1
|
Sobolev V, Tchepourina E, Soboleva A, Denisova E, Korsunskaya I, Mezentsev A. PPAR-γ in Melanoma and Immune Cells: Insights into Disease Pathogenesis and Therapeutic Implications. Cells 2025; 14:534. [PMID: 40214488 PMCID: PMC11989151 DOI: 10.3390/cells14070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Changes in skin pigmentation, like hyperpigmentation or moles, can affect appearance and social life. Unlike locally containable moles, malignant melanomas are aggressive and can spread rapidly, disproportionately affecting younger individuals with a high potential for metastasis. Research has shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) and its ligands exhibit protective effects against melanoma. As a transcription factor, PPAR-γ is crucial in functions like fatty acid storage and glucose metabolism. Activation of PPAR-γ promotes lipid uptake and enhances sensitivity to insulin. In many cases, it also inhibits the growth of cancer cell lines, like breast, gastric, lung, and prostate cancer. In melanoma, PPAR-γ regulates cell proliferation, differentiation, apoptosis, and survival. During tumorigenesis, it controls metabolic changes and the immunogenicity of stromal cells. PPAR-γ agonists can target hypoxia-induced angiogenesis in tumor therapy, but their effects on tumors can be suppressive or promotional, depending on the tumor environment. Published data show that PPAR-γ-targeting agents can be effective in specific groups of patients, but further studies are needed to understand lesser-known biological effects of PPAR-γ and address the existing safety concerns. This review provides a summary of the current understanding of PPAR-γ and its involvement in melanoma.
Collapse
Affiliation(s)
- Vladimir Sobolev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Ekaterina Tchepourina
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Anna Soboleva
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Elena Denisova
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
- Moscow Center of Dermatovenerology and Cosmetology, Moscow 119071, Russia
| | - Irina Korsunskaya
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Alexandre Mezentsev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| |
Collapse
|
2
|
Wu X, Xu L, Zhang H, Zhu Y, Zhang Q, Zhang C, E G. Genome-Wide Selection Sweep Analysis to Identify Candidate Genes with Black and Brown Color in Tibetan Sibu Yaks. Animals (Basel) 2024; 14:2458. [PMID: 39272243 PMCID: PMC11394208 DOI: 10.3390/ani14172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Although coat color is an important economic phenotype in domesticated yaks (Bos grunniens), its genetic basis is not yet fully understood. In this study, a genome-wide selective sweep and high-frequency runs of homozygosity (ROH) identification were performed on 50 yaks with different coat colors to investigate candidate genes (CDGs) related to coat color. The results suggested that 2263 CDGs were identified from the 5% interaction windows of the FST and θπ ratio, along with 2801 and 2834 CDGs from black and brown yaks with iHS, respectively. Furthermore, 648 and 691 CDGs from black and brown yaks, which were widely enriched in pathways related to melanogenesis, melanocyte differentiation, and melanosome organization via GO and KEGG functional enrichment, respectively, were confirmed on the basis of the intersection of three parameters. Additionally, the genome of brown yaks presented more ROH, longer ROH fragments, and higher inbreeding levels than those of black yaks. Specifically, a large number of genes related to melanin synthesis and regulation (e.g., UST, TCF25, and AHRR) from the ROH islands were confirmed to be under strong selection. In summary, the results of this study enhance the understanding of the genetic basis for determining yak coat color.
Collapse
Affiliation(s)
- Xinming Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Lu Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yong Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Qiang Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Chengfu Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Shariatifar H, Ranjbarian F, Hajiahmadi F, Farasat A. A comprehensive review on methotrexate containing nanoparticles; an appropriate tool for cancer treatment. Mol Biol Rep 2022; 49:11049-11060. [PMID: 36097117 DOI: 10.1007/s11033-022-07782-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
For more than seven decades, methotrexate has been used all over the world for treatment of different diseases such as: cancer, autoimmune diseases, and rheumatoid arthritis. Several studies have addressed its formula, efficacy, and delivery methods in recent years. These studies have been focused on the effectiveness of different nanoparticles on drug delivery, delivery of the drug to the target cells, and attenuation of harm to the host cell. Whereas, the main usages of methotrexate are in cancer treatment field, this review provided a brief perspective into using different nanoparticles and their role in the treatment of different cancers.
