1
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Zhang Y, Wang TW, Tamatani M, Zeng X, Nakamura L, Omori S, Yamaguchi K, Hatakeyama S, Shimizu E, Yamazaki S, Furukawa Y, Imoto S, Johmura Y, Nakanishi M. Signaling networks in cancer stromal senescent cells establish malignant microenvironment. Proc Natl Acad Sci U S A 2025; 122:e2412818122. [PMID: 40168129 PMCID: PMC12002233 DOI: 10.1073/pnas.2412818122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The tumor microenvironment (TME) encompasses various cell types, blood and lymphatic vessels, and noncellular constituents like extracellular matrix (ECM) and cytokines. These intricate interactions between cellular and noncellular components contribute to the development of a malignant TME, such as immunosuppressive, desmoplastic, angiogenic conditions, and the formation of a niche for cancer stem cells, but there is limited understanding of the specific subtypes of stromal cells involved in this process. Here, we utilized p16-CreERT2-tdTomato mouse models to investigate the signaling networks established by senescent cancer stromal cells, contributing to the development of a malignant TME. In pancreatic ductal adenocarcinoma (PDAC) allograft models, these senescent cells were found to promote cancer fibrosis, enhance angiogenesis, and suppress cancer immune surveillance. Notably, the selective elimination of senescent cancer stromal cells improves the malignant TME, subsequently reducing tumor progression in PDAC. This highlights the antitumor efficacy of senolytic treatment alone and its synergistic effect when combined with conventional chemotherapy. Taken together, our findings suggest that the signaling crosstalk among senescent cancer stromal cells plays a key role in the progression of PDAC and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Yue Zhang
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
- Project Division of Generative AI Utilization Aging Cells, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Maho Tamatani
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Xinyi Zeng
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Lindo Nakamura
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Satotaka Omori
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Satoshi Yamazaki
- Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kanazawa920-1192, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| |
Collapse
|
3
|
Vinaixa J, Martínez-Bosch N, Gibert J, Manero-Rupérez N, Santofimia-Castaño P, Baudou FG, Vera RE, Pease DR, Iglesias M, Sen S, Wang X, Almada LL, Marks DL, Moreno M, Iovanna JL, Rabinovich GA, Fernandez-Zapico ME, Navarro P. Nuclear Galectin-1 promotes KRAS-dependent activation of pancreatic cancer stellate cells. Proc Natl Acad Sci U S A 2025; 122:e2424051122. [PMID: 40172967 PMCID: PMC12002210 DOI: 10.1073/pnas.2424051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, primarily due to its complex tumor microenvironment (TME), which drives both disease progression and therapy resistance. Understanding the molecular mechanisms governing TME dynamics is essential for developing new treatment strategies for this devastating disease. In this study, we uncover an oncogenic role for Galectin-1 (Gal1), a glycan-binding protein abundantly expressed by activated pancreatic stellate cells (PSCs), a key component of the PDAC TME that orchestrates tumor progression. Our findings reveal that Gal1 expression is elevated in the nucleus of human PSCs in both tissue samples and cultured cell lines. Using chromatin immunoprecipitation followed by sequencing analysis (ChIP-seq), we identify Gal1 occupancy at the promoters of several cancer-associated genes, including KRAS, a pivotal oncogene involved in PDAC pathogenesis. We demonstrate that Gal1 binds to the KRAS promoter, sustaining KRAS expression in PSCs, which, in turn, maintains PSC activation and promotes the secretion of protumorigenic cytokines. Mechanistically, Gal1 is required to preserve histone H3 lysine 4 monomethylation levels and to recruit the histone methyltransferase MLL1 to target promoters. Collectively, our findings define a nuclear function of Gal1 in modulating the transcriptional landscape of cancer-associated genes in PSCs within the PDAC TME, mediated through an epigenetic mechanism. These insights enhance our understanding of PDAC pathology and open potential avenues for therapeutic interventions targeting intracellular Gal1.
Collapse
Affiliation(s)
- Judith Vinaixa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
| | - Joan Gibert
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Patricia Santofimia-Castaño
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Federico G. Baudou
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján6700, Provincia de Buenos Aires, Argentina
| | - Renzo E. Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David R. Pease
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Departament of Pathology, Hospital del Mar, Barcelona08003, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Xiyin Wang
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David L. Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Juan L. Iovanna
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires1428, Argentina
- Caixa Research Institute, Barcelona08022, Spain
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
- Department of Molecular and Cellular Biomedicine, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08036, Spain
- Institut d’Investigacions Biomediques August Pi Sunyer, Barcelona08036, Spain
| |
Collapse
|
4
|
Boubaddi M, Rossi J, Marichez A, Marty M, Amintas S, Laurent C, Dabernat S. Preoperative Prognostic Factors in Resectable Pancreatic Cancer: State of the Art and Prospects. Ann Surg Oncol 2025:10.1245/s10434-025-17062-w. [PMID: 40095311 DOI: 10.1245/s10434-025-17062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/09/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Only 15% to 20% of patients with pancreatic ductal adenocarcinoma (PDAC) have access to surgical resection, which represents the only chance of curative treatment. Current resection classifications are almost exclusively anatomic and do not correlate sufficiently with patient survival. It is essential to develop preoperative prognostic factors to distinguish patients at high risk of early postoperative recurrence from those who will have prolonged survival after surgery. In some cases, PDACs may present biomolecular differences reflecting their aggressiveness that are not yet assessable by the current clinical-biologic assessment. This study aimed to assess the preoperative prognostic factors that are already available and the future perspectives being developed. METHOD This study reviewed the literature using the PubMed public database for preoperative prognostic factors for resectable PDAC. CONCLUSION Validated preoperative prognostic factors, whether clinical, biologic, radiologic, or histologic, are very important in anticipating the course of each patient's disease. The identification of potential new prognostic biomarkers such as genomic, transcriptomic, and proteomic analyses and the dosage of circulating tumor DNA are very serious avenues to be developed, but the extraction and analysis techniques as well as the interpretation of their results need to be standardized in prospective studies.
Collapse
Affiliation(s)
- Mehdi Boubaddi
- Colorectal Unit, Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France.
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France.
- Hepatobiliary and Pancreatic Surgery Department, Bordeaux University Hospital, Bordeaux, France.
| | - Julia Rossi
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Arthur Marichez
- Colorectal Unit, Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Marion Marty
- Tumor Biology and Tumor Bank Laboratory, CHU Bordeaux, Bordeaux, France
| | - Samuel Amintas
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Christophe Laurent
- Colorectal Unit, Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France
| | - Sandrine Dabernat
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Ephraums J, Youkhana J, Raina AS, Schulstad G, Croft K, Mawson A, Kokkinos J, Gonzales-Aloy E, Ignacio RMC, McCarroll JA, Boyer C, Goldstein D, Pajic M, Haghighi KS, Johns A, Gill AJ, Erkan M, Initiative Apgi APCG, Phillips PA, Sharbeen G. MYH knockdown in pancreatic cancer cells creates an exploitable DNA repair vulnerability. Neoplasia 2025; 61:101138. [PMID: 39938155 PMCID: PMC11869960 DOI: 10.1016/j.neo.2025.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate of just 13 %. Conventional therapies fail due to acquired chemoresistance. We previously identified MutY-Homolog (MYH), a protein that repairs oxidative DNA damage, as a therapeutic target that induces apoptosis in PDAC cells. However, we did not understand the mechanism driving these anti-PDAC effects, nor did we have a means to therapeutically inhibit MYH. In this study, we demonstrated that MYH inhibition induces DNA damage and checkpoint activation in PDAC cells. Using a clinically-relevant PDAC mouse model, we showed that therapeutic MYH-siRNA delivery using Star 3 nanoparticles increased intratumoural PDAC cell death, but did not inhibit tumour growth. Finally, we showed that MYH knockdown in PDAC cells sensitised them to the anti-proliferative and anti-clonogenic effects of oxaliplatin and olaparib. Our findings identify a potential novel therapeutic approach for PDAC that induces a therapeutically exploitable DNA repair vulnerability.
Collapse
Affiliation(s)
- James Ephraums
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia
| | - Aparna S Raina
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia
| | - Grace Schulstad
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia
| | - Kento Croft
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia
| | - Amanda Mawson
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia; Garvan Institute of Medical Research; NSW 2010, Australia
| | - John Kokkinos
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia; Australian Centre for Nanomedicine (ACN), UNSW Sydney, Australia
| | - Estrella Gonzales-Aloy
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia
| | - Rosa Mistica C Ignacio
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia
| | - Joshua A McCarroll
- Australian Centre for Nanomedicine (ACN), UNSW Sydney, Australia; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine (ACN), UNSW Sydney, Australia; Cluster for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Sydney; NSW 2052, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia; Prince of Wales Hospital, School of Clinical Medicine, Randwick Clinical Campus, UNSW Sydney; NSW 2052, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research; NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Campus, UNSW Sydney; NSW 2052, Australia
| | - Koroush S Haghighi
- Prince of Wales Hospital, School of Clinical Medicine, Randwick Clinical Campus, UNSW Sydney; NSW 2052, Australia
| | - Amber Johns
- Garvan Institute of Medical Research; NSW 2010, Australia
| | - Anthony J Gill
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research; NSW 2010, Australia; Australian Pancreatic Cancer Genome Initiative (APGI), Garvan Institute of Medical Research; NSW 2010, Australia; Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital; NSW 2065, Australia; University of Sydney; Sydney, NSW 2006, Australia
| | - Mert Erkan
- Mehmet Ali Aydinlar Acibadem University, Atakent University Hospital; Istanbul 34303, Turkey
| | | | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia; Australian Centre for Nanomedicine (ACN), UNSW Sydney, Australia.
