
4
|
Tsitsikov EN, Hameed S, Tavakol SA, Stephens TM, Tsytsykova AV, Garman L, Bi WL, Dunn IF. Specific gene expression signatures of low grade meningiomas. Front Oncol 2023; 13:1126550. [PMID: 36937440 PMCID: PMC10016690 DOI: 10.3389/fonc.2023.1126550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Meningiomas are the most common primary central nervous system (CNS) tumors in adults, representing approximately one-third of all primary adult CNS tumors. Although several recent publications have proposed alternative grading systems of meningiomas that incorporate genomic and/or epigenomic data to better predict meningioma recurrence and progression-free survival, our understanding of driving forces of meningioma development is still limited. Objective To define gene expression signatures of the most common subtypes of meningiomas to better understand cellular processes and signaling pathways specific for each tumor genotype. Methods We used RNA sequencing (RNA-seq) to determine whole transcriptome profiles of twenty meningiomas with genomic alterations including NF2 inactivation, loss of chr1p, and missense mutations in TRAF7, AKT1 and KLF4. Results The analysis revealed that meningiomas with NF2 gene inactivation expressed higher levels of BCL2 and GLI1 compared with tumors harboring TRAF7 missense mutations. Moreover, NF2 meningiomas were subdivided into two distinct groups based on additional loss of chr1p. NF2 tumors with intact chr1p were characterized by the high expression of tumor suppressor PTCH2 compared to NF2 tumors with chr1p loss. Taken together with the high expression of BCL2 and GLI1, these results suggest that activation of Sonic Hedgehog pathway may contribute to NF2 meningioma development. In contrast, NF2 tumors with chr1p loss expressed high levels of transcription factor FOXD3 and its antisense RNA FOXD3-AS1. Examination of TRAF7 tumors demonstrated that TRAF7 regulates a number of biomechanically responsive genes (KRT6a, KRT16, IL1RL1, and AQP3 among others). Interestingly, AKT1 and KLF4 meningiomas expressed genes specific for PI3K/AKT signaling pathway, suggesting overlapping gene signatures between the two subtypes. In addition, KLF4 meningiomas had high expression of carcinoembryonic antigen family members CEACAM6 and CEACAM5. Conclusions Each group of meningiomas displayed a unique gene expression signature suggesting signaling pathways potentially implicated in tumorigenesis. These findings will improve our understanding of meningioma tumorigenesis and prognosis.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sherwin A. Tavakol
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tressie M. Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Ian F. Dunn,
| |
Collapse
|
5
|
Molecular Mechanisms and Targeted Therapies of Advanced Basal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms231911968. [PMID: 36233269 PMCID: PMC9570397 DOI: 10.3390/ijms231911968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Among human cutaneous malignancies, basal cell carcinoma is the most common. Solid advances in unveiling the molecular mechanisms of basal cell carcinoma have emerged in recent years. In Gorlin syndrome, which shows basal cell carcinoma predisposition, identification of the patched 1 gene (PTCH1) mutation was a dramatic breakthrough in understanding the carcinogenesis of basal cell carcinoma. PTCH1 plays a role in the hedgehog pathway, and dysregulations of this pathway are known to be crucial for the carcinogenesis of many types of cancers including sporadic as well as hereditary basal cell carcinoma. In this review, we summarize the clinical features, pathological features and hedgehog pathway as applied in basal cell carcinoma. Other crucial molecules, such as p53 and melanocortin-1 receptor are also discussed. Due to recent advances, therapeutic strategies based on the precise molecular mechanisms of basal cell carcinoma are emerging. Target therapies and biomarkers are also discussed.
Collapse
|
6
|
O-GlcNAcylation promotes cerebellum development and medulloblastoma oncogenesis via SHH signaling. Proc Natl Acad Sci U S A 2022; 119:e2202821119. [PMID: 35969743 PMCID: PMC9407465 DOI: 10.1073/pnas.2202821119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cerebellar development relies on a precise coordination of metabolic signaling, epigenetic signaling, and transcriptional regulation. Here, we reveal that O-GlcNAc transferase (OGT) regulates cerebellar neurogenesis and medulloblastoma growth via a Sonic hedgehog (Shh)-Smo-Gli2 pathway. We identified Gli2 as a substrate of OGT, and unveiled cross-talk between O-GlcNAc and epigenetic signaling as a means to regulate Gli2 transcriptional activity. Moreover, genetic ablation or chemical inhibition of OGT significantly suppresses tumor progression and increases survival in a mouse model of Shh subgroup medulloblastoma. Taken together, the data in our study provide a line of inquiry to decipher the signaling mechanisms underlying cerebellar development, and highlights a potential target to investigate related pathologies, such as medulloblastoma. Sonic hedgehog (Shh) signaling plays a critical role in regulating cerebellum development by maintaining the physiological proliferation of granule neuron precursors (GNPs), and its dysregulation leads to the oncogenesis of medulloblastoma. O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuitry. Here, we demonstrate that O-GlcNAc transferase (OGT) in GNPs mediate the cerebellum development, and the progression of the Shh subgroup of medulloblastoma. Specifically, OGT regulates the neurogenesis of GNPs by activating the Shh signaling pathway via O-GlcNAcylation at S355 of GLI family zinc finger 2 (Gli2), which in turn promotes its deacetylation and transcriptional activity via dissociation from p300, a histone acetyltransferases. Inhibition of OGT via genetic ablation or chemical inhibition improves survival in a medulloblastoma mouse model. These data uncover a critical role for O-GlcNAc signaling in cerebellar development, and pinpoint a potential therapeutic target for Shh-associated medulloblastoma.
Collapse
|
7
|
Juuri E, Tikka P, Domanskyi A, Corfe I, Morita W, Mckinnon PJ, Jandova N, Balic A. Ptch2 is a Potential Regulator of Mesenchymal Stem Cells. Front Physiol 2022; 13:877565. [PMID: 35574464 PMCID: PMC9096555 DOI: 10.3389/fphys.2022.877565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Ptch receptors 1 and 2 mediate Hedgehog signaling pivotal for organ development and homeostasis. In contrast to embryonic lethal Ptch1−/− phenotype, Ptch2−/− mice display no effect on gross phenotype. In this brief report, we provide evidence of changes in the putative incisor mesenchymal stem cell (MSC) niches that contribute to accelerated incisor growth, as well as intriguing changes in the bones and skin which suggest a role for Ptch2 in the regulation of MSCs and their regenerative potential. We employed histological, immunostaining, and computed tomography (µCT) analyses to analyze morphological differences between Ptch2−/− and wild-type incisors, long bones, and skins. In vitro CFU and differentiation assays were used to demonstrate the MSC content and differentiation potential of Ptch2−/− bone marrow stromal cells. Wound healing assay was performed in vivo and in vitro on 8-week-old mice to assess the effect of Ptch2 on the wound closure. Loss of Ptch2 causes increases in the number of putative MSCs in the continuously growing incisor, associated with increased vascularization observed in the tooth mesenchyme and the neurovascular bundle. Increased length and volume of Ptch2−/− bones is linked with the increased number and augmented in vitro differentiation potential of MSCs in the bone marrow. Dynamic changes in the Ptch2−/− skin thickness relate to changes in the mesenchymal compartment and impact the wound closure potential. The effects of Ptch2 abrogation on the postnatal MSCs suggest a crucial role for Ptch2 in Hedgehog signaling regulation of the organ regenerative potential.
Collapse
Affiliation(s)
- Emma Juuri
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Pauli Tikka
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ian Corfe
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Circuar Economy Solutions Unit, Geological Survey of Finland, Espoo, Finland
| | - Wataru Morita
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Anthropology, National Museum of Nature and Science, Taito, Japan
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Nela Jandova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Institute of Animal Physiology and Genetics, CAS, Brno, Czechia
| | - Anamaria Balic
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Institute of Oral Biology, Centre for Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Sun Y, Liu G. Endometriosis-associated Ovarian Clear Cell Carcinoma: A Special Entity? J Cancer 2021; 12:6773-6786. [PMID: 34659566 PMCID: PMC8518018 DOI: 10.7150/jca.61107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is an estrogen-dependent disease, which serves as a precursor of ovarian cancer, especially clear cell carcinoma (OCCC) and endometrial carcinoma. Although micro-environmental factors such as oxidative stress, immune cell dysfunction, inflammation, steroid hormones, and stem cells required for malignant transformation have been found in endometriosis, the exact carcinogenic mechanism remains unclear. Recent research suggest that many putative driver genes and aberrant pathways including ARID1A mutations, PIK3CA mutations, MET activation, HNF-1β activation, and miRNAs dysfunction, play crucial roles in the malignant transformation of endometriosis to OCCC. The clinical features of OCCC are different from other histological types. Patients usually present with a large, unilateral pelvic mass, and occasionally have thromboembolic vascular complications. OCCC patients are easier to be resistant to chemotherapy, have a worse prognosis, and are usually difficult to treat. To improve the survival of OCCC patients, it is necessary to better understand its specific carcinogenic mechanism and explore new treatment strategy, including molecular target.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| |
Collapse
|
9
|
Li Z, Langhans SA. In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Front Oncol 2021; 11:620831. [PMID: 33869004 PMCID: PMC8047472 DOI: 10.3389/fonc.2021.620831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
After leukemia, tumors of the brain and spine are the second most common form of cancer in children. Despite advances in treatment, brain tumors remain a leading cause of death in pediatric cancer patients and survivors often suffer from life-long consequences of side effects of therapy. The 5-year survival rates, however, vary widely by tumor type, ranging from over 90% in more benign tumors to as low as 20% in the most aggressive forms such as glioblastoma. Even within historically defined tumor types such as medulloblastoma, molecular analysis identified biologically heterogeneous subgroups each with different genetic alterations, age of onset and prognosis. Besides molecularly driven patient stratification to tailor disease risk to therapy intensity, such a diversity demonstrates the need for more precise and disease-relevant pediatric brain cancer models for research and drug development. Here we give an overview of currently available in vitro and in vivo pediatric brain tumor models and discuss the opportunities that new technologies such as 3D cultures and organoids that can bridge limitations posed by the simplicity of monolayer cultures and the complexity of in vivo models, bring to accommodate better precision in drug development for pediatric brain tumors.