Collapse
Affiliation(s)
- Hanifeh Shariatifar
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fateme Ranjbarian
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fahimeh Hajiahmadi
- Department of Medical Imaging Technology (Molecular Imaging), School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
4
|
Sarti S, De Paolo R, Ippolito C, Pucci A, Pitto L, Poliseno L. Inducible modulation of miR-204 levels in a zebrafish melanoma model. Biol Open 2020; 9:bio053785. [PMID: 33037013 PMCID: PMC7657466 DOI: 10.1242/bio.053785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022] Open
Abstract
Here, we present miniCoopR-I, an inducible upgrade of the constitutive miniCoopR vector. We developed miniCoopR-I-sponge-204 and miniCoopR-I-pre-miR-204 vectors and we successfully tested them for their ability to achieve time- (embryo/juvenile/adult) and space- (melanocytic lineage) restricted inhibition/overexpression of miR-204, a positive modulator of pigmentation previously discovered by us. Furthermore, melanoma-free survival curves performed on induced fish at the adult stage indicate that miR-204 overexpression accelerates the development of BRAFV600E-driven melanoma. miniCoopR-I allows study of the impact that coding and non-coding modulators of pigmentation exert on melanomagenesis in adult zebrafish, uncoupling it from the impact that they exert on melanogenesis during embryonic development.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Samanta Sarti
- Oncogenomics Unit, CRL-ISPRO, Pisa 56124, Italy
- Institute of Clinical Physiology, CNR, Pisa 56124, Italy
| | - Raffaella De Paolo
- Oncogenomics Unit, CRL-ISPRO, Pisa 56124, Italy
- Institute of Clinical Physiology, CNR, Pisa 56124, Italy
- University of Siena, Siena 53100, Italy
| | - Chiara Ippolito
- Unit of Histology and Human Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Angela Pucci
- Histopathology Department, Pisa University Hospital, Pisa 56126, Italy
| | - Letizia Pitto
- Institute of Clinical Physiology, CNR, Pisa 56124, Italy
| | - Laura Poliseno
- Oncogenomics Unit, CRL-ISPRO, Pisa 56124, Italy
- Institute of Clinical Physiology, CNR, Pisa 56124, Italy
| |
Collapse
|
5
|
Pretti MAM, Bernardes SS, da Cruz JGV, Boroni M, Possik PA. Extracellular vesicle-mediated crosstalk between melanoma and the immune system: Impact on tumor progression and therapy response. J Leukoc Biol 2020; 108:1101-1115. [PMID: 32450618 DOI: 10.1002/jlb.3mr0320-644r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Melanoma is a very lethal tumor type that easily spreads and colonizes regional and distant tissues. Crucial phenotypic changes that favor melanoma metastasis are interposed by the tumor microenvironment (TME), representing a complex network in which malignant cells communicate not only with each other but also with stromal and immune cells. This cell-cell communication can be mediated by extracellular vesicles (EVs), which are lipid bilayer-delimited particles capable of carrying a wide variety of bioactive compounds. Both melanoma-derived or TME-derived EVs deliver important pro- and antitumor signals implicated in various stages of tumor progression, such as proliferation, metastasis, and treatment response. In this review, we highlight the recent advances in EV-mediated crosstalk between melanoma and immune cells and other important cells of the TME, and address different aspects of this bidirectional interaction as well as how this may hinder or trigger the development and progression of melanoma. We also discuss the potential of using EVs as biomarkers and therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Marco Antônio Marques Pretti
- Bioinformatics and Computational Biology Laboratory, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.,Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Sara Santos Bernardes
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.,Tissue Microenvironment Laboratory, Department of General Pathology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Jéssica Gonçalves Vieira da Cruz
- Bioinformatics and Computational Biology Laboratory, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Laboratory, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Patrícia A Possik
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
7
|
Basu R, Kulkarni P, Qian Y, Walsh C, Arora P, Davis E, Duran-Ortiz S, Funk K, Ibarra D, Kruse C, Mathes S, McHugh T, Brittain A, Berryman DE, List EO, Okada S, Kopchick JJ. Growth Hormone Upregulates Melanocyte-Inducing Transcription Factor Expression and Activity via JAK2-STAT5 and SRC Signaling in GH Receptor-Positive Human Melanoma. Cancers (Basel) 2019; 11:E1352. [PMID: 31547367 PMCID: PMC6769493 DOI: 10.3390/cancers11091352] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Growth hormone (GH) facilitates therapy resistance in the cancers of breast, colon, endometrium, and melanoma. The GH-stimulated pathways responsible for this resistance were identified as suppression of apoptosis, induction of epithelial-to-mesenchymal transition (EMT), and upregulated drug efflux by increased expression of ATP-binding cassette containing multidrug efflux pumps (ABC-transporters). In extremely drug-resistant melanoma, ABC-transporters have also been reported to mediate drug sequestration in intracellular melanosomes, thereby reducing drug efficacy. Melanocyte-inducing transcription factor (MITF) is the master regulator of melanocyte and melanoma cell fate as well as the melanosomal machinery. MITF targets such as the oncogene MET, as well as MITF-mediated processes such as resistance to radiation therapy, are both known to be upregulated by GH. Therefore, we chose to query the direct effects of GH on MITF expression and activity towards conferring chemoresistance in melanoma. Here, we demonstrate that GH significantly upregulates MITF as well as the MITF target genes following treatment with multiple anticancer drug treatments such as chemotherapy, BRAF-inhibitors, as well as tyrosine-kinase inhibitors. GH action also upregulated MITF-regulated processes such as melanogenesis and tyrosinase activity. Significant elevation in MITF and MITF target gene expression was also observed in mouse B16F10 melanoma cells and xenografts in bovine GH transgenic (bGH) mice compared to wild-type littermates. Through pathway inhibitor analysis we identified that both the JAK2-STAT5 and SRC activities were critical for the observed effects. Additionally, a retrospective analysis of gene expression data from GTEx, NCI60, CCLE, and TCGA databases corroborated our observed correlation of MITF function and GH action. Therefore, we present in vitro, in vivo, and in silico evidence which strongly implicates the GH-GHR axis in inducing chemoresistance in human melanoma by driving MITF-regulated and ABC-transporter-mediated drug clearance pathways.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Christopher Walsh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Pranay Arora
