1
|
Jani CT, Manoharan A, DeMaria PJ, Bilusic M. Harnessing live vectors for cancer vaccines: Advancing therapeutic immunotherapy. Hum Vaccin Immunother 2025; 21:2469416. [PMID: 40127471 PMCID: PMC11934169 DOI: 10.1080/21645515.2025.2469416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 03/26/2025] Open
Abstract
Cancer vaccines represent a promising approach within immunotherapies. These vaccines are tailored to target tumor-specific antigens, thereby offering a precision approach to cancer treatment. The key principles in developing therapeutic cancer vaccines include identifying appropriate vaccine targets and selecting effective vaccine delivery platforms. These delivery platforms are diverse and have evolved to enhance the immune response. This review explores live cancer vaccines and the biological entities involved. Live cancer vaccines leverage the use of various biological entities to stimulate an immune response. These biological entities including bacterial, yeast-based and viral vectors, have unique properties that can be harnessed to target and destroy cancer cells while eliciting a robust immune response. Clinical trials of cancer vaccines are investigating standalone and combination treatment strategies in the prophylactic, adjuvant, and palliative settings. This review offers insights into the current oncologic vaccine landscape and potential future development.
Collapse
Affiliation(s)
- Chinmay T. Jani
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Aysswarya Manoharan
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | - Marijo Bilusic
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Singh S, Kim GH, Baek KR, Seo SO. Anti-Cancer Strategies Using Anaerobic Spore-Forming Bacteria Clostridium: Advances and Synergistic Approaches. Life (Basel) 2025; 15:465. [PMID: 40141809 PMCID: PMC11943571 DOI: 10.3390/life15030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Despite ongoing advancements, cancer remains a significant global health concern, with a persistent challenge in identifying a definitive cure. While various cancer therapies have been developed and approved, offering treatments for smaller neoplasms, their efficacy diminishes in solid tumors and hypoxic environments, particularly for chemotherapy and radiation therapy. A novel approach, Clostridium-based therapy, has emerged as a promising candidate for current solid tumor treatments due to its unique affinity for the hypoxic tumor microenvironment. This review examines the potential of Clostridium in cancer treatment, encompassing direct tumor lysis, immune modulation, and synergistic effects with existing cancer therapies. Advancements in synthetic biology have further enhanced its potential through genetic modifications, such as the removal of alpha toxin gene from Clostridium novyi-NT, the implementation of targeted approaches, and reduction in systemic toxicity. Although preclinical and clinical studies have demonstrated that Clostridium-based treatments combined with other therapies hold promise for complete cancer eradication, challenges persist. Through this review, we also propose that the integration of various methods and technologies together with Clostridium-based therapy may lead to the complete eradication of cancer in the future.
Collapse
Affiliation(s)
- Saloni Singh
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Geun-Hyung Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Kwang-Rim Baek
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
3
|
Mowday AM, van de Laak JM, Fu Z, Henare KL, Dubois L, Lambin P, Theys J, Patterson AV. Tumor-targeting bacteria as immune stimulants - the future of cancer immunotherapy? Crit Rev Microbiol 2024; 50:955-970. [PMID: 38346140 PMCID: PMC11523919 DOI: 10.1080/1040841x.2024.2311653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
Cancer immunotherapies have been widely hailed as a breakthrough for cancer treatment in the last decade, epitomized by the unprecedented results observed with checkpoint blockade. Even so, only a minority of patients currently achieve durable remissions. In general, responsive patients appear to have either a high number of tumor neoantigens, a preexisting immune cell infiltrate in the tumor microenvironment, or an 'immune-active' transcriptional profile, determined in part by the presence of a type I interferon gene signature. These observations suggest that the therapeutic efficacy of immunotherapy can be enhanced through strategies that release tumor neoantigens and/or produce a pro-inflammatory tumor microenvironment. In principle, exogenous tumor-targeting bacteria offer a unique solution for improving responsiveness to immunotherapy. This review discusses how tumor-selective bacterial infection can modulate the immunological microenvironment of the tumor and the potential for combination with cancer immunotherapy strategies to further increase therapeutic efficacy. In addition, we provide a perspective on the clinical translation of replicating bacterial therapies, with a focus on the challenges that must be resolved to ensure a successful outcome.
Collapse
Affiliation(s)
- Alexandra M. Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jella M. van de Laak
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Zhe Fu
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kimiora L. Henare
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Kunjalwar R, Keerti A, Chaudhari A, Sahoo K, Meshram S. Microbial Therapeutics in Oncology: A Comprehensive Review of Bacterial Role in Cancer Treatment. Cureus 2024; 16:e70920. [PMID: 39502977 PMCID: PMC11535891 DOI: 10.7759/cureus.70920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional cancer therapies, including chemotherapy, radiotherapy, and immunotherapy, have significantly advanced cancer treatment. However, these modalities often face limitations such as systemic toxicity, lack of specificity, and the emergence of resistance. Recent advancements in genetic engineering and synthetic biology have rekindled interest in using bacteria as a novel therapeutic approach in oncology. This comprehensive review explores the potential of microbial therapeutics, particularly bacterial therapies, in the treatment of cancer. Bacterial therapies offer several unique advantages, such as the ability to selectively target and colonize hypoxic and necrotic regions of tumors, areas typically resistant to conventional treatments. The review delves into the mechanisms through which bacteria exert antitumor effects, including direct tumor cell lysis, modulation of the immune response, and delivery of therapeutic agents like cytotoxins and enzymes. Various bacterial species, such as Salmonella, Clostridium, Lactobacillus, and Listeria, have shown promise in preclinical and clinical studies, demonstrating diverse mechanisms of action and therapeutic potential. Moreover, the review discusses the challenges associated with bacterial therapies, such as safety concerns, immune evasion, and the need for precise targeting, and how recent advances in genetic engineering are being used to overcome these hurdles. Current clinical trials and combination strategies with conventional therapies are also highlighted to provide a comprehensive overview of the ongoing developments in this field. In conclusion, while bacterial therapeutics present a novel and promising avenue in cancer treatment, further research and clinical validation is required to fully realize their potential. This review aims to inspire further exploration into microbial oncology, paving the way for innovative and more effective cancer therapies.
Collapse
Affiliation(s)
- Radha Kunjalwar
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akshunna Keerti
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Achal Chaudhari
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kaushik Sahoo
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Supriya Meshram
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Theys J, Patterson AV, Mowday AM. Clostridium Bacteria: Harnessing Tumour Necrosis for Targeted Gene Delivery. Mol Diagn Ther 2024; 28:141-151. [PMID: 38302842 PMCID: PMC10925577 DOI: 10.1007/s40291-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
Necrosis is a common feature of solid tumours that offers a unique opportunity for targeted cancer therapy as it is absent from normal healthy tissues. Tumour necrosis provides an ideal environment for germination of the anaerobic bacterium Clostridium from endospores, resulting in tumour-specific colonisation. Two main species, Clostridium novyi-NT and Clostridium sporogenes, are at the forefront of this therapy, showing promise in preclinical models. However, anti-tumour activity is modest when used as a single agent, encouraging development of Clostridium as a tumour-selective gene delivery system. Various methods, such as allele-coupled exchange and CRISPR-cas9 technology, can facilitate the genetic modification of Clostridium, allowing chromosomal integration of transgenes to ensure long-term stability of expression. Strains of Clostridium can be engineered to express prodrug-activating enzymes, resulting in the generation of active drug selectively in the tumour microenvironment (a concept termed Clostridium-directed enzyme prodrug therapy). More recently, Clostridium strains have been investigated in the context of cancer immunotherapy, either in combination with immune checkpoint inhibitors or with engineered strains expressing immunomodulatory molecules such as IL-2 and TNF-α. Localised expression of these molecules using tumour-targeting Clostridium strains has the potential to improve delivery and reduce systemic toxicity. In summary, Clostridium species represent a promising platform for cancer therapy, with potential for localised gene delivery and immunomodulation selectively within the tumour microenvironment. The ongoing clinical progress being made with C. novyi-NT, in addition to developments in genetic modification techniques and non-invasive imaging capabilities, are expected to further progress Clostridium as an option for cancer treatment.