Collapse
Affiliation(s)
| | - Sigrid A. Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
10
|
Kim Y, Lee J, Seppala M, Cobourne MT, Kim SH. Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration. Nat Commun 2020; 11:1994. [PMID: 32332736 PMCID: PMC7181751 DOI: 10.1038/s41467-020-15897-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche. How co-receptors Gas1 and Boc interact with Ptch1/2 receptors and regulate Hh signalling is unclear. Here, the authors demonstrate that the spatiotemporal expression of Gas1 and Boc determines how Hh signalling affects the dynamic migration of murine primordial germ cells.
Collapse
Affiliation(s)
- Yeonjoo Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Jiyoung Lee
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Maisa Seppala
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences King's College London Floor 27, Guy's Hospital, London, SE1 9RT, UK
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences King's College London Floor 27, Guy's Hospital, London, SE1 9RT, UK
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
11
|
Roussel MF, Stripay JL. Modeling pediatric medulloblastoma. Brain Pathol 2019; 30:703-712. [PMID: 31788908 PMCID: PMC7317774 DOI: 10.1111/bpa.12803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mouse models of medulloblastoma have proven to be instrumental in understanding disease mechanisms, particularly the role of epigenetic and molecular drivers, and establishing appropriate preclinical pipelines. To date, our research community has developed murine models for all four groups of medulloblastoma, each of which will be critical for the identification and development of new therapeutic approaches. Approaches to modeling medulloblastoma range from genetic engineering with CRISPR/Cas9 or in utero electroporation, to orthotopic and patient‐derived orthotopic xenograft systems. Each approach or model presents unique advantages that have ultimately contributed to an appreciation of medulloblastoma heterogeneity and the clinical obstacles that exist for this patient population.
Collapse
Affiliation(s)
- Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Jennifer L Stripay
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| |
Collapse
|
12
|
Huang M, Tailor J, Zhen Q, Gillmor AH, Miller ML, Weishaupt H, Chen J, Zheng T, Nash EK, McHenry LK, An Z, Ye F, Takashima Y, Clarke J, Ayetey H, Cavalli FMG, Luu B, Moriarity BS, Ilkhanizadeh S, Chavez L, Yu C, Kurian KM, Magnaldo T, Sevenet N, Koch P, Pollard SM, Dirks P, Snyder MP, Largaespada DA, Cho YJ, Phillips JJ, Swartling FJ, Morrissy AS, Kool M, Pfister SM, Taylor MD, Smith A, Weiss WA. Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell 2019; 25:433-446.e7. [PMID: 31204176 PMCID: PMC6731167 DOI: 10.1016/j.stem.2019.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Human neural stem cell cultures provide progenitor cells that are potential cells of origin for brain cancers. However, the extent to which genetic predisposition to tumor formation can be faithfully captured in stem cell lines is uncertain. Here, we evaluated neuroepithelial stem (NES) cells, representative of cerebellar progenitors. We transduced NES cells with MYCN, observing medulloblastoma upon orthotopic implantation in mice. Significantly, transcriptomes and patterns of DNA methylation from xenograft tumors were globally more representative of human medulloblastoma compared to a MYCN-driven genetically engineered mouse model. Orthotopic transplantation of NES cells generated from Gorlin syndrome patients, who are predisposed to medulloblastoma due to germline-mutated PTCH1, also generated medulloblastoma. We engineered candidate cooperating mutations in Gorlin NES cells, with mutation of DDX3X or loss of GSE1 both accelerating tumorigenesis. These findings demonstrate that human NES cells provide a potent experimental resource for dissecting genetic causation in medulloblastoma.
Collapse
Affiliation(s)
- Miller Huang
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jignesh Tailor
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Institute of Cancer Research, Sutton, London SM2 5NG, UK; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Qiqi Zhen
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron H Gillmor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Matthew L Miller
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Justin Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tina Zheng
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Emily K Nash
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lauren K McHenry
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhenyi An
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fubaiyang Ye
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yasuhiro Takashima
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - James Clarke
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Harold Ayetey
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Florence M G Cavalli
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Betty Luu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shirin Ilkhanizadeh
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lukas Chavez
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Chunying Yu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kathreena M Kurian
- Institute of Clinical Neurosciences, Level 1, Learning and Research Building, Southmead Hospital, University of Bristol, Bristol BS10 5NB, UK
| | - Thierry Magnaldo
- Institute for Research on Cancer and Aging, Nice UMR CNRS 7284 INSERM U1081 UNS/UCA, Nice, France
| | - Nicolas Sevenet
- Institut Bergonie & INSERM U1218, Universite de Bordeaux, 229 cours de l'Argonne, 33076 Bordeaux Cedex, France
| | - Philipp Koch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim and Hector Institut for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Peter Dirks
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoon Jae Cho
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA; Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joanna J Phillips
- Departments of Neurological Surgery and Pathology, University of California, San Francisco, CA 94158, USA
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - A Sorana Morrissy
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcel Kool
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Austin Smith
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - William A Weiss
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Du F, Yuelling L, Lee EH, Wang Y, Liao S, Cheng Y, Zhang L, Zheng C, Peri S, Cai KQ, Ng JMY, Curran T, Li P, Yang ZJ. Leukotriene Synthesis Is Critical for Medulloblastoma Progression. Clin Cancer Res 2019; 25:6475-6486. [PMID: 31300449 DOI: 10.1158/1078-0432.ccr-18-3549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/18/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Here, we examined the role of leukotrienes, well-known inflammatory mediators, in the tumorigenesis of hedgehog pathway-associated medulloblastoma, and tested the efficacies of antagonists of leukotriene biosynthesis in medulloblastoma treatment.Experimental Design: We examined the leukotriene levels in medulloblastoma cells by ELISA. We next tested whether leukotriene synthesis in medulloblastoma cells relied on activation of hedgehog pathway, or the presence of hedgehog ligand secreted by astrocytes. We then investigated whether leukotriene mediated hedgehog-induced Nestin expression in tumor cells. The functions of leukotriene in tumor cell proliferation and tumor growth in medulloblastoma were determined through knocking down 5-lipoxygenase (a critical enzyme for leukotriene synthesis) by shRNAs, or using 5-lipoxygenase-deficient mice. Finally, the efficacies of antagonists of leukotriene synthesis in medulloblastoma treatment were tested in vivo and in vitro. RESULTS Leukotriene was significantly upregulated in medulloblastoma cells. Increased leukotriene synthesis relied on hedgehog ligand secreted by astrocytes, a major component of medulloblastoma microenvironment. Leukotriene stimulated tumor cells to express Nestin, a cytoskeletal protein essential for medulloblastoma growth. Genetic blockage of leukotriene synthesis dramatically suppressed medulloblastoma cell proliferation and tumor growth in vivo. Pharmaceutical inhibition of leukotriene synthesis markedly repressed medulloblastoma cell proliferation, but had no effect on proliferation of normal neuronal progenitors. Moreover, antagonists of leukotriene synthesis exhibited promising tumor inhibitory efficacies on drug-resistant medulloblastoma. CONCLUSIONS Our findings reveal a novel signaling pathway that is critical for medulloblastoma cell proliferation and tumor progression, and that leukotriene biosynthesis represents a promising therapeutic target for medulloblastoma treatment.
Collapse
Affiliation(s)
- Fang Du
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Larra Yuelling
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Eric H Lee
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shengyou Liao
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Cheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Li Zhang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Suraj Peri
- Biostatistics and Bioinformatics Research Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jessica M Y Ng
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Peng Li
- Department of Pharmacognosy and Traditional Chinese Pharmacology, College of Pharmacy, Army Medical University, Chongqing, China
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Binder M, Chmielarz P, Mckinnon PJ, Biggs LC, Thesleff I, Balic A. Functionally Distinctive Ptch Receptors Establish Multimodal Hedgehog Signaling in the Tooth Epithelial Stem Cell Niche. Stem Cells 2019; 37:1238-1248. [PMID: 31145830 DOI: 10.1002/stem.3042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023]
Abstract
Continuous growth of the mouse incisor teeth is due to the life-long maintenance of epithelial stem cells (SCs) in their niche called cervical loop (CL). Several signaling factors regulate SC maintenance and/or their differentiation to achieve organ homeostasis. Previous studies indicated that Hedgehog signaling is crucial for both the maintenance of the SCs in the niche, as well as for their differentiation. How Hedgehog signaling regulates these two opposing cellular behaviors within the confinement of the CL remains elusive. In this study, we used in vitro organ and cell cultures to pharmacologically attenuate Hedgehog signaling. We analyzed expression of various genes expressed in the SC niche to determine the effect of altered Hedgehog signaling on the cellular hierarchy within the niche. These genes include markers of SCs (Sox2 and Lgr5) and transit-amplifying cells (P-cadherin, Sonic Hedgehog, and Yap). Our results show that Hedgehog signaling is a critical survival factor for SCs in the niche, and that the architecture and the diversity of the SC niche are regulated by multiple Hedgehog ligands. We demonstrated the presence of an additional Hedgehog ligand, nerve-derived Desert Hedgehog, secreted in the proximity of the CL. In addition, we provide evidence that Hedgehog receptors Ptch1 and Ptch2 elicit independent responses, which enable multimodal Hedgehog signaling to simultaneously regulate SC maintenance and differentiation. Our study indicates that the cellular hierarchy in the continuously growing incisor is a result of complex interplay of two Hedgehog ligands with functionally distinct Ptch receptors. Stem Cells 2019;37:1238-1248.