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Kevin Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Colin Kruse
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Samuel Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Todd McHugh
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Alison Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
8
|
Peterson KA, Neuffer S, Bean ME, New L, Coffin AB, Cooper CD. Melanosome maturation proteins Oca2, Mitfa and Vps11 are differentially required for cisplatin resistance in zebrafish melanocytes. Exp Dermatol 2019; 28:795-800. [DOI: 10.1111/exd.13937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Kersten A. Peterson
- School of Biological Sciences Washington State University Vancouver Vancouver Washington
| | - Samantha Neuffer
- School of Molecular Biosciences Washington State University Vancouver Vancouver Washington
| | - Miranda E. Bean
- College of Arts and Sciences Washington State University Vancouver Vancouver Washington
| | - Leslie New
- Mathematics Washington State University Vancouver Vancouver Washington
| | - Allison B. Coffin
- Integrative Physiology and Neuroscience Washington State University Vancouver Vancouver Washington
| | - Cynthia D. Cooper
- School of Molecular Biosciences Washington State University Vancouver Vancouver Washington
| |
Collapse
|
9
|
Ding B, Zhang W, Wu X, Wang J, Xie C, Huang X, Zhan S, Zheng Y, Huang Y, Xu N, Ding X, Gao S. DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo. Oncotarget 2018; 7:57160-57170. [PMID: 27494835 PMCID: PMC5302980 DOI: 10.18632/oncotarget.11014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
We combined chemo- and immunotherapies by constructing dual therapeutic function immuno-nanoparticles (NPs) consisting of death receptor 5 monoclonal antibody (DR5 mAb)-conjugated nanoparticles loaded with dacarbazine (DTIC) (DTIC-NPs-DR5 mAb). We determined the in vivo targeting specificity of DTIC-NPs-DR5 mAb by evaluating distribution in tumor-bearing nude mice using a real-time imaging system. Therapeutic efficacy was assessed in terms of its effect on tumor volume, survival time, histomorphology, microvessel density (MVD), and apoptotic index (AI). Systemic toxicity was evaluated by measuring white blood cells (WBC) counts, alanine aminotransferase (ALT) levels, and creatinine clearance (CR).In vivo and ex vivo imaging indicates that DR5 mAb modification enhanced the accumulation of NPs within the xenograft tumor. DTIC-NPs-DR5 mAb inhibited tumor growth more effectively than DTIC or DR5 mAb alone, indicating that combining DTIC and DR5 mAb through pharmaceutical engineering achieves a better therapeutic effect. Moreover, the toxicity of DTIC-NPs-DR5 mAb was much lower than that of DTIC, implying that DR5 mAb targeting reduces nonspecific uptake of DTIC into normal tissue and thus decreases toxic side effects. These results demonstrate that DTIC-NPs-DR5 mAb is a safe and effective nanoparticle formulation with the potential to improve the efficacy and specificity of melanoma treatment.
Collapse
Affiliation(s)
- Baoyue Ding
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, PR China.,Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, PR China.,Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, USA
| | - Wei Zhang
- Department of Pharmaceutics, Shanghai Pulmonary Hospital, Tongji University, Shanghai, PR China
| | - Xin Wu
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, PR China
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, USA
| | - Chen Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, USA
| | - Xuan Huang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, PR China
| | - Shuyu Zhan
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, PR China
| | - Yongxia Zheng
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, PR China
| | - Yueyan Huang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, PR China
| | - Ningyin Xu
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, PR China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, PR China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
10
|
Campagne C, Ripoll L, Gilles-Marsens F, Raposo G, Delevoye C. AP-1/KIF13A Blocking Peptides Impair Melanosome Maturation and Melanin Synthesis. Int J Mol Sci 2018; 19:ijms19020568. [PMID: 29443872 PMCID: PMC5855790 DOI: 10.3390/ijms19020568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
Abstract
Melanocytes are specialized cells that generate unique organelles called melanosomes in which melanin is synthesized and stored. Melanosome biogenesis and melanocyte pigmentation require the transport and delivery of melanin synthesizing enzymes, such as tyrosinase and related proteins (e.g., TYRP1), from endosomes to maturing melanosomes. Among the proteins controlling endosome-melanosome transport, AP-1 together with KIF13A coordinates the endosomal sorting and trafficking of TYRP1 to melanosomes. We identify here β1-adaptin AP-1 subunit-derived peptides of 5 amino acids that block the interaction of KIF13A with AP-1 in cells. Incubating these peptides with human MNT-1 cells or 3D-reconstructed pigmented epidermis decreases pigmentation by impacting the maturation of melanosomes in fully pigmented organelles. This study highlights that peptides targeting the intracellular trafficking of melanocytes are candidate molecules to tune pigmentation in health and disease.
Collapse
Affiliation(s)
- Cécile Campagne
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, F-75005 Paris, France.
| | - Léa Ripoll
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, F-75005 Paris, France.
| | - Floriane Gilles-Marsens
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, F-75005 Paris, France.
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, F-75005 Paris, France.
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005 Paris, France.
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, F-75005 Paris, France.
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005 Paris, France.