Collapse
Affiliation(s)
- Jan Theys
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1142, New Zealand
| | - Alexandra M Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
6
|
Tan Y, Liang J, Lai M, Wan S, Luo X, Li F. Advances in synthetic biology toolboxes paving the way for mechanistic understanding and strain engineering of gut commensal Bacteroides spp. and Clostridium spp. Biotechnol Adv 2023; 69:108272. [PMID: 37844770 DOI: 10.1016/j.biotechadv.2023.108272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The gut microbiota plays a significant role in influencing human immunity, metabolism, development, and behavior by producing a wide range of metabolites. While there is accumulating data on several microbiota-derived small molecules that contribute to host health and disease, our knowledge regarding the molecular mechanisms underlying metabolite-mediated microbe-host interactions remains limited. This is primarily due to the lack of efficient genetic tools for most commensal bacteria, especially those belonging to the dominant phyla Bacteroides spp. and Clostridium spp., which hinders the application of synthetic biology to these gut commensal bacteria. In this review, we provide an overview of recent advances in synthetic biology tools developed for the two dominant genera, as well as their applications in deciphering the mechanisms of microbe-host interactions mediated by microbiota-derived small molecules. We also discuss the potential biomedical applications of engineering commensal bacteria using these toolboxes. Finally, we share our perspective on the future development of synthetic biology tools for a better understanding of small molecule-mediated microbe-host interactions and their engineering for biomedical purposes.
Collapse
Affiliation(s)
- Yang Tan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Jing Liang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingchi Lai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Sai Wan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
7
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
8
|
Ashoorzadeh A, Mowday AM, Abbattista MR, Guise CP, Bull MR, Silva S, Patterson AV, Smaill JB. Design and Biological Evaluation of Piperazine-Bearing Nitrobenzamide Hypoxia/GDEPT Prodrugs: The Discovery of CP-506. ACS Med Chem Lett 2023; 14:1517-1523. [PMID: 37974941 PMCID: PMC10641903 DOI: 10.1021/acsmedchemlett.3c00321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023] Open
Abstract
Off-target aerobic activation of PR-104A by human aldo-keto reductase 1C3 (AKR1C3) has confounded the development of this dual hypoxia/gene therapy prodrug. Previous attempts to design prodrugs resistant to AKR1C3 activation have resulted in candidates that require further optimization. Herein we report the evaluation of a lipophilic series of PR-104A analogues in which a piperazine moiety has been introduced to improve drug-like properties. Octanol-water partition coefficients (LogD7.4) spanned >2 orders of magnitude. 2D antiproliferative and 3D multicellular clonogenic assays using isogenic HCT116 and H1299 cells confirmed that all examples were resistant to AKR1C3 metabolism while producing an E. coli NfsA nitroreductase-mediated bystander effect. Prodrugs 16, 17, and 20 demonstrated efficacy in H1299 xenografts where only a minority of tumor cells express NfsA. These prodrugs and their bromo/mesylate counterparts (25-27) were also evaluated for hypoxia-selective cell killing in vitro. These results in conjunction with stability assays recommended prodrug 26 (CP-506) for Phase I/II clinical trial.
Collapse
Affiliation(s)
- Amir Ashoorzadeh
- Auckland
Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Alexandra M. Mowday
- Auckland
Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Maria R. Abbattista
- Auckland
Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Christopher P. Guise
- Auckland
Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Matthew R. Bull
- Auckland
Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Shevan Silva
- Auckland
Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Adam V. Patterson
- Auckland
Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Jeff B. Smaill
- Auckland
Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
9
|
Use of an optimised enzyme/prodrug combination for Clostridia directed enzyme prodrug therapy induces a significant growth delay in necrotic tumours. Cancer Gene Ther 2022; 29:178-188. [PMID: 33558701 DOI: 10.1038/s41417-021-00296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Necrosis is a typical histological feature of solid tumours that provides a selective environment for growth of the non-pathogenic anaerobic bacterium Clostridium sporogenes. Modest anti-tumour activity as a single agent encouraged the use of C. sporogenes as a vector to express therapeutic genes selectively in tumour tissue, a concept termed Clostridium Directed Enzyme Prodrug Therapy (CDEPT). Here, we examine the ability of a recently identified Neisseria meningitidis type I nitroreductase (NmeNTR) to metabolise the prodrug PR-104A in an in vivo model of CDEPT. Human HCT116 colon cancer cells stably over-expressing NmeNTR demonstrated significant sensitivity to PR-104A, the imaging agent EF5, and several nitro(hetero)cyclic anti-infective compounds. Chemical induction of necrosis in human H1299 xenografts by the vascular disrupting agent vadimezan promoted colonisation by NmeNTR-expressing C. sporogenes, and efficacy studies demonstrated moderate but significant anti-tumour activity of spores when compared to untreated controls. Inclusion of the pre-prodrug PR-104 into the treatment schedule provided significant additional activity, indicating proof-of-principle. Successful preclinical evaluation of a transferable gene that enables metabolism of both PET imaging agents (for vector visualisation) and prodrugs (for conditional enhancement of efficacy) is an important step towards the prospect of CDEPT entering clinical evaluation.
Collapse
|
10
|
Interrogation of the Structure–Activity Relationship of a Lipophilic Nitroaromatic Prodrug Series Designed for Cancer Gene Therapy Applications. Pharmaceuticals (Basel) 2022; 15:ph15020185. [PMID: 35215297 PMCID: PMC8877822 DOI: 10.3390/ph15020185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
PR-104A is a dual hypoxia/nitroreductase gene therapy prodrug by virtue of its ability to undergo either one- or two-electron reduction to its cytotoxic species. It has been evaluated extensively in pre-clinical GDEPT studies, yet off-target human aldo-keto reductase AKR1C3-mediated activation has limited its use. Re-evaluation of this chemical scaffold has previously identified SN29176 as an improved hypoxia-activated prodrug analogue of PR-104A that is free from AKR1C3 activation. However, optimization of the bystander effect of SN29176 is required for use in a GDEPT setting to compensate for the non-uniform distribution of therapeutic gene transfer that is often observed with current gene therapy vectors. A lipophilic series of eight analogues were synthesized from commercially available 3,4-difluorobenzaldehyde. Calculated octanol-water partition coefficients (LogD7.4) spanned > 2 orders of magnitude. 2D anti-proliferative and 3D multicellular layer assays were performed using isogenic HCT116 cells expressing E. coli NfsA nitroreductase (NfsA_Ec) or AKR1C3 to determine enzyme activity and measure bystander effect. A variation in potency for NfsA_Ec was observed, while all prodrugs appeared AKR1C3-resistant by 2D assay. However, 3D assays indicated that increasing prodrug lipophilicity correlated with increased AKR1C3 activation and NfsA_Ec activity, suggesting that metabolite loss from the cell of origin into media during 2D monolayer assays could mask cytotoxicity. Three prodrugs were identified as bono fide AKR1C3-negative candidates whilst maintaining activity with NfsA_Ec. These were converted to their phosphate ester pre-prodrugs before being taken forward into in vivo therapeutic efficacy studies. Ultimately, 2-(5-(bis(2-bromoethyl)amino)-4-(ethylsulfonyl)-N-methyl-2-nitrobenzamido)ethyl dihydrogen phosphate possessed a significant 156% improvement in median survival in mixed NfsA_Ec/WT tumors compared to untreated controls (p = 0.005), whilst still maintaining hypoxia selectivity comparable to PR-104A.