Collapse
Affiliation(s)
- Martin Binder
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Piotr Chmielarz
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Leah C Biggs
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Irma Thesleff
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Anamaria Balic
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Curran T. Reproducibility of academic preclinical translational research: lessons from the development of Hedgehog pathway inhibitors to treat cancer. Open Biol 2019; 8:rsob.180098. [PMID: 30068568 PMCID: PMC6119869 DOI: 10.1098/rsob.180098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023] Open
Abstract
Academic translational research is growing at a great pace at a time in which questions have been raised about the reproducibility of preclinical findings. The development of Hedgehog (HH) pathway inhibitors for the treatment of cancer over the past two decades offers a case study for understanding the root causes of failure to predict clinical outcomes arising from academic preclinical translational research. Although such inhibitors were once hoped to be efficacious in up to 25% of human cancer, clinical studies showed responses only in basal cell carcinoma and the HH subtype of medulloblastoma. Close examination of the published studies reveals limitations in the models used, lack of quantitative standards, utilization of high drug concentrations associated with non-specific toxicities and improper use of cell line and mouse models. In part, these issues arise from scientific complexity, for example, the failure of tumour cell lines to maintain HH pathway activity in vitro, but a greater contributing factor appears to be the influence of unconscious bias. There was a strong expectation that HH pathway inhibitors would make a profound impact on human cancer and experiments were designed with this assumption in mind.
Collapse
Affiliation(s)
- Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MI 64108, USA
| |
Collapse
|
16
|
Wojcinski A, Morabito M, Lawton AK, Stephen DN, Joyner AL. Genetic deletion of genes in the cerebellar rhombic lip lineage can stimulate compensation through adaptive reprogramming of ventricular zone-derived progenitors. Neural Dev 2019; 14:4. [PMID: 30764875 PMCID: PMC6375182 DOI: 10.1186/s13064-019-0128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The cerebellum is a foliated posterior brain structure involved in coordination of motor movements and cognition. The cerebellum undergoes rapid growth postnataly due to Sonic Hedgehog (SHH) signaling-dependent proliferation of ATOH1+ granule cell precursors (GCPs) in the external granule cell layer (EGL), a key step for generating cerebellar foliation and the correct number of granule cells. Due to its late development, the cerebellum is particularly vulnerable to injury from preterm birth and stress around birth. We recently uncovered an intrinsic capacity of the developing cerebellum to replenish ablated GCPs via adaptive reprogramming of Nestin-expressing progenitors (NEPs). However, whether this compensation mechanism occurs in mouse mutants affecting the developing cerebellum and could lead to mis-interpretation of phenotypes was not known. METHODS We used two different approaches to remove the main SHH signaling activator GLI2 in GCPs: 1) Our mosaic mutant analysis with spatial and temporal control of recombination (MASTR) technique to delete Gli2 in a small subset of GCPs; 2) An Atoh1-Cre transgene to delete Gli2 in most of the EGL. Genetic Inducible Fate Mapping (GIFM) and live imaging were used to analyze the behavior of NEPs after Gli2 deletion. RESULTS Mosaic analysis demonstrated that SHH-GLI2 signaling is critical for generating the correct pool of granule cells by maintaining GCPs in an undifferentiated proliferative state and promoting their survival. Despite this, inactivation of GLI2 in a large proportion of GCPs in the embryo did not lead to the expected dramatic reduction in the size of the adult cerebellum. GIFM uncovered that NEPs do indeed replenish GCPs in Gli2 conditional mutants, and then expand and partially restore the production of granule cells. Furthermore, the SHH signaling-dependent NEP compensation requires Gli2, demonstrating that the activator side of the pathway is involved. CONCLUSION We demonstrate that a mouse conditional mutation that results in loss of SHH signaling in GCPs is not sufficient to induce long term severe cerebellum hypoplasia. The ability of the neonatal cerebellum to regenerate after loss of cells via a response by NEPs must therefore be considered when interpreting the phenotypes of Atoh1-Cre conditional mutants affecting GCPs.
Collapse
Affiliation(s)
- Alexandre Wojcinski
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Morgane Morabito
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Andrew K Lawton
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Daniel N Stephen
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA.
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Fleet AJ, Hamel PA. The protein-specific activities of the transmembrane modules of Ptch1 and Ptch2 are determined by their adjacent protein domains. J Biol Chem 2018; 293:16583-16595. [PMID: 30166346 PMCID: PMC6204896 DOI: 10.1074/jbc.ra118.004478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/17/2018] [Indexed: 01/20/2023] Open
Abstract
Signaling through the Hedgehog (Hh) pathway is mediated by the Patched (Ptch) family of proteins. Although the vertebrate Ptch proteins Ptch1 and Ptch2 harbor two closely related transmembrane modules related to sterol-sensing domains (SSDs), the role of these closely related receptors in the Hh pathway are not equivalent. Ptch1 is essential for development and appears to be the principal receptor mediating responses to Hh ligands, whereas Ptch2 is nonessential, and its role in Hh-signaling remains ambiguous. We hypothesized that the SSDs of the Ptch proteins function as generic modules whose protein-specific activities are determined by the adjacent cytoplasmic and luminal domains. We first showed that individual N-terminal and C-terminal halves of Ptch1 associated noncovalently to mediate ligand-dependent regulation of Hh signaling. The analogous regions of Ptch2 also interacted noncovalently but did not repress the Hh pathway. However, the SSD of Ptch2 were capable of repressing Hh signaling, as determined using chimeric proteins where the SSDs of Ptch1 were replaced by those from Ptch2. Replacement of the SSDs of Ptch1 with the analogous regions from the cholesterol transporter NPC1 failed to produce a chimeric protein capable of Hh repression. Further refinement of the specific regions in Ptch1 and Ptch2 revealed that specific cytoplasmic domains of Ptch1 were necessary but not sufficient for repression of Hh signaling and that the two principal luminal domains of Ptch1 and Ptch2 were interchangeable. These data support a model where the SSDs of the Ptch family proteins exhibit generic activities and that the adjacent cytoplasmic and luminal domains determine their protein-specific activities.
Collapse
Affiliation(s)
- Andrew J Fleet
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paul A Hamel
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Casillas C, Roelink H. Gain-of-function Shh mutants activate Smo cell-autonomously independent of Ptch1/2 function. Mech Dev 2018; 153:30-41. [PMID: 30144507 PMCID: PMC6165682 DOI: 10.1016/j.mod.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Sonic Hedgehog (Shh) signaling is characterized by non-cell autonomy; cells expressing Shh do not respond to the ligand. Here, we identify several Shh mutations that can activate the Hedgehog (Hh) pathway cell-autonomously. Cell-autonomous pathway activation requires the extracellular cysteine rich domain of Smoothened, but is otherwise independent of the Shh receptors Patched1 and -2. Many of the Shh mutants that gain activity fail to undergo auto processing resulting in the perdurance of the Shh pro-peptide, a form of Shh that is sufficient to activate the Hh response cell-autonomously. Our results demonstrate that Shh is capable of activating the Hh pathway via Smoothened, independently of Patched1/2, and that it harbors an intrinsic mechanism that prevents cell-autonomous activation of the Shh response.
Collapse
Affiliation(s)
- Catalina Casillas
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Cong P, Yi C, Wang XY. Expression of Smo in pancreatic cancer CD44 +CD24 +cells and construction of a lentiviral expression vector to silence Smo. Oncol Lett 2018; 16:4855-4862. [PMID: 30250551 PMCID: PMC6144425 DOI: 10.3892/ol.2018.9315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
The present study focused on the roles of members of the Hedgehog (Hh) signaling pathway in the maintenance of malignant biological characteristics, such as tumorigenesis, similar to that of pancreatic tumor cells. Cluster of differentiation (CD)44+CD24+/CD44−CD24− cells were isolated from three different pancreatic cancer cell lines by flow cytometry. Among the three pancreatic cancer cell lines, the SW1990 cell line exhibited the highest percentage of CD44+CD24+ cells, which accounted for 39.9% of the total. The expression of members of the Hh signaling pathway in CD44+CD24+/CD44−CD24− cells was detected using reverse transcription-polymerase chain reaction and western blot analysis. The results demonstrated that members of the Hh signaling pathway were differentially expressed in CD44+CD24+ cells compared with CD44−CD24−, normal pancreatic duct cells and unsorted SW1990 cells. In addition, lentiviral expression vectors expressing Smoothened (Smo) small interfering RNA (siRNA) were constructed. Following transfection with the lentiviral expression vectors, Smo expression was markedly reduced in CD44+CD24+ cells. The present study represents a preliminary investigation into the biological characteristics of CD44+CD24+ pancreatic cancer cells.