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney; NSW 2052, Australia.
| |
Collapse
|
6
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
7
|
Porter G, Norris MD, Apte M, Merlot AM. Spatial profiling of endoplasmic reticulum stress markers in tumor associated cells predicts patient outcomes in pancreatic cancer. Neoplasia 2025; 60:101115. [PMID: 39818177 PMCID: PMC11786694 DOI: 10.1016/j.neo.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
INTRODUCTION The impact of endoplasmic reticulum (ER) stress in tumor-associated cells, such as cancer associated fibroblasts (CAFs), immune cells and endothelial cells, on patient outcomes in clinical specimens have not been examined. For the first time, we characterized the expression and spatial locations of ER stress markers, BiP and CHOP, in tumor-associated cells and assessed their prognostic significance in a panel of pancreatic ductal adenocarcinoma (PDAC) patient samples. METHODS Multiplex immunofluorescence was performed on tumor microarrays and images were analyzed using HALO AI software. RESULTS BiP and CHOP were upregulated in CAFs and endothelial cells in PDAC sections relative to non-neoplastic pancreas sections. High BiP expression in CAFs and endothelial cells was associated with greater vascular invasion and in immune cells was correlated with increased tumor size. High CHOP expression in immune cells correlated with poor patient survival. CAFs and immune cells were more likely to express BiP or CHOP when located close (< 20 μm) to tumor cells. High expression of CHOP in CAFs close to tumor cells correlated with improved patient survival. CONCLUSION For the first time, this study demonstrated that ER stress occurs in CAFs and immune cells predominantly in proximity to tumor cells in PDAC patient tissue. The correlation of high ER stress in immune cells with poor patient survival highlights the importance of the TME and the use of spatial analysis for the identification of novel biomarkers.
Collapse
Affiliation(s)
- Georgia Porter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical Campuses, Faculty of Medicine and Health, UNSW Sydney, NSW 2052, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Angelica M Merlot
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2031, Australia.
| |
Collapse
|
8
|
Shi S, Liu R, Zhou J, Liu J, Lin H, Mo J, Zhang J, Diao X, Luo Y, Huang B, Feng ST. Development and validation of a CT-based radiomics model to predict survival-graded fibrosis in pancreatic ductal adenocarcinoma. Int J Surg 2025; 111:950-961. [PMID: 39172712 PMCID: PMC11745594 DOI: 10.1097/js9.0000000000002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Tumor fibrosis plays an important role in chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC); however, there remains a contradiction in the prognostic value of fibrosis. The authors aimed to investigate the relationship between tumor fibrosis and survival in patients with PDAC, classify patients into high- and low-fibrosis groups, and develop and validate a CT-based radiomics model to non-invasively predict fibrosis before treatment. MATERIALS AND METHODS This retrospective, bicentric study included 295 patients with PDAC without any treatments before surgery. Tumor fibrosis was assessed using the collagen fraction (CF). Cox regression analysis was used to evaluate the associations of CF with overall survival (OS) and disease-free survival (DFS). Receiver operating characteristic (ROC) analyses were used to determine the rounded threshold of CF. An integrated model (IM) was developed by incorporating selected radiomic features and clinical-radiological characteristics. The predictive performance was validated in the test cohort (Center 2). RESULTS The CFs were 38.22±6.89% and 38.44±8.66% in center 1 (131 patients, 83 males) and center 2 (164 patients, 100 males), respectively ( P =0.814). Multivariable Cox regression revealed that CF was an independent risk factor in the OS and DFS analyses at both centers. ROCs revealed that 40% was the rounded cut-off value of CF. IM predicted CF with areas under the curves (AUCs) of 0.829 (95% CI: 0.753-0.889) and 0.751 (95% CI: 0.677-0.815) in the training and test cohorts, respectively. Decision curve analyses revealed that IM outperformed radiomics model and clinical-radiological model for CF prediction in both cohorts. CONCLUSIONS Tumor fibrosis was an independent risk factor for survival of patients with PDAC, and a rounded cut-off value of 40% provided a good differentiation of patient prognosis. The model combining CT-based radiomics and clinical-radiological features can satisfactorily predict survival-grade fibrosis in patients with PDAC.
Collapse
Affiliation(s)
- Siya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Ruihao Liu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou
- South China Hospital, Medical School, Shenzhen University
| | - Jiawei Liu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Hongxin Lin
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
| | - Junyang Mo
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
| | - Jian Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions
- Shenzhen University Medical School, Shenzhen University
| | - Xianfen Diao
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Bingsheng Huang
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
9
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
10
|
Wu B, Wang Z, Liu J, Li N, Wang X, Bai H, Wang C, Shi J, Zhang S, Song J, Li Y, Nie G. Dual rectification of metabolism abnormality in pancreatic cancer by a programmed nanomedicine. Nat Commun 2024; 15:10526. [PMID: 39627234 PMCID: PMC11615375 DOI: 10.1038/s41467-024-54963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy characterized by dysregulated energy and stromal metabolism. It is strongly supported by activated pancreatic stellate cells (PSC) which drive excessive desmoplasia and tumor growth via metabolic crosstalk. Herein, a programmed nanosystem is designed to dual rectify the metabolism abnormalities of the PDAC cells, which overexpress glucose transporter 1(GLUT1) and CD71, and the PSC for oncotherapy. The nanosystem is based on a tumor microenvironment-responsive liposome encapsulating an NF-κB inhibitor (TPCA-1) and a CD71 aptamer-linked Glut1 siRNA. TPCA-1 reverses the activated PSC to quiescence, which hampers metabolic support of the PSC to PDAC cells and bolsters the PDAC cell-targeting delivery of the siRNA. Aerobic glycolysis and the following enhancement of oxidative phosphorylation are restrained by the nano-modulation so as to amplify anti-PDAC efficacy in an orthotopic xenograft mouse model, which implies more personalized PDAC treatment based on different energy metabolic profiles.
Collapse
MESH Headings
- Animals
- Humans
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Cell Line, Tumor
- Mice
- Nanomedicine/methods
- Liposomes/metabolism
- Pancreatic Stellate Cells/metabolism
- Pancreatic Stellate Cells/pathology
- Tumor Microenvironment
- Glucose Transporter Type 1/metabolism
- Glucose Transporter Type 1/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/genetics
- NF-kappa B/metabolism
- Xenograft Model Antitumor Assays
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Oxidative Phosphorylation
- Glycolysis
- Mice, Nude
- Aptamers, Nucleotide/metabolism
Collapse
Affiliation(s)
- Bowen Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
- Henan Institute of Advanced Technology, Henan, PR China
| | - Zhiqin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
- College of Pharmaceutical Science, Jilin University, Changchun, PR China
| | - Jingyuan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Naishi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Xudong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - HaoChen Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Chunling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Saiyang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Guangjun Nie
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China.
- Henan Institute of Advanced Technology, Henan, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
11
|
Chick RC, Pawlik TM. Updates in Immunotherapy for Pancreatic Cancer. J Clin Med 2024; 13:6419. [PMID: 39518557 PMCID: PMC11546190 DOI: 10.3390/jcm13216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with limited effective therapeutic options. Due to a variety of cancer cell-intrinsic factors, including KRAS mutations, chemokine production, and other mechanisms that elicit a dysregulated host immune response, PDAC is often characterized by poor immune infiltration and an immune-privileged fibrotic stroma. As understanding of the tumor microenvironment (TME) evolves, novel therapies are being developed to target immunosuppressive mechanisms. Immune checkpoint inhibitors have limited efficacy when used alone or with radiation. Combinations of immune therapies, along with chemotherapy or chemoradiation, have demonstrated promise in preclinical and early clinical trials. Despite dismal response rates for immunotherapy for metastatic PDAC, response rates with neoadjuvant immunotherapy are somewhat encouraging, suggesting that incorporation of immunotherapy in the treatment of PDAC should be earlier in the disease course. Precision therapy for PDAC may be informed by advances in transcriptomic sequencing that can identify immunophenotypes, allowing for more appropriate treatment selection for each individual patient. Personalized and antigen-specific therapies are an increasing topic of interest, including adjuvant immunotherapy using personalized mRNA vaccines to prevent recurrence. Further development of personalized immune therapies will need to balance precision with generalizability and cost.
