1
|
AbuMadighem A, Rubin E, Arazi E, Lunenfeld E, Huleihel M. Adrenocorticotropic hormone and its receptor as a novel testicular system involves in the development of spermatogenesis. Life Sci 2025; 368:123480. [PMID: 39978588 DOI: 10.1016/j.lfs.2025.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
AIMS To identify functional membrane-associate-specific SSC markers and examine the development of these cells under in vitro conditions. MATERIALS AND METHODS Cells were enzymatically isolated from seminiferous tubules (STs) of immature mice. Spermatogonial cells (Thy1, alpha-6-integrin, and C-KIT) were sorted by FACS. RNA was extracted from these cells for RNAseq analysis. The effect of adrenocorticotropic hormone (ACTH) - the ligand of MC2R- on the development of mouse spermatogonial cells was performed in vitro using a methylcellulose culture system (MCS). Immunofluorescence staining was used to localize MC2R-positive cells in the testes of immature and adult humans and mice and testes of busulfan-treated immature mice. KEY FINDINGS Our RNAseq analysis revealed a high expression of melanocortin receptor 2 (MC2R) in Thy1-positive sorted cells. MC2R-positive cells were localized in the periphery of the STs of humans (prepubertal and adults) and mice at immature and adult ages (normal and busulfan-treated mice). MC2R was doubled stained with PLZF and CDH1 (SSC markers). ACTH was localized in mouse testicular germ cells (pre-meiotic, meiotic, and post-meiotic cells) and somatic cells (Sertoli, Leydig, and peritubular cells). The addition of ACTH to isolated cells from mouse STs in MCS significantly increased the development of pre-meiotic and meiotic/post-meiotic cells in vitro. SIGNIFICANCE We were able to identify, for the first time, a novel membrane-associated and functional SSC marker (MC2R) with relation to ACTH. This marker can be used in future male fertility preservation strategies. Furthermore, we explored a novel testicular system (ACTH system) that regulates the development of spermatogenesis.
Collapse
Affiliation(s)
- Ali AbuMadighem
- The Shraga Segal Dept. Microbiology, Immunology and Genetics, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eitan Rubin
- The Shraga Segal Dept. Microbiology, Immunology and Genetics, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eden Arazi
- The Shraga Segal Dept. Microbiology, Immunology and Genetics, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Mahmoud Huleihel
- The Shraga Segal Dept. Microbiology, Immunology and Genetics, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
von Rohden E, Jensen CFS, Andersen CY, Sønksen J, Fedder J, Thorup J, Ohl DA, Fode M, Hoffmann ER, Mamsen LS. Male fertility restoration: in vivo and in vitro stem cell-based strategies using cryopreserved testis tissue: a scoping review. Fertil Steril 2024; 122:828-843. [PMID: 38992744 DOI: 10.1016/j.fertnstert.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
IMPORTANCE Advances in the treatment of childhood cancer have significantly improved survival rates, with more than 80% of survivors reaching adulthood. However, gonadotoxic cancer treatments endanger future fertility, and prepubertal males have no option to preserve fertility by sperm cryopreservation. In addition, boys with cryptorchidism are at risk of compromised fertility in adulthood. OBJECTIVE To investigate current evidence for male fertility restoration strategies, explore barriers to clinical implementation, and outline potential steps to overcome these barriers, a scoping review was conducted. This knowledge synthesis is particularly relevant for prepubertal male cancer survivors and boys with cryptorchidism. EVIDENCE REVIEW The review was conducted after the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews criteria and previously published guidelines and examined studies using human testis tissue of prepubertal boys or healthy male adults. A literature search in PubMed was conducted, and 72 relevant studies were identified, including in vivo and in vitro approaches. FINDINGS In vivo strategies, such as testis tissue engraftment and spermatogonial stem cell transplantation, hold promise for promoting cell survival and differentiation. Yet, complete spermatogenesis has not been achieved. In vitro approaches focus on the generation of male germ cells from direct germ cell maturation in various culture systems, alongside human induced pluripotent stem cells and embryonic stem cells. These approaches mark significant advancements in understanding and promoting spermatogenesis, but achieving fully functional spermatozoa in vitro remains a challenge. Barriers to clinical implementation include the risk of reintroducing malignant cells and introduction of epigenetic changes. CONCLUSION Male fertility restoration is an area in rapid development. On the basis of the reviewed studies, the most promising and advanced strategy for restoring male fertility using cryopreserved testis tissue is direct testis tissue transplantation. RELEVANCE This review identifies persistent barriers to the clinical implementation of male fertility restoration. However, direct transplantation of frozen-thawed testis tissue remains a promising strategy that is on the verge of clinical application.
Collapse
Affiliation(s)
- Elena von Rohden
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | - Claus Yding Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Sønksen
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Fedder
- Department of Gynecology and Obstetrics, Centre of Andrology & Fertility Clinic, Odense University Hospital, Odense, Denmark; Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen Thorup
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pediatric Surgery, Surgical Clinic, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dana A Ohl
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Mikkel Fode
- Department of Urology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva R Hoffmann
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular and Cellular Medicine, DNRF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Sung ZY, Liao YQ, Hou JH, Lai HH, Weng SM, Jao HW, Lu BJ, Chen CH. Advancements in fertility preservation strategies for pediatric male cancer patients: a review of cryopreservation and transplantation of immature testicular tissue. Reprod Biol Endocrinol 2024; 22:47. [PMID: 38637872 PMCID: PMC11025181 DOI: 10.1186/s12958-024-01219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/06/2024] [Indexed: 04/20/2024] Open
Abstract
Recently, there has been increasing emphasis on the gonadotoxic effects of cancer therapy in prepubertal boys. As advances in oncology treatments continue to enhance survival rates for prepubertal boys, the need for preserving their functional testicular tissue for future reproduction becomes increasingly vital. Therefore, we explore cutting-edge strategies in fertility preservation, focusing on the cryopreservation and transplantation of immature testicular tissue as a promising avenue. The evolution of cryopreservation techniques, from controlled slow freezing to more recent advancements in vitrification, with an assessment of their strengths and limitations was exhibited. Detailed analysis of cryoprotectants, exposure times, and protocols underscores their impact on immature testicular tissue viability. In transplantation strategy, studies have revealed that the scrotal site may be the preferred location for immature testicular tissue grafting in both autotransplantation and xenotransplantation scenarios. Moreover, the use of biomaterial scaffolds during graft transplantation has shown promise in enhancing graft survival and stimulating spermatogenesis in immature testicular tissue over time. This comprehensive review provides a holistic approach to optimize the preservation strategy of human immature testicular tissue in the future.
Collapse
Affiliation(s)
- Zih-Yi Sung
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yong-Qi Liao
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jung-Hsiu Hou
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Hong-Hsien Lai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Sung-Ming Weng
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hai-Wei Jao
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Buo-Jia Lu
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chi-Huang Chen
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Nam CS, Campbell KJ, Acquati C, Bole R, Adler A, Collins DJ, Collins E, Samplaski M, Anderson-Bialis J, Andino JJ, Asafu-Adjei D, Gaskins AJ, Bortoletto P, Vij SC, Orwig KE, Lundy SD. Deafening Silence of Male Infertility. Urology 2023; 182:111-124. [PMID: 37778476 DOI: 10.1016/j.urology.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Think about 6 loved ones of reproductive age in your life. Now imagine that 1 of these 6 individuals is suffering from infertility. Perhaps they feel alone and isolated, unable to discuss their heartbreak with their closest friends, family, and support network. Suffering in silence. In this editorial, we discuss the infertility journey through the lens of the patients, the providers, and the scientists who struggle with infertility each and every day. Our goal is to open a dialogue surrounding infertility, with an emphasis on dismantling the longstanding societal barriers to acknowledging male infertility as a disease. Through education, communication, compassion, and advocacy, together we can all begin to break the deafening silence of male infertility.
Collapse
Affiliation(s)
- Catherine S Nam
- Department of Urology, University of Michigan, Ann Arbor, MI
| | | | - Chiara Acquati
- Graduate College of Social Work, University of Houston, Houston, TX; Department of Clinical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX; Department of Health Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raevti Bole
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Ava Adler
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - David J Collins
- Department of Urology, University of Southern California, Los Angeles, CA
| | - Erica Collins
- Department of Urology, University of Southern California, Los Angeles, CA
| | - Mary Samplaski
- Department of Urology, University of Southern California, Los Angeles, CA
| | | | - Juan J Andino
- Department of Urology, University of California Los Angeles, Los Angeles, CA
| | - Denise Asafu-Adjei
- Department of Urology, Department of Parkinson School of Health Sciences and Public Health, Loyola University Chicago Stritch School of Medicine, Chicago, IL
| | | | - Pietro Bortoletto
- Boston IVF, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sarah C Vij
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Scott D Lundy
- Glickman Urological and Kidney Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
5
|
Albamonte MI, Vitullo AD. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J Assist Reprod Genet 2023; 40:2755-2767. [PMID: 37770817 PMCID: PMC10656407 DOI: 10.1007/s10815-023-02945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treatments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient's future fertility. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreservation/grafting of immature testicular tissue and testicular organoids.