Collapse
Affiliation(s)
- Peng Cong
- Department of Laparoscopic and Liver Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chao Yi
- Department of Hepato-Pancreato-Biliary Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Xi-Yan Wang
- Department of Hepato-Pancreato-Biliary Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
20
|
Abstract
Purpose Basal cell carcinoma (BCC) is one of the most common skin cancers, and is typically driven by an aberrantly activated Hedgehog (Hh) pathway. The Hh pathway is regulated by interactions between the Patched-1 (Ptch1) and Smoothened (Smo) receptors. Smo is an activating receptor and is subject to inhibition by Ptch1. Following ligand binding to Ptch1, its inhibitory action is relieved and pathway activation occurs. This receptor interaction is pivotal to restraining uncontrolled cellular growth. Both receptors have been found to be frequently mutated in BCCs. Ptch2 is a Ptch1 paralog that exhibits overlapping functions in both normal development and tissue homeostasis. As yet, its contribution to cancer growth is poorly defined. Here we set out to assess how Ptch2 inhibits BCC growth. Methods We used several in vitro readouts for transcriptional and chemotactic Hh signaling in BCC-derived ASZ001 cells, and a novel xenograft model to assess in vivo BCC tumor growth. Gene editing by TALEN was used to untangle the different Ptch2-dependent responses to its ligand sonic hedgehog (Shh). Results We first defined the signaling competence of Ptch2 in Ptch1-deficient ASZ001 cells in vitro, and found that Ptch2 ligand binding drives their migration rather than eliciting a transcriptional response. We found that subsequent targeting of Ptch2 abrogated the chemotaxic effect. Next, we tested the contribution of Ptch2 to in vivo tumor growth using a xenograft model and found that reduced Ptch function results in increased tumor growth, but that selective pressure appatently acts against complete Ptch2 ablation. Conclusions We conclude that like Ptch1, Ptch2 exerts a tumor-suppressive function in BCC cells, and that after targeting of both paralogs, ligand-independent activation of the Hh pathway contributes to tumor growth. Electronic supplementary material The online version of this article (10.1007/s13402-018-0381-9) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proc Natl Acad Sci U S A 2018. [PMID: 29531057 DOI: 10.1073/pnas.1717815115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The main cell of origin of the Sonic hedgehog (SHH) subgroup of medulloblastoma (MB) is granule cell precursors (GCPs), a SHH-dependent transient amplifying population in the developing cerebellum. SHH-MBs can be further subdivided based on molecular and clinical parameters, as well as location because SHH-MBs occur preferentially in the lateral cerebellum (hemispheres). Our analysis of adult patient data suggests that tumors with Smoothened (SMO) mutations form more specifically in the hemispheres than those with Patched 1 (PTCH1) mutations. Using sporadic mouse models of SHH-MB with the two mutations commonly seen in adult MB, constitutive activation of Smo (SmoM2) or loss-of-Ptch1, we found that regardless of timing of induction or type of mutation, tumors developed primarily in the hemispheres, with SmoM2-mutants indeed showing a stronger specificity. We further uncovered that GCPs in the hemispheres are more susceptible to high-level SHH signaling compared with GCPs in the medial cerebellum (vermis), as more SmoM2 or Ptch1-mutant hemisphere cells remain undifferentiated and show increased tumorigenicity when transplanted. Finally, we identified location-specific GCP gene-expression profiles, and found that deletion of the genes most highly expressed in the hemispheres (Nr2f2) or vermis (Engrailed1) showed opposing effects on GCP differentiation. Our studies thus provide insights into intrinsic differences within GCPs that impact on SHH-MB progression.
Collapse
|
22
|
Taeubner J, Brozou T, Qin N, Bartl J, Ginzel S, Schaper J, Felsberg J, Fulda S, Vokuhl C, Borkhardt A, Kuhlen M. Congenital embryonal rhabdomyosarcoma caused by heterozygous concomitant PTCH1 and PTCH2 germline mutations. Eur J Hum Genet 2018; 26:137-142. [PMID: 29230040 PMCID: PMC5839031 DOI: 10.1038/s41431-017-0048-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/12/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022] Open
Abstract
The sonic hedgehog (SHH) signaling pathway has been shown to play important roles in embryogenesis, cell proliferation as well as in cell differentiation. It is aberrantly activated in various common cancers in adults, but also in pediatric neoplasms, such as rhabdomyosarcoma (RMS) and atypical teratoid/rhabdoid tumors (AT/RTs). Dysregulation and germline mutation in PATCHED1 (PTCH1), a receptor for SHH, is responsible for the Gorlin Syndrome, a familial cancer predisposing syndrome including RMS. Here, we report a newborn diagnosed with congenital embryonal RMS. Whole-exome sequencing (WES) identified the presence of two heterozygous germline mutations in two target genes of the SHH signaling pathway. The PTCH1 mutation p.(Gly38Glu) is inherited from the mother, whereas the PTCH2 p.(His622Tyr) mutation is transmitted from the father. Quantitative RT-PCR expression analysis of GLI and SMO, key players of the SHH pathway, showed significantly increase in the tumor tissue of the patient and also enrichment in the germline sample in comparison to the parents indicating activation of the SHH pathway in the patient. These findings demonstrate that SHH pathway activity seems to play a role in eRMS as evidenced by high expression levels of GLI1 RNA transcripts. We speculate that PTCH2 modulates tumorigenesis linked to the PTCH1 mutation and is likely associated with the congenital onset of the RMS observed in our patient.
Collapse
Affiliation(s)
- Julia Taeubner
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Jasmin Bartl
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Sebastian Ginzel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Joerg Schaper
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Joerg Felsberg
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Vokuhl
- Department of Pediatric Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Michaela Kuhlen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
| |
Collapse
|
23
|
Lentivirus-mediated silencing of the PTC1 and PTC2 genes promotes recovery from spinal cord injury by activating the Hedgehog signaling pathway in a rat model. Exp Mol Med 2017; 49:e412. [PMID: 29244790 PMCID: PMC5750477 DOI: 10.1038/emm.2017.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/02/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effect of Patched-1 (PTC1) and PTC2 silencing in a rat model, on Hedgehog (Hh) pathway-mediated recovery from spinal cord injury (SCI). An analytical emphasis on the relationship between the sonic hedgehog (Shh) pathway and nerve regeneration was explored. A total of 126 rats were divided into normal, sham, SCI, negative control (NC), PTC1-RNAi, PTC2-RNAi and PTC1/PTC2-RNAi groups. The Basso, Beattie and Bresnahan (BBB) scale was employed to assess hind limb motor function. Quantitative real-time polymerase chain reaction and western blotting were performed to examine the mRNA and protein levels of PTC1, PTC2, Shh, glioma-associated oncogene homolog 1 (Gli-1), Smo and Nestin. Tissue morphology was analyzed using immunohistochemistry, and immunofluorescent staining was conducted to detect neurofilament protein 200 (NF-200) and glial fibrillary acidic protein (GFAP). The PTC1/PTC2-RNAi group displayed higher BBB scores than the SCI and NC groups. Shh, Gli-1, Smo and Nestin expression levels were elevated in the PTC1/PTC2-RNAi group. PTC1 and PTC2 mRNA and protein expression was lower in the PTC1/PTC2-RNAi group than in the normal, sham and SCI groups. Among the seven groups, the PTC1/PTC2-RNAi group had the largest positive area of NF-200 staining, whereas the SCI group exhibited a larger GFAP-positive area than both the normal and the sham groups. The Shh pathway may provide new insights into therapeutic indications and regenerative recovery tools for the treatment of SCI. Activation of the Hh signaling pathway by silencing PTC1 and PTC2 may reduce inflammation and may ultimately promote SCI recovery.
Collapse
|
24
|
Sheybani-Deloui S, Chi L, Staite MV, Cain JE, Nieman BJ, Henkelman RM, Wainwright BJ, Potter SS, Bagli DJ, Lorenzo AJ, Rosenblum ND. Activated Hedgehog-GLI Signaling Causes Congenital Ureteropelvic Junction Obstruction. J Am Soc Nephrol 2017; 29:532-544. [PMID: 29109083 DOI: 10.1681/asn.2017050482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022] Open
Abstract
Intrinsic ureteropelvic junction obstruction is the most common cause of congenital hydronephrosis, yet the underlying pathogenesis is undefined. Hedgehog proteins control morphogenesis by promoting GLI-dependent transcriptional activation and inhibiting the formation of the GLI3 transcriptional repressor. Hedgehog regulates differentiation and proliferation of ureteric smooth muscle progenitor cells during murine kidney-ureter development. Histopathologic findings of smooth muscle cell hypertrophy and stroma-like cells, consistently observed in obstructing tissue at the time of surgical correction, suggest that Hedgehog signaling is abnormally regulated during the genesis of congenital intrinsic ureteropelvic junction obstruction. Here, we demonstrate that constitutively active Hedgehog signaling in murine intermediate mesoderm-derived renal progenitors results in hydronephrosis and failure to develop a patent pelvic-ureteric junction. Tissue obstructing the ureteropelvic junction was marked as early as E13.5 by an ectopic population of cells expressing Ptch2, a Hedgehog signaling target. Constitutive expression of GLI3 repressor in Ptch1-deficient mice rescued ectopic Ptch2 expression and obstructive hydronephrosis. Whole transcriptome analysis of isolated Ptch2+ cells revealed coexpression of genes characteristic of stromal progenitor cells. Genetic lineage tracing indicated that stromal cells blocking the ureteropelvic junction were derived from intermediate mesoderm-derived renal progenitors and were distinct from the smooth muscle or epithelial lineages. Analysis of obstructive ureteric tissue resected from children with congenital intrinsic ureteropelvic junction obstruction revealed a molecular signature similar to that observed in Ptch1-deficient mice. Together, these results demonstrate a Hedgehog-dependent mechanism underlying mammalian intrinsic ureteropelvic junction obstruction.