Collapse
Affiliation(s)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
12
|
Doctor A, Laube M, Meister S, Kiss OC, Kopka K, Hauser S, Pietzsch J. Combined PET Radiotracer Approach Reveals Insights into Stromal Cell-Induced Metabolic Changes in Pancreatic Cancer In Vitro and In Vivo. Cancers (Basel) 2024; 16:3393. [PMID: 39410013 PMCID: PMC11475921 DOI: 10.3390/cancers16193393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objective Pancreatic stellate cells (PSCs) in pancreatic adenocarcinoma (PDAC) are producing extracellular matrix, which promotes the formation of a dense fibrotic microenvironment. This makes PDAC a highly heterogeneous tumor-stroma-driven entity, associated with reduced perfusion, limited oxygen supply, high interstitial fluid pressure, and limited bioavailability of therapeutic agents. Methods In this study, spheroid and tumor xenograft models of human PSCs and PanC-1 cells were characterized radiopharmacologically using a combined positron emission tomography (PET) radiotracer approach. [18F]FDG, [18F]FMISO, and [18F]FAPI-74 were employed to monitor metabolic activity, hypoxic metabolic state, and functional expression of fibroblast activation protein alpha (FAPα), a marker of activated PSCs. Results In vitro, PanC-1 and multi-cellular tumor spheroids demonstrated comparable glucose uptake and hypoxia, whereas FAPα expression was significantly higher in PSC spheroids. In vivo, glucose uptake as well as the transition to hypoxia were comparable in PanC-1 and multi-cellular xenograft models. In mice injected with PSCs, FAPα expression decreased over a period of four weeks post-injection, which was attributed to the successive death of PSCs. In contrast, FAPα expression increased in both PanC-1 and multi-cellular xenograft models over time due to invasion of mouse fibroblasts. Conclusion The presented models are suitable for subsequently characterizing stromal cell-induced metabolic changes in tumors using noninvasive molecular imaging techniques.
Collapse
Affiliation(s)
- Alina Doctor
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (A.D.); (M.L.); (S.M.); (K.K.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (A.D.); (M.L.); (S.M.); (K.K.); (S.H.)
| | - Sebastian Meister
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (A.D.); (M.L.); (S.M.); (K.K.); (S.H.)
| | - Oliver C. Kiss
- Department of Targetry, Target Chemistry and Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (A.D.); (M.L.); (S.M.); (K.K.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, Partner Site Dresden, University Cancer Center (UCC), Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (A.D.); (M.L.); (S.M.); (K.K.); (S.H.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (A.D.); (M.L.); (S.M.); (K.K.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
13
|
Carlomagno S, Setti C, Ortolani F, Sivori S. Pancreatic ductal adenocarcinoma microenvironment: Soluble factors and cancer associated fibroblasts as modulators of NK cell functions. Immunol Lett 2024; 269:106898. [PMID: 39019404 DOI: 10.1016/j.imlet.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the most frequent pancreatic cancer and represents one of the most aggressive human neoplasms. Typically identified at advance stage disease, most PDAC tumors are unresectable and resistant to standard therapies. The immunosuppressive microenvironment in PDAC impedes tumor control but a greater understanding of the complex stromal interactions within the tumor microenvironment (TME) and the development of strategies capable of restoring antitumor effector immune responses could be crucial to fight this aggressive tumor and its spread. Natural Killer (NK) cells play a crucial role in cancer immunosurveillance and represent an attractive target for immunotherapies, both as cell therapy and as a pharmaceutical target. This review describes some crucial components of the PDAC TME (collagens, soluble factors and fibroblasts) that can influence the presence, phenotype and function of NK cells in PDAC patients tumor tissue. This focused overview highlights the therapeutic relevance of dissecting the complex stromal composition to define new strategies for NK cell-based immunotherapies to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Simona Carlomagno
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy.
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Fulvia Ortolani
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
14
|
Walcheck MT, Schwartz PB, Carrillo ND, Matkowskyj KA, Nukaya M, Bradfield CA, Ronnekleiv-Kelly SM. Aryl Hydrocarbon Receptor Knockout Accelerates PanIN Formation and Fibro-Inflammation in a Mutant Kras -Driven Pancreatic Cancer Model. Pancreas 2024; 53:e670-e680. [PMID: 38696422 PMCID: PMC11321943 DOI: 10.1097/mpa.0000000000002357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
OBJECTIVES The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the development of several cancers and can be targeted for therapeutic effect. However, its involvement in the pathogenesis of PDAC remains unclear. To address this gap, we evaluated the role of AHR in the development of PDAC precancerous lesions in vivo . MATERIALS AND METHODS We created a global AHR-null, mutant Kras -driven PDAC mouse model (A -/- KC) and evaluated the changes in PDAC precursor lesion formation (PanIN-1, 2, and 3) and associated fibro-inflammation between KC and A -/- KC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes. RESULTS We identified a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in A -/- KC versus KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation. CONCLUSIONS These findings show the loss of AHR results in heightened Kras -induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Morgan T Walcheck
- From the Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health
| | - Patrick B Schwartz
- From the Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health
| | - Noah D Carrillo
- McArdle Laboratory for Cancer Research, University of Wisconsin
| | | | | | | | | |
Collapse
|
15
|
Vitorakis N, Gargalionis AN, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Precision Targeting Strategies in Pancreatic Cancer: The Role of Tumor Microenvironment. Cancers (Basel) 2024; 16:2876. [PMID: 39199647 PMCID: PMC11352254 DOI: 10.3390/cancers16162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Sharma B, Twelker K, Nguyen C, Ellis S, Bhatia ND, Kuschner Z, Agriantonis A, Agriantonis G, Arnold M, Dave J, Mestre J, Shafaee Z, Arora S, Ghanta H, Whittington J. Bile Acids in Pancreatic Carcinogenesis. Metabolites 2024; 14:348. [PMID: 39057671 PMCID: PMC11278541 DOI: 10.3390/metabo14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is a dangerous digestive tract tumor that is becoming increasingly common and fatal. The most common form of PC is pancreatic ductal adenocarcinoma (PDAC). Bile acids (BAs) are closely linked to the growth and progression of PC. They can change the intestinal flora, increasing intestinal permeability and allowing gut microbes to enter the bloodstream, leading to chronic inflammation. High dietary lipids can increase BA secretion into the duodenum and fecal BA levels. BAs can cause genetic mutations, mitochondrial dysfunction, abnormal activation of intracellular trypsin, cytoskeletal damage, activation of NF-κB, acute pancreatitis, cell injury, and cell necrosis. They can act on different types of pancreatic cells and receptors, altering Ca2+ and iron levels, and related signals. Elevated levels of Ca2+ and iron are associated with cell necrosis and ferroptosis. Bile reflux into the pancreatic ducts can speed up the kinetics of epithelial cells, promoting the development of pancreatic intraductal papillary carcinoma. BAs can cause the enormous secretion of Glucagon-like peptide-1 (GLP-1), leading to the proliferation of pancreatic β-cells. Using Glucagon-like peptide-1 receptor agonist (GLP-1RA) increases the risk of pancreatitis and PC. Therefore, our objective was to explore various studies and thoroughly examine the role of BAs in PC.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Scott Ellis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Andrew Agriantonis
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Monique Arnold
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jasmine Dave
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zahra Shafaee
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Shalini Arora
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Hima Ghanta
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| |
Collapse
|
17
|
Sha H, Tong F, Ni J, Sun Y, Zhu Y, Qi L, Li X, Li W, Yang Y, Gu Q, Zhang X, Wang X, Zhu C, Chen D, Liu B, Du J. First-line penpulimab (an anti-PD1 antibody) and anlotinib (an angiogenesis inhibitor) with nab-paclitaxel/gemcitabine (PAAG) in metastatic pancreatic cancer: a prospective, multicentre, biomolecular exploratory, phase II trial. Signal Transduct Target Ther 2024; 9:143. [PMID: 38844468 PMCID: PMC11156675 DOI: 10.1038/s41392-024-01857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Metastatic pancreatic cancer (mPC) has a dismal prognosis. Herein, we conducted a prospective, multicentre, single-arm, phase II trial evaluating the efficacy and safety of penpulimab and anlotinib in combination with nab-paclitaxel/gemcitabine (PAAG) in patients with first-line mPC (NCT05493995). The primary endpoints included the objective response rate (ORR) and disease control rate (DCR), while secondary endpoints encompassed progression-free survival (PFS), overall survival (OS), and safety. In 66 patients analysed for efficacy, the best response, indicated by the ORR, was recorded at 50.0% (33/66) (95% CI, 37.4-62.6%), with 33 patients achieving partial response (PR). Notably, the DCR was 95.5% (63/66, 95% CI, 87.3-99.1%). The median PFS (mPFS) and OS (mOS) were 8.8 (95% CI, 8.1-11.6), and 13.7 (95% CI, 12.4 to not reached) months, respectively. Grade 3/4 treatment-related adverse events (TRAEs) were reported in 39.4% of patients (26/66). In prespecified exploratory analysis, patients with altered SWI/SNF complex had a poorer PFS. Additionally, low serum CA724 level, high T-cell recruitment, low Th17 cell recruitment, and high NK CD56dim cell scores at baseline were potential predicative biomarkers for more favourable efficacy. In conclusion, PAAG as a first-line therapy demonstrated tolerability with promising clinical efficacy for mPC. The biomolecular findings identified in this study possess the potential to guide the precise clinical application of the triple-combo regimen.