| |
Collapse
|
11
|
Cooper CD. Insights from zebrafish on human pigment cell disease and treatment. Dev Dyn 2017; 246:889-896. [DOI: 10.1002/dvdy.24550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/22/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Cynthia D. Cooper
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver Washington
| |
Collapse
|
12
|
Peroxisome proliferator-activated receptor α (PPARα) contributes to control of melanogenesis in B16 F10 melanoma cells. Arch Dermatol Res 2017; 309:141-157. [PMID: 28084540 DOI: 10.1007/s00403-016-1711-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 01/10/2023]
Abstract
Recent studies revealed the cooperation between peroxisome proliferator-activated receptor gamma (PPARγ) and α-MSH signaling, which results in enhanced melanogenesis in melanocytes and melanoma cells. However, the agonists of PPARα, such as fenofibrate, exert depigmenting effect. Therefore, we aimed to check how the PPARα expression level affects the antimelanogenic activity of fenofibrate and whether PPARα modulates melanogenesis independently of its agonist. To answer these questions, we used three B16 F10-derived cell lines, which varied in the PPARα expression level and were developed by stable transfection with plasmids driving shRNA-based PPARα silencing or overexpression of PPARα-emerald GFP fusion protein. Melanin contents were assessed with electron paramagnetic resonance spectroscopy along with color component image analysis-a novel approach to pigment content characteristics in melanoma cells. B16 F10 wt and Ctrl shRNA lines showed intermediate pigmentation, whereas the pigmentation of the B16 F10-derived cell lines was inversely correlated with the PPARα expression level. We observed that cells overexpressing PPARα were almost amelanotic and cells with reduced PPARα protein level were heavily melanized. Furthermore, fenofibrate down-regulated the melanogenic apparatus (MITF, tyrosinase, and tyrosinase-related proteins) in the cells with the regular PPARα expression level resulting in their visibly lower total melanin content in all the cell lines. From these observations, we conclude that fenofibrate works as a strong depigmenting agent, which acts independently of PPARα, but in an additive fashion. Our results also indicate that alterations in PGC-1a acetylation and expression level might contribute to the regulation of melanogenesis by PPARα and fenofibrate.
Collapse
|
13
|
Rose AAN, Annis MG, Frederick DT, Biondini M, Dong Z, Kwong L, Chin L, Keler T, Hawthorne T, Watson IR, Flaherty KT, Siegel PM. MAPK Pathway Inhibitors Sensitize BRAF-Mutant Melanoma to an Antibody-Drug Conjugate Targeting GPNMB. Clin Cancer Res 2016; 22:6088-6098. [PMID: 27515299 PMCID: PMC6168941 DOI: 10.1158/1078-0432.ccr-16-1192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine if BRAF and/or MEK inhibitor-induced GPNMB expression renders melanomas sensitive to CDX-011, an antibody-drug conjugate targeting GPNMB. EXPERIMENTAL DESIGN The Cancer Genome Atlas melanoma dataset was interrogated for a panel of MITF-regulated melanosomal differentiation antigens, including GPNMB. BRAF-mutant melanoma cell lines treated with BRAF or MEK inhibitors were assessed for GPNMB expression by RT-qPCR, immunoblot, and FACS analyses. Transient siRNA-mediated knockdown approaches were used to determine if MITF is requirement for treatment-induced GPNMB upregulation. GPNMB expression was analyzed in serial biopsies and serum samples from patients with melanoma taken before, during, and after disease progression on MAPK inhibitor treatment. Subcutaneous injections were performed to test the efficacy of MAPK inhibitors alone, CDX-011 alone, or their combination in suppressing melanoma growth. RESULTS A MITF-dependent melanosomal differentiation signature is associated with poor prognosis in patients with this disease. MITF is increased following BRAF and MEK inhibitor treatment and induces the expression of melanosomal differentiation genes, including GPNMB. GPNMB is expressed at the cell surface in MAPK inhibitor-treated melanoma cells and is also elevated in on-treatment versus pretreatment biopsies from melanoma patients receiving MAPK pathway inhibitors. Combining BRAF and/or MEK inhibitors with CDX-011, an antibody-drug conjugate targeting GPNMB, is effective in causing melanoma regression in preclinical animal models and delays the recurrent melanoma growth observed with MEK or BRAF/MEK inhibitor treatment alone. CONCLUSIONS The combination of MAPK pathway inhibitors with an antibody-drug conjugate targeting GPNMB is an effective therapeutic option for patients with melanoma. Clin Cancer Res; 22(24); 6088-98. ©2016 AACR.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Zhifeng Dong
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Lawrence Kwong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynda Chin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Ian R Watson
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Keith T Flaherty
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
14
|
Akasaki Y, Kikuchi T, Homma S, Koido S, Ohkusa T, Tasaki T, Hayashi K, Komita H, Watanabe N, Suzuki Y, Yamamoto Y, Mori R, Arai T, Tanaka T, Joki T, Yanagisawa T, Murayama Y. Phase I/II trial of combination of temozolomide chemotherapy and immunotherapy with fusions of dendritic and glioma cells in patients with glioblastoma. Cancer Immunol Immunother 2016; 65:1499-1509. [PMID: 27688162 PMCID: PMC11028634 DOI: 10.1007/s00262-016-1905-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/22/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND This trial was designed to evaluate the safety and clinical responses to a combination of temozolomide (TMZ) chemotherapy and immunotherapy with fusions of DCs and glioma cells in patients with glioblastoma (GBM). METHOD GBM patients were assigned to two groups: a group of recurrent GBMs after failing TMZ-chemotherapy against the initially diagnosed glioma (Group-R) or a group of newly diagnosed GBMs (Group-N). Autologous cultured glioma cells obtained from surgical specimens were fused with autologous DCs using polyethylene glycol. The fusion cells (FC) were inoculated intradermally in the cervical region. Toxicity, progression-free survival (PFS), and overall survival (OS) of this trial were evaluated. Expressions of WT-1, gp-100, and MAGE-A3, recognized as chemoresistance-associated peptides (CAP), were confirmed by immunohistochemistry of paraffin-embedded tumor samples. Patient's PBMCs of pre- and post-vaccination were evaluated by tetramer and ELISPOT assays. RESULTS FC-immunotherapy was well tolerated in all patients. Medians of PFS and OS of Group-R (n = 10) were 10.3 and 18.0 months, and those of Group-N (n = 22) were 18.3 and 30.5 months, respectively. Up-regulation and/or cytoplasmic accumulation of CAPs was observed in the recurrent tumors of Group-R patients compared with their initially excised tumors. Specific immune responses against CAPs were observed in the tetramer and ELISPOT assays. CONCLUSIONS The combination of TMZ-treatment leading to up-regulation and/or cytoplasmic accumulation of CAPs, with FC-immunotherapy as a means of producing specific immunity against CAPs, may safely induce anti-tumor effects in patients with GBM.