Collapse
Affiliation(s)
| | - Lijun Chi
- Program in Developmental and Stem Cell Biology
| | - Marian V Staite
- Program in Developmental and Stem Cell Biology.,Departments of Physiology
| | | | - Brian J Nieman
- Program in Physiology and Experimental Medicine, and.,Medical Biophysics and Medical Imaging, and.,Mouse Imaging Centre, Toronto Centre for Phenogenomics Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - R Mark Henkelman
- Medical Biophysics and Medical Imaging, and.,Mouse Imaging Centre, Toronto Centre for Phenogenomics Toronto, Ontario, Canada
| | - Brandon J Wainwright
- Genomics of Development and Disease Division, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; and
| | - S Steven Potter
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Darius J Bagli
- Program in Developmental and Stem Cell Biology.,Departments of Physiology.,Division of Urology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Armando J Lorenzo
- Division of Urology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, .,Departments of Physiology.,Division of Nephrology.,Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Liu Y, Yuelling LW, Wang Y, Du F, Gordon RE, O'Brien JA, Ng JMY, Robins S, Lee EH, Liu H, Curran T, Yang ZJ. Astrocytes Promote Medulloblastoma Progression through Hedgehog Secretion. Cancer Res 2017; 77:6692-6703. [PMID: 28986380 DOI: 10.1158/0008-5472.can-17-1463] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/10/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022]
Abstract
Astrocytes, the most abundant type of glial cells in the brain, play critical roles in supporting neuronal development and brain function. Although astrocytes have been frequently detected in brain tumors, including medulloblastoma (MB), their functions in tumorigenesis are not clear. Here, we demonstrate that astrocytes are essential components of the MB tumor microenvironment. Tumor-associated astrocytes (TAA) secrete the ligand sonic hedgehog (Shh), which is required for maintaining MB cell proliferation despite the absence of its primary receptor Patched-1 (Ptch1). Shh drives expression of Nestin in MB cells through a smoothened-dependent, but Gli1-independent mechanism. Ablation of TAA dramatically suppresses Nestin expression and blocks tumor growth. These findings demonstrate an indispensable role for astrocytes in MB tumorigenesis and reveal a novel Ptch1-independent Shh pathway involved in MB progression. Cancer Res; 77(23); 6692-703. ©2017 AACR.
Collapse
Affiliation(s)
- Yongqiang Liu
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Larra W Yuelling
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fang Du
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Renata E Gordon
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jenny A O'Brien
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jessica M Y Ng
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Shannon Robins
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Eric H Lee
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Hailong Liu
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Abstract
Communication between cells pervades the development and physiology of metazoans. In animals, this process is carried out by a relatively small number of signaling pathways, each consisting of a chain of biochemical events through which extracellular stimuli control the behavior of target cells. One such signaling system is the Hedgehog pathway, which is crucial in embryogenesis and is implicated in many birth defects and cancers. Although Hedgehog pathway components were identified by genetic analysis more than a decade ago, our understanding of the molecular mechanisms of signaling is far from complete. In this review, we focus on the biochemistry and cell biology of the Hedgehog pathway. We examine the unique biosynthesis of the Hedgehog ligand, its specialized release from cells into extracellular space, and the poorly understood mechanisms involved in ligand reception and pathway activation at the surface of target cells. We highlight several critical questions that remain open.
Collapse
Affiliation(s)
- Kostadin Petrov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Bradley M Wierbowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
27
|
Abstract
During vertebrate embryonic development, the spinal cord is formed by the neural derivatives of a neuromesodermal population that is specified at early stages of development and which develops in concert with the caudal regression of the primitive streak. Several processes related to spinal cord specification and maturation are coupled to this caudal extension including neurogenesis, ventral patterning and neural crest specification and all of them seem to be crucially regulated by Fibroblast Growth Factor (FGF) signaling, which is prominently active in the neuromesodermal region and transiently in its derivatives. Here we review the role of FGF signaling in those processes, trying to separate its different functions and highlighting the interactions with other signaling pathways. Finally, these early functions of FGF signaling in spinal cord development may underlay partly its ability to promote regeneration in the lesioned spinal cord as well as its action promoting specific fates in neural stem cell cultures that may be used for therapeutical purposes.
Collapse
Affiliation(s)
- Ruth Diez Del Corral
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Champalimaud Research, Champalimaud Centre for the UnknownLisbon, Portugal
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
28
|
Zhu G, Rankin SL, Larson JD, Zhu X, Chow LML, Qu C, Zhang J, Ellison DW, Baker SJ. PTEN Signaling in the Postnatal Perivascular Progenitor Niche Drives Medulloblastoma Formation. Cancer Res 2016; 77:123-133. [PMID: 27815386 DOI: 10.1158/0008-5472.can-16-1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/30/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
Abstract
Loss of the tumor suppressor gene PTEN exerts diverse outcomes on cancer in different developmental contexts. To gain insight into the effect of its loss on outcomes in the brain, we conditionally inactivated the murine Pten gene in neonatal neural stem/progenitor cells. Pten inactivation created an abnormal perivascular proliferative niche in the cerebellum that persisted in adult animals but did not progress to malignancy. Proliferating cells showed undifferentiated morphology and expressed the progenitor marker Nestin but not Math1, a marker of committed granule neuron progenitors. Codeletion of Pten and Trp53 resulted in fully penetrant medulloblastoma originating from the perivascular niche, which exhibited abnormal blood vessel networks and advanced neuronal differentiation of tumor cells. EdU pulse-chase experiments demonstrated a perivascular cancer stem cell population in Pten/Trp53 double mutant medulloblastomas. Genetic analyses revealed recurrent somatic inactivations of the tumor suppressor gene Ptch1 and a recapitulation of the sonic hedgehog subgroup of human medulloblastomas. Overall, our results showed that PTEN acts to prevent the proliferation of a progenitor niche in postnatal cerebellum predisposed to oncogenic induction of medulloblastoma. Cancer Res; 77(1); 123-33. ©2016 AACR.
Collapse
Affiliation(s)
- Guo Zhu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Program in Biomedical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sherri L Rankin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jon D Larson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lionel M L Chow
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee. .,Integrated Program in Biomedical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
29
|
Vismodegib, itraconazole and sonidegib as hedgehog pathway inhibitors and their relative competencies in the treatment of basal cell carcinomas. Crit Rev Oncol Hematol 2016; 98:235-41. [DOI: 10.1016/j.critrevonc.2015.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
|
30
|
Morales AV, Espeso-Gil S, Ocaña I, Nieto-Lopez F, Calleja E, Bovolenta P, Lewandoski M, Diez Del Corral R. FGF signaling enhances a sonic hedgehog negative feedback loop at the initiation of spinal cord ventral patterning. Dev Neurobiol 2015; 76:956-71. [PMID: 26600420 DOI: 10.1002/dneu.22368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/18/2015] [Indexed: 12/23/2022]
Abstract
A prevalent developmental mechanism for the assignment of cell identities is the production of spatiotemporal concentration gradients of extracellular signaling molecules that are interpreted by the responding cells. One of such signaling systems is the Shh gradient that controls neuronal subtype identity in the ventral spinal cord. Using loss and gain of function approaches in chick and mouse embryos, we show here that the fibroblast growth factor (FGF) signaling pathway is required to restrict the domains of ventral gene expression as neuroepithelial cells become exposed to Shh during caudal extension of the embryo. FGF signaling activates the expression of the Shh receptor and negative pathway regulator Patched 2 (Ptch2) and therefore can enhance a negative feedback loop that restrains the activity of the pathway. Thus, we identify one of the mechanisms by which FGF signaling acts as a modulator of the onset of Shh signaling activity in the context of coordination of ventral patterning and caudal axis extension. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 956-971, 2016.
Collapse
Affiliation(s)
- Aixa V Morales
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Sergio Espeso-Gil
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Inmaculada Ocaña
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain
| | - Francisco Nieto-Lopez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain.,Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-UAM, Cantoblanco, 28049, Spain
| | - Elena Calleja
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Paola Bovolenta
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain.,Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-UAM, Cantoblanco, 28049, Spain
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Ruth Diez Del Corral
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| |
Collapse
|
31
|
Yimamumaimaitijiang•Abula, Li DW, Yi C, Li HJ. Functional significance of expression of Hedgehog pathway components Shh, Ptch1, Smo and Gli1 in human pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:2894-2900. [DOI: 10.11569/wcjd.v23.i18.2894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of Hedgehog pathway components Sonic Hedgehog (Shh), Patched1 (Ptch1), Smoothened (Smo) and glioma-associated oncogene homolog 1 (Gli1) genes in pancreatic cancer, and to discuss their biological significance.
METHODS: Expression of Shh, Ptch1, Smo and Gli1 mRNAs was evaluated by RT-PCR in 48 cases of pancreatic cancer and matched tumor adjacent tissue.
RESULTS: The relative expression levels of Shh, Ptch1, Smo and Gli1 mRNAs in pancreatic cancer were 0.652 ± 0.036, 0.604 ± 0.063, 0.493 ± 0.011 and 0.512 ± 0.052, respectively, significantly higher than those in tumor adjacent tissue (0.312 ± 0.013, 0.319 ± 0.053, 0.214 ± 0.046 and 0.247 ± 0.059) (P < 0.05). Overexpression of these genes was associated with tumor differentiation (P < 0.05), but not with age, gender, tumorous size, TNM stage, lymph node metastasis, or CA19-9 (P > 0.05).