Collapse
Affiliation(s)
- Huizi Sha
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fan Tong
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayao Ni
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Sun
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yahui Zhu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Liang Qi
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Yang
- Department of Oncology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Gu
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China
| | - Xing Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Xiaoxuan Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Chan Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Dongsheng Chen
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Juan Du
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
18
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Kim J, Lee TS, Lee MH, Cho IR, Ryu JK, Kim YT, Lee SH, Paik WH. Pancreatic Cancer Treatment Targeting the HGF/c-MET Pathway: The MEK Inhibitor Trametinib. Cancers (Basel) 2024; 16:1056. [PMID: 38473413 DOI: 10.3390/cancers16051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic cancer is characterized by fibrosis/desmoplasia in the tumor microenvironment, which is primarily mediated by pancreatic stellate cells and cancer-associated fibroblasts. HGF/c-MET signaling, which is instrumental in embryonic development and wound healing, is also implicated for its mitogenic and motogenic properties. In pancreatic cancer, this pathway, along with its downstream signaling pathways, is associated with disease progression, prognosis, metastasis, chemoresistance, and other tumor-related factors. Other features of the microenvironment in pancreatic cancer with the HGF/c-MET pathway include hypoxia, angiogenesis, metastasis, and the urokinase plasminogen activator positive feed-forward loop. All these attributes critically influence the initiation, progression, and metastasis of pancreatic cancer. Therefore, targeting the HGF/c-MET signaling pathway appears promising for the development of innovative drugs for pancreatic cancer treatment. One of the primary downstream effects of c-MET activation is the MAPK/ERK (Ras, Ras/Raf/MEK/ERK) signaling cascade, and MEK (Mitogen-activated protein kinase kinase) inhibitors have demonstrated therapeutic value in RAS-mutant melanoma and lung cancer. Trametinib is a selective MEK1 and MEK2 inhibitor, and it has evolved as a pivotal therapeutic agent targeting the MAPK/ERK pathway in various malignancies, including BRAF-mutated melanoma, non-small cell lung cancer and thyroid cancer. The drug's effectiveness increases when combined with agents like BRAF inhibitors. However, resistance remains a challenge, necessitating ongoing research to counteract the resistance mechanisms. This review offers an in-depth exploration of the HGF/c-MET signaling pathway, trametinib's mechanism, clinical applications, combination strategies, and future directions in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Junyeol Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Seung Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Myeong Hwan Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ji Kon Ryu
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Tae Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Hyub Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woo Hyun Paik
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
20
|
Apte M. A journey to and with the stars: The pancreatic stellate cell story. Pancreatology 2023; 23:893-899. [PMID: 37973449 DOI: 10.1016/j.pan.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The George E Palade Prize is the highest honour awarded by the International Association of Pancreatology, that recognises an individual who has made outstanding contributions to the understanding of the pancreas and pancreatic diseases. The 2023 Palade Prize was awarded to Professor Minoti Apte, University of New South Wales Sydney on September 16, 2023 during the Joint Meeting of the International Association of Pancreatology and the Indian Pancreas Club, held in Delhi, India. This paper summarises her Palade lecture wherein she reflects on her journey as a medical graduate, an academic and a researcher, with a particular focus on her team's pioneering work on pancreatic stellate cell biology and the role of these cells in health and disease. While there has been much progress in this field with the efforts of researchers worldwide, there is much still to be learned; thus it is a topic with ample scope for innovative research with the potential to translate into better outcomes for patients with pancreatic disease.
Collapse
Affiliation(s)
- Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney and Ingham Institute for Applied Medical Research, Liverpool, Sydney, Australia.
| |
Collapse
|
21
|
Singh A, Bush N, Bhullar FA, Faghih M, Moreau C, Mittal R, Seo JH, Talukdar R, Lakhtakia S, Singh VK, Akshintala VS. Pancreatic duct pressure: A review of technical aspects and clinical significance. Pancreatology 2023; 23:858-867. [PMID: 37798192 DOI: 10.1016/j.pan.2023.09.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Pancreatic duct pressure (PDP) dynamics comprise an intricately modulated system that helps maintain homeostasis of pancreatic function. It is affected by various factors, including the rate of pancreatic fluid secretion, patency of the ductal system, sphincter of Oddi function, and pancreatic fluid characteristics. Disease states such as acute and chronic pancreatitis can alter the normal PDP dynamics. Ductal hypertension or increased PDP is suspected to be involved in the pathogenesis of pancreatic pain, endocrine and exocrine pancreatic insufficiency, and recurrent pancreatitis. This review provides a comprehensive appraisal of the available literature on PDP, including the methods used in the measurement and clinical implications of elevated PDP.
Collapse
Affiliation(s)
- Anmol Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Nikhil Bush
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Furqan A Bhullar
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Mahya Faghih
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Chris Moreau
- Division of Gastroenterology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Rupjyoti Talukdar
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Sundeep Lakhtakia
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Vikesh K Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Venkata S Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| |
Collapse
|
22
|
Singh M, Jana BK, Pal P, Singha I, Rajkumari A, Chowrasia P, Nath V, Mazumder B. Nanoparticles in pancreatic cancer therapy: a detailed and elaborated review on patent literature. Expert Opin Ther Pat 2023; 33:681-699. [PMID: 37991186 DOI: 10.1080/13543776.2023.2287520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Nanotechnology may open up new avenues for overcoming the challenges of pancreatic cancer therapy as a broad arsenal of anticancer medicines fail to realize their full therapeutic potential in pancreatic ductal adenocarcinoma due to the formation of multiple resistance mechanisms inside the tumor. Many studies have reported the successful use of various nano formulations in pancreatic cancer therapy. AREAS COVERED This review covers all the major nanotechnology-based patent litrature available on renowned patent data bases like Patentscope and Espacenet, through the time period of 2007-2022. This is an entirely patent centric review, and it includes both clinical and non-clinical data available on nanotechnology-based therapeutics and diagnostic tools for pancreatic cancer. EXPERT OPINION For the sake of understanding, the patents are categorized under various formulation-specific heads like metallic/non-metallic nanoparticles, polymeric nanoparticles, liposomes, carbon nanotubes, protein nanoparticles and liposomes. This distinguishes one specific nanoparticle type from another and makes this review a one-of-a-kind comprehensive patent compilation that has not been reported so far in the history of nanotechnological formulations in pancreatic cancer.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ishita Singha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ananya Rajkumari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pinky Chowrasia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Venessa Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
23
|
Chitty JL, Yam M, Perryman L, Parker AL, Skhinas JN, Setargew YFI, Mok ETY, Tran E, Grant RD, Latham SL, Pereira BA, Ritchie SC, Murphy KJ, Trpceski M, Findlay AD, Melenec P, Filipe EC, Nadalini A, Velayuthar S, Major G, Wyllie K, Papanicolaou M, Ratnaseelan S, Phillips PA, Sharbeen G, Youkhana J, Russo A, Blackwell A, Hastings JF, Lucas MC, Chambers CR, Reed DA, Stoehr J, Vennin C, Pidsley R, Zaratzian A, Da Silva AM, Tayao M, Charlton B, Herrmann D, Nobis M, Clark SJ, Biankin AV, Johns AL, Croucher DR, Nagrial A, Gill AJ, Grimmond SM, Pajic M, Timpson P, Jarolimek W, Cox TR. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. NATURE CANCER 2023; 4:1326-1344. [PMID: 37640930 PMCID: PMC10518255 DOI: 10.1038/s43018-023-00614-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/07/2023] [Indexed: 08/31/2023]
Abstract
The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jessica L Chitty
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Yam
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Lara Perryman
- Pharmaxis, Frenchs Forest, New South Wales, Australia
| | - Amelia L Parker
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joanna N Skhinas
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Yordanos F I Setargew
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ellie T Y Mok
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Emmi Tran
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Rhiannon D Grant
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sharissa L Latham
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Brooke A Pereira
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Shona C Ritchie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Kendelle J Murphy
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Trpceski
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | | | - Pauline Melenec
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Elysse C Filipe
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Audrey Nadalini
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sipiththa Velayuthar
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Gretel Major
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Kaitlin Wyllie
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Papanicolaou
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Shivanjali Ratnaseelan
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Phoebe A Phillips
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - George Sharbeen
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Janet Youkhana
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Alice Russo
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Antonia Blackwell
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Cecilia R Chambers
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Daniel A Reed
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Janett Stoehr
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Claire Vennin
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ruth Pidsley
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew M Da Silva
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Tayao
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | | | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Max Nobis
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Susan J Clark
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Amber L Johns
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - David R Croucher
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Adnan Nagrial
- Department of Medical Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, VCCC, Melbourne, Victoria, Australia
| | - Marina Pajic
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
24
|
Sarkar R, Xu Z, Perera CJ, Apte MV. Emerging role of pancreatic stellate cell-derived extracellular vesicles in pancreatic cancer. Semin Cancer Biol 2023; 93:114-122. [PMID: 37225047 DOI: 10.1016/j.semcancer.2023.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer that is characterised by a prominent collagenous stromal reaction/desmoplasia surrounding tumour cells. Pancreatic stellate cells (PSCs) are responsible for the production of this stroma and have been shown to facilitate PDAC progression. Recently, extracellular vesicles (EVs), in particular, small extracellular vesicles (exosomes) have been a topic of interest in the field of cancer research for their emerging roles in cancer progression and diagnosis. EVs act as a form of intercellular communication by carrying their molecular cargo from one cell to another, regulating functions of the recipient cells. Although the knowledge of the bi-directional interactions between the PSCs and cancer cells that promote disease progression has advanced significantly over the past decade, studies on PSC-derived EVs in PDAC are currently rather limited. This review provides an overview of PDAC, pancreatic stellate cells and their interactions with cancer cells, as well as the currently known role of extracellular vesicles derived from PSCs in PDAC progression.