Collapse
Affiliation(s)
- María Itatí Albamonte
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Munyoki SK, Orwig KE. Perspectives: Methods for Evaluating Primate Spermatogonial Stem Cells. Methods Mol Biol 2023; 2656:341-364. [PMID: 37249880 DOI: 10.1007/978-1-0716-3139-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian spermatogenesis is a complex, highly productive process generating millions of sperm per day. Spermatogonial stem cells (SSCs) are at the foundation of spermatogenesis and can either self-renew, producing more SSCs, or differentiate to initiate spermatogenesis and produce sperm. The biological potential of SSCs to produce and maintain spermatogenesis makes them a promising tool for the treatment of male infertility. However, translating knowledge from rodents to higher primates (monkeys and humans) is challenged by different vocabularies that are used to describe stem cells and spermatogenic lineage development in those species. Furthermore, while rodent SSCs are defined by their biological potential to produce and maintain spermatogenesis in a transplant assay, there is no equivalent routine and accessible bioassay to test monkey and human SSCs or replicate their functions in vitro. This chapter describes progress characterizing, isolating, culturing, and transplanting SSCs in higher primates.
Collapse
Affiliation(s)
- Sarah K Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Yokonishi T. [Reconstruction of spermatogonial niche for male fertility preservation]. Nihon Yakurigaku Zasshi 2022; 157:168-171. [PMID: 35491111 DOI: 10.1254/fpj.21106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infertility is one of the late side effects of cancer treatment. Expansion of anti-cancer treatment allow patients to have more life time, however infertility is becoming a matter damaging QOL during the young cancer survivors. The passive strategy such as avoiding the gonad-toxic drug or decreasing the total volume of them and shielding the gonads against cancer therapy has been conducted. To preserve the fertility of young female, ovary tissue cryopreservation is becoming a standard over the world after the success of offspring from cryopreserved ovary tissue autograft was reported. Sperm preservation method is established for the male fertility preservation method, however this is only applicable for sexually matured male patients. For the sake of preserving fertility of sexually immature male patients, many trials using cryopreserved testis tissues or testicular cells have been undergone. Recently, in vitro gametogenesis from stem cell of the human and the mouse to primordial germ cell like cell has been achieved. Here the previous challenges and the latest reports for obtaining functional sperm from immature testis and the reconstruction of spermatogonial niche as a potential approach for preserving fertility procedure are described.
Collapse
|
8
|
Heckmann L, Langenstroth-Röwer D, Wistuba J, Portela JMD, van Pelt AMM, Redmann K, Stukenborg JB, Schlatt S, Neuhaus N. The initial maturation status of marmoset testicular tissues has an impact on germ cell maintenance and somatic cell response in tissue fragment culture. Mol Hum Reprod 2021; 26:374-388. [PMID: 32236422 DOI: 10.1093/molehr/gaaa024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Successful in vitro spermatogenesis was reported using immature mouse testicular tissues in a fragment culture approach, raising hopes that this method could also be applied for fertility preservation in humans. Although maintaining immature human testicular tissue fragments in culture is feasible for an extended period, it remains unknown whether germ cell survival and the somatic cell response depend on the differentiation status of tissue. Employing the marmoset monkey (Callithrix jacchus), we aimed to assess whether the maturation status of prepubertal and peri-/pubertal testicular tissues influence the outcome of testis fragment culture. Testicular tissue fragments from 4- and 8-month-old (n = 3, each) marmosets were cultured and evaluated after 0, 7, 14, 28 and 42 days. Immunohistochemistry was performed for identification and quantification of germ cells (melanoma-associated antigen 4) and Sertoli cell maturation status (anti-Müllerian hormone: AMH). During testis fragment culture, spermatogonial numbers were significantly reduced (P < 0.05) in the 4- but not 8-month-old monkeys, at Day 0 versus Day 42 of culture. Moreover, while Sertoli cells from 4-month-old monkeys maintained an immature phenotype (i.e. AMH expression) during culture, AMH expression was regained in two of the 8-month-old monkeys. Interestingly, progression of differentiation to later meiotic stage was solely observed in one 8-month-old marmoset, which was at an intermediate state regarding germ cell content, with gonocytes as well as spermatocytes present, as well as Sertoli cell maturation status. Although species-specific differences might influence the outcome of testis fragment experiments in vitro, our study demonstrated that the developmental status of the testicular tissues needs to be considered as it seems to be decisive for germ cell maintenance, somatic cell response and possibly the differentiation potential.
Collapse
Affiliation(s)
- L Heckmann
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - D Langenstroth-Röwer
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J M D Portela
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - A M M van Pelt
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - K Redmann
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J B Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, 17164 Solna, Sweden
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - N Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| |
Collapse
|
9
|
Patra T, Pathak D, Gupta MK. Strategies for cryopreservation of testicular cells and tissues in cancer and genetic diseases. Cell Tissue Res 2021; 385:1-19. [PMID: 33791878 DOI: 10.1007/s00441-021-03437-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Cryopreservation of testicular cells and tissues is useful for the preservation and restoration of fertility in pre-pubertal males expecting gonadotoxic treatment for cancer and genetic diseases causing impaired spermatogenesis. A number of freezing and vitrification protocols have thus been tried and variable results have been reported in terms of cell viability spermatogenesis progression and the production of fertile spermatozoa. A few studies have also reported the production of live offspring from cryopreserved testicular stem cells and tissues in rodents but their replication in large animals and human have been lacking. Advancement in in vitro spermatogenesis system has improved the possibility of producing fertile spermatozoa from the cryopreserved testis and has reduced the dependency on transplantation. This review provides an update on various cryopreservation strategies for fertility preservation in males expecting gonadotoxic treatment. It also discusses various methods of assessing and ameliorating cryoinjuries. Newer developments on in vitro spermatogenesis and testicular tissue engineering for in vitro sperm production from cryopreserved SSCs and testicular tissue are also discussed.
Collapse
Affiliation(s)
- Tanushree Patra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, Rourkela, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Punjab, 141004, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, Rourkela, India.
| |
Collapse
|
10
|
Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, Sønksen J, Cortes D, Fedder J, Andersen CY, Goossens E. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26:368-391. [PMID: 32163572 DOI: 10.1093/humupd/dmaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the prognosis of childhood cancer survivors has increased dramatically during recent years, chemotherapy and radiation treatments for cancer and other conditions may lead to permanent infertility in prepubertal boys. Recent developments have shown that spermatogonial stem cell (SSC) transplantation may be a hope for restoring fertility in adult survivors of childhood cancers. For this reason, several centres around the world are collecting and cryopreserving testicular tissue or cells anticipating that, in the near future, some patients will return for SSC transplantation. This review summarizes the current knowledge and utility of SSC transplantation techniques. OBJECTIVE AND RATIONALE The aim of this narrative review is to provide an overview of the currently used experimental injection techniques for SSC transplantation in animal and human testes. This is crucial in understanding and determining the role of the different techniques necessary for successful transplantation. SEARCH METHODS A comprehensive review of peer-reviewed publications on this topic was performed using the PubMed and Google Scholar databases. The search was limited to English language work and studies between 1994 (from the first study on SSC transplantation) and April 2019. Key search terms included mouse, rat, boar, ram, dog, sheep, goat, cattle, monkey, human, cadaver, testes, SSC transplantation, injection and technique. OUTCOMES This review provides an extensive clinical overview of the current research in the field of human SSC transplantation. Rete testis injection with ultrasonography guidance currently seems the most promising injection technique thus far; however, the ability to draw clear conclusions is limited due to long ischemia time of cadaver testis, the relatively decreased volume of the testis, the diminishing size of seminiferous tubules, a lack of intratesticular pressure and leakage into the interstitium during the injection on human cadaver testis. Current evidence does not support improved outcomes from multiple infusions through the rete testes. Overall, further optimization is required to increase the efficiency and safety of the infusion method. WIDER IMPLICATIONS Identifying a favourable injection method for SSC transplantation will provide insight into the mechanisms of successful assisted human reproduction. Future research could focus on reducing leakage and establishing the optimal infusion cell concentrations and pressure.