CONCLUSION: The expression of Shh, Ptch1, Smo and Gli1 is increased in human pancreatic cancer. The genesis and development of pancreatic cancer may be associated with the abnormal activation of Hedgehog signaling pathway.
Collapse
|
32
|
Worley MJ, Liu S, Hua Y, Kwok JSL, Samuel A, Hou L, Shoni M, Lu S, Sandberg EM, Keryan A, Wu D, Ng SK, Kuo WP, Parra-Herran CE, Tsui SKW, Welch W, Crum C, Berkowitz RS, Ng SW. Molecular changes in endometriosis-associated ovarian clear cell carcinoma. Eur J Cancer 2015; 51:1831-42. [PMID: 26059197 DOI: 10.1016/j.ejca.2015.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Endometriosis is frequently associated with and thought of having propensity to develop into ovarian clear cell carcinoma (OCCC), although the molecular transformation mechanism is not completely understood. METHODS We employed immunohistochemical (IHC) staining for marker expression along the potential progression continuum. Expression profiling of microdissected endometriotic and OCCC cells from patient-matched formalin-fixed, paraffin-embedded samples was performed to explore the carcinogenic pathways. Function of novel biomarkers was confirmed by knockdown experiments. RESULTS PTEN was significantly lost in both endometriosis and invasive tumour tissues, while oestrogen receptor (ER) expression was lost in OCCC relative to endometriosis. XRCC5, PTCH2, eEF1A2 and PPP1R14B were significantly overexpressed in OCCC and associated endometriosis, but not in benign endometriosis (p ⩽ 0.004). Knockdown experiments with XRCC5 and PTCH2 in a clear cell cancer cell line resulted in significant growth inhibition. There was also significant silencing of a panel of target genes with histone H3 lysine 27 trimethylation, a signature of polycomb chromatin-remodelling complex in OCCC. IHC confirmed the loss of expression of one such polycomb target gene, the serous ovarian cancer lineage marker Wilms' tumour protein 1 (WT1) in OCCC, while endometriotic tissues showed significant co-expression of WT1 and ER. CONCLUSIONS Loss of PTEN expression is proposed as an early and permissive event in endometriosis development, while the loss of ER and polycomb-mediated transcriptional reprogramming for pluripotency may play an important role in the ultimate transformation process. Our study provides new evidence to redefine the pathogenic programme for lineage-specific transformation of endometriosis to OCCC.
Collapse
Affiliation(s)
- Michael J Worley
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubai Liu
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuanyuan Hua
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie Sui-Lam Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Anicka Samuel
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Hou
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melina Shoni
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shi Lu
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evelien M Sandberg
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Keryan
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Di Wu
- Statistics Department, Harvard University, Boston, MA, USA
| | - Shu-Kay Ng
- School of Medicine, Griffith University, Meadowbrook, Australia
| | - Winston P Kuo
- Harvard Catalyst Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, MA, USA
| | - Carlos E Parra-Herran
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - William Welch
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Crum
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ross S Berkowitz
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shu-Wing Ng
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Zhulyn O, Nieuwenhuis E, Liu YC, Angers S, Hui CC. Ptch2 shares overlapping functions with Ptch1 in Smo regulation and limb development. Dev Biol 2015; 397:191-202. [DOI: 10.1016/j.ydbio.2014.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/04/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
34
|
Chung JH, Larsen AR, Chen E, Bunz F. A PTCH1 homolog transcriptionally activated by p53 suppresses Hedgehog signaling. J Biol Chem 2014; 289:33020-31. [PMID: 25296753 DOI: 10.1074/jbc.m114.597203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53-mediated responses to DNA damage and the Hedgehog (Hh) signaling pathway are each recurrently dysregulated in many types of human cancer. Here we describe PTCH53, a p53 target gene that is homologous to the tumor suppressor gene PTCH1 and can function as a repressor of Hh pathway activation. PTCH53 (previously designated PTCHD4) was highly responsive to p53 in vitro and was among a small number of genes that were consistently expressed at reduced levels in diverse TP53 mutant cell lines and human tumors. Increased expression of PTCH53 inhibited canonical Hh signaling by the G protein-coupled receptor SMO. PTCH53 thus delineates a novel, inducible pathway by which p53 can repress tumorigenic Hh signals.
Collapse
Affiliation(s)
- Jon H Chung
- From the Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21231
| | - Andrew R Larsen
- From the Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21231
| | - Evan Chen
- From the Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21231
| | - Fred Bunz
- From the Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21231
| |
Collapse
|
35
|
Patched-1 proapoptotic activity is downregulated by modification of K1413 by the E3 ubiquitin-protein ligase Itchy homolog. Mol Cell Biol 2014; 34:3855-66. [PMID: 25092867 DOI: 10.1128/mcb.00960-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Hedgehog (Hh) receptor Patched-1 (PTCH1) opposes the activation of Gli transcription factors and induces cell death through a Gli-independent pathway. Here, we report that the C-terminal domain (CTD) of PTCH1 interacts with and is ubiquitylated on K1413 by the E3 ubiquitin-protein ligase Itchy homolog (Itch), a Nedd4 family member. Itch induces the ubiquitylation of K1413, the reduction of PTCH1 levels at the plasma membrane, and degradation, activating Gli transcriptional activity in the absence of Hh ligands. Silencing of Itch stabilizes PTCH1 and increases its level of retention at the plasma membrane. Itch is the preferential PTCH1 E3 ligase in the absence of Hh ligands, since of the other seven Nedd4 family members, only WW domain-containing protein 2 (WWP2) showed a minor redundant role. Like Itch depletion, mutation of the ubiquitylation site (K1314R) resulted in the accumulation of PTCH1 at the plasma membrane, prolongation of its half-life, and increased cell death by hyperactivation of caspase-9. Remarkably, Itch is the main determinant of PTCH1 stability under resting conditions but not in response to Sonic Hedgehog. In conclusion, our findings reveal that Itch is a key regulator of ligand-independent Gli activation and noncanonical Hh signaling by the governance of basal PTCH1 internalization and degradation.
Collapse
|
36
|
Alfaro AC, Roberts B, Kwong L, Bijlsma MF, Roelink H. Ptch2 mediates the Shh response in Ptch1-/- cells. Development 2014; 141:3331-9. [PMID: 25085974 DOI: 10.1242/dev.110056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hedgehog (Hh) signaling response is regulated by the interaction of three key components that include the sonic hedgehog (Shh) ligand, its receptor patched 1 (Ptch1) and the pathway activator smoothened (Smo). Under the prevailing model of Shh pathway activation, the binding of Shh to Ptch1 (the key Shh receptor) results in the release of Ptch1-mediated inhibition of Smo, leading to Smo activation and subsequent cell-autonomous activation of the Shh response. Consistent with this model, Ptch1(-/-) cells show a strong upregulation of the Shh response. Our finding that this response can be inhibited by the Shh-blocking antibody 5E1 indicates that the Shh response in Ptch1(-/-) cells remains ligand dependent. Furthermore, we find that Shh induces a strong response in Ptch1(-/-);Shh(-/-) cells, and that Ptch1(-/-) fibroblasts retain their ability to migrate towards Shh, demonstrating that Ptch1(-/-) cells remain sensitive to Shh. Expression of a dominant-negative Ptch1 mutant in the developing chick neural tube had no effect on Shh-mediated patterning, but expression of a dominant-negative form of patched 2 (Ptch2) caused an activation of the Shh response. This indicates that, at early developmental stages, Ptch2 functions to suppress Shh signaling. We found that Ptch1(-/-);Ptch2(-/-) cells cannot further activate the Shh response, demonstrating that Ptch2 mediates the response to Shh in the absence of Ptch1.
Collapse
Affiliation(s)
- Astrid C Alfaro
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA
| | - Brock Roberts
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA
| | - Lina Kwong
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA
| | - Maarten F Bijlsma
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
SHH, WNT, and NOTCH pathways in medulloblastoma: when cancer stem cells maintain self-renewal and differentiation properties. Childs Nerv Syst 2014; 30:1165-72. [PMID: 24695855 DOI: 10.1007/s00381-014-2403-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/14/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE Infant medulloblastoma (MB) is a malignant neuroepithelial embryonal tumor of the cerebellum, believed to derive from precursor granule cells with stem or progenitor cells appearance, and caused by a change in expression profile of genes related to the development. This work aims to study the expression profile of these genes in MB tumors, correlating with clinicopathological characteristics. METHODS We quantified, by qPCR in 40 MB tumor samples, the expression of genes in HH (PTCH1, PTCH2, and GLI1), WNT (APC, CTNNB1, WIF1, and DKK2), and NOTCH pathways (NOTCH2 and HES1), which have a crucial role in development, and genes as MYCC, MYCN, and TERT, correlating this findings to patient's clinicopathological characteristics. RESULTS Considering the universal RNA as our control sample, and considering the median of gene expression in the control samples as our cutoff, we observed that HES1 gene showed decreased expression compared to control (p = 0.0059), but patients with HES1 overexpression were directly related to a shorter survival (p = 0.0165). Individuals with higher GLI1 gene expression had significant shorter survival (p = 0.0469), and high expression was prevalent in patients up to 5 years old (p = 0.0479). Patients showing high PTCH2 expression were related to worse survival (p = 0.0426), and it was correlated with GLI1 high expression (p = 0.0094). We also observed a concomitant overexpression of WIF1 and DKK2 genes in a subgroup of MB samples (n = 11, p = 0.0118). CONCLUSIONS Our results suggest the presence of activated developmental signaling pathways in MB, which are important for cell proliferation and maintenance, and that may be targeted for novel therapeutic options.