Collapse
Affiliation(s)
- Rohit Sarkar
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| | - Minoti V Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| |
Collapse
|
25
|
Tsunedomi R, Shindo Y, Nakajima M, Yoshimura K, Nagano H. The tumor immune microenvironment in pancreatic cancer and its potential in the identification of immunotherapy biomarkers. Expert Rev Mol Diagn 2023; 23:1121-1134. [PMID: 37947389 DOI: 10.1080/14737159.2023.2281482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) has an extremely poor prognosis, even with surgical resection and triplet chemotherapy treatment. Cancer immunotherapy has been recently approved for tumor-agnostic treatment with genome analysis, including in PC. However, it has limited efficacy. AREAS COVERED In addition to the low tumor mutation burden, one of the difficulties of immunotherapy in PC is the presence of abundant stromal cells in its microenvironment. Among stromal cells, cancer-associated fibroblasts (CAFs) play a major role in immunotherapy resistance, and CAF-targeted therapies are currently under development, including those in combination with immunotherapies. Meanwhile, microbiomes and tumor-derived exosomes (TDEs) have been shown to alter the behavior of distant receptor cells in PC. This review discusses the role of CAFs, microbiomes, and TDEs in PC tumor immunity. EXPERT OPINION Elucidating the mechanisms by which CAFs, microbiomes, and TDEs are involved in the tumorigenesis of PC will be helpful for developing novel immunotherapeutic strategies and identifying companion biomarkers for immunotherapy. Spatial single-cell analysis of the tumor microenvironment will be useful for identifying biomarkers of PC immunity. Furthermore, given the complexity of immune mechanisms, artificial intelligence models will be beneficial for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Setagaya, Tokyo, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
26
|
Yang D, Liu J, Qian H, Zhuang Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med 2023; 55:1322-1332. [PMID: 37394578 PMCID: PMC10394065 DOI: 10.1038/s12276-023-01013-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 07/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), as a central component of the tumor microenvironment in primary and metastatic tumors, profoundly influence the behavior of cancer cells and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Furthermore, the innate versatility and plasticity of CAFs allow their education by cancer cells, resulting in dynamic alterations in stromal fibroblast populations in a context-dependent manner, which highlights the importance of precise assessment of CAF phenotypical and functional heterogeneity. In this review, we summarize the proposed origins and heterogeneity of CAFs as well as the molecular mechanisms regulating the diversity of CAF subpopulations. We also discuss current strategies to selectively target tumor-promoting CAFs, providing insights and perspectives for future research and clinical studies involving stromal targeting.
Collapse
Affiliation(s)
- Dakai Yang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China.
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China.
| | - Jing Liu
- Microbiology and Immunity Department, Shanghai, People's Republic of China
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Hui Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China.
| | - Qin Zhuang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China.
| |
Collapse
|
27
|
Khabipov A, Trung DN, van der Linde J, Miebach L, Lenz M, Erne F, von Bernstorff W, Schulze T, Kersting S, Bekeschus S, Partecke LI. CCR4 Blockade Diminishes Intratumoral Macrophage Recruitment and Augments Survival of Syngeneic Pancreatic Cancer-Bearing Mice. Biomedicines 2023; 11:1517. [PMID: 37371612 DOI: 10.3390/biomedicines11061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer is known for its tumor microenvironment (TME), which is rich in stromal and immune cells supporting cancer growth and therapy resistance. In particular, tumor-associated macrophages (TAMs) are known for their angiogenesis- and metastasis-promoting properties, which lead to the failure of conventional therapies for pancreatic cancer. Hence, treatment options targeting TAMs are needed. The C-C chemokine receptor type 4 (CCR4) is critical for immune cell recruitment into the TME, and in this paper we explore the effects of its genetic or immunotherapeutic blockade in pancreatic-cancer-bearing mice. Murine PDA6606 pancreatic cancer cells and murine peritoneal macrophages were used for in vitro migration assays. In vivo, a syngeneic, orthotropic pancreatic cancer model was established. Tumor growth and survival were monitored under prophylactic and therapeutic application of a CCR4 antagonist (AF-399/420/18025) in wildtype (CCR4wt) and CCR4-knockout (CCR4-/-) mice. Immune infiltration was monitored in tumor tissue sections and via flow cytometry of lysed tumors. PDA6606 cells induced less migration in CCR4-/- than in CCR4wt macrophages in vitro. Pancreatic TAM infiltration was higher, and survival was reduced in CCR4wt mice compared to CCR4-/- mice. Antagonizing CCR4 in wildtype mice revealed similar results as in CCR4-/- mice without antagonization. Prophylactic CCR4 antagonist application in wildtype mice was more efficient than therapeutic antagonization. CCR4 seems to be critically involved in TAM generation and tumor progression in pancreatic cancer. CCR4 blockade may help prolong the relapse-free period after curative surgery in pancreatic cancer and improve prognosis.
Collapse
Affiliation(s)
- Aydar Khabipov
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Dung Nguyen Trung
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Julia van der Linde
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lea Miebach
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Maik Lenz
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Felix Erne
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Wolfram von Bernstorff
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Tobias Schulze
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Stephan Kersting
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Lars Ivo Partecke
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of General, Visceral, and Thoracic Surgery, Helios Clinic Schleswig, St. Jurgener Str. 1-3, 24837 Schleswig, Germany
| |
Collapse
|
28
|
Huang P, Gao W, Fu C, Tian R. Functional and Clinical Proteomic Exploration of Pancreatic Cancer. Mol Cell Proteomics 2023:100575. [PMID: 37209817 PMCID: PMC10388587 DOI: 10.1016/j.mcpro.2023.100575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Pancreatic cancer, most cases being pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancers with a median survival time of less than 6 months. Therapeutic options are very limited for PDAC patients, and surgery is still the most effective treatment, making improvements in early diagnosis critical. One typical characteristic of PDAC is the desmoplastic reaction of its stroma microenvironment, which actively interacts with cancer cells to orchestrate key components in tumorigenesis, metastasis, and chemoresistance. Global exploration of cancer-stroma crosstalk is essential to decipher PDAC biology and design intervention strategies. Over the past decade, the dramatic improvement of proteomics technologies has enabled profiling of proteins, post-translational modifications (PTMs), and their protein complexes at unprecedented sensitivity and dimensionality. Here, starting with our current understanding of PDAC characteristics, including precursor lesions, progression models, tumor microenvironment, and therapeutic advancements, we describe how proteomics contributes to the functional and clinical exploration of PDAC, providing insights into PDAC carcinogenesis, progression, and chemoresistance. We summarize recent achievements enabled by proteomics to systematically investigate PTMs-mediated intracellular signaling in PDAC, cancer-stroma interactions, and potential therapeutic targets revealed by these functional studies. We also highlight proteomic profiling of clinical tissue and plasma samples to discover and verify useful biomarkers that can aid early detection and molecular classification of patients. In addition, we introduce spatial proteomic technology and its applications in PDAC for deconvolving tumor heterogeneity. Finally, we discuss future prospects of applying new proteomic technologies in comprehensively understanding PDAC heterogeneity and intercellular signaling networks. Importantly, we expect advances in clinical functional proteomics for exploring mechanisms of cancer biology directly by high-sensitivity functional proteomic approaches starting from clinical samples.
Collapse
Affiliation(s)
- Peiwu Huang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changying Fu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
29
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
30
|
Stouten I, van Montfoort N, Hawinkels LJAC. The Tango between Cancer-Associated Fibroblasts (CAFs) and Immune Cells in Affecting Immunotherapy Efficacy in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24108707. [PMID: 37240052 DOI: 10.3390/ijms24108707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The lack of response to therapy in pancreatic ductal adenocarcinoma (PDAC) patients has contributed to PDAC having one of the lowest survival rates of all cancer types. The poor survival of PDAC patients urges the exploration of novel treatment strategies. Immunotherapy has shown promising results in several other cancer types, but it is still ineffective in PDAC. What sets PDAC apart from other cancer types is its tumour microenvironment (TME) with desmoplasia and low immune infiltration and activity. The most abundant cell type in the TME, cancer-associated fibroblasts (CAFs), could be instrumental in why low immunotherapy responses are observed. CAF heterogeneity and interactions with components of the TME is an emerging field of research, where many paths are to be explored. Understanding CAF-immune cell interactions in the TME might pave the way to optimize immunotherapy efficacy for PDAC and related cancers with stromal abundance. In this review, we discuss recent discoveries on the functions and interactions of CAFs and how targeting CAFs might improve immunotherapy.