Collapse
Affiliation(s)
- Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Urology, Selcuk University School of Medicine, 42250 Konya, Turkey
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens Sønksen
- Department of Urology, Herlev and Gentofte University Hospital, 2930 Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
11
|
Approaches and Technologies in Male Fertility Preservation. Int J Mol Sci 2020; 21:ijms21155471. [PMID: 32751826 PMCID: PMC7432867 DOI: 10.3390/ijms21155471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Male fertility preservation is required when treatment with an aggressive chemo-/-radiotherapy, which may lead to irreversible sterility. Due to new and efficient protocols of cancer treatments, surviving rates are more than 80%. Thus, these patients are looking forward to family life and fathering their own biological children after treatments. Whereas adult men can cryopreserve their sperm for future use in assistance reproductive technologies (ART), this is not an option in prepubertal boys who cannot produce sperm at this age. In this review, we summarize the different technologies for male fertility preservation with emphasize on prepubertal, which have already been examined and/or demonstrated in vivo and/or in vitro using animal models and, in some cases, using human tissues. We discuss the limitation of these technologies for use in human fertility preservation. This update review can assist physicians and patients who are scheduled for aggressive chemo-/radiotherapy, specifically prepubertal males and their parents who need to know about the risks of the treatment on their future fertility and the possible present option of fertility preservation.
Collapse
|
12
|
Ashtari B, Shams A, Esmaeilzadeh N, Tanbakooei S, Koruji M, Moghadam MJ, Ansari JM, Moghadam AJ, Shabani R. Separating mouse malignant cell line (EL4) from neonate spermatogonial stem cells utilizing microfluidic device in vitro. Stem Cell Res Ther 2020; 11:191. [PMID: 32448280 PMCID: PMC7245899 DOI: 10.1186/s13287-020-01671-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Some children who have survived cancer will be azoospermic in the future. Performing isolation and purification procedures for spermatogonial stem cells (SSC) is very critical. In this regard, performing the process of decontamination of cancerous cells is the initial step. The major objective of the present study is to separate the malignant EL4 cell line in mice and spermatogonial stem cells in vitro. METHODS The spermatogonial stem cells of sixty neonatal mice were isolated, and the procedure of co-culturing was carried out by EL4 which were classified into 2 major groups: (1) the control group (co-culture in a growth medium) and (2) the group of co-cultured cells which were separated using the microfluidic device. The percentage of cells was assessed using flow cytometry technique and common laboratory technique of immunocytochemistry and finally was confirmed through the laboratory technique of reverse transcription-polymerase chain reaction (RT-PCR). RESULTS The actual percentage of EL4 and SSC after isolation was collected at two outlets: the outputs for the smaller outlet were 0.12% for SSC and 42.14% for EL4, while in the larger outlet, the outputs were 80.38% for SSC and 0.32% for EL4; in the control group, the percentages of cells were 21.44% for SSC and 23.28% for EL4 (based on t test (p ≤ 0.05)). CONCLUSIONS The present study demonstrates that the use of the microfluidic device is effective in separating cancer cells from spermatogonial stem cells.
Collapse
Affiliation(s)
- Behnaz Ashtari
- Shahdad Ronak Commercialization Company, Pasdaran Street, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azar Shams
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Tanbakooei
- School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
| | | | - Javad Mohajer Ansari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Adel Johari Moghadam
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ronak Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran.
| |
Collapse
|
13
|
Abstract
Infertility caused by chemotherapy or radiation treatments negatively impacts patient-survivor quality of life. The only fertility preservation option available to prepubertal boys who are not making sperm is cryopreservation of testicular tissues that contain spermatogonial stem cells (SSCs) with potential to produce sperm and/or restore fertility. SSC transplantation to regenerate spermatogenesis in infertile adult survivors of childhood cancers is a mature technology. However, the number of SSCs obtained in a biopsy of a prepubertal testis may be small. Therefore, methods to expand SSC numbers in culture before transplantation are needed. Here we review progress with human SSC culture.
Collapse
Affiliation(s)
- Sherin David
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Pelzman DL, Orwig KE, Hwang K. Progress in translational reproductive science: testicular tissue transplantation and in vitro spermatogenesis. Fertil Steril 2020; 113:500-509. [PMID: 32111477 DOI: 10.1016/j.fertnstert.2020.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Since the birth of the first child conceived via in vitro fertilization 40 years ago, fertility treatments and assisted reproductive technology have allowed many couples to reach their reproductive goals. As of yet, no fertility options are available for men who cannot produce functional sperm, but many experimental therapies have demonstrated promising results in animal models. Both autologous (stem cell transplantation, de novo morphogenesis, and testicular tissue grafting) and outside-the-body (xenografting and in vitro spermatogenesis) approaches exist for restoring sperm production in infertile animals with varying degrees of success. Once safety profiles are established and an ideal patient population is chosen, some of these techniques may be ready for human experimentation in the near future, with likely clinical implementation within the next decade.
Collapse
Affiliation(s)
- Daniel L Pelzman
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathleen Hwang
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
15
|
Vermeulen M, Giudice MG, Del Vento F, Wyns C. Role of stem cells in fertility preservation: current insights. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:27-48. [PMID: 31496751 PMCID: PMC6689135 DOI: 10.2147/sccaa.s178490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
While improvements made in the field of cancer therapy allow high survival rates, gonadotoxicity of chemo- and radiotherapy can lead to infertility in male and female pre- and postpubertal patients. Clinical options to preserve fertility before starting gonadotoxic therapies by cryopreserving sperm or oocytes for future use with assisted reproductive technology (ART) are now applied worldwide. Cryopreservation of pre- and postpubertal ovarian tissue containing primordial follicles, though still considered experimental, has already led to the birth of healthy babies after autotransplantation and is performed in an increasing number of centers. For prepubertal boys who do not produce gametes ready for fertilization, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells may be proposed as an experimental strategy with the aim of restoring fertility. Based on achievements in nonhuman primates, autotransplantation of ITT or testicular cell suspensions appears promising to restore fertility of young cancer survivors. So far, whether in two- or three-dimensional culture systems, in vitro maturation of immature male and female gonadal cells or tissue has not demonstrated a capacity to produce safe gametes for ART. Recently, primordial germ cells have been generated from embryonic and induced pluripotent stem cells, but further investigations regarding efficiency and safety are needed. Transplantation of mesenchymal stem cells to improve the vascularization of gonadal tissue grafts, increase the colonization of transplanted cells, and restore the damaged somatic compartment could overcome the current limitations encountered with transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Maria-Grazia Giudice
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Federico Del Vento
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| |
Collapse
|
16
|
Abdelaal O, Barber H, Atala A, Sadri-Ardekani H. Purging of malignant cell contamination prior to spermatogonia stem cell autotransplantation to preserve fertility: progress & prospects. Curr Opin Endocrinol Diabetes Obes 2019; 26:166-174. [PMID: 30998603 DOI: 10.1097/med.0000000000000481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW This systematic review evaluates the state of the art in terms of strategies used to detect and remove contaminated malignant cells from testicular biopsy prior to spermatogonia stem cells (SSCs) autotransplantation to restore fertility. RECENT FINDINGS Several trials have been done in past two decades to determine the reliable methods of detecting and purging cancer cells prior to SSCs autotransplantation. SUMMARY The success in treating childhood cancer has dramatically increased over the past few decades. This leads to increasing demand for a method of fertility preservation for patients with pediatric cancer, as many cancer therapies can be gonadotoxic. Storing the SSCs prior to chemo- or radiation therapies and transplanting them back has been tested as a method of restoring fertility in rodents and nonhuman primate models. This has promise for restoring fertility in childhood cancer survivors. One of the major concerns is the possibility of malignant cell presence in testicular tissue biopsies that could re-introduce cancer to the patient after SSCs autotransplantation. Non-solid cancers - especially hematologic malignancies - have the risk of being transplanted back into patients after SSCs cryopreservation even if they were only present in small number in the stored testicular tissue biopsy.
Collapse
Affiliation(s)
- Omar Abdelaal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Urology, Faculty of Medicine, Zagazig University, Egypt
| | - Heather Barber
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
17
|
Eslahi N, Shakeri-Zadeh A, Ashtari K, Pirhajati-Mahabadi V, Tohidi Moghadam T, Shabani R, Kamrava K, Madjd Z, Maki C, Asgari HR, Koruji M. In Vitro Cytotoxicity of Folate-Silica-Gold Nanorods on Mouse Acute Lymphoblastic Leukemia and Spermatogonial Cells. CELL JOURNAL 2019; 21:14-26. [PMID: 30507084 PMCID: PMC6275430 DOI: 10.22074/cellj.2019.5691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/27/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate in vitro cytotoxicity of gold nanorods (GNRs) on the viability of spermatogonial cells (SSCs) and mouse acute lymphoblastic leukemia cells (EL4s). MATERIALS AND METHODS In this experimental study, SSCs were isolated from the neonate mice, following enzymatic digestion and differential plating. GNRs were synthesized, then modified by silica and finally conjugated with folic acid to form F-Si-GNRs. Different doses of F-Si-GNRs (25, 50, 75, 100, 125 and 140 μM) were used on SSCs and EL4s. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) proliferation assay was performed to examine the GNRs toxicity. Flow cytometry was used to confirm the identity of the EL4s and SSCs. Also, the identity and functionality of SSCs were determined by the expression of specific spermatogonial genes and transplantation into recipient testes. Apoptosis was determined by flow cytometry using an annexin V/propidium iodide (PI) kit. RESULTS Flow cytometry showed that SSCs and EL4s were positive for Plzf and H-2kb, respectively. The viability percentage of SSCs and EL4s that were treated with 25, 50, 75, 100, 125 and 140 μM of F-Si-GNRs was 65.33 ± 3.51%, 60 ± 3.6%, 51.33 ± 3.51%, 49 ± 3%, 30.66 ± 2.08% and 16.33 ± 2.51% for SSCs and 57.66 ± 0.57%, 54.66 ± 1.5%, 39.66 ± 1.52%, 12.33 ± 2.51%, 10 ± 1% and 5.66 ± 1.15% for EL4s respectively. The results of the MTT assay indicated that 100 μM is the optimal dose to reach the highest and lowest level of cell death in EL4s and in SSCs, respectively. CONCLUSION Cell death increased with increasing concentrations of F-Si-GNRs. Following utilization of F-Si-GNRs, there was a significant difference in the extent of apoptosis between cancer cells and SSCs.