Collapse
|
38
|
Adolphe C, Nieuwenhuis E, Villani R, Li ZJ, Kaur P, Hui CC, Wainwright BJ. Patched 1 and patched 2 redundancy has a key role in regulating epidermal differentiation. J Invest Dermatol 2014; 134:1981-1990. [PMID: 24492243 DOI: 10.1038/jid.2014.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/05/2013] [Accepted: 12/30/2013] [Indexed: 11/09/2022]
Abstract
The Patched 1 (Ptch1) receptor has a pivotal role in inhibiting the activity of the Hedgehog (Hh) pathway and is therefore critical in preventing the onset of many human developmental disorders and tumor formation. However, the functional role of the mammalian Ptch2 paralogue remains elusive, particularly the extent to which it contributes to regulating the spatial and temporal activity of Hh signaling. Here we demonstrate in three independent mouse models of epidermal development that in vivo ablation of both Ptch receptors results in a more severe phenotype than loss of Ptch1 alone. Our studies indicate that concomitant loss of Ptch1 and Ptch2 activity inhibits epidermal lineage specification and differentiation. These results reveal that repression of Hh signaling through a dynamic Ptch regulatory network is a crucial event in lineage fate determination in the skin. In general, our findings implicate Ptch receptor redundancy as a key issue in elucidating the cellular origin of Hh-induced tumors.
Collapse
Affiliation(s)
- Christelle Adolphe
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Erica Nieuwenhuis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rehan Villani
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhu Juan Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Pritinder Kaur
- Epithelial Stem Cell Biology Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Brandon J Wainwright
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
39
|
Huang YY, Dai L, Gaines D, Droz-Rosario R, Lu H, Liu J, Shen Z. BCCIP suppresses tumor initiation but is required for tumor progression. Cancer Res 2013; 73:7122-33. [PMID: 24145349 DOI: 10.1158/0008-5472.can-13-1766] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysfunctions of genome caretaker genes contribute to genomic instability and tumor initiation. Because many of the caretaker genes are also essential for cell viability, permanent loss of function of these genes would prohibit further tumor progression. How essential caretaker genes contribute to tumorigenesis is not fully understood. Here, we report a "hit-and-run" mode of action for an essential caretaker gene in tumorigenesis. Using a BRCA2-interacting protein BCCIP as the platform, we found that a conditional BCCIP knockdown and concomitant p53 deletion caused rapid development of medulloblastomas, which bear a wide spectrum of alterations involving the Sonic Hedgehog (Shh) pathway, consistent with a caretaker responsibility of BCCIP on genomic integrity. Surprisingly, the progressed tumors have spontaneously lost the transgenic BCCIP knockdown cassette and restored BCCIP expression. Thus, a transient downregulation of BCCIP, but not necessarily a permanent mutation, is sufficient to initiate tumorigenesis. After the malignant transformation has been accomplished and autonomous cancer growth has been established, BCCIP reverses its role from a tumor-initiation suppressor to become a requisite for progression. This exemplifies a new type of tumor suppressor, which is distinct from the classical tumor suppressors that are often permanently abrogated during tumorigenesis. It has major implications on how a nonmutagenic or transient regulation of essential caretaker gene contributes to tumorigenesis. We further suggest that BCCIP represents a paradoxical class of modulators for tumorigenesis as a suppressor for initiation but a requisite for progression (SIRP).
Collapse
Affiliation(s)
- Yi-Yuan Huang
- Authors' Affiliation: Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | | | | | | | | | | | | |
Collapse
|
40
|
Holtz AM, Peterson KA, Nishi Y, Morin S, Song JY, Charron F, McMahon AP, Allen BL. Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning. Development 2013; 140:3423-34. [PMID: 23900540 DOI: 10.1242/dev.095083] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hedgehog (HH) signaling is essential for vertebrate and invertebrate embryogenesis. In Drosophila, feedback upregulation of the HH receptor Patched (PTC; PTCH in vertebrates), is required to restrict HH signaling during development. By contrast, PTCH1 upregulation is dispensable for early HH-dependent patterning in mice. Unique to vertebrates are two additional HH-binding antagonists that are induced by HH signaling, HHIP1 and the PTCH1 homologue PTCH2. Although HHIP1 functions semi-redundantly with PTCH1 to restrict HH signaling in the developing nervous system, a role for PTCH2 remains unresolved. Data presented here define a novel role for PTCH2 as a ciliary localized HH pathway antagonist. While PTCH2 is dispensable for normal ventral neural patterning, combined removal of PTCH2- and PTCH1-feedback antagonism produces a significant expansion of HH-dependent ventral neural progenitors. Strikingly, complete loss of PTCH2-, HHIP1- and PTCH1-feedback inhibition results in ectopic specification of ventral cell fates throughout the neural tube, reflecting constitutive HH pathway activation. Overall, these data reveal an essential role for ligand-dependent feedback inhibition of vertebrate HH signaling governed collectively by PTCH1, PTCH2 and HHIP1.
Collapse
Affiliation(s)
- Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shimada Y, Katsube KI, Kabasawa Y, Morita KI, Omura K, Yamaguchi A, Sakamoto K. Integrated genotypic analysis of hedgehog-related genes identifies subgroups of keratocystic odontogenic tumor with distinct clinicopathological features. PLoS One 2013; 8:e70995. [PMID: 23951062 PMCID: PMC3737235 DOI: 10.1371/journal.pone.0070995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/25/2013] [Indexed: 01/01/2023] Open
Abstract
Keratocystic odontogenic tumor (KCOT) arises as part of Gorlin syndrome (GS) or as a sporadic lesion. Gene mutations and loss of heterozygosity (LOH) of the hedgehog receptor PTCH1 plays an essential role in the pathogenesis of KCOT. However, some KCOT cases lack evidence for gene alteration of PTCH1, suggesting that other genes in the hedgehog pathway may be affected. PTCH2 and SUFU participate in the occurrence of GS-associated tumors, but their roles in KCOT development are unknown. To elucidate the roles of these genes, we enrolled 36 KCOT patients in a study to sequence their entire coding regions of PTCH1, PTCH2 and SUFU. LOH and immunohistochemical expression of these genes, as well as the downstream targets of hedgehog signaling, were examined using surgically-excised KCOT tissues. PTCH1 mutations, including four novel ones, were found in 9 hereditary KCOT patients, but not in sporadic KCOT patients. A pathogenic mutation of PTCH2 or SUFU was not found in any patients. LOH at PTCH1 and SUFU loci correlated with the presence of epithelial budding. KCOT harboring a germline mutation (Type 1) showed nuclear localization of GLI2 and frequent histological findings such as budding and epithelial islands, as well as the highest recurrence rate. KCOT with LOH but without a germline mutation (Type 2) less frequently showed these histological features, and the recurrence rate was lower. KCOT with neither germline mutation nor LOH (Type 3) consisted of two subgroups, Type 3A and 3B, which were characterized by nuclear and cytoplasmic GLI2 localization, respectively. Type 3B rarely exhibited budding and recurrence, behaving as the most amicable entity. The expression patterns of CCND1 and BCL2 tended to correlate with these subgroups. Our data indicates a significant role of PTCH1 and SUFU in the pathogenesis of KCOT, and the genotype-oriented subgroups constitute entities with different potential aggressiveness.
Collapse
Affiliation(s)
- Yasuyuki Shimada
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-ichi Katsube
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Kabasawa
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Advanced Molecular Diagnosis and Maxillofacial Surgery, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Omura
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Advanced Molecular Diagnosis and Maxillofacial Surgery, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (AY); (KS)
| | - Kei Sakamoto
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (AY); (KS)
| |
Collapse
|
42
|
Lim CB, Prêle CM, Cheah HM, Cheng YY, Klebe S, Reid G, Watkins DN, Baltic S, Thompson PJ, Mutsaers SE. Mutational analysis of hedgehog signaling pathway genes in human malignant mesothelioma. PLoS One 2013; 8:e66685. [PMID: 23826113 PMCID: PMC3691204 DOI: 10.1371/journal.pone.0066685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Hedgehog (HH) signaling pathway is critical for embryonic development and adult homeostasis. Recent studies have identified regulatory roles for this pathway in certain cancers with mutations in the HH pathway genes. The extent to which mutations of the HH pathway genes are involved in the pathogenesis of malignant mesothelioma (MMe) is unknown. METHODOLOGY/PRINCIPAL FINDINGS Real-time PCR analysis of HH pathway genes PTCH1, GLI1 and GLI2 were performed on 7 human MMe cell lines. Exon sequencing of 13 HH pathway genes was also performed in cell lines and human MMe tumors. In silico programs were used to predict the likelihood that an amino-acid substitution would have a functional effect. GLI1, GLI2 and PTCH1 were highly expressed in MMe cells, indicative of active HH signaling. PTCH1, SMO and SUFU mutations were found in 2 of 11 MMe cell lines examined. A non-synonymous missense SUFU mutation (p.T411M) was identified in LO68 cells. In silico characterization of the SUFU mutant suggested that the p.T411M mutation might alter protein function. However, we were unable to demonstrate any functional effect of this mutation on Gli activity. Deletion of exons of the PTCH1 gene was found in JU77 cells, resulting in loss of one of two extracellular loops implicated in HH ligand binding and the intracellular C-terminal domain. A 3-bp insertion (69_70insCTG) in SMO, predicting an additional leucine residue in the signal peptide segment of SMO protein was also identified in LO68 cells and a MMe tumour. CONCLUSIONS/SIGNIFICANCE We identified the first novel mutations in PTCH1, SUFU and SMO associated with MMe. Although HH pathway mutations are relatively rare in MMe, these data suggest a possible role for dysfunctional HH pathway in the pathogenesis of a subgroup of MMe and help rationalize the exploration of HH pathway inhibitors for MMe therapy.