Collapse
Affiliation(s)
- Imke Stouten
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
31
|
Palma AM, Bushnell GG, Wicha MS, Gogna R. Tumor microenvironment interactions with cancer stem cells in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:343-372. [PMID: 37268400 PMCID: PMC11218813 DOI: 10.1016/bs.acr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer in the United States. Additionally, the low survival rate makes PDAC the third-leading cause of cancer-related mortality in the United States, and it is projected that by 2030, it will become the second-leading cause of cancer mortality. Several biological factors contribute to PDAC aggressiveness, and their understanding will narrow the gap from biology to clinical care of PDAC, leading to earlier diagnoses and the development of better treatment options. In this review, we describe the origins of PDAC highlighting the role of cancer stem cells (CSC). CSC, also known as tumor initiating cells, which exhibit a unique metabolism that allows them to maintain a highly plastic, quiescent, immune- and therapy-evasive state. However, CSCs can exit quiescence during proliferation and differentiation, with the capacity to form tumors while constituting a small population in tumor tissues. Tumorigenesis depends on the interactions between CSCs and other cellular and non-cellular components in the microenvironment. These interactions are fundamental to support CSC stemness and are maintained throughout tumor development and metastasis. PDAC is characterized by a massive desmoplastic reaction, which result from the deposition of high amounts of extracellular matrix components by stromal cells. Here we review how this generates a favorable environment for tumor growth by protecting tumor cells from immune responses and chemotherapy and inducing tumor cell proliferation and migration, leading to metastasis formation ultimately leading to death. We emphasize the interactions between CSCs and the tumor microenvironment leading to metastasis formation and posit that better understanding and targeting of these interactions will improve patient outcomes.
Collapse
Affiliation(s)
| | - Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.
| | - Rajan Gogna
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
32
|
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol Med 2023; 29:439-453. [PMID: 37100646 DOI: 10.1016/j.molmed.2023.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023]
Abstract
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.
Collapse
Affiliation(s)
- Rita Rebelo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal.
| |
Collapse
|
33
|
Palma AM, Vudatha V, Peixoto ML, Madan E. Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions. Adv Cancer Res 2023; 159:203-249. [PMID: 37268397 DOI: 10.1016/bs.acr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging disease usually diagnosed at advanced or metastasized stage. By this year end, there are an expected increase in 62,210 new cases and 49,830 deaths in the United States, with 90% corresponding to PDAC subtype alone. Despite advances in cancer therapy, one of the major challenges combating PDAC remains tumor heterogeneity between PDAC patients and within the primary and metastatic lesions of the same patient. This review describes the PDAC subtypes based on the genomic, transcriptional, epigenetic, and metabolic signatures observed among patients and within individual tumors. Recent studies in tumor biology suggest PDAC heterogeneity as a major driver of disease progression under conditions of stress including hypoxia and nutrient deprivation, leading to metabolic reprogramming. We therefore advance our understanding in identifying the underlying mechanisms that interfere with the crosstalk between the extracellular matrix components and tumor cells that define the mechanics of tumor growth and metastasis. The bilateral interaction between the heterogeneous tumor microenvironment and PDAC cells serves as another important contributor that characterizes the tumor-promoting or tumor-suppressing phenotypes providing an opportunity for an effective treatment regime. Furthermore, we highlight the dynamic reciprocating interplay between the stromal and immune cells that impact immune surveillance or immune evasion response and contribute towards a complex process of tumorigenesis. In summary, the review encapsulates the existing knowledge of the currently applied treatments for PDAC with emphasis on tumor heterogeneity, manifesting at multiple levels, impacting disease progression and therapy resistance under stress.
Collapse
Affiliation(s)
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | | | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
34
|
Heinrich MA, Uboldi I, Kuninty PR, Ankone MJ, van Baarlen J, Zhang YS, Jain K, Prakash J. Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model. Bioact Mater 2023; 22:18-33. [PMID: 36203956 PMCID: PMC9516389 DOI: 10.1016/j.bioactmat.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 10/26/2022] Open
Abstract
Fibrotic tumors, such as pancreatic ductal adenocarcinoma (PDAC), are characterized for high desmoplastic reaction, which results in high intra-tumoral solid stress leading to the compression of blood vessels. These microarchitectural alterations cause loss of blood flow and poor intra-tumoral delivery of therapeutics. Currently, there is a lack of relevant in vitro models capable of replicating these mechanical characteristics and to test anti-desmoplastic compounds. Here, a multi-layered vascularized 3D PDAC model consisting of primary human pancreatic stellate cells (PSCs) embedded in collagen/fibrinogen (Col/Fib), mimicking tumor tissue within adjunct healthy tissue, is presented to study the fibrosis-induced compression of vasculature in PDAC. It is demonstrated how the mechanical and biological stimulation induce PSC activation, extracellular matrix production and eventually vessel compression. The clinical relevance is confirmed by correlating with patient transcriptomic data. Furthermore, the effects of gradual vessel compression on the fluid dynamics occurring within the channel is evaluated in silico. Finally, it is demonstrated how cancer-associated fibroblast (CAF)-modulatory therapeutics can inhibit the cell-mediated compression of blood vessels in PDAC in vitro, in silico and in vivo. It is envisioned that this 3D model is used to improve the understanding of mechanical characteristics in tumors and for evaluating novel anti-desmoplastic therapeutics.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Irene Uboldi
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Praneeth Reddy Kuninty
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Marc J.K. Ankone
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Joop van Baarlen
- Laboratorium Pathologie Oost-Nederland (LabPON), 7550 AM, Hengelo, the Netherlands
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, Biofluid Dynamics Section, University of Twente, 7500 AE Enschede, the Netherlands
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
35
|
Revskij D, Runst J, Umstätter C, Ehlers L, Rohde S, Zechner D, Bastian M, Müller-Hilke B, Fuellen G, Henze L, Murua Escobar H, Junghanss C, Kowald A, Walter U, Köhling R, Wolkenhauer O, Jaster R. Uncoupling protein 2 deficiency of non-cancerous tissues inhibits the progression of pancreatic cancer in mice. Hepatobiliary Pancreat Dis Int 2023; 22:190-199. [PMID: 36549966 DOI: 10.1016/j.hbpd.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a disease of the elderly mostly because its development from preneoplastic lesions depends on the accumulation of gene mutations and epigenetic alterations over time. How aging of non-cancerous tissues of the host affects tumor progression, however, remains largely unknown. METHODS We took advantage of a model of accelerated aging, uncoupling protein 2-deficient (Ucp2 knockout, Ucp2 KO) mice, to investigate the growth of orthotopically transplanted Ucp2 wild-type (WT) PDAC cells (cell lines Panc02 and 6606PDA) in vivo and to study strain-dependent differences of the PDAC microenvironment. RESULTS Measurements of tumor weights and quantification of proliferating cells indicated a significant growth advantage of Panc02 and 6606PDA cells in WT mice compared to Ucp2 KO mice. In tumors in the knockout strain, higher levels of interferon-γ mRNA despite similar numbers of tumor-infiltrating T cells were observed. 6606PDA cells triggered a stronger stromal reaction in Ucp2 KO mice than in WT animals. Accordingly, pancreatic stellate cells from Ucp2 KO mice proliferated at a higher rate than cells of the WT strain when they were incubated with conditioned media from PDAC cells. CONCLUSIONS Ucp2 modulates PDAC microenvironment in a way that favors tumor progression and implicates an altered stromal response as one of the underlying mechanisms.