Collapse
Affiliation(s)
- Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Tetsuro Kikuchi
- Division of Oncology, Research Center for Medical Science, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Sadamu Homma
- Division of Oncology, Research Center for Medical Science, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tetsunori Tasaki
- Division of Blood Transfusion, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kazumi Hayashi
- Division of Oncology, Research Center for Medical Science, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hideo Komita
- Division of Oncology, Research Center for Medical Science, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Nobuyuki Watanabe
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuta Suzuki
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryosuke Mori
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takao Arai
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tatsuhiro Joki
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takaaki Yanagisawa
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
15
|
Almoussalam M, Zhu H. Encapsulation of Cancer Therapeutic Agent Dacarbazine Using Nanostructured Lipid Carrier. J Vis Exp 2016:53760. [PMID: 27168058 PMCID: PMC4942000 DOI: 10.3791/53760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The only formula of dacarbazine (Dac) in clinical use is intravenous infusion, presenting a poor therapeutic profile due to the low dispersity of the drug in aqueous solution. To overcome this, a nanostructured lipid carrier (NLC) consisting of glyceryl palmitostearate and isopropyl myristate was developed to encapsulate Dac. NLCs with controlled size were achieved using high shear dispersion (HSD) following solidification of oil-in-water emulsion. The synthesis parameters, including surfactant concentration, the speed and time of HSD were optimized to achieve the smallest NLC with size, polydispersion index and zeta potential of 155 ± 10 nm, 0.2 ± 0.01, and -43.4 ± 2 mV, respectively. The optimal parameters were also employed for Dac-loaded NLC preparation. The resultant NLC loaded with Dac possessed size, polydispersion index and zeta potential of 190 ± 10 nm, 0.2 ± 0.01, and -43.5 ± 1.2 mV, respectively. The drug encapsulation efficiency and drug loading reached 98% and 14%, respectively. This is the first report on encapsulation of Dac using NLC, implying that NLC could be a new potential candidate as drug carrier to improve the therapeutic profile of Dac.
Collapse
Affiliation(s)
| | - Huijun Zhu
- Institute of Environment, Health, Risks and Futures, Cranfield University;
| |
Collapse
|
16
|
Abstract
The genotypic profile of rare amelanotic melanomas (AMs) has been poorly investigated, thus preventing either an accurate identification as a distinctive melanoma subtype or therapy stratification. Here, we investigated the presence of the BRAF(V600E) mutation by real-time quantitative PCR and KIT mutations (exons 11 and 17) by sequencing analysis in 33 AMs. AMs included 'truly' amelanotic lesions (n = 19), with no melanin pigmentation upon dermoscopic inspection and hypomelanotic lesions (n = 14), by definition partially pigmented lesions showing a melanin pigmentation area of less than 25% of the total surface area. The frequency of the BRAF(V600E) mutation was 70.3% in the 33 cases, a percentage that increased to 89% when only the subgroup of thin melanomas (≤ 1 mm in thickness, n = 9) was considered. KIT mutations were found in 12.1% of AMs, all of which developed in nonacral sites. The identification of a relatively high frequency of BRAF(V600E) and KIT mutations in AMs may have important consequences for implementation of the novel targeted therapies now available to treat this life-threatening disease.
Collapse
|
17
|
Association of MITF and other melanosome-related proteins with chemoresistance in melanoma tumors and cell lines. Melanoma Res 2015; 23:360-5. [PMID: 23921446 DOI: 10.1097/cmr.0b013e328362f9cd] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies in cell lines have suggested a role for melanosomes and related protein trafficking pathways in melanoma drug response. We have investigated the expression of six proteins related to melanosomes and melanogenesis (MITF, GPR143, gp100/PMEL, MLANA, TYRP1, and RAB27A) in pretreatment metastases from melanoma patients (n = 52) with different response to dacarbazine/temozolomide. Microphthalmia-associated transcription factor (MITF) and G-protein coupled receptor 143 (GPR143) showed significantly higher expression in nonresponders compared with responders. The premelanosome protein (gp100/PMEL) has been indicated previously in resistance to cisplatin in melanoma cells, but the expression levels of gp100/PMEL showed no association with response to dacarbazine/temozolomide in our clinical material. We also investigated the effects on chemosensitivity of siRNA inhibition of gp100/PMEL in the MNT-1 melanoma cell line. As expected from the study of the tumor material, no effect was detected with respect to response to temozolomide. However, knockdown of gp100/PMEL sensitized the cells to both paclitaxel and cisplatin. Overall, our results suggest that MITF, and several MITF-regulated factors, are associated with resistance to chemotherapy in melanoma and that different MITF targets can be of importance for different drugs.