Collapse
Affiliation(s)
- Neda Eslahi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Ashtari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Tahereh Tohidi Moghadam
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Kamrava
- Clinical Nanomedicine Laboratory, ENT-Head and Neck Research Center, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center and Dep Pathology, Faculty of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Chad Maki
- VetCell Therapeutics, Daimler St, Santa Ana CA, USA
| | - Hamid Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
18
|
Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions. Biol Res 2019; 52:16. [PMID: 30917866 PMCID: PMC6438003 DOI: 10.1186/s40659-019-0223-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 01/15/2023] Open
Abstract
Background Sperm production is one of the most complex biological processes in the body. In vitro production of sperm is one of the most important goals of researches in the field of male infertility treatment, which is very important in male cancer patients treated with gonadotoxic methods and drugs. In this study, we examine the progression of spermatogenesis after transplantation of spermatogonial stem cells under conditions of testicular tissue culture. Results Testicular tissue samples from azoospermic patients were obtained and then these were freeze–thawed. Spermatogonial stem cells were isolated by two enzymatic digestion steps and the identification of these cells was confirmed by detecting the PLZF protein. These cells, after being labeled with DiI, were transplanted in azoospermia adult mice model. The host testes were placed on agarose gel as tissue culture system. After 8 weeks, histomorphometric, immunohistochemical and molecular studies were performed. The results of histomorphometric studies showed that the mean number of spermatogonial cells, spermatocytes and spermatids in the experimental group was significantly more than the control group (without transplantation) (P < 0.05) and most of the cells responded positively to the detection of DiI. Immunohistochemical studies in host testes fragments in the experimental group express the PLZF, SCP3 and ACRBP proteins in spermatogonial cells, spermatocyte and spermatozoa, respectively, which confirmed the human nature of these cells. Also, in molecular studies of PLZF, Tekt1 and TP1, the results indicated that the genes were positive in the test group, while not in the control group. Conclusion These results suggest that the slow freezing of SSCs can support the induction of spermatogenesis to produce haploid cells under the 3-dimensional testicular tissue culture.
Collapse
Affiliation(s)
- Mahdi Mohaqiq
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-331, Iran.,Stem Cell Department, Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-331, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Naser Amirjannati
- Department of Andrology and Embryology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Zarandi NP, Galdon G, Kogan S, Atala A, Sadri-Ardekani H. Cryostorage of immature and mature human testis tissue to preserve spermatogonial stem cells (SSCs): a systematic review of current experiences toward clinical applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:23-38. [PMID: 30013372 PMCID: PMC6039063 DOI: 10.2147/sccaa.s137873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While the survival rate of children with cancer is increasing, preserving fertility for prepubertal boys is still a challenge. Although intracytoplasmic sperm injection (ICSI) using frozen sperms has revolutionized infertility treatment, it is not applicable for the patients who undergo chemotherapy before puberty since spermatogenesis has not begun. Therefore, preserving spermatogonial stem cells (SSCs) as an experimental option can be provided to prepubertal patients at a risk of damage or loss of their SSCs due to cancer treatments and developmental or genetic disorders. Using frozen SSCs in testicular tissue, successful SSC autotransplantation in mouse and nonhuman primates has shown a promising future for SSC-based cell therapy. Cryopreservation of testicular tissue containing SSCs is the first step to translate SSC-based cell therapy into clinical male infertility treatment, and in the investigation into SSCs, it is very important to evaluate their quantity and functionality during this process. This systematic review summarizes the published data on cryopreservation techniques in human testis tissue for potential utilization in future clinical applications.
Collapse
Affiliation(s)
- Nima Pourhabibi Zarandi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Guillermo Galdon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Stanley Kogan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| |
Collapse
|
20
|
Abofoul-Azab M, AbuMadighem A, Lunenfeld E, Kapelushnik J, Shi Q, Pinkas H, Huleihel M. Development of Postmeiotic Cells In Vitro from Spermatogonial Cells of Prepubertal Cancer Patients. Stem Cells Dev 2018; 27:1007-1020. [PMID: 29779447 DOI: 10.1089/scd.2017.0301] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aggressive chemotherapy in childhood often results in testicular damage and consequently jeopardizes future fertility. The presence of spermatogonial cells (SPGCs) in the testes of prepubertal cancer patient boys (PCPBs) can be used to develop future strategies for male fertility preservation. In the present study, we examined the presence of SPGCs in testes of chemotherapy-treated PCPBs and their ability to develop spermatogenesis in vitro using a three-dimensional culture system. Seven testicular biopsies were obtained from chemotherapy-treated PCPBs and one from a patient with β-thalassemia major. Isolated testicular cells were cultured in a methylcellulose culture system (MCS)-containing StemPro enriched with growth factors for 5-15 weeks. The presence of premeiotic, meiotic, and postmeiotic cells was examined by immunofluorescence staining and/or reverse transcription-polymerase chain reaction (RT-PCR) analysis. We observed SPGCs in the examined testicular biopsies. Isolated testicular cells cultured in MCS developed into colonies and contained premeiotic, meiotic, and postmeiotic cells. Furthermore, we identified sperm-like cells that had developed from testicular cells of a PCPB. Our results demonstrate, for the first time, the presence of biologically active SPGCs in testicular biopsies of chemotherapy-treated PCPBs and their capacity to develop in vitro to different stages of spermatogenesis, including the generation of sperm-like cells. This study may open the way for new therapeutic strategies for fertility preservation of PCPBs and for azoospermic patients.
Collapse
Affiliation(s)
- Maram Abofoul-Azab
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel
| | - Ali AbuMadighem
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel
| | - Eitan Lunenfeld
- 2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,4 Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center , Beer-Sheva, Israel
| | - Joseph Kapelushnik
- 2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,5 Department of Pediatric Oncology, Soroka University Medical Center , Beer-Sheva, Israel .,6 Department of Hematology, Soroka University Medical Center , Beer-Sheva, Israel
| | - QingHua Shi
- 7 Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China , Hefei, China
| | - Haim Pinkas
- 8 Male Infertility and Sperm Bank, Helen Schneider Hospital for Women, Rabin Medical Center , Beilinson Hospital, Petach Tikva, Israel
| | - Mahmoud Huleihel
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva, Israel .,2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev , Beer-Sheva, Israel .,3 Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva, Israel
| |
Collapse
|
21
|
Shabani R, Ashjari M, Ashtari K, Izadyar F, Behnam B, Khoei S, Asghari-Jafarabadi M, Koruji M. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro. Int J Nanomedicine 2018; 13:2943-2954. [PMID: 29849458 PMCID: PMC5965374 DOI: 10.2147/ijn.s155052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. Objective The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. Methods SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. Results The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. Conclusion The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug.
Collapse
Affiliation(s)
- Ronak Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ashjari
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Khadijeh Ashtari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology and Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Babak Behnam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,NIH Undiagnosed Diseases Program, Common Fund, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Del Vento F, Vermeulen M, de Michele F, Giudice MG, Poels J, des Rieux A, Wyns C. Tissue Engineering to Improve Immature Testicular Tissue and Cell Transplantation Outcomes: One Step Closer to Fertility Restoration for Prepubertal Boys Exposed to Gonadotoxic Treatments. Int J Mol Sci 2018; 19:ijms19010286. [PMID: 29346308 PMCID: PMC5796232 DOI: 10.3390/ijms19010286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Despite their important contribution to the cure of both oncological and benign diseases, gonadotoxic therapies present the risk of a severe impairment of fertility. Sperm cryopreservation is not an option to preserve prepubertal boys’ reproductive potential, as their seminiferous tubules only contain spermatogonial stem cells (as diploid precursors of spermatozoa). Cryobanking of human immature testicular tissue (ITT) prior to gonadotoxic therapies is an accepted practice. Evaluation of cryopreserved ITT using xenotransplantation in nude mice showed the survival of a limited proportion of spermatogonia and their ability to proliferate and initiate differentiation. However, complete spermatogenesis could not be achieved in the mouse model. Loss of germ cells after ITT grafting points to the need to optimize the transplantation technique. Tissue engineering, a new branch of science that aims at improving cellular environment using scaffolds and molecules administration, might be an approach for further progress. In this review, after summarizing the lessons learned from human prepubertal testicular germ cells or tissue xenotransplantation experiments, we will focus on the benefits that might be gathered using bioengineering techniques to enhance transplantation outcomes by optimizing early tissue graft revascularization, protecting cells from toxic insults linked to ischemic injury and exploring strategies to promote cellular differentiation.