Collapse
|
11
|
Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother 2021; 145:112443. [PMID: 34847476 DOI: 10.1016/j.biopha.2021.112443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Research on the relationship between microbiome and cancer has made significant progress in the past few decades. It is now known that the gut microbiome has multiple effects on tumour biology. However, the relationship between intratumoral bacteria and cancers remains unclear. Growing evidence suggests that intratumoral bacteria are important components of the microenvironment in several types of cancers. Furthermore, several studies have demonstrated that intratumoral bacteria may directly influence tumorigenesis, progression and responses to treatment. Limited studies have been conducted on intratumoral bacteria, and using intratumoral bacteria to treat tumours remains a challenge. Bacteria have been studied as anticancer therapeutics since the 19th century when William B. Coley successfully treated patients with inoperable sarcomas using Streptococcus pyogenes. With the development of synthetic biological approaches, several bacterial species have been genetically engineered to increase their applicability for cancer treatment. Genetically engineered bacteria for cancer therapy have unique properties compared to other treatment methods. They can specifically accumulate within tumours and inhibit cancer growth. In addition, genetically engineered bacteria may be used as a vector to deliver antitumour agents or combined with radiation and chemotherapy to synergise the effectiveness of cancer treatment. However, various problems in treating tumours with genetically engineered bacteria need to be addressed. In this review, we focus on the role of intratumoral bacteria on tumour initiation, progression and responses to chemotherapy or immunotherapy. Moreover, we summarised the recent progress in the treatment of tumours with genetically engineered bacteria.
Collapse
|
12
|
Sieow BFL, Wun KS, Yong WP, Hwang IY, Chang MW. Tweak to Treat: Reprograming Bacteria for Cancer Treatment. Trends Cancer 2020; 7:447-464. [PMID: 33303401 DOI: 10.1016/j.trecan.2020.11.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Recent advancements in cancer biology, microbiology, and bioengineering have spurred the development of engineered live biotherapeutics for targeted cancer therapy. In particular, natural tumor-targeting and probiotic bacteria have been engineered for controlled and sustained delivery of anticancer agents into the tumor microenvironment (TME). Here, we review the latest advancements in the development of engineered bacteria for cancer therapy and additional engineering strategies to potentiate the delivery of therapeutic payloads. We also explore the use of combination therapies comprising both engineered bacteria and conventional anticancer therapies for addressing intratumor heterogeneity. Finally, we discuss prospects for the development and clinical translation of engineered bacteria for cancer prevention and treatment.
Collapse
Affiliation(s)
- Brendan Fu-Long Sieow
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School of Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Kwok Soon Wun
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Peng Yong
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore; Cancer Science Institute, National University of Singapore, Singapore
| | - In Young Hwang
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Matthew Wook Chang
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
13
|
Mowday AM, Copp JN, Syddall SP, Dubois LJ, Wang J, Lieuwes NG, Biemans R, Ashoorzadeh A, Abbattista MR, Williams EM, Guise CP, Lambin P, Ackerley DF, Smaill JB, Theys J, Patterson AV. E. coli nitroreductase NfsA is a reporter gene for non-invasive PET imaging in cancer gene therapy applications. Theranostics 2020; 10:10548-10562. [PMID: 32929365 PMCID: PMC7482819 DOI: 10.7150/thno.46826] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The use of reporter genes to non-invasively image molecular processes inside cells has significant translational potential, particularly in the context of systemically administered gene therapy vectors and adoptively administered cells such as immune or stem cell based therapies. Bacterial nitroreductase enzymes possess ideal properties for reporter gene imaging applications, being of non-human origin and possessing the ability to metabolize a range of clinically relevant nitro(hetero)cyclic substrates. Methods: A library of eleven Escherichia coli nitroreductase candidates were screened for the ability to efficiently metabolize 2-nitroimidazole based positron emission tomography (PET) probes originally developed as radiotracers for hypoxic cell imaging. Several complementary methods were utilized to detect formation of cell-entrapped metabolites, including various in vitro and in vivo models to establish the capacity of the 2-nitroimidazole PET agent EF5 to quantify expression of a nitroreductase candidate. Proof-of-principle PET imaging studies were successfully conducted using 18F-HX4. Results: Recombinant enzyme kinetics, bacterial SOS reporter assays, anti-proliferative assays and flow cytometry approaches collectively identified the major oxygen-insensitive nitroreductase NfsA from E. coli (NfsA_Ec) as the most promising nitroreductase reporter gene. Cells expressing NfsA_Ec were demonstrably labelled with the imaging agent EF5 in a manner that was quantitatively superior to hypoxia, in monolayers (2D), multicellular layers (3D), and in human tumor xenograft models. EF5 retention correlated with NfsA_Ec positive cell density over a range of EF5 concentrations in 3D in vitro models and in xenografts in vivo and was predictive of in vivo anti-tumor activity of the cytotoxic prodrug PR-104. Following PET imaging with 18F-HX4, a significantly higher tumor-to-blood ratio was observed in two xenograft models for NfsA_Ec expressing tumors compared to the parental tumors thereof, providing verification of this reporter gene imaging approach. Conclusion: This study establishes that the bacterial nitroreductase NfsA_Ec can be utilized as an imaging capable reporter gene, with the ability to metabolize and trap 2-nitroimidazole PET imaging agents for non-invasive imaging of gene expression.