Collapse
|
18
|
Mundra V, Li W, Mahato RI. Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine (Lond) 2015; 10:2613-33. [PMID: 26244818 DOI: 10.2217/nnm.15.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Melanoma originated from melanocytes is the most aggressive type of skin cancer with limited treatment options. New targeted therapeutic options with the discovery of BRAF and MEK inhibitors have shown significant survival benefits. Despite the recent progress, development of chemoresistance and systemic toxicity remains a challenge for treating metastatic melanoma. While the response from the first line of treatment against melanoma using dacarbazine remains only 5-10%, the prolonged use of targeted therapy against mutated oncogene BRAF develops chemoresistance. In this review, we will discuss the nanoparticle-based strategies for encapsulation and conjugation of drugs to the polymer for maximizing their tumor distribution through enhanced permeability and retention effect. We will also highlight photodynamic therapy and design of melanoma-targeted nanoparticles.
Collapse
Affiliation(s)
- Vaibhav Mundra
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
19
|
Monge-Fuentes V, Muehlmann LA, de Azevedo RB. Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. NANO REVIEWS 2014; 5:24381. [PMID: 25317253 PMCID: PMC4152551 DOI: 10.3402/nano.v5.24381] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/14/2023]
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has been traditionally considered difficult to treat. The worldwide incidence of melanoma has been increasing faster than any other type of cancer. Early detection, surgery, and adjuvant therapy enable improved outcomes; nonetheless, the prognosis of metastatic melanoma remains poor. Several therapies have been investigated for the treatment of melanoma; however, current treatment options for patients with metastatic disease are limited and non-curative in the majority of cases. Photodynamic therapy (PDT) has been proposed as a promising minimally invasive therapeutic procedure that employs three essential elements to induce cell death: a photosensitizer, light of a specific wavelength, and molecular oxygen. However, classical PDT has shown some drawbacks that limit its clinical application. In view of this, the use of nanotechnology has been considered since it provides many tools that can be applied to PDT to circumvent these limitations and bring new perspectives for the application of this therapy for different types of diseases. On that ground, this review focuses on the potential use of developing nanotechnologies able to bring significant benefits for anticancer PDT, aiming to reach higher efficacy and safety for patients with malignant melanoma.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| | - Luis Alexandre Muehlmann
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| | - Ricardo Bentes de Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
20
|
Azimi A, Pernemalm M, Frostvik Stolt M, Hansson J, Lehtiö J, Egyházi Brage S, Hertzman Johansson C. Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance. Br J Cancer 2014; 110:2489-95. [PMID: 24722184 PMCID: PMC4021518 DOI: 10.1038/bjc.2014.169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Disseminated cutaneous malignant melanoma (CMM) is commonly unresponsive to standard chemotherapies, and there are as yet no predictive markers of therapy response. METHODS In the present study we collected fresh-frozen pretreatment lymph-node metastasis samples (n=14) from melanoma patients with differential response to dacarbazine (DTIC) or temozolomide (TMZ) chemotherapy, to identify proteins with an impact on treatment response. We performed quantitative protein profiling using tandem mass spectrometry and compared the proteome differences between responders (R) and non-responders (NR), matched for age, gender and histopathological type of CMM. RESULTS Biological pathway analyses showed several signalling pathways differing between R vs NR, including Rho signalling. Gene expression profiling data was available for a subset of the samples, and the results were compared with the proteomics data. Four proteins with differential expression between R and NR were selected for technical validation by immunoblotting (ISYNA1, F13A1, CSTB and S100A13), and CSTB and S100A13 were further validated on a larger sample set by immunohistochemistry (n=48). The calcium binding protein S100A13 was found to be significantly overexpressed in NR compared with R in all analyses performed. CONCLUSIONS Our results suggest that S100A13 is involved in CMM resistance to DTIC/TMZ.
Collapse
Affiliation(s)
- A Azimi
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:03, Karolinska University Hospital, Solna, S-17176 Stockholm, Sweden
| | - M Pernemalm
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23, S-17165 Solna, Sweden
| | - M Frostvik Stolt
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:03, Karolinska University Hospital, Solna, S-17176 Stockholm, Sweden
| | - J Hansson
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:03, Karolinska University Hospital, Solna, S-17176 Stockholm, Sweden
| | - J Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23, S-17165 Solna, Sweden
| | - S Egyházi Brage
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:03, Karolinska University Hospital, Solna, S-17176 Stockholm, Sweden
| | - C Hertzman Johansson
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:03, Karolinska University Hospital, Solna, S-17176 Stockholm, Sweden
| |
Collapse
|
21
|
How CW, Teruel JA, Ortiz A, Montenegro MF, Rodríguez-López JN, Aranda FJ. Effects of a synthetic antitumoral catechin and its tyrosinase-processed product on the structural properties of phosphatidylcholine membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1215-24. [DOI: 10.1016/j.bbamem.2014.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
22
|
Suppression of antifolate resistance by targeting the myosin Va trafficking pathway in melanoma. Neoplasia 2014; 15:826-39. [PMID: 23814494 DOI: 10.1593/neo.13320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023] Open
Abstract
Human melanoma is a significant clinical problem. As most melanoma patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is one of the highest priorities to improve melanoma therapy. Melanosomal sequestration and the cellular exportation of cytotoxic drugs have been proposed to be important melanoma-specific mechanisms that contribute to multidrug resistance in melanoma. Concretely, we found that treatment of melanoma with methotrexate (MTX) altered melanogenesis and accelerated the exportation of melanosomes; however, the cellular and molecular processes by which MTX is trapped into melanosomes and exported out of cells have not been elucidated. In this study, we identified myosin Va (MyoVa) as a possible mediator of these cellular processes. The results demonstrated that melanoma treatment with MTX leads to Akt2-dependent MyoVa phosphorylation, which enhances its ability to interact with melanosomes and accelerates their exportation. To understand the mechanism(s) by which MTX activates Akt2, we examined the effects of this drug on the activity of protein phosphatase 2A, an Akt inhibitor activated by the methylation of its catalytic subunit. Taken together, this study identified a novel trafficking pathway in melanoma that promotes tumor resistance through Akt2/MyoVa activation. Because of these findings, we explored several MTX combination therapies to increase the susceptibility of melanoma to this drug. By avoiding MTX exportation, we observed that the E2F1 apoptotic pathway is functional in melanoma, and its induction activates p73 and apoptosis protease-activating factor 1 following a p53-autonomous proapoptotic signaling event.