Collapse
Affiliation(s)
- Federico Del Vento
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Maxime Vermeulen
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Francesca de Michele
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Maria Grazia Giudice
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Jonathan Poels
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Christine Wyns
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
- Correspondence: ; Tel.: +32-2-764-95-01
| |
Collapse
|
23
|
Cordeiro A, Navarro A, Gaya A, Díaz-Beyá M, Gonzalez-Farré B, Castellano JJ, Fuster D, Martínez C, Martínez A, Monzó M. PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget 2018; 7:46002-46013. [PMID: 27329591 PMCID: PMC5216777 DOI: 10.18632/oncotarget.10015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/26/2016] [Indexed: 01/31/2023] Open
Abstract
PiwiRNAs, small non-coding RNAs processed by Piwi proteins, are involved in maintaining genome stability in germline cells. Recently, piwiRNA expression has been identified in some tumors. We have examined the potential reactivation of the Piwi/piwiRNA pathway in classical Hodgkin lymphoma (cHL). We found that Piwi proteins and three selected piwiRNAs, including piR-651, were expressed in cHL patients and cell lines, indicating that the Piwi/piwiRNA pathway is active in cHL. Interestingly, low levels of piR-651 were associated with lack of complete response to first-line treatment, as well as shorter disease-free and overall survival in a cohort of 94 cHL patients. At diagnosis, piR-651 was underexpressed in cHL serum samples compared to healthy controls, while after complete remission, piR-651 levels increased to levels similar to healthy controls. This is the first evidence that piwiRNAs are active in tumor and serum samples and impact prognosis in cHL.
Collapse
Affiliation(s)
- Anna Cordeiro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Anna Gaya
- Hematology Department, Hospital Clinic Barcelona, IDIBAPS, Barcelona, Spain
| | - Marina Díaz-Beyá
- Hematology Department, Hospital Clinic Barcelona, IDIBAPS, Barcelona, Spain
| | | | - Joan Josep Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Dolors Fuster
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carmen Martínez
- Hematology Department, Hospital Clinic Barcelona, IDIBAPS, Barcelona, Spain
| | - Antonio Martínez
- Hematopathology Section, Hospital Clinic Barcelona, IDIBAPS, Barcelona, Spain
| | - Mariano Monzó
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review evaluates the state of the art in terms of challenges and strategies used to restore fertility with spermatogonial stem cells retrieved from prepubertal boys affected by cancer. Although these boys do not yet produce spermatozoa, the only option to preserve their fertility is cryopreservation of spermatogonial stem cells in the form of testicular cell suspensions or whole tissue pieces. Different techniques have been described to achieve completion of spermatogenesis from human, spermatogonial stem cells but none is yet ready for clinical application. A crucial point to address is gaining a full understanding of spermatogonial stem cell niche pathophysiology, where germ cells undergo proliferation and differentiation. Various fertility restoration approaches will be presented depending on the presence of an intact niche, dissociated niche, or reconstituted niche. RECENT FINDINGS Testicular organoids open the way to providing further insights into the niche. They can recreate the three-dimensional architecture of the testicular microenvironment in vitro, allowing a large number of applications, from physiology to drug toxicity investigations. SUMMARY In addition to the full elucidation of the niche microenvironment, achieving fertility restoration from cryopreserved human spermatogonial stem cells implies overcoming other important challenges. Testicular organoids might prove to be essential tools to progress in this field.
Collapse
Affiliation(s)
- Francesca de Michele
- aInstitut de Recherche Expérimentale et Clinique, Université Catholique de Louvain bDepartment of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | | |
Collapse
|
25
|
Update on fertility restoration from prepubertal spermatogonial stem cells: How far are we from clinical practice? Stem Cell Res 2017; 21:171-177. [DOI: 10.1016/j.scr.2017.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
|
26
|
Onofre J, Baert Y, Faes K, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update 2016; 22:744-761. [PMID: 27566839 PMCID: PMC5099994 DOI: 10.1093/humupd/dmw029] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Germ cell depletion caused by chemical or physical toxicity, disease or genetic predisposition can occur at any age. Although semen cryopreservation is the first reflex for preserving male fertility, this cannot help out prepubertal boys. Yet, these boys do have spermatogonial stem cells (SSCs) that able to produce sperm at the start of puberty, which allows them to safeguard their fertility through testicular tissue (TT) cryopreservation. SSC transplantation (SSCT), TT grafting and recent advances in in vitro spermatogenesis have opened new possibilities to restore fertility in humans. However, these techniques are still at a research stage and their efficiency depends on the amount of SSCs available for fertility restoration. Therefore, maintaining the number of SSCs is a critical step in human fertility preservation. Standardizing a successful cryopreservation method for TT and testicular cell suspensions (TCSs) is most important before any clinical application of fertility restoration could be successful. OBJECTIVE AND RATIONALE This review gives an overview of existing cryopreservation protocols used in different animal models and humans. Cell recovery, cell viability, tissue integrity and functional assays are taken into account. Additionally, biosafety and current perspectives in male fertility preservation are discussed. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies linked to the topic were identified by the search terms: cryopreservation, male fertility preservation, (immature)testicular tissue, testicular cell suspension, spermatogonial stem cell, gonadotoxicity, radiotherapy and chemotherapy. OUTCOMES The feasibility of fertility restoration techniques using frozen-thawed TT and TCS has been proven in animal models. Efficient protocols for cryopreserving human TT exist and are currently applied in the clinic. For TCSs, the highest post-thaw viability reported after vitrification is 55.6 ± 23.8%. Yet, functional proof of fertility restoration in the human is lacking. In addition, few to no data are available on the safety aspects inherent to offspring generation with gametes derived from frozen-thawed TT or TCSs. Moreover, clarification is needed on whether it is better to cryopreserve TT or TCS. WIDER IMPLICATIONS Fertility restoration techniques are very promising and expected to be implemented in the clinic in the near future. However, inter-center variability needs to be overcome and the gametes produced for reproduction purposes need to be subjected to safety studies. With the perspective of a future clinical application, there is a dire need to optimize and standardize cryopreservation and safety testing before using frozen-thawed TT of TCSs for fertility restoration.
Collapse
Affiliation(s)
- J Onofre
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Y Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - K Faes
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
27
|
Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril 2016; 106:1539-1549.e8. [PMID: 27490045 DOI: 10.1016/j.fertnstert.2016.07.1065] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. INTERVENTION(S) Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA-)/epithelial cell surface antigen (EPCAM+) in coculture with inactivated testicular feeders from the same patient. MAIN OUTCOME MEASURE(S) Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. RESULT(S) Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA-/EPCAM+ resulted in an enrichment of 27% VASA+/UTF1+ hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm2) and differentially plated cells (49 hSSCS/cm2). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. CONCLUSION(S) We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA-/EPCAM+ sorted cells with testicular feeders improved the germ cell/somatic cell ratio.
Collapse
|
28
|
Shabani R, Ashtari K, Behnam B, Izadyar F, Asgari H, Asghari Jafarabadi M, Ashjari M, Asadi E, Koruji M. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells. Andrologia 2015; 48:584-94. [PMID: 26428408 DOI: 10.1111/and.12490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 01/15/2023] Open
Abstract
Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture.
Collapse
Affiliation(s)
- R Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - K Ashtari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology and Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - B Behnam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - F Izadyar
- Primegen Biotech LLC, Santa Ana, CA, USA
| | - H Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Asghari Jafarabadi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Ashjari
- Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - E Asadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Yokonishi T, Ogawa T. Cryopreservation of testis tissues and in vitro spermatogenesis. Reprod Med Biol 2015; 15:21-28. [PMID: 26709347 PMCID: PMC4686543 DOI: 10.1007/s12522-015-0218-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/06/2015] [Indexed: 01/15/2023] Open
Abstract
Cancer treatments, either chemo‐ or radiotherapy, may cause severe damage to gonads which could lead to the infertility of patients. In post‐pubertal male patients, semen cryopreservation is recommended to preserve the potential to have their own biological children in the future; however, it is not applicable to prepubertals. The preservation of testis tissue which contains spermatogonial stem cells (SSCs) but not sperm would be an alternative measure. The tissues or SSCs have to be transplanted back into patients to obtain sperm; however, this procedure remains experimental, invasive, and is accompanied with the potential risk of re‐implantation of cancer cells. Recently, we developed an organ culture system which supports the spermatogenesis of mice up to sperm formation from SSCs. It was also shown that the tissues could be frozen for later sperm production, which resulted in the generation of offspring. Thus, it could be useful as a clinical application for preserving the reproductive potential of male pediatric cancer patients. The establishment of an optimized cryopreservation method and the development of a culture system for human testis tissue are expected in the future.