Collapse
Affiliation(s)
- Denis Revskij
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Jakob Runst
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Camilla Umstätter
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Luise Ehlers
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Manuela Bastian
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Facility for Cell Sorting and Cell Analysis and Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Axel Kowald
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Uwe Walter
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
36
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 379] [Impact Index Per Article: 189.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
37
|
Walcheck MT, Schwartz PB, Carrillo ND, Matkowsky KA, Nukaya M, Bradfield CA, Ronnekleiv-Kelly SM. Aryl hydrocarbon receptor knockout accelerates PanIN formation and fibro-inflammation in a mutant Kras-driven pancreatic cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526625. [PMID: 36778364 PMCID: PMC9915668 DOI: 10.1101/2023.02.01.526625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the pathogenesis of several cancers, and can be targeted for therapeutic effect. However, its involvement in PDAC remains unclear. Therefore, we evaluated the role of AHR in the development of PDAC in vivo. Methods We created a global AHR-null, mutant Kras-driven PDAC mouse model (A-/-KC) and evaluated the changes in PDAC precursor lesion formation (Pan-IN 1, 2, and 3) and associated fibro-inflammation between KC and A-/-KC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes. Results We found a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in A-/-KC vs KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation. Conclusion These findings show the loss of AHR results in heightened Kras-induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Morgan T Walcheck
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
| | - Patrick B Schwartz
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
| | - Noah D Carrillo
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Kristina A Matkowsky
- University of Wisconsin School of Medicine and Public Health, Department of Pathology and Laboratory Medicine, L5/183 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Manabu Nukaya
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Christopher A Bradfield
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Sean M Ronnekleiv-Kelly
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| |
Collapse
|
38
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
39
|
Singh M, Pal P, Dutta RS, Marbaniang D, Ray S, Mazumder B. Nanodiamond Mediated Molecular Targeting in Pancreatic Ductal Adenocarcinoma: Disrupting the Tumor-stromal Cross-talk, Next Hope on the Horizon? Curr Cancer Drug Targets 2023; 23:620-633. [PMID: 36843367 DOI: 10.2174/1568009623666230227120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 02/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the foremost causes of cancer-related morbidities worldwide. Novel nanotechnology-backed drug delivery stratagems, including molecular targeting of the chemotherapeutic payload, have been considered. However, no quantum leap in the gross survival rate of patients with PDAC has been realized. One of the predominant causes behind this is tumor desmoplasia, a dense and heterogenous stromal extracellular matrix of the tumor, aptly termed tumor microenvironment (TME). It plays a pivotal role in the tumor pathogenesis of PDAC as it occupies most of the tumor mass, making PDAC one of the most stromal-rich cancers. The complex crosstalk between the tumor and dynamic components of the TME impacts tumor progression and poses a potential barrier to drug delivery. Understanding and deciphering the complex cascade of tumorstromal interactions are the need of the hour so that we can develop neoteric nano-carriers to disrupt the stroma and target the tumor. Nanodiamonds (NDs), due to their unique surface characteristics, have emerged as a promising nano delivery system in various pre-clinical cancer models and have the potential to deliver the chemotherapeutic payload by moving beyond the dynamic tumor-stromal barrier. It can be the next revolution in nanoparticle-mediated pancreatic cancer targeting.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Rajat Subhra Dutta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Daphisha Marbaniang
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Subhabrata Ray
- Dr. B.C. Roy College of Pharmacy & AHS, Durgapur, WB, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
40
|
Hosen SMZ, Uddin MN, Xu Z, Buckley BJ, Perera C, Pang TCY, Mekapogu AR, Moni MA, Notta F, Gallinger S, Pirola R, Wilson J, Ranson M, Goldstein D, Apte M. Metastatic phenotype and immunosuppressive tumour microenvironment in pancreatic ductal adenocarcinoma: Key role of the urokinase plasminogen activator (PLAU). Front Immunol 2022; 13:1060957. [PMID: 36591282 PMCID: PMC9794594 DOI: 10.3389/fimmu.2022.1060957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Previous studies have revealed the role of dysregulated urokinase plasminogen activator (encoded by PLAU) expression and activity in several pathways associated with cancer progression. However, systematic investigation into the association of PLAU expression with factors that modulate PDAC (pancreatic ductal adenocarcinoma) progression is lacking, such as those affecting stromal (pancreatic stellate cell, PSC)-cancer cell interactions, tumour immunity, PDAC subtypes and clinical outcomes from potential PLAU inhibition. Methods This study used an integrated bioinformatics approach to identify prognostic markers correlated with PLAU expression using different transcriptomics, proteomics, and clinical data sets. We then determined the association of dysregulated PLAU and correlated signatures with oncogenic pathways, metastatic phenotypes, stroma, immunosuppressive tumour microenvironment (TME) and clinical outcome. Finally, using an in vivo orthotopic model of pancreatic cancer, we confirmed the predicted effect of inhibiting PLAU on tumour growth and metastasis. Results Our analyses revealed that PLAU upregulation is not only associated with numerous other prognostic markers but also associated with the activation of various oncogenic signalling pathways, aggressive phenotypes relevant to PDAC growth and metastasis, such as proliferation, epithelial-mesenchymal transition (EMT), stemness, hypoxia, extracellular cell matrix (ECM) degradation, upregulation of stromal signatures, and immune suppression in the tumour microenvironment (TME). Moreover, the upregulation of PLAU was directly connected with signalling pathways known to mediate PSC-cancer cell interactions. Furthermore, PLAU upregulation was associated with the aggressive basal/squamous phenotype of PDAC and significantly reduced overall survival, indicating that this subset of patients may benefit from therapeutic interventions to inhibit PLAU activity. Our studies with a clinically relevant orthotopic pancreatic model showed that even short-term PLAU inhibition is sufficient to significantly halt tumour growth and, importantly, eliminate visible metastasis. Conclusion Elevated PLAU correlates with increased aggressive phenotypes, stromal score, and immune suppression in PDAC. PLAU upregulation is also closely associated with the basal subtype type of PDAC; patients with this subtype are at high risk of mortality from the disease and may benefit from therapeutic targeting of PLAU.
Collapse
Affiliation(s)
- S. M. Zahid Hosen
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Zhihong Xu
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Benjamin J. Buckley
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Chamini Perera
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Tony C. Y. Pang
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The University of Sydney, Sydney, NSW, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ron Pirola
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy Wilson
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Marie Ranson
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia,Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Minoti Apte
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia,*Correspondence: Minoti Apte,
| |
Collapse
|
41
|
Perelló-Reus CM, Rubio-Tomás T, Cisneros-Barroso E, Ibargüen-González L, Segura-Sampedro JJ, Morales-Soriano R, Barceló C. Challenges in precision medicine in pancreatic cancer: A focus in cancer stem cells and microbiota. Front Oncol 2022; 12:995357. [PMID: 36531066 PMCID: PMC9751445 DOI: 10.3389/fonc.2022.995357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic cancer adenocarcinoma (PDAC) is a lethal disease, with the lowest 5-years survival rate of all cancers due to late diagnosis. Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in PDAC is currently neglectable. The reasons for this dismal situation are mainly the absence of effective early diagnostic biomarkers and therapy resistance. PDAC cancer stem cells (PDAC-SC), which are regarded as essential for tumor initiation, relapse and drug resistance, are highly dependent on their niche i.e. microanatomical structures of the tumor microenvironment. There is an altered microbiome in PDAC patients embedded within the highly desmoplastic tumor microenvironment, which is known to determine therapeutic responses and affecting survival in PDAC patients. We consider that understanding the communication network that exists between the microbiome and the PDAC-SC niche by co-culture of patient-derived organoids (PDOs) with TME microbiota would recapitulate the complexity of PDAC paving the way towards a precision oncology treatment-response prediction.
Collapse
Affiliation(s)
- Catalina M. Perelló-Reus
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain,*Correspondence: Carles Barceló, ; Catalina M. Perelló-Reus,
| | | | | | - Lesly Ibargüen-González
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain
| | - Juan José Segura-Sampedro
- Advanced Oncological Surgery, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain,General and Digestive Surgery Unit, Hospital Universitari Son Espases, School of Medicine, Balearic Islands Health Research Institute, University of Balearic Islands, Palma de Mallorca, Spain
| | - Rafael Morales-Soriano
- Advanced Oncological Surgery, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain,General and Digestive Surgery Unit, Hospital Universitari Son Espases, School of Medicine, Balearic Islands Health Research Institute, University of Balearic Islands, Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain,*Correspondence: Carles Barceló, ; Catalina M. Perelló-Reus,
| |
Collapse
|
42
|
The microbiota and aging microenvironment in pancreatic cancer: Cell origin and fate. Biochim Biophys Acta Rev Cancer 2022; 1877:188826. [DOI: 10.1016/j.bbcan.2022.188826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
|
43
|
Gola M, Sejda A, Godlewski J, Cieślak M, Starzyńska A. Neural Component of the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:5246. [PMID: 36358664 PMCID: PMC9657005 DOI: 10.3390/cancers14215246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive primary malignancy of the pancreas, with a dismal prognosis and limited treatment options. It possesses a unique tumor microenvironment (TME), generating dense stroma with complex elements cross-talking with each other to promote tumor growth and progression. Diversified neural components makes for not having a full understanding of their influence on its aggressive behavior. The aim of the study was to summarize and integrate the role of nerves in the pancreatic tumor microenvironment. The role of autonomic nerve fibers on PDAC development has been recently studied, which resulted in considering the targeting of sympathetic and parasympathetic pathways as a novel treatment opportunity. Perineural invasion (PNI) is commonly found in PDAC. As the severity of the PNI correlates with a poorer prognosis, new quantification of this phenomenon, distinguishing between perineural and endoneural invasion, could feature in routine pathological examination. The concepts of cancer-related neurogenesis and axonogenesis in PDAC are understudied; so, further research in this field may be warranted. A better understanding of the interdependence between the neural component and cancer cells in the PDAC microenvironment could bring new nerve-oriented treatment options into clinical practice and improve outcomes in patients with pancreatic cancer. In this review, we aim to summarize and integrate the current state of knowledge and future challenges concerning nerve-cancer interactions in PDAC.