Collapse
|
23
|
Montenegro MF, Sánchez-del-Campo L, Fernández-Pérez MP, Sáez-Ayala M, Cabezas-Herrera J, Rodríguez-López JN. Targeting the epigenetic machinery of cancer cells. Oncogene 2014; 34:135-43. [PMID: 24469033 DOI: 10.1038/onc.2013.605] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Cancer is characterized by uncontrolled cell growth and the acquisition of metastatic properties. In most cases, the activation of oncogenes and/or deactivation of tumour suppressor genes lead to uncontrolled cell cycle progression and inactivation of apoptotic mechanisms. Although the underlying mechanisms of carcinogenesis remain unknown, increasing evidence links aberrant regulation of methylation to tumourigenesis. In addition to the methylation of DNA and histones, methylation of nonhistone proteins, such as transcription factors, is also implicated in the biology and development of cancer. Because the metabolic cycling of methionine is a key pathway for many of these methylating reactions, strategies to target the epigenetic machinery of cancer cells could result in novel and efficient anticancer therapies. The application of these new epigenetic therapies could be of utility in the promotion of E2F1-dependent apoptosis in cancer cells, in avoiding metastatic pathways and/or in sensitizing tumour cells to radiotherapy.
Collapse
Affiliation(s)
- M F Montenegro
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - L Sánchez-del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M P Fernández-Pérez
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - M Sáez-Ayala
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - J Cabezas-Herrera
- Translational Cancer Research Group, University Hospital Virgen de la Arrixaca (IMIB), Murcia, Spain
| | - J N Rodríguez-López
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| |
Collapse
|
24
|
Targeting protein-trafficking pathways alters melanoma treatment sensitivity. Proc Natl Acad Sci U S A 2011; 109:553-8. [PMID: 22203954 DOI: 10.1073/pnas.1118366109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein-trafficking pathways are targeted here in human melanoma cells using methods independent of oncogene mutational status, and the ability to up-regulate and down-regulate tumor treatment sensitivity is demonstrated. Sensitivity of melanoma cells to cis-diaminedichloroplatinum II (cDDP, cis-platin), carboplatin, dacarbazine, or temozolomide together with velaparib, an inhibitor of poly (ADP ribose) polymerase 1, is increased by up to 10-fold by targeting genes that regulate both protein trafficking and the formation of melanosomes, intracellular organelles unique to melanocytes and melanoma cells. Melanoma cells depleted of either of the protein-trafficking regulators vacuolar protein sorting 33A protein (VPS33A) or cappuccino protein (CNO) have increased nuclear localization of cDDP, increased nuclear DNA damage by platination, and increased apoptosis, resulting in increased treatment sensitivity. Depleted cells also exhibit a decreased proportion of intracellular, mature melanosomes compared with undepleted cells. Modulation of protein trafficking via cell-surface signaling by binding the melanocortin 1 receptor with the antagonist agouti-signaling protein decreased the proportion of mature melanosomes formed and increased cDDP sensitivity, whereas receptor binding with the agonist melanocyte-stimulating hormone resulted in an increased proportion of mature melanosomes formed and in decreased sensitivity (i.e., increased resistance) to cDDP. Mutation of the protein-trafficking gene Hps6, known to impair the formation of mature melanosomes, also increased cDDP sensitivity. Together, these results indicate that targeting protein-trafficking molecules markedly increases melanoma treatment sensitivity and influences the degree of melanosomes available for sequestration of therapeutic agents.
Collapse
|
25
|
Rother J, Jones D. Molecular markers of tumor progression in melanoma. Curr Genomics 2011; 10:231-9. [PMID: 19949544 PMCID: PMC2709934 DOI: 10.2174/138920209788488526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 03/28/2009] [Accepted: 03/29/2009] [Indexed: 01/05/2023] Open
Abstract
Malignant melanoma represents one of the most aggressive malignancies but outcome is highly variable with early tumor lesions having an excellent prognosis following resection. We review here the data on identification of genes involved in the progression of melanoma as a result of expression array studies, genomic profiling, and genetic models. We focus on the role of tumor suppressors involved in cell cycle function, DNA repair, and genome maintenance. Highlighted are the roles of loss of p16 in promoting neoplasia in cooperation with deregulated MAPK signaling, and the role of loss of the RASSF1A protein in promoting chromosomal instability. The interactions between point mutation in growth signaling molecules and epigenetic changes in genes involved in DNA repair and cell division are discussed.