Collapse
Affiliation(s)
- Tetsuhiro Yokonishi
- Department of UrologyYokohama City University Graduate School of Medicine236‐0004YokohamaJapan
| | - Takehiko Ogawa
- Department of UrologyYokohama City University Graduate School of Medicine236‐0004YokohamaJapan
- Laboratory of Proteomics, Institute of Molecular Medicine and Life ScienceYokohama City University Association of Medical Science236‐0004YokohamaJapan
| |
Collapse
|
30
|
Jahnukainen K, Mitchell RT, Stukenborg JB. Testicular function and fertility preservation after treatment for haematological cancer. Curr Opin Endocrinol Diabetes Obes 2015; 22:217-23. [PMID: 25871959 DOI: 10.1097/med.0000000000000156] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Treatment for high-risk or relapsed haematological malignancy with haematopoietic stem cell transplantation is known to cause infertility. Today, there are no established options for fertility preservation in pre-pubertal boys. This review aims to describe how therapy for haematological malignancy in childhood affects male fertility, and to summarize recent developments for fertility preservation in these patients. RECENT FINDINGS Eventual recovery of spermatogenesis is probable after chemotherapy-based conditioning for haematopoietic stem cell transplantation. However, conditioning with total body irradiation is associated with a very high risk of permanent infertility. For high-risk patients, auto-transplantation of cryopreserved testicular tissue or cells might represent an approach for fertility preservation; however, contamination of testis tissue with malignant cells may prevent their subsequent reintroduction into patients. Recent progress using in-vitro differentiation of germ cells combined with assisted reproductive techniques may, in the future, represent a suitable alternative to retransplantation. SUMMARY Particular care must be taken when assessing infertility risk in patients with haematological malignancy as reclassification to high risk may significantly increase the likelihood of treatment-related gonadotoxicity. Importantly, development of fertility preservation strategies in such high-risk patients must also take into account specific risks for haematological cancers including cancer cell contamination.
Collapse
Affiliation(s)
- Kirsi Jahnukainen
- aPediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden bDivision of Haematology-Oncology and Stem Cell Transplantation, Children's Hospital, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland cMRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh dThe Edinburgh Royal Hospital for Sick Children, Edinburgh, UK *Kirsi Jahnukainen, Rod T. Mitchell, and Jan-Bernd Stukenborg contributed equally to the writing of this aticle
| | | | | |
Collapse
|
31
|
Benavides-Garcia R, Joachim R, Pina NA, Mutoji KN, Reilly MA, Hermann BP. Granulocyte colony-stimulating factor prevents loss of spermatogenesis after sterilizing busulfan chemotherapy. Fertil Steril 2015; 103:270-80.e8. [PMID: 25439845 PMCID: PMC4282609 DOI: 10.1016/j.fertnstert.2014.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/24/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine whether granulocyte colony-stimulating factor (G-CSF) could prevent loss of spermatogenesis induced by busulfan chemotherapy via protection of undifferentiated spermatogonia, which might serve as an adjuvant approach to preserving male fertility among cancer patients. DESIGN Laboratory animal study. SETTING University. ANIMAL(S) Laboratory mice. INTERVENTION(S) Five-week-old mice were treated with a sterilizing busulfan dose and with 7 days of G-CSF or vehicle treatment and evaluated 10 weeks later (experiment 1) or 24 hours after treatment (experiment 2). MAIN OUTCOME MEASURE(S) Experiment 1: testis weights, epididymal sperm counts, testis histology. Experiment 2: PLZF immunofluorescent costaining with apoptotic markers. Molecular analysis of G-CSF receptor expression in undifferentiated spermatogonia. RESULT(S) Ten weeks after treatment, busulfan-treated mice that also received treatment with G-CSF exhibited significantly better recovery of spermatogenesis and epididymal sperm counts than animals receiving busulfan alone. G-CSF led to increased numbers of PLZF+ spermatogonia 24 hours after treatment that was not accompanied by changes in apoptosis. To address the cellular target of G-CSF, mRNA for the G-CSF receptor, Csf3r, was found in adult mouse testes and cultured THY1+ (undifferentiated) spermatogonia, and cell-surface localized CSF3R was observed on 3% of cultured THY1+ spermatogonia. CONCLUSION(S) These results demonstrate that G-CSF protects spermatogenesis from gonadotoxic insult (busulfan) in rodents, and this may occur via direct action on CSF3R+ undifferentiated spermatogonia. G-CSF treatment might be an effective adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.
Collapse
Affiliation(s)
| | - Rose Joachim
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Nancy A Pina
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Kazadi N Mutoji
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Matthew A Reilly
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas.
| |
Collapse
|
32
|
Altman E, Yango P, Moustafa R, Smith JF, Klatsky PC, Tran ND. Characterization of human spermatogonial stem cell markers in fetal, pediatric, and adult testicular tissues. Reproduction 2014; 148:417-27. [PMID: 25030892 PMCID: PMC4599365 DOI: 10.1530/rep-14-0123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autologous spermatogonial stem cell (SSC) transplantation is a potential therapeutic modality for patients with azoospermia following cancer treatment. For this promise to be realized, definitive membrane markers of prepubertal and adult human SSCs must be characterized in order to permit SSC isolation and subsequent expansion. This study further characterizes the markers of male gonocytes, prespermatogonia, and SSCs in humans. Human fetal, prepubertal, and adult testicular tissues were analyzed by confocal microscopy, fluorescence-activated cell sorting, and qRT-PCR for the expression of unique germ cell membrane markers. During male fetal development, THY1 and KIT (C-Kit) are transient markers of gonocytes but not in prespermatogonia and post-natal SSCs. Although KIT expression is detected in gonocytes, THY1 expression is also detected in the somatic component of the fetal testes in addition to gonocytes. In the third trimester of gestation, THY1 expression shifts exclusively to the somatic cells of the testes where it continues to be detected only in the somatic cells postnatally. In contrast, SSEA4 expression was only detected in the gonocytes, prespermatogonia, SSCs, and Sertoli cells of the fetal and prepubertal testes. After puberty, SSEA4 expression can only be detected in primitive spermatogonia. Thus, although THY1 and KIT are transient markers of gonocytes, SSEA4 is the only common membrane marker of gonocytes, prespermatogonia, and SSCs from fetal through adult human development. This finding is essential for the isolation of prepubertal and adult SSCs, which may someday permit fertility preservation and reversal of azoospermia following cancer treatment.
Collapse
Affiliation(s)
- Eran Altman
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - Pamela Yango
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - Radwa Moustafa
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - James F Smith
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - Peter C Klatsky
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - Nam D Tran
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| |
Collapse
|
33
|
Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation. Fertil Steril 2014; 102:1491-1498.e1. [PMID: 25241367 DOI: 10.1016/j.fertnstert.2014.07.1250] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To determine whether optimal human spermatogonial stem cell (SSC) cryopreservation is best achieved with testicular tissue or single cell suspension cryopreservation. This study compares the effectiveness between these two approaches by using testicular SSEA-4+ cells, a known population containing SSCs. DESIGN In vitro human testicular tissues. SETTING Academic research unit. PATIENT(S) Adult testicular tissues (n=4) collected from subjects with normal spermatogenesis and normal fetal testicular tissues (n=3). INTERVENTION(S) Testicular tissue versus single cell suspension cryopreservation. MAIN OUTCOME MEASURE(S) Cell viability, total cell recovery per milligram of tissue, as well as viable and SSEA-4+ cell recovery. RESULT(S) Single cell suspension cryopreservation yielded higher recovery of SSEA-4+ cells enriched in adult SSCs, whereas fetal SSEA-4+ cell recovery was similar between testicular tissue and single cell suspension cryopreservation. CONCLUSION(S) Adult and fetal human SSEA-4+ populations exhibited differential sensitivity to cryopreservation based on whether they were cryopreserved in situ as testicular tissues or as single cells. Thus, optimal preservation of human SSCs depends on the patient's age, type of samples cryopreserved, and end points of therapeutic applications.