Collapse
|
14
|
Dróżdż M, Makuch S, Cieniuch G, Woźniak M, Ziółkowski P. Obligate and facultative anaerobic bacteria in targeted cancer therapy: Current strategies and clinical applications. Life Sci 2020; 261:118296. [PMID: 32822716 DOI: 10.1016/j.lfs.2020.118296] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Traditional methods for cancer therapy, including radiotherapy, chemotherapy, and immunotherapy are characterized by inherent limitations. Bacteria-mediated tumor therapy is becoming a promising approach in cancer treatment due to the ability of obligate or facultative anaerobic microorganisms to penetrate and proliferate in hypoxic regions of tumors. It is widely known that anaerobic bacteria cause the regression of tumors and inhibition of metastasis through a variety of mechanisms, including toxin production, anaerobic lifestyle and synergy with anti-cancer drugs. These features have the potential to be used as a supplement to conventional cancer treatment. To the best of our knowledge, no reports have been published regarding the most common tumor-targeting bacterial agents with special consideration of obligate anaerobes (such as Clostridium sp., Bifidobacterium sp.) and facultative anaerobes (including Salmonella sp., Listeria monocytogenes, Lactobacillus sp., Escherichia coli, Corynebacterium diphtheriae and Pseudomonas sp). In this review, we summarize the latest literature on the role of these bacteria in cancer treatment.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland.
| | - Gabriela Cieniuch
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw, Poland
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
15
|
Engineering commensal bacteria to rewire host–microbiome interactions. Curr Opin Biotechnol 2020; 62:116-122. [DOI: 10.1016/j.copbio.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
|
16
|
Shirai H, Tsukada K. Bacterial proteolytic activity improves drug delivery in tumors in a size, pharmacokinetic, and binding affinity dependent manner - A mechanistic understanding. J Control Release 2020; 321:348-362. [PMID: 32061790 DOI: 10.1016/j.jconrel.2020.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/15/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Motile bacteria are able to penetrate in the distal areas of blood vessel, which makes bacteria attractive to researchers as a drug delivery vehicle carrying anti-cancer drugs to tumors. Not only therapeutic bacteria show wide anti-tumor effect but also the combination of therapeutic bacteria and conventional chemotherapy leads to dramatically large synergetic effect. We provide a mechanistic understanding of enhanced drug delivery in tumors by co-administration of chemotherapeutic agents and therapeutic bacteria. In this work, simultaneous delivery of C. novyi-NT and chemotherapeutic agents in tumors is mathematically modeled. Simulated doxorubicin concentration in tumors after Doxil administration with or without bacteria agreed reasonably well with experimental literature. Simulated doxorubicin concentration in tumors by the combination of Doxil and C. novyi-NT is over twice higher than that of Doxil alone. This enhanced doxorubicin concentration in tumors is due to the degradation of extracellular matrix of collagen by bacterial proteolytic activity, which increases hydraulic conductivity of interstitium, reduces interstitial fluid pressure, and thus increases convection through vessel walls. Additionally, it alleviates solid stress, which decompresses blood vessels, and thus increases vessel density. On the other hand, simulated doxorubicin concentration in tumors for non-liposomal free-doxorubicin is not enhanced by C. novyi-NT because vascular permeability of free-doxorubicin is larger than Doxil, and thus increased but relatively small convection across vessel walls is offset by the efflux due to increased interstitial flow. A strategy to further enhance this combination therapy is discussed along with sensitivity analysis.
Collapse
Affiliation(s)
- Hiroaki Shirai
- Graduates School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan.
| | - Kosuke Tsukada
- Graduates School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan
| |
Collapse
|
17
|
Yang M, Xu J, Wang Q, Zhang AQ, Wang K. An obligatory anaerobic Salmonella typhimurium strain redirects M2 macrophages to the M1 phenotype. Oncol Lett 2018; 15:3918-3922. [PMID: 29456740 DOI: 10.3892/ol.2018.7742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
A genetically engineered Salmonella typhimurium strain that may be applied in the medically useful therapeutic strategy of using bacterial agents to target breast cancer in a tumor-bearing nude mouse model has been previously reported. Furthermore, immune cell accumulation in breast tumor types has been observed, particularly distributed in regions surrounding the bacteria. M2 macrophages are associated with breast cancer aggressiveness, whereas M1 macrophages are prone to devouring bacteria and killing cancer cells. Therefore, this engineered tumor-targeting salmonella strain was used in an attempt to reverse the phenotype of M2 macrophages into the M1 phenotype. Subsequent to the co-culture of M2 macrophages with the bacteria for a short time, >50% of the M2 macrophages were invaded by bacteria. These M2 macrophages exhibited a decreased expression of mannose receptor (an M2 phenotypic marker) and increased expression of human leukocyte antigen-antigen D related (an M1 phenotypic marker). The results of the present study indicated that differentiated M2 macrophages may be redirected into the M1 phenotype following exposure to the engineered bacteria stimulus. This effect may be a potential mechanism by which bacteria retard tumor growth. Thus, this engineered bacterium may be a useful candidate for targeting and redirecting M2 macrophages into the M1 phenotype.
Collapse
Affiliation(s)
- Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Breast Cancer, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China.,Department of General Surgery, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Juan Xu
- Department of Breast Cancer, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Qi Wang
- Department of Breast Cancer, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - An-Qin Zhang
- Department of Breast Cancer, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
18
|
Lehouritis P, Hogan G, Tangney M. Designer bacteria as intratumoural enzyme biofactories. Adv Drug Deliv Rev 2017; 118:8-23. [PMID: 28916496 DOI: 10.1016/j.addr.2017.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Bacterial-directed enzyme prodrug therapy (BDEPT) is an emerging form of treatment for cancer. It is a biphasic variant of gene therapy in which a bacterium, armed with an enzyme that can convert an inert prodrug into a cytotoxic compound, induces tumour cell death following tumour-specific prodrug activation. BDEPT combines the innate ability of bacteria to selectively proliferate in tumours, with the capacity of prodrugs to undergo contained, compartmentalised conversion into active metabolites in vivo. Although BDEPT has undergone clinical testing, it has received limited clinical exposure, and has yet to achieve regulatory approval. In this article, we review BDEPT from the system designer's perspective, and provide detailed commentary on how the designer should strategize its development de novo. We report on contemporary advancements in this field which aim to enhance BDEPT in terms of safety and efficacy. Finally, we discuss clinical and regulatory barriers facing BDEPT, and propose promising approaches through which these hurdles may best be tackled.
Collapse
|
19
|
Copp JN, Mowday AM, Williams EM, Guise CP, Ashoorzadeh A, Sharrock AV, Flanagan JU, Smaill JB, Patterson AV, Ackerley DF. Engineering a Multifunctional Nitroreductase for Improved Activation of Prodrugs and PET Probes for Cancer Gene Therapy. Cell Chem Biol 2017; 24:391-403. [DOI: 10.1016/j.chembiol.2017.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/31/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
|
20
|
Yang MM, Wilson WR, Wu Z. pH-Sensitive PEGylated liposomes for delivery of an acidic dinitrobenzamide mustard prodrug: Pathways of internalization, cellular trafficking and cytotoxicity to cancer cells. Int J Pharm 2017; 516:323-333. [DOI: 10.1016/j.ijpharm.2016.11.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 11/25/2022]
|
21
|
Mowday AM, Ashoorzadeh A, Williams EM, Copp JN, Silva S, Bull MR, Abbattista MR, Anderson RF, Flanagan JU, Guise CP, Ackerley DF, Smaill JB, Patterson AV. Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy. Biochem Pharmacol 2016; 116:176-87. [PMID: 27453434 DOI: 10.1016/j.bcp.2016.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022]
Abstract
The clinical stage anti-cancer agent PR-104 has potential utility as a cytotoxic prodrug for exogenous bacterial nitroreductases expressed from replicating vector platforms. However substrate selectivity is compromised due to metabolism by the human one- and two-electron oxidoreductases cytochrome P450 oxidoreductase (POR) and aldo-keto reductase 1C3 (AKR1C3). Using rational drug design we developed a novel mono-nitro analog of PR-104A that is essentially free of this off-target activity in vitro and in vivo. Unlike PR-104A, there was no biologically relevant cytotoxicity in cells engineered to express AKR1C3 or POR, under aerobic or anoxic conditions, respectively. We screened this inert prodrug analog, SN34507, against a type I bacterial nitroreductase library and identified E. coli NfsA as an efficient bioactivator using a DNA damage response assay and recombinant enzyme kinetics. Expression of E. coli NfsA in human colorectal cancer cells led to selective cytotoxicity to SN34507 that was associated with cell cycle arrest and generated a robust 'bystander effect' at tissue-like cell densities when only 3% of cells were NfsA positive. Anti-tumor activity of SN35539, the phosphate pre-prodrug of SN34507, was established in 'mixed' tumors harboring a minority of NfsA-positive cells and demonstrated marked tumor control following heterogeneous suicide gene expression. These experiments demonstrate that off-target metabolism of PR-104 can be avoided and identify the suicide gene/prodrug partnership of E. coli NfsA/SN35539 as a promising combination for development in armed vectors.