Collapse
Affiliation(s)
- Joshua Rother
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Maisonial A, Kuhnast B, Papon J, Boisgard R, Bayle M, Vidal A, Auzeloux P, Rbah L, Bonnet-Duquennoy M, Miot-Noirault E, Galmier MJ, Borel M, Askienazy S, Dollé F, Tavitian B, Madelmont JC, Moins N, Chezal JM. Single photon emission computed tomography/positron emission tomography imaging and targeted radionuclide therapy of melanoma: new multimodal fluorinated and iodinated radiotracers. J Med Chem 2011; 54:2745-2766. [PMID: 21417462 DOI: 10.1021/jm101574q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study reports a series of 14 new iodinated and fluorinated compounds offering both early imaging ((123)I, (124)I, (18)F) and systemic treatment ((131)I) of melanoma potentialities. The biodistribution of each (125)I-labeled tracer was evaluated in a model of melanoma B16F0-bearing mice, using in vivo serial γ scintigraphic imaging. Among this series, [(125)I]56 emerged as the most promising compound in terms of specific tumoral uptake and in vivo kinetic profile. To validate our multimodality concept, the radiosynthesis of [(18)F]56 was then optimized and this radiotracer has been successfully investigated for in vivo PET imaging of melanoma in B16F0- and B16F10-bearing mouse model. The therapeutic efficacy of [(131)I]56 was then evaluated in mice bearing subcutaneous B16F0 melanoma, and a significant slow down in tumoral growth was demonstrated. These data support further development of 56 for PET imaging ((18)F, (124)I) and targeted radionuclide therapy ((131)I) of melanoma using a single chemical structure.
Collapse
Affiliation(s)
- Aurélie Maisonial
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiang G, Liu YQ, Wei ZP, Pei DS, Mao LJ, Zheng JN. Enhanced anti-tumor activity by the combination of a conditionally replicating adenovirus mediated interleukin-24 and dacarbazine against melanoma cells via induction of apoptosis. Cancer Lett 2010; 294:220-8. [DOI: 10.1016/j.canlet.2010.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/02/2009] [Accepted: 02/04/2010] [Indexed: 11/15/2022]
|
28
|
Sánchez-del-Campo L, Montenegro MF, Cabezas-Herrera J, Rodríguez-López JN. The critical role of alpha-folate receptor in the resistance of melanoma to methotrexate. Pigment Cell Melanoma Res 2009; 22:588-600. [DOI: 10.1111/j.1755-148x.2009.00586.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res 2009; 22:740-9. [PMID: 19725928 DOI: 10.1111/j.1755-148x.2009.00630.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more ATP-binding cassette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites. In this review, we propose a model (termed the ABC-M model) in which the intrinsic MDR of melanoma cells is at least in part because of the transporter systems that may also play a critical role in reducing the cytotoxicity of the melanogenic pathway in melanocytes. The ABC-M model suggests molecular strategies to reverse MDR function in the context of the melanogenic pathway, which could open therapeutic avenues towards the ultimate goal of circumventing clinical MDR in patients with melanoma.
Collapse
Affiliation(s)
- Kevin G Chen
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
30
|
Chen KG, Leapman RD, Zhang G, Lai B, Valencia JC, Cardarelli CO, Vieira WD, Hearing VJ, Gottesman MM. Influence of melanosome dynamics on melanoma drug sensitivity. J Natl Cancer Inst 2009; 101:1259-71. [PMID: 19704071 DOI: 10.1093/jnci/djp259] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Malignant melanomas are intrinsically resistant to many conventional treatments, such as radiation and chemotherapy, for reasons that are poorly understood. Here we propose and test a model that explains drug resistance or sensitivity in terms of melanosome dynamics. METHODS The growth and sensitivity to cisplatin of MNT-1 cells, which are melanotic and enriched with mature stage III and IV melanosomes, and SK-MEL-28 cells, which have only immature stage I and II melanosomes, were compared using clonogenic assays. Differences in pigmentation, melanosome stages, melanosome number, and cellular structures in different cell lines in response to various treatments were examined by electron microscopy. The relative numbers of melanosomes of different stages were compared after treatment with 1-phenyl-2-thiourea. The relationship between drug transporter function and endogenous melanogenic toxicity was assessed by treating cells with the cyclosporin analog PSC-833 and by assessing vacuole formation and cell growth inhibition. All statistical tests were two-sided. RESULTS Endogenous melanogenic cytotoxicity, produced by damaged melanosomes, resulted in pronounced cell growth inhibition in MNT-1 cells compared with amelanotic SK-MEL-28 cells. The sensitivity to CDDP of MNT-1 cells was 3.8-fold higher than that of SK-MEL-28 cells (mean IC(50) for SK-MEL-28 and MNT-1 = 2.13 microM and 0.56 microM, respectively; difference = 1.57 microM, 95% confidence interval = 1.45 to 1.69; P = .0017). After treatment with 6.7 microM CDDP for 72 hours, the number of stage II-III melanosomes in surviving MNT-1 cells was 6.8-fold that of untreated cells. Modulation of MNT-1 cells to earlier-stage (II, II-III, III) melanosomes by treatment with the tyrosinase inhibitor 1-phenyl-2-thiourea dramatically increased CDDP resistance. Furthermore, PSC-833 principally suppressed MNT-1 melanotic cell growth via an elevation of autophagosome-like vacuolar structures, possibly by inhibiting melanosome membrane transporters. CONCLUSIONS Melanosome dynamics (including their biogenesis, density, status, and structural integrity) regulate the drug resistance of melanoma cells. Manipulation of melanosome functions may be an effective way to enhance the therapeutic activity of anticancer drugs against melanoma.
Collapse
Affiliation(s)
- Kevin G Chen
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bldg 37, Rm 2108, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|