Collapse
|
34
|
Sadri-Ardekani H, Atala A. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside. Stem Cell Res Ther 2014; 5:68. [PMID: 25157677 PMCID: PMC4056749 DOI: 10.1186/scrt457] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Male infertility management has made significant progress during the past three decades, especially after the introduction of intracytoplasmic sperm injection in 1992. However, many boys and men still suffer from primary testicular failure due to acquired or genetic causes. New and novel treatments are needed to address these issues. Spermatogenesis originates from spermatogonial stem cells (SSCs) that reside in the testis. Many of these men lack SSCs or have lost SSCs over time as a result of specific medical conditions or toxic exposures. Loss of SSCs is critical in prepubertal boys who suffer from cancer and are going through gonadotoxic cancer treatments, as there is no option of sperm cryopresrvation due to sexual immaturity. The development of SSC transplantation in a mouse model to repopulate spermatozoa in depleted testes has opened new avenues of research in other animal models, including non-human primates. Recent advances in cryopreservation and in vitro propagation of human SSCs offer promise for human SSC autotransplantation in the near future. Ongoing research is focusing on safety and technical issues of human SSC autotransplantation. This is the time to counsel parents and boys at risk of infertility on the possibility of cryopreserving and banking a small amount of testis tissue for potential future use in SSC transplantation.
Collapse
|
35
|
Sadri-Ardekani H, Homburg CH, van Capel TMM, van den Berg H, van der Veen F, van der Schoot CE, van Pelt AMM, Repping S. Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: a pilot study. Fertil Steril 2014; 101:1072-1078.e1. [PMID: 24581582 DOI: 10.1016/j.fertnstert.2014.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To study whether acute lymphoblastic leukemia (ALL) cells survive in a human testicular cell culture system. DESIGN Experimental laboratory study. SETTING Reproductive biology laboratory, academic medical center. PATIENT(S) Acute lymphoblastic leukemia cells from three patients and testicular cells from three other patients. INTERVENTION(S) Acute lymphoblastic leukemia cells were cultured alone or in combination with testicular cells, at various concentrations, in a system that has recently been developed to propagate human spermatogonial stem cells. MAIN OUTCOME MEASURE(S) Viability of ALL and testicular cells during culture was evaluated by flow cytometry using markers for live/dead cells. Furthermore, the presence of ALL cells among testicular cells was determined by highly sensitive (1:10,000 to 1:100,000 cells) patient-specific antigen-receptor minimal residual disease polymerase chain reaction. The presence of spermatogonia at the end of culture was determined by reverse transcription-polymerase chain reaction for ZBTB16, UCHL1, and GPR125. RESULT(S) The ALL cells cultured separately did not survive beyond 14 days of culture. When cultured together with testicular cells, even at extremely high initial concentrations (40% ALL cells), ALL cells were undetectable beyond 26 days of culture. Reverse transcription-polymerase chain reaction confirmed the presence of spermatogonia at the end of the culture period. CONCLUSION(S) Our pilot study shows that the described testicular cell culture system not only allows for efficient propagation of spermatogonial stem cells but also eliminates contaminating ALL cells.
Collapse
Affiliation(s)
- Hooman Sadri-Ardekani
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Reproductive Biotechnology Research Center, Avicenna Research Institute, The Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| | - Christa H Homburg
- Experimental Immunohematology, Sanquin Research at the Central Laboratory of the Netherlands Red Cross Blood Transfusion Service (CLB), Amsterdam, the Netherlands
| | - Toni M M van Capel
- Departments of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatric Oncology, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Fulco van der Veen
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C Ellen van der Schoot
- Experimental Immunohematology, Sanquin Research at the Central Laboratory of the Netherlands Red Cross Blood Transfusion Service (CLB), Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sjoerd Repping
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Yeh JR, Nagano MC. Spermatogonial stem cell biomarkers: improved outcomes of spermatogonial transplantation in male fertility restoration? Expert Rev Mol Diagn 2014; 9:109-14. [DOI: 10.1586/14737159.9.2.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Abstract
Infertility is defined as the inability of a couple to conceive after 12 months of unprotected intercourse and affects 15% of couples with male component of 50%. The failure of spermatogenesis can result from hypothalamic, pituitary or testicular disorders although in the majority of cases it remains idiopathic. The diagnostic process includes medical history, semen analysis, hormonal studies, genetic studies and radiological evaluation. Targeted hormonal therapies are available for patients whose infertility is caused by altered levels of androgens, prolactin, or TSH. Main treatments aim to restore normal sexual function by administering testosterone and to increase spermatogenesis with pulsatile GnRH. Fertility in men suffering from hypogonadotrophic hypogonadism can be restored through hormone therapy using GnRH or with the use of gonadotropins when there is hypothalamic failure. In the past, treatment options for the factors of idiopathic male infertility were mainly based on the use of anti-estrogens that cause an increased secretion of FSH and LH and therefore of testosterone. Oxytocin promotes the progression of the sperm and increases the conversion of testosterone into dihydrotestosterone. The aromatase's inhibitors decrease the conversion of androgens to estrogens, increasing serum levels of androgens, resulting in an increased release of gonadotropins. Two areas showed interesting future perspectives for the treatment of infertility: gene therapy and transplantation of spermatogonial stem cells.
Collapse
|
38
|
Valli H, Phillips BT, Shetty G, Byrne JA, Clark AT, Meistrich ML, Orwig KE. Germline stem cells: toward the regeneration of spermatogenesis. Fertil Steril 2013; 101:3-13. [PMID: 24314923 DOI: 10.1016/j.fertnstert.2013.10.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 01/15/2023]
Abstract
Improved therapies for cancer and other conditions have resulted in a growing population of long-term survivors. Infertility is an unfortunate side effect of some cancer therapies that impacts the quality of life of survivors who are in their reproductive or prereproductive years. Some of these patients have the opportunity to preserve their fertility using standard technologies that include sperm, egg, or embryo banking, followed by IVF and/or ET. However, these options are not available to all patients, especially the prepubertal patients who are not yet producing mature gametes. For these patients, there are several stem cell technologies in the research pipeline that may give rise to new fertility options and allow infertile patients to have their own biological children. We will review the role of stem cells in normal spermatogenesis as well as experimental stem cell-based techniques that may have potential to generate or regenerate spermatogenesis and sperm. We will present these technologies in the context of the fertility preservation paradigm, but we anticipate that they will have broad implications for the assisted reproduction field.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Bart T Phillips
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James A Byrne
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, Los Angeles, California; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California
| | - Amander T Clark
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
39
|
Préservation de la fertilité chez le garçon prépubère : transplantation de cellules souches spermatogoniales et greffe testiculaire. ACTA ACUST UNITED AC 2013; 41:529-31. [DOI: 10.1016/j.gyobfe.2013.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
|
40
|
|
41
|
Dovey SL, Valli H, Hermann BP, Sukhwani M, Donohue J, Castro CA, Chu T, Sanfilippo JS, Orwig KE. Eliminating malignant contamination from therapeutic human spermatogonial stem cells. J Clin Invest 2013; 123:1833-43. [PMID: 23549087 DOI: 10.1172/jci65822] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/24/2013] [Indexed: 01/09/2023] Open
Abstract
Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4-contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC-/CD49e- (putative spermatogonia) and EpCAM-/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC-/CD49e- fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to-nude mouse xenotransplantation. The EpCAM-/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression.
Collapse
Affiliation(s)
- Serena L Dovey
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Goossens E, Van Saen D, Tournaye H. Spermatogonial stem cell preservation and transplantation: from research to clinic. Hum Reprod 2013; 28:897-907. [PMID: 23427228 DOI: 10.1093/humrep/det039] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
STUDY QUESTION What issues remain to be solved before fertility preservation and transplantation can be offered to prepubertal boys? SUMMARY ANSWER The main issues that need further investigation are malignant cell decontamination, improvement of in vivo fertility restoration and in vitro maturation. WHAT IS KNOWN ALREADY Prepubertal boys who need gonadotoxic treatment might render sterile for the rest of their life. As these boys do not yet produce sperm cells, they cannot benefit from sperm banking. Spermatogonial stem cell (SSC) banking followed by autologous transplantation has been proposed as a fertility preservation strategy. But before this technique can be applied in the clinic, some important issues have to be resolved. STUDY DESIGN, SIZE DURATION Original articles as well as review articles published in English were included in a search of the literature. PARTICIPANTS/MATERIALS, SETTING, METHODS Relevant studies were selected by an extensive Medline search. Search terms were fertility preservation, cryopreservation, prepubertal, SSC, testis tissue, transplantation, grafting and in vitro spermatogenesis. The final number of studies selected for this review was 102. MAIN RESULTS AND THE ROLE OF CHANCE Cryopreservation protocols for testicular tissue have been developed and are already being used in the clinic. Since the efficiency and safety of SSC transplantation have been reported in mice, transplantation methods are now being adapted to the human testes. Very recently, a few publications reported on in vitro spermatogenesis in mice, but this technique is still far from being applied in a clinical setting. LIMITATIONS, REASONS FOR CAUTION Using tissue from cancer patients holds a potential risk for contamination of the collected testicular tissue. Therefore, it is of immense importance to separate malignant cells from the cell suspension before transplantation. Because biopsies obtained from young boys are small and contain only few SSCs, propagation of these cells in vitro will be necessary. WIDER IMPLICATIONS OF THE FINDINGS The ultimate use of the banked tissue will depend on the patient's disease. If the patient was suffering from a non-malignant disease, tissue grafting might be offered. In cancer patients, decontaminated cell suspensions will be injected in the testis. For patients with Klinefelter syndrome, the only option would be in vitro spermatogenesis. However, at present, restoring fertility in cancer and Klinefelter patients is not yet possible. STUDY FUNDING/COMPETING INTEREST(S) Research Foundation, Flanders (G.0385.08 to H.T.), the Institute for the Agency for Innovation, Belgium (IWT/SB/111245 to E.G.), the Flemish League against Cancer (to E.G.), Kom op tegen kanker (G.0547.11 to H.T.) and the Fund Willy Gepts (to HT). E.G. is a Postdoctoral Fellow of the FWO, Research Foundation, Flanders. There are no conflicts of interest.