Collapse
Affiliation(s)
- Alexandra M Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Shevan Silva
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Matthew R Bull
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Maria R Abbattista
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Christopher P Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
22
|
Mowday AM, Guise CP, Ackerley DF, Minton NP, Lambin P, Dubois LJ, Theys J, Smaill JB, Patterson AV. Advancing Clostridia to Clinical Trial: Past Lessons and Recent Progress. Cancers (Basel) 2016; 8:cancers8070063. [PMID: 27367731 PMCID: PMC4963805 DOI: 10.3390/cancers8070063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 01/19/2023] Open
Abstract
Most solid cancers contain regions of necrotic tissue. The extent of necrosis is associated with poor survival, most likely because it reflects aggressive tumour outgrowth and inflammation. Intravenously injected spores of anaerobic bacteria from the genus Clostridium infiltrate and selectively germinate in these necrotic regions, providing cancer-specific colonisation. The specificity of this system was first demonstrated over 60 years ago and evidence of colonisation has been confirmed in multiple tumour models. The use of "armed" clostridia, such as in Clostridium Directed Enzyme Prodrug Therapy (CDEPT), may help to overcome some of the described deficiencies of using wild-type clostridia for treatment of cancer, such as tumour regrowth from a well-vascularised outer rim of viable cells. Successful preclinical evaluation of a transferable gene that metabolises both clinical stage positron emission tomography (PET) imaging agents (for whole body vector visualisation) as well as chemotherapy prodrugs (for conditional enhancement of efficacy) would be a valuable early step towards the prospect of "armed" clostridia entering clinical evaluation. The ability to target the immunosuppressive hypoxic tumour microenvironment using CDEPT may offer potential for synergy with recently developed immunotherapy strategies. Ultimately, clostridia may be most efficacious when combined with conventional therapies, such as radiotherapy, that sterilise viable aerobic tumour cells.
Collapse
Affiliation(s)
- Alexandra M Mowday
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - Christopher P Guise
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - David F Ackerley
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| | - Nigel P Minton
- The Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC) School of Life Sciences, University of Nottingham, Nottingham NG72RD, UK.
| | - Philippe Lambin
- Maastro (Maastricht Radiation Oncology), GROW School for Oncology and Development Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Ludwig J Dubois
- Maastro (Maastricht Radiation Oncology), GROW School for Oncology and Development Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Jan Theys
- Maastro (Maastricht Radiation Oncology), GROW School for Oncology and Development Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Jeff B Smaill
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - Adam V Patterson
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
23
|
Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol 2016; 2016:8451728. [PMID: 27051423 PMCID: PMC4802035 DOI: 10.1155/2016/8451728] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023] Open
Abstract
The rising incidence of cancer cases worldwide generates an urgent need of novel treatment options. Applying bacteria may represent a valuable therapeutic variant that is intensively investigated nowadays. Interestingly, the idea to apply bacteria wittingly or unwittingly dates back to ancient times and was revived in the 19th century mainly by the pioneer William Coley. This review summarizes and compares the results of the past 150 years in bacteria mediated tumor therapy from preclinical to clinical studies. Lessons we have learned from the past provide a solid foundation on which to base future efforts. In this regard, several perspectives are discussed by which bacteria in addition to their intrinsic antitumor effect can be used as vector systems that shuttle therapeutic compounds into the tumor. Strategic solutions like these provide a sound and more apt exploitation of bacteria that may overcome limitations of conventional therapies.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
24
|
Staedtke V, Roberts NJ, Bai RY, Zhou S. Clostridium novyi-NT in cancer therapy. Genes Dis 2016; 3:144-152. [PMID: 30258882 PMCID: PMC6150096 DOI: 10.1016/j.gendis.2016.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
The attenuated anaerobic bacterium Clostridium novyi-NT (C. novyi-NT) is known for its ability to precisely germinate in and eradicate treatment-resistant hypoxic tumors in various experimental animal models and spontaneously occurring canine sarcomas. In this article, we review the therapeutic and toxicologic aspects of C. novyi-NT therapy, key challenges and limitations, and promising strategies to optimize its performance via recombinant DNA technology and immunotherapeutic approaches, to establish C. novyi-NT as an essential tool in cancer therapy.
Collapse
Affiliation(s)
- Verena Staedtke
- Ludwig Center for Cancer Genetics and Therapeutics, The Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD 21287, USA.,Department of Neurology, The Johns Hopkins Medical Institutes, Baltimore, MD 21231, USA
| | - Nicholas J Roberts
- Ludwig Center for Cancer Genetics and Therapeutics, The Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD 21287, USA.,Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Ren-Yuan Bai
- Department of Neurosurgery, The Johns Hopkins Medical Institutes, Baltimore, MD 21231, USA
| | - Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, The Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
25
|
Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 2015; 471:131-53. [PMID: 26431849 DOI: 10.1042/bj20150650] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.
Collapse
|
26
|
Poehlein A, Riegel K, König SM, Leimbach A, Daniel R, Dürre P. Genome sequence of Clostridium sporogenes DSM 795(T), an amino acid-degrading, nontoxic surrogate of neurotoxin-producing Clostridium botulinum. Stand Genomic Sci 2015. [PMID: 26221421 PMCID: PMC4517662 DOI: 10.1186/s40793-015-0016-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clostridium sporogenes DSM 795 is the type strain of the species Clostridium sporogenes, first described by Metchnikoff in 1908. It is a Gram-positive, rod-shaped, anaerobic bacterium isolated from human faeces and belongs to the proteolytic branch of clostridia. C. sporogenes attracts special interest because of its potential use in a bacterial therapy for certain cancer types. Genome sequencing and annotation revealed several gene clusters coding for proteins involved in anaerobic degradation of amino acids, such as glycine and betaine via Stickland reaction. Genome comparison showed that C. sporogenes is closely related to C. botulinum. The genome of C. sporogenes DSM 795 consists of a circular chromosome of 4.1 Mb with an overall GC content of 27.81 mol% harboring 3,744 protein-coding genes, and 80 RNAs.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Karin Riegel
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | - Sandra M König
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | - Andreas Leimbach
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| |
Collapse
|
27
|
Theys J, Lambin P. Clostridium to treat cancer: dream or reality? ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:S21. [PMID: 26046067 DOI: 10.3978/j.issn.2305-5839.2015.03.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/20/2015] [Indexed: 01/19/2023]
Abstract
In their paper "Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses", Roberts et al. describe the induction of antitumor responses following local spore administration of an attenuated C. novyi strain (C. novyi-NT). Stereotactic intratumoral spore injection led to significant survival advantages in a murine orthotopic brain model and local bacterial treatment produced robust responses in a set of spontaneous canine soft tissue carcinomas. Their preclinical findings in both models, provided the basis for a phase 1 investigational clinical study in patients with solid tumors that were either refractory to standard treatment or without an available standard treatment available (NCT01924689). The results of the first patient enrolled in this trial, a 53-year-old female with a retroperitoneal leiomyosarcoma, are described. Next to the non-armed C. novyi-NT described in this paper, very potent genetically modified Clostridium expressing anti-cancer therapeutic genes are also being developed. Are treatments with these non-pathogenic clostridia a viable alternative cancer treatment?