Collapse
Affiliation(s)
- Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology and Forensic Medicine, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 18 Żołnierska Street, 10-561 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Małgorzata Cieślak
- Department of Pathomorphology and Forensic Medicine, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 18 Żołnierska Street, 10-561 Olsztyn, Poland
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland
| |
Collapse
|
44
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
45
|
Mukherjee A, Ha P, Wai KC, Naara S. The Role of ECM Remodeling, EMT, and Adhesion Molecules in Cancerous Neural Invasion: Changing Perspectives. Adv Biol (Weinh) 2022; 6:e2200039. [PMID: 35798312 DOI: 10.1002/adbi.202200039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Indexed: 01/28/2023]
Abstract
Perineural invasion (PNI) refers to the cancerous invasion of nerves. It provides an alternative route for metastatic invasion and can exist independently in the absence of lymphatic or vascular invasion. It is a prominent characteristic of specific aggressive malignancies where it correlates with poor prognosis. The clinical significance of PNI is widely recognized despite a lack of understanding of the molecular mechanisms underlying its pathogenesis. The interaction between the nerve and the cancer cells is the most pivotal PNI step which is mediated by the activation or inhibition of multiple signaling pathways that include chemokines, interleukins, nerve growth factors, and matrix metalloproteinases, to name a few. The nerve-cancer cell interaction brings about specific changes in the perineural niche, which not only affects the regular nerve functions, but also enhances the migratory, invasive, and adherent properties of the tumor cells. This review aims to elucidate the vital role of adhesion molecules, extracellular matrix, and epithelial-mesenchymal proteins that promote PNI, which may serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Department of Genetics and Developmental BiologyRappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525422, Israel
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Katherine C Wai
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Shorook Naara
- Department of Genetics and Developmental BiologyRappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525422, Israel.,Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| |
Collapse
|
46
|
Skorupan N, Palestino Dominguez M, Ricci SL, Alewine C. Clinical Strategies Targeting the Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:4209. [PMID: 36077755 PMCID: PMC9454553 DOI: 10.3390/cancers14174209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer has a complex tumor microenvironment which engages in extensive crosstalk between cancer cells, cancer-associated fibroblasts, and immune cells. Many of these interactions contribute to tumor resistance to anti-cancer therapies. Here, new therapeutic strategies designed to modulate the cancer-associated fibroblast and immune compartments of pancreatic ductal adenocarcinomas are described and clinical trials of novel therapeutics are discussed. Continued advances in our understanding of the pancreatic cancer tumor microenvironment are generating stromal and immune-modulating therapeutics that may improve patient responses to anti-tumor treatment.
Collapse
Affiliation(s)
- Nebojsa Skorupan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Medical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mayrel Palestino Dominguez
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel L. Ricci
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine Alewine
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Charles Jacob HK, Signorelli R, Charles Richard JL, Kashuv T, Lavania S, Middleton A, Gomez BA, Ferrantella A, Amirian H, Tao J, Ergonul AB, Boone MM, Hadisurya M, Tao WA, Iliuk A, Kashyap MK, Garcia-Buitrago M, Dawra R, Saluja AK. Identification of novel early pancreatic cancer biomarkers KIF5B and SFRP2 from “first contact” interactions in the tumor microenvironment. J Exp Clin Cancer Res 2022; 41:258. [PMID: 36002889 PMCID: PMC9400270 DOI: 10.1186/s13046-022-02425-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is one of the most difficult cancers to detect early and most patients die from complications arising due to distant organ metastases. The lack of bona fide early biomarkers is one of the primary reasons for late diagnosis of pancreatic cancer. It is a multifactorial disease and warrants a novel approach to identify early biomarkers.
Methods
In order to characterize the proteome, Extracellular vesicles (EVs) isolated from different in vitro conditions mimicking tumor-microenvironment interactions between pancreatic cancer epithelial and stromal cells were analyzed using high throughput mass spectrometry. The biological activity of the secreted EVome was analyzed by investigating changes in distant organ metastases and associated early changes in the microbiome. Candidate biomarkers (KIF5B, SFRP2, LOXL2, and MMP3) were selected and validated on a mouse-human hybrid Tissue Microarray (TMA) that was specifically generated for this study. Additionally, a human TMA was used to analyze the expression of KIF5B and SFRP2 in progressive stages of pancreatic cancer.
Results
The EVome of co-cultured epithelial and stromal cells is different from individual cells with distinct protein compositions. EVs secreted from stromal and cancer cells cultures could not induce significant changes in Pre-Metastatic Niche (PMN) modulation, which was assessed by changes in the distant organ metastases. However, they did induce significant changes in the early microbiome, as indicated by differences in α and β-diversities. KIF5B and SFRP2 show promise for early detection and investigation in progressive pancreatic cancer. These markers are expressed in all stages of pancreatic cancer such as low grade PanINs, advanced cancer, and in liver and soft tissue metastases.
Conclusions
Proteomic characterization of EVs derived from mimicking conditions of epithelial and stromal cells in the tumor-microenvironment resulted in the identification of several proteins, some for the first time in EVs. These secreted EVs cannot induce changes in distant organ metastases in in vivo models of EV education, but modulate changes in the early murine microbiome. Among all the proteins that were analyzed (MMP3, KIF5B, SFRP2, and LOXL2), KIF5B and SFRP2 show promise as bona fide early pancreatic cancer biomarkers expressed in progressive stages of pancreatic cancer.
Collapse
|
48
|
Böker V, Häußler J, Baumann J, Sunami Y, Trojanowicz B, Harwardt B, Hammje K, von Auw N, Erkan M, Krohn K, Kleeff J. Analysis of genomic alterations in cancer associated human pancreatic stellate cells. Sci Rep 2022; 12:13532. [PMID: 35941161 PMCID: PMC9360052 DOI: 10.1038/s41598-022-17748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/30/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic stellate cells (PSCs) constitute important cells of the pancreatic microenvironment and their close interaction with cancer cells is important in pancreatic cancer. It is currently not known whether PSCs accumulate genetic alterations that contribute to tumor biology. Our aim was to analyze genetic alterations in cancer associated PSCs. PSC DNA was matched to DNA isolated from pancreatic cancer patients’ blood (n = 5) and analyzed by Next-Generation Sequencing (NGS). Bioinformatic analysis was performed using the GATK software and pathogenicity prediction scores. Sanger sequencing was carried out to verify specific genetic alterations in a larger panel of PSCs (n = 50). NGS and GATK analysis identified on average 26 single nucleotide variants in PSC DNA as compared to the matched blood DNA that could be visualized with the Integrative Genomics Viewer. The absence of PDAC driver mutations (KRAS, p53, p16/INK4a, SMAD4) confirmed that PSC isolations were not contaminated with cancer cells. After filtering the variants, using different pathogenicity scores, ten genes were identified (SERPINB2, CNTNAP4, DENND4B, DPP4, FGFBP2, MIGA2, POLE, SNRNP40, TOP2B, and ZDHHC18) in single samples and confirmed by Sanger sequencing. As a proof of concept, functional analysis using control and SERPINB2 knock-out fibroblasts revealed functional effects on growth, migration, and collagen contraction. In conclusion, PSC DNA exhibit a substantial amount of single nucleotide variants that might have functional effects potentially contributing to tumor aggressiveness.
Collapse
Affiliation(s)
- Viktoria Böker
- Department of Visceral, Thoracic and Vascular Surgery, University Medical Center Carl Gustav Carus Dresden, 01307, Dresden, Germany.
| | - Johanna Häußler
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Jenny Baumann
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Bernadette Harwardt
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Kathrin Hammje
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Nadine von Auw
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Mert Erkan
- Acibadem University Hospital Atakent, Istanbul, Turkey
| | - Knut Krohn
- Core Unit DNA im SIKT, Medical Faculty, University Leipzig, 04103, Leipzig, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany.
| |
Collapse
|
49
|
Richardson DR, Azad MG, Afroz R, Richardson V, Dharmasivam M. Thiosemicarbazones reprogram pancreatic cancer bidirectional oncogenic signaling between cancer cells and stellate cells to suppress desmoplasia. Future Med Chem 2022; 14:1005-1017. [PMID: 35670251 DOI: 10.4155/fmc-2022-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Standard treatments have shown dismal activity against pancreatic cancer (PC), due in part to the development of a dense stroma (desmoplasia). This perspective discusses the development of the di-2-pyridylketone thiosemicarbazones that overcomes bidirectional oncogenic signaling between PC cells and pancreatic stellate cells (PSCs), which is critical for desmoplasia development. This activity is induced by the up-regulation of the metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which inhibits oncogenic signaling via HGF, IGF-1 and Sonic Hedgehog pathway. More recent studies have deciphered additional pathways including those mediated by Wnt and tenascin C that are secreted by PSCs to activate β-catenin and YAP/TAZ signaling in PC cells. Suppression of bidirectional signaling between cell types presents a unique therapeutic opportunity.
Collapse
Affiliation(s)
- D R Richardson
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
- Department of Pathology & Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - M Gholam Azad
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - V Richardson
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
50
|
Chen Z, Wei X, Dong S, Han F, He R, Zhou W. Challenges and Opportunities Associated With Platelets in Pancreatic Cancer. Front Oncol 2022; 12:850485. [PMID: 35494001 PMCID: PMC9039220 DOI: 10.3389/fonc.2022.850485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer is one of the most common malignant tumors in the digestive system with a poor prognosis. Accordingly, better understanding of the molecular mechanisms and innovative therapies are warranted to improve the prognosis of this patient population. In addition to playing a crucial role in coagulation, platelets reportedly contribute to the growth, invasion and metastasis of various tumors, including pancreatic cancer. This narrative review brings together currently available evidence on the impact of platelets on pancreatic cancer, including the platelet-related molecular mechanisms of cancer promotion, pancreatic cancer fibrosis, immune evasion, drug resistance mechanisms, thrombosis, targeted platelet therapy, combined radiotherapy and chemotherapy treatment, platelet combined with nanotechnology treatment and potential applications of pancreatic cancer organoids. A refined understanding of the role of platelets in pancreatic cancer provides the foothold for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Wei
- Emergency Department, Gansu Provincial Hospital, Lanzhou, China
| | - Shi Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ru He
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|