Collapse
Affiliation(s)
- E Goossens
- Biology of the testis, Department for Embryology and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
| | | | | |
Collapse
|
43
|
Restoring fertility in sterile childhood cancer survivors by autotransplanting spermatogonial stem cells: are we there yet? BIOMED RESEARCH INTERNATIONAL 2013; 2013:903142. [PMID: 23509797 PMCID: PMC3581117 DOI: 10.1155/2013/903142] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/11/2012] [Indexed: 12/29/2022]
Abstract
Current cancer treatment regimens do not only target tumor cells, but can also have devastating effects on the spermatogonial stem cell pool, resulting in a lack of functional gametes and hence sterility. In adult men, fertility can be preserved prior to cancer treatment by cryopreservation of ejaculated or surgically retrieved spermatozoa, but this is not an option for prepubertal boys since spermatogenesis does not commence until puberty. Cryopreservation of a testicular biopsy taken before initiation of cancer treatment, followed by in vitro propagation of spermatogonial stem cells and subsequent autotransplantation of these stem cells after cancer treatment, has been suggested as a way to preserve and restore fertility in childhood cancer survivors. This strategy, known as spermatogonial stem cell transplantation, has been successful in mice and other model systems, but has not yet been applied in humans. Although recent progress has brought clinical application of spermatogonial stem cell autotransplantation in closer range, there are still a number of important issues to address. In this paper, we describe the state of the art of spermatogonial stem cell transplantation and outline the hurdles that need to be overcome before clinical implementation.
Collapse
|
44
|
Jahnukainen K, Stukenborg JB. Clinical review: Present and future prospects of male fertility preservation for children and adolescents. J Clin Endocrinol Metab 2012; 97:4341-51. [PMID: 23038680 DOI: 10.1210/jc.2012-3065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Rapid progress in fertility preservation strategies has led to the investigation of ways in which fertile gametes could be generated from cryopreserved immature testicular tissue. Childhood cancer patients remain the major group that can benefit from these techniques. Other potential candidates include patients undergoing gonadectomy and patients with Klinefelter's syndrome and cryptorchid testes. This review aims to present an overview of the current state of knowledge in experimental germ cell transplantation, testicular tissue transplantation, and germ cell culture as fertility preservation methods for males. METHODOLOGY We included English articles published in PubMed as well as personal files with the focus on studies including human or nonhuman material. MAIN FINDINGS Germ cell and testicular tissue transplantation demonstrate clinical options to mature germ cells from immature primate testicular tissue. The most promising approach involves autologous grafting of immature testicular tissue, whereas germ cell maturation in vitro provides the best strategies to overcome problems of cancer contamination in cryopreserved testicular tissue. Three-dimensional and organ culture systems offer the possibility to differentiate immature male germ cells up to the stage of elongated spermatids. Further characterization of early germ cell development in humans is needed to modify these systems for clinical use.
Collapse
Affiliation(s)
- Kirsi Jahnukainen
- Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska University Hospital and Karolinska Institutet, SE-17176 Stockholm, Sweden.
| | | |
Collapse
|
45
|
Repopulation geschädigter Hodenkanälchen. GYNAKOLOGISCHE ENDOKRINOLOGIE 2012. [DOI: 10.1007/s10304-012-0478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
From in vitro culture to in vivo models to study testis development and spermatogenesis. Cell Tissue Res 2012; 349:691-702. [DOI: 10.1007/s00441-012-1457-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 05/30/2012] [Indexed: 12/24/2022]
|
47
|
Hermann BP, Sukhwani M, Salati J, Sheng Y, Chu T, Orwig KE. Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum Reprod 2011; 26:3222-31. [PMID: 22016413 DOI: 10.1093/humrep/der343] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chemotherapy and radiation treatments for cancer and other diseases can cause male infertility. There are currently no options to preserve the fertility of prepubertal boys who are not yet making sperm. Cryopreservation of spermatogonial stem cells (SSCs, obtained via testicular biopsy) followed by autologous transplantation back into the testes at a later date may restore fertility in these patients. However, this approach carries an inherent risk of reintroducing cancer. METHODS To address this aspect of SSC transplantation safety, prepubertal non-human primate testis cell suspensions were inoculated with MOLT4 T-lymphoblastic leukemia cells and subsequently sorted for cell surface markers CD90 (THY-1) and CD45. RESULTS Cancer cells segregated to the CD90-/CD45+ fraction and produced tumors in nude mice. Nearly all sorted DEAD box polypeptide 4-positive (VASA+) spermatogonia segregated to the CD90+/CD45- fraction. In a preliminary experiment, a purity check of the sorted putative stem cell fraction (CD90+/CD45-) revealed 0.1% contamination with cancer cells, which was sufficient to produce tumors in nude mice. We hypothesized that the contamination resulted from mis-sorting due to cell clumping and employed singlet discrimination (SD) in four subsequent experiments. Purity checks revealed no cancer cell contamination in the CD90+/CD45- fraction from three of the four SD replicates and these fractions produced no tumors when transplanted into nude mouse testes. CONCLUSIONS We conclude that spermatogonia can be separated from contaminating malignant cells by fluorescence-activated cell sorting prior to SSC transplantation and that post-sorting purity checks are required to confirm elimination of malignant cells.
Collapse
Affiliation(s)
- Brian P Hermann
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
48
|
Current options for preservation of fertility in the male. Fertil Steril 2011; 96:286-90. [DOI: 10.1016/j.fertnstert.2011.06.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 12/26/2022]
|
49
|
Abstract
PURPOSE OF REVIEW Fertility in adult life can be severely impaired by gonadotoxic therapies and with remarkable advancements in the treatment of childhood cancers there is a growing population of adult survivors of childhood malignancies. The aim of the study is to review the developments that have been made in spermatogonial stem cell research and potential future utility in fertility preservation. RECENT FINDINGS Whereas intense interest and subsequent research surrounds the regenerative potential of spermatogonial stem cells, a recent article highlights the in-vitro propagation of human spermatogonial stem cells from testicular biopsies for future transplantation and restoration of fertility. Whereas in-vitro propagation of spermatogonial stem cells has been established in animal models this is the first study in humans. SUMMARY Spermatogonial stem cell transplantation began as a theoretical approach that currently is studied ardently by several research groups to make this a valid clinical option. Restoration of fertility following spermatogonial stem cell transplantation in animals suggests therapeutic potential for the technique in humans, and further research is proceeding to address the safety and efficacy of this technique.
Collapse
|
50
|
Hwang K, Walters RC, Lipshultz LI. Contemporary concepts in the evaluation and management of male infertility. Nat Rev Urol 2011; 8:86-94. [PMID: 21243017 PMCID: PMC3654691 DOI: 10.1038/nrurol.2010.230] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Infertility in men is a common condition. At the core of the medical evaluation of the male partner in a couple who are unable to conceive is the history and physical examination. Special attention should be directed to the patient's developmental history and any use of testosterone products. The physical examination focuses on the genitals, and includes assessments of the size and consistency of the testicles, epididymis, vas deferens, and presence of varicoceles. Although many sophisticated tests are available, semen analysis is still the most important diagnostic tool used to assess fertility, and includes parameters such as sperm count, motility and viability. Treatment of male factor infertility can involve targeted agents, in the case of specific conditions such as hypogonadotropic hypogonadism, or it can be empirical-using medical therapy or assisted conception techniques-for patients in whom no underlying cause has been identified. Although an all-encompassing treatment for male factor infertility has not yet been developed, the field offers many promising avenues of research.
Collapse
Affiliation(s)
- Kathleen Hwang
- Scott Department of Urology, Baylor College of Medicine, 6624 Fannin Street, Suite 1700, Houston, TX 77030, USA
| | | | | |
Collapse
|