Collapse
Affiliation(s)
- Jan Theys
- Maastro (Maastricht Radiation Oncology), Research institute GROW, University of Maastricht, Maastricht, The Netherlands
| | - Philippe Lambin
- Maastro (Maastricht Radiation Oncology), Research institute GROW, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
28
|
Yu B, Shi L, Zhang BZ, Zhang KE, Peng X, Niu HB, Qu JLE. Obligate anaerobic Salmonella typhimurium strain YB1 treatment on xenograft tumor in immunocompetent mouse model. Oncol Lett 2015; 10:1069-1074. [PMID: 26622627 DOI: 10.3892/ol.2015.3302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/27/2015] [Indexed: 12/13/2022] Open
Abstract
The present authors have previously reported a novel approach to genetically engineer Salmonella typhimurium for the medically important therapeutic strategy of using bacterial agents to target malignant tumors in a breast cancer tumor-bearing nude mouse model. However, studying an immunocompromised mouse model for cancer therapy is insufficient, as certain crucial information about the influence of the immune system may be missing. In the present study, inoculation of the Salmonella strain, YB1, into a colon cancer tumor-bearing immunocompetent mouse model was investigated. The present study determined the tumor targeting efficiency, antitumor potential, the effects of multiple treatments and the systemic toxicity. Intravenous inoculation of YB1 in BALB/c mice exhibited high antitumor effects and also greatly increased the tumor targeting ability and safety compared with the previously-reported nude mouse model. In addition, repeated administration of YB1 further enhanced this effect. Furthermore, no marked toxicity was observed with YB1 treatment, while the VNP20009 and SL7207 strains demonstrated certain adverse effects. The findings of the present study indicate that the YB1 strain is effective and safe in targeting a colon cancer tumor in an immunocompetent mouse model.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China ; Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P.R. China
| | - Lei Shi
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P.R. China
| | - Bao-Zhong Zhang
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P.R. China
| | - K E Zhang
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P.R. China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Han-Ben Niu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Jun-LE Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
29
|
The potential of clostridial spores as therapeutic delivery vehicles in tumour therapy. Res Microbiol 2015; 166:244-54. [DOI: 10.1016/j.resmic.2014.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 01/19/2023]
|
30
|
Hsieh YT, Chen KC, Cheng CM, Cheng TL, Tao MH, Roffler SR. Impediments to enhancement of CPT-11 anticancer activity by E. coli directed beta-glucuronidase therapy. PLoS One 2015; 10:e0118028. [PMID: 25688562 PMCID: PMC4331512 DOI: 10.1371/journal.pone.0118028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022] Open
Abstract
CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity.
Collapse
Affiliation(s)
- Yuan-Ting Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kai-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiu-Min Cheng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Heap JT, Theys J, Ehsaan M, Kubiak AM, Dubois L, Paesmans K, Van Mellaert L, Knox R, Kuehne SA, Lambin P, Minton NP. Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo. Oncotarget 2015; 5:1761-9. [PMID: 24732092 PMCID: PMC4039107 DOI: 10.18632/oncotarget.1761] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Spores of some species of the strictly anaerobic bacteria Clostridium naturally target and partially lyse the hypoxic cores of tumors, which tend to be refractory to conventional therapies. The anti-tumor effect can be augmented by engineering strains to convert a non-toxic prodrug into a cytotoxic drug specifically at the tumor site by expressing a prodrug-converting enzyme (PCE). Safe doses of the favored prodrug CB1954 lead to peak concentrations of 6.3 μM in patient sera, but at these concentration(s) known nitroreductase (NTR) PCEs for this prodrug show low activity. Furthermore, efficacious and safe Clostridium strains that stably express a PCE have not been reported. Here we identify a novel nitroreductase from Neisseria meningitidis, NmeNTR, which is able to activate CB1954 at clinically-achievable serum concentrations. An NmeNTR expression cassette, which does not contain an antibiotic resistance marker, was stably localized to the chromosome of Clostridium sporogenes using a new integration method, and the strain was disabled for safety and containment by making it a uracil auxotroph. The efficacy of Clostridium-Directed Enzyme Prodrug Therapy (CDEPT) using this system was demonstrated in a mouse xenograft model of human colon carcinoma. Substantial tumor suppression was achieved, and several animals were cured. These encouraging data suggest that the novel enzyme and strain engineering approach represent a promising platform for the clinical development of CDEPT.
Collapse
Affiliation(s)
- John T Heap
- Clostridia Research Group, Centre for Biomolecular Sciences, School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang YL, Lü R, Chang ZS, Zhang WQ, Wang QB, Ding SY, Zhao W. Clostridium sporogenes
delivers interleukin-12 to hypoxic tumours, producing antitumour activity without significant toxicity. Lett Appl Microbiol 2014; 59:580-6. [DOI: 10.1111/lam.12322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/31/2014] [Accepted: 08/23/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Y.-L. Zhang
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - R. Lü
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - Z.-S. Chang
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - W.-Q. Zhang
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - Q.-B. Wang
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - S.-Y. Ding
- Laboratory of Pathogenic Biology; Medical College; Qingdao University; Qingdao 266071 China
| | - W. Zhao
- Department of Microbiology; Medical College; Qingdao University; Qingdao 266071 China
| |
Collapse
|
33
|
Abstract
In 1813, Vautier published his observation of tumor regression in patients who had suffered from gas gangrene. Since then, many publications have described the use of bacteria as antitumor therapy. For example, Bifidobacterium and Clostridium have been shown to selectively colonize tumors and to reduce tumor size. In addition, recent studies have focused on the use of genetic engineering to induce the expression of pro-drug converting enzymes, cytokines, specific antibodies, or suicide genes in tumor-colonizing bacteria. Moreover, some animal experiments have reported the treatment of tumors with engineered bacteria, and few side effects were observed. Therefore, based on these advances in tumor targeting therapy, bacteria may represent the next generation of cancer therapy.