Collapse
Affiliation(s)
- Chuan Bian Lim
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Cecilia M. Prêle
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology and Western Australian Institute for Medical Research, University of Western Australia, Crawley, WA, Australia
| | - Hui Min Cheah
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute (ADRI), University of Sydney, Sydney, NSW, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, SA Pathology and Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute (ADRI), University of Sydney, Sydney, NSW, Australia
| | - D. Neil Watkins
- Centre for Cancer Research, Monash Institute for Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Svetlana Baltic
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Philip J. Thompson
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Steven E. Mutsaers
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, Department of Medicine, School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology and Western Australian Institute for Medical Research, University of Western Australia, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|
43
|
Abstract
Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children, respectively. Recent genomic and transcriptional approaches present a complex group of diseases and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing, and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development and the potential for these animals to impact brain tumor research.
Collapse
Affiliation(s)
- Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Sanna-Maria Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - William A. Weiss
- University of California, Depts. of Neurology, Pathology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, San Francisco CA 94158, USA
| |
Collapse
|
44
|
Sokolowski E, Turina CB, Kikuchi K, Langenau DM, Keller C. Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma. Oncogene 2013; 33:1877-89. [PMID: 23665679 DOI: 10.1038/onc.2013.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
Rare diseases typically affect fewer than 200,000 patients annually, yet because thousands of rare diseases exist, the cumulative impact is millions of patients worldwide. Every form of childhood cancer qualifies as a rare disease-including the childhood muscle cancer, rhabdomyosarcoma (RMS). The next few years promise to be an exceptionally good era of opportunity for public-private collaboration for rare and childhood cancers. Not only do certain governmental regulation advantages exist, but these advantages are being made permanent with special incentives for pediatric orphan drug-product development. Coupled with a growing understanding of sarcoma tumor biology, synergy with pharmaceutical muscle disease drug-development programs, and emerging publically available preclinical and clinical tools, the outlook for academic-community-industry partnerships in RMS drug development looks promising.
Collapse
Affiliation(s)
- E Sokolowski
- Department of Student Affairs, Oregon State University, Corvallis, OR, USA
| | - C B Turina
- 1] Department of Student Affairs, Oregon State University, Corvallis, OR, USA [2] Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - K Kikuchi
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - D M Langenau
- 1] Division of Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA [2] Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - C Keller
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
45
|
Riobo NA. Cholesterol and its derivatives in Sonic Hedgehog signaling and cancer. Curr Opin Pharmacol 2012; 12:736-41. [PMID: 22832232 DOI: 10.1016/j.coph.2012.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The connection between the Hedgehog (HH) pathway and cholesterol has been recognized since the early days that shaped our current understanding of this unique pathway. Cholesterol and related lipids are intricately linked to HH signaling: from the role of cholesterol in HH biosynthesis to the modulation of HH signal reception and transduction by other sterols, passing by the phylogenetic relationships among many components of the HH pathway that resemble or contain lipid-binding domains. Here I review the connections between HH signaling, cholesterol and its derivatives and analyze the potential implications for HH-dependent cancers.
Collapse
Affiliation(s)
- Natalia A Riobo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Lau J, Schmidt C, Markant SL, Taylor MD, Wechsler-Reya RJ, Weiss WA. Matching mice to malignancy: molecular subgroups and models of medulloblastoma. Childs Nerv Syst 2012; 28:521-32. [PMID: 22315164 PMCID: PMC3515664 DOI: 10.1007/s00381-012-1704-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/17/2012] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Medulloblastoma, the largest group of embryonal brain tumors, has historically been classified into five variants based on histopathology. More recently, epigenetic and transcriptional analyses of primary tumors have subclassified medulloblastoma into four to six subgroups, most of which are incongruous with histopathological classification. DISCUSSION Improved stratification is required for prognosis and development of targeted treatment strategies, to maximize cure and minimize adverse effects. Several mouse models of medulloblastoma have contributed both to an improved understanding of progression and to developmental therapeutics. In this review, we summarize the classification of human medulloblastoma subtypes based on histopathology and molecular features. We describe existing genetically engineered mouse models, compare these to human disease, and discuss the utility of mouse models for developmental therapeutics. Just as accurate knowledge of the correct molecular subtype of medulloblastoma is critical to the development of targeted therapy in patients, we propose that accurate modeling of each subtype of medulloblastoma in mice will be necessary for preclinical evaluation and optimization of those targeted therapies.
Collapse
Affiliation(s)
- Jasmine Lau
- Department of Neurology, University of California, San Francisco, CA, USA. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA. Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Christin Schmidt
- Department of Neurology, University of California, San Francisco, CA, USA. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA. Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Shirley L. Markant
- Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA. Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Michael D. Taylor
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada. Arthur and Sonia Labatt Brain Tumour Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Robert J. Wechsler-Reya
- Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA. Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - William A. Weiss
- Department of Neurology, University of California, San Francisco, CA, USA. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA. Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
47
|
Abstract
The Hedgehog (Hh) pathway is a conserved signalling system essential for embryonic development and for the maintenance of self-renewal pathways in progenitor cells. Mutations that deregulate Hh signalling are directly implicated in basal cell carcinoma and medulloblastoma. The mechanisms of Hh pathway activation in cancers in which no pathway mutations have been identified are less clear, but of great translational significance. Small molecule inhibitors of the pathway, many of which are in early phase clinical trials, may shed further light on this question. Canonical Hh signalling promotes the expression of target genes through the Glioma-associated oncogene (GLI) transcription factors. There is now increasing evidence suggesting that 'non-canonical' Hh signalling mechanisms, some of which are independent of GLI-mediated transcription, may be important in cancer and development. The focus of this review is to summarise some of the known mechanisms of Hh signalling as well as its emerging role in cancer.
Collapse
Affiliation(s)
- Kieren D Marini
- Monash Institute of Medical Research, Centre for Cancer Research, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
48
|
|
49
|
Kim W, Choy W, Dye J, Nagasawa D, Safaee M, Fong B, Yang I. The tumor biology and molecular characteristics of medulloblastoma identifying prognostic factors associated with survival outcomes and prognosis. J Clin Neurosci 2011; 18:886-90. [PMID: 21640908 DOI: 10.1016/j.jocn.2011.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/13/2011] [Accepted: 12/27/2010] [Indexed: 01/21/2023]
Abstract
Medulloblastomas (MB) are highly aggressive primitive neuroectodermal tumors (PNET) usually located in the posterior fossa. Current treatment for MBs, which includes a combination of surgery, chemotherapy and radiation, remain challenging especially in younger patients. However, advances in the understanding of regulatory pathways in cerebellar development have elucidated possible areas of dysfunction involved in tumorigenesis. Multiple studies have demonstrated the importance of the sonic hedgehog, Wnt, and Notch pathways in MB pathogenesis at the molecular level. While staging and prognosis are often based on the Chang classification system, future algorithms will involve identifying molecular markers in order to allow for more specific risk stratifications of various MB subtypes and provide improved correlation with staging and prognosis. Future development of novel therapies that target the heterogeneity of MB and are tailored to the tumor's unique molecular profile may yield improved outcomes for these patients.
Collapse
Affiliation(s)
- Won Kim
- Department of Neurological Surgery, University of California, Los Angeles, 695 Charles E. Young Drive South, Gonda 3357, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Topical treatment of Basal cell carcinomas in nevoid Basal cell carcinoma syndrome with a smoothened inhibitor. J Invest Dermatol 2011; 131:1735-44. [PMID: 21430703 DOI: 10.1038/jid.2011.48] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Basal cell carcinoma (BCC) is a distinctive manifestation in nevoid basal cell carcinoma syndrome (NBCCS) patients. Both inherited and acquired mutations of patched 1 (PTCH1), a tumor-suppressor gene controlling the activity of Smoothened (SMO), are the primary cause of the constitutive activation of the Hedgehog (HH) pathway, leading to the emergence of BCCs in NBCCS. LDE225, a distinct, selective antagonist of SMO, showed potent inhibition of basaloid tumor nest formation and mediated regression of preformed basaloid tumors in organ cultures of skin derived from Ptch1 heterozygous knockout mice. In a double-blind, randomized, vehicle-controlled, intraindividual study, a total of 8 NBCCS patients presenting 27 BCCs were treated twice daily with 0.75% LDE225 cream or vehicle for 4 weeks. Application of 0.75% LDE225 cream was well tolerated and showed no skin irritation. Of 13 LDE225-treated BCCs, 3 showed a complete, 9 a partial, and only 1 no clinical response. Except for one partial response, the vehicle produced no clinical response in any of the 14 treated BCCs. Treatment with 0.75% LDE225 cream in NBCCS patients was very well tolerated and caused BCC regression, thus potentially offering an attractive therapeutic alternative to currently available therapies for this indication.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://www.nature.com/jid/journalclub.
Collapse
|