Collapse
Affiliation(s)
- Chao Zu
- Department of Oncosurgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University , Xi'an , China
| | | |
Collapse
|
34
|
Lehouritis P, Springer C, Tangney M. Bacterial-directed enzyme prodrug therapy. J Control Release 2013; 170:120-31. [DOI: 10.1016/j.jconrel.2013.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/21/2023]
|
35
|
Green LK, Syddall SP, Carlin KM, Bell GD, Guise CP, Mowday AM, Hay MP, Smaill JB, Patterson AV, Ackerley DF. Pseudomonas aeruginosa NfsB and nitro-CBI-DEI--a promising enzyme/prodrug combination for gene directed enzyme prodrug therapy. Mol Cancer 2013; 12:58. [PMID: 23758947 PMCID: PMC3695803 DOI: 10.1186/1476-4598-12-58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nitro-chloromethylbenzindoline prodrug nitro-CBI-DEI appears a promising candidate for the anti-cancer strategy gene-directed enzyme prodrug therapy, based on its ability to be converted to a highly cytotoxic cell-permeable derivative by the nitroreductase NfsB from Escherichia coli. However, relative to some other nitroaromatic prodrugs, nitro-CBI-DEI is a poor substrate for E. coli NfsB. To address this limitation we evaluated other nitroreductase candidates from E. coli and Pseudomonas aeruginosa. FINDINGS Initial screens of candidate genes in the E. coli reporter strain SOS-R2 identified two additional nitroreductases, E. coli NfsA and P. aeruginosa NfsB, as being more effective activators of nitro-CBI-DEI than E. coli NfsB. In monolayer cytotoxicity assays, human colon carcinoma (HCT-116) cells transfected with P. aeruginosa NfsB were >4.5-fold more sensitive to nitro-CBI-DEI than cells expressing either E. coli enzyme, and 23.5-fold more sensitive than untransfected HCT-116. In three dimensional mixed cell cultures, not only were the P. aeruginosa NfsB expressing cells 540-fold more sensitive to nitro-CBI-DEI than pure cultures of untransfected HCT-116, the activated drug that they generated also displayed an unprecedented local bystander effect. CONCLUSION We posit that the discrepancy in the fold-sensitivity to nitro-CBI-DEI between the two and three dimensional cytotoxicity assays stems from loss of activated drug into the media in the monolayer cultures. This emphasises the importance of evaluating high-bystander GDEPT prodrugs in three dimensional models. The high cytotoxicity and bystander effect exhibited by the NfsB_Pa/nitro-CBI-DEI combination suggest that further preclinical development of this GDEPT pairing is warranted.
Collapse
Affiliation(s)
- Laura K Green
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nguyen VAT, Huynh HA, Hoang TV, Ninh NT, Pham ATH, Nguyen HA, Phan TN, Cutting SM. Killed Bacillus subtilis spores expressing streptavidin: a novel carrier of drugs to target cancer cells. J Drug Target 2013; 21:528-41. [PMID: 23480726 DOI: 10.3109/1061186x.2013.778262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Carriers of drugs in cancer therapy are required to reduce side-effects of the drugs to normal cells. Here we constructed killed recombinant Bacillus subtilis spores (SA1) that expressed streptavidin as a chimeric fusion to the spore coat protein CotB and used the spores as bioparticle carrier. When bound with biotinylated cetuximab these spores could specifically target to the epidermal growth factor receptor on HT 29 colon cancer cells, thereby delivered paclitaxel to the cells with 4-fold higher efficiency, as indicated by fluorescent intensity of paclitaxel Oregon Green 488 bound to HT29 cells. Based on real-time monitoring of cell index, the IC50 of growth of HT29 cells by paclitaxel-SA1-cetuximab was estimated to be 2.9 nM approximately 5-fold lower than water-soluble paclitaxel (14.5 nM). Instability of DNA content was observed when cells were treated with 16 nM paclitaxel-SA1-cetuximab, resulting in a 2-fold enhancement in polyploidy cells. Thus, by targeting the release of paclitaxel to HT29 cells, spore-associated cetuximab augmented the inhibitory effect of paclitaxel on cell division and proliferation. The SA1 could be used as a "universal" drug carrier to target specific biomarkers on cancer cells by conjugating with suitable biotinylated antibodies.
Collapse
Affiliation(s)
- Van Anh Thi Nguyen
- Key laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Prosser GA, Copp JN, Mowday AM, Guise CP, Syddall SP, Williams EM, Horvat CN, Swe PM, Ashoorzadeh A, Denny WA, Smaill JB, Patterson AV, Ackerley DF. Creation and screening of a multi-family bacterial oxidoreductase library to discover novel nitroreductases that efficiently activate the bioreductive prodrugs CB1954 and PR-104A. Biochem Pharmacol 2013; 85:1091-103. [PMID: 23399641 DOI: 10.1016/j.bcp.2013.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023]
Abstract
Two potentially complementary approaches to improve the anti-cancer strategy gene-directed enzyme prodrug therapy (GDEPT) are discovery of more efficient prodrug-activating enzymes, and development of more effective prodrugs. Here we demonstrate the utility of a flexible screening system based on the Escherichia coli SOS response to evaluate novel nitroreductase enzymes and prodrugs in concert. To achieve this, a library of 47 candidate genes representing 11 different oxidoreductase families was created and screened to identify the most efficient activators of two different nitroaromatic prodrugs, CB1954 and PR-104A. The most catalytically efficient nitroreductases were found in the NfsA and NfsB enzyme families, with NfsA homologues generally more active than NfsB. Some members of the AzoR, NemA and MdaB families also exhibited low-level activity with one or both prodrugs. The results of SOS screening in our optimised E. coli reporter strain SOS-R2 were generally predictive of the ability of nitroreductase candidates to sensitise E. coli to CB1954, and of the kcat/Km for each prodrug substrate at a purified protein level. However, we also found that not all nitroreductases express stably in human (HCT-116 colon carcinoma) cells, and that activity at a purified protein level did not necessarily predict activity in stably transfected HCT-116. These results highlight a need for all enzyme-prodrug partners for GDEPT to be assessed in the specific context of the vector and cell line that they are intended to target. Nonetheless, our oxidoreductase library and optimised screens provide valuable tools to identify preferred nitroreductase-prodrug combinations to advance to preclinical evaluation.
Collapse
Affiliation(s)
- Gareth A Prosser
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Clostridial spores for cancer therapy: targeting solid tumour microenvironment. J Toxicol 2012; 2012:862764. [PMID: 22737166 PMCID: PMC3376772 DOI: 10.1155/2012/862764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/27/2012] [Indexed: 11/17/2022] Open
Abstract
Solid tumour accounts for 90% of all cancers. The current treatment approach for most solid tumours is surgery, however it is limited to early stage tumours. Other treatment options such as chemotherapy and radiotherapy are non-selective, thus causing damage to both healthy and cancerous tissue. Past research has focused on understanding tumour cells themselves, and conventional wisdom has aimed at targeting these cells directly. Recent research has shifted towards understanding the tumour microenvironment and it's differences from that of healthy cells/tissues in the body and then to exploit these differences for treatmeat of the tumour. One such approach is utilizing anaerobic bacteria. Several strains of bacteria have been shown to selectively colonize in solid tumours, making them valuable tools for selective tumour targeting and destruction. Amongst them, the anaerobic Clostridium has shown great potential in penetration and colonization of the hypoxic and necrotic areas of the tumour microenvironment, causing significant oncolysis as well as enabling the delivery of therapeutics directly to the tumour in situ. Various strategies utilizing Clostridium are currently being investigated, and represent a novel area of emerging cancer therapy. This review provides an update review of tumour microenvironment as well as summary of the progresses and current status of Clostridial spore-based cancer therapies.
Collapse
|
39
|
Yu B, Yang M, Shi L, Yao Y, Jiang Q, Li X, Tang LH, Zheng BJ, Yuen KY, Smith DK, Song E, Huang JD. Explicit hypoxia targeting with tumor suppression by creating an "obligate" anaerobic Salmonella Typhimurium strain. Sci Rep 2012; 2:436. [PMID: 22666539 PMCID: PMC3365283 DOI: 10.1038/srep00436] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 05/11/2012] [Indexed: 12/19/2022] Open
Abstract
Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, SalmonellaTyphimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do.
Collapse
Affiliation(s)
- Bin Yu
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hai Tran G, Desmet T, De Groeve MRM, Soetaert W. Probing the active site of cellodextrin phosphorylase from Clostridium stercorarium: Kinetic characterization, ligand docking, and site-directed mutagenesis. Biotechnol Prog 2011; 27:326-32. [DOI: 10.1002/btpr.555] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/13/2010] [Indexed: 11/09/2022]
|
41
|
Abstract
Rationally designing new strategies to control the human immune response stands as a key challenge for the scientific community. Chemical biologists have the opportunity to address specific issues in this area that have important implications for both basic science and clinical medicine.
Collapse
|
42
|
Middleton MR, Knox R, Cattell E, Oppermann U, Midgley R, Ali R, Auton T, Agarwal R, Anderson D, Sarker D, Judson I, Osawa T, Spanswick VJ, Davies S, Hartley JA, Kerr DJ. Quinone oxidoreductase-2-mediated prodrug cancer therapy. Sci Transl Med 2010; 2:40ra50. [PMID: 20630857 DOI: 10.1126/scitranslmed.3000615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA-damaging agents are widely used in cancer treatment despite their lack of tumor specificity. Human NQO2 (quinone oxidoreductase-2) is an atypical oxidoreductase because no endogenous electron donor has been identified to date. The enzyme converts CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide], in the presence of the synthetic nicotinamide cofactor analog EP0152R, to a cytotoxic bifunctional alkylating agent. NQO2 activity in hepatocellular tumor tissue is higher than that in other cancer types by a factor of 6 and higher than that in bone marrow by a factor of 20. Structural data from x-ray crystallography and nuclear magnetic resonance spectroscopy allowed us to construct a model of CB1954 and EP0152R binding to NQO2, which suggested an optimal infusion schedule for a phase I trial combining the two agents. Thirty-two patients were treated, and diarrhea and serum transaminase concentrations defined a maximum tolerated dose for the drug combination. There was a clear pharmacokinetic interaction, with EP0152R inducing a marked increase in clearance of CB1954, in keeping with model predictions. We detected DNA interstrand cross-links caused by nitroreduced CB1954 in tumor biopsies from treated patients, demonstrating that the activated prodrug exerts its cytotoxic properties through DNA base alkylation.
Collapse
Affiliation(s)
- Mark R Middleton
- Department of Medical Oncology, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Bacterial therapies possess many unique mechanisms for treating cancer that are unachievable with standard methods. Bacteria can specifically target tumours, actively penetrate tissue, are easily detected and can controllably induce cytotoxicity. Over the past decade, Salmonella, Clostridium and other genera have been shown to control tumour growth and promote survival in animal models. In this Innovation article I propose that synthetic biology techniques can be used to solve many of the key challenges that are associated with bacterial therapies, such as toxicity, stability and efficiency, and can be used to tune their beneficial features, allowing the engineering of 'perfect' cancer therapies.
Collapse
Affiliation(s)
- Neil S Forbes
- University of Massachusetts, Amherst, Department of Chemical Engineering, 159 Goessmann Laboratory, Amherst, Massachusetts 01003-9303, USA.
| |
Collapse
|
44
|
Patel K, Choy SSF, Hicks KO, Melink TJ, Holford NHG, Wilson WR. A combined pharmacokinetic model for the hypoxia-targeted prodrug PR-104A in humans, dogs, rats and mice predicts species differences in clearance and toxicity. Cancer Chemother Pharmacol 2010; 67:1145-55. [PMID: 20683596 DOI: 10.1007/s00280-010-1412-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND PR-104 is a phosphate ester that is systemically converted to the corresponding alcohol PR-104A. The latter is activated by nitroreduction in tumours to cytotoxic DNA cross-linking metabolites. Here, we report a population pharmacokinetic (PK) model for PR-104 and PR-104A in non-human species and in humans. METHODS A compartmental model was used to fit plasma PR-104 and PR-104A concentration-time data after intravenous (i.v.) dosing of humans, Beagle dogs, Sprague-Dawley rats and CD-1 nude mice. Intraperitoneal (i.p.) PR-104 and i.v. PR-104A dosing of mice was also investigated. Protein binding was measured in plasma from each species. Unbound drug clearances and volumes were scaled allometrically. RESULTS A two-compartment model described the disposition of PR-104 and PR-104A in all four species. PR-104 was cleared rapidly by first-order (mice, rats, dogs) or mixed-order (humans) metabolism to PR-104A in the central compartment. The estimated unbound human clearance of PR104A was 211 L/h/70 kg, with a steady state unbound volume of 105 L/70 kg. The size equivalent unbound PR-104A clearance was 2.5 times faster in dogs, 0.78 times slower in rats and 0.63 times slower in mice, which may reflect reported species differences in PR-104A O-glucuronidation. CONCLUSIONS The PK model demonstrates faster size equivalent clearance of PR-104A in dogs and humans than rodents. Dose-limiting myelotoxicity restricts the exposure of PR-104A in humans to approximately 25% of that achievable in mice.
Collapse
Affiliation(s)
- Kashyap Patel
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
45
|
Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR. A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 2009; 65:791-801. [DOI: 10.1007/s00280-009-1188-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 11/12/2009] [Indexed: 11/28/2022]
|
46
|
Abstract
Redox dysregulation originating from metabolic alterations and dependence on mitogenic and survival signaling through reactive oxygen species represents a specific vulnerability of malignant cells that can be selectively targeted by redox chemotherapeutics. This review will present an update on drug discovery, target identification, and mechanisms of action of experimental redox chemotherapeutics with a focus on pro- and antioxidant redox modulators now in advanced phases of preclinal and clinical development. Recent research indicates that numerous oncogenes and tumor suppressor genes exert their functions in part through redox mechanisms amenable to pharmacological intervention by redox chemotherapeutics. The pleiotropic action of many redox chemotherapeutics that involves simultaneous modulation of multiple redox sensitive targets can overcome cancer cell drug resistance originating from redundancy of oncogenic signaling and rapid mutation.Moreover, some redox chemotherapeutics may function according to the concept of synthetic lethality (i.e., drug cytotoxicity is confined to cancer cells that display loss of function mutations in tumor suppressor genes or upregulation of oncogene expression). The impressive number of ongoing clinical trials that examine therapeutic performance of novel redox drugs in cancer patients demonstrates that redox chemotherapy has made the crucial transition from bench to bedside.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|