1
|
Wang S, Xie D, Yue H, Li G, Jiang B, Gao Y, Zheng Z, Zheng X, Wu G. Phospholipase C Beta 2 as a Key Regulator of Tumor Progression and Epithelial-Mesenchymal Transition via PI3K/AKT Signaling in Renal Cell Carcinoma. Biomedicines 2025; 13:304. [PMID: 40002717 PMCID: PMC11853330 DOI: 10.3390/biomedicines13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Renal cell carcinoma (RCC) represents the most common form of invasive kidney cancer in adults. Among the components critical to cellular regulation is Phospholipase C Beta 2 (PLCB2), a member of the phospholipase C enzyme family. This enzyme plays a vital role in managing key cellular functions such as growth, differentiation, migration, and survival. Despite its significant importance, the specific expression patterns and molecular mechanisms of PLCB2 in the progression of RCC are not well understood. Methods: This investigation employed a combination of bioinformatics analyses, scRNA-seq, functional assays, transcriptome sequencing, real-time quantitative PCR (RT-PCR), immunofluorescence, rescue experiments, and Western blotting to explore the regulatory function of PLCB2 in driving the epithelial-mesenchymal transition (EMT) in RCC through the PI3K/AKT signaling pathway. Results:PLCB2 expression is significantly elevated in RCC samples, and this increase is inversely correlated with patient prognosis. The knockdown of PLCB2 in RCC cell lines leads to a marked reduction in cell proliferation, invasion, migration, and EMT. Transcriptome sequencing further revealed that PLCB2 is significantly associated with the PI3K/AKT pathway. Notably, the PI3K activator 740Y-P was able to reverse the reductions in migration, invasion, and EMT caused by the PLCB2 knockdown. Conclusions: Our findings underscore the pivotal role of PLCB2 in regulating RCC invasion and metastasis by modulating the EMT via the PI3K/AKT signaling pathway. This highlights PLCB2 not only as a key prognostic biomarker, but also as a promising therapeutic target in the treatment of advanced-stage RCC, offering new avenues for more effective interventions.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hongzhe Yue
- Department of Emergency, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yaru Gao
- Department of Nursing, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zunwen Zheng
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116011, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
2
|
Kaushal JB, Takkar S, Batra SK, Siddiqui JA. Diverse landscape of genetically engineered mouse models: Genomic and molecular insights into prostate cancer. Cancer Lett 2024; 593:216954. [PMID: 38735382 PMCID: PMC11799897 DOI: 10.1016/j.canlet.2024.216954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Prostate cancer (PCa) is a significant health concern for men worldwide and is particularly prevalent in the United States. It is a complex disease presenting different molecular subtypes and varying degrees of aggressiveness. Transgenic/genetically engineered mouse models (GEMMs) greatly enhanced our understanding of the intricate molecular processes that underlie PCa progression and have offered valuable insights into potential therapeutic targets for this disease. The integration of whole-exome and whole-genome sequencing, along with expression profiling, has played a pivotal role in advancing GEMMs by facilitating the identification of genetic alterations driving PCa development. This review focuses on genetically modified mice classified into the first and second generations of PCa models. We summarize whether models created by manipulating the function of specific genes replicate the consequences of genomic alterations observed in human PCa, including early and later disease stages. We discuss cases where GEMMs did not fully exhibit the expected human PCa phenotypes and possible causes of the failure. Here, we summarize the comprehensive understanding, recent advances, strengths and limitations of the GEMMs in advancing our insights into PCa, offering genetic and molecular perspectives for developing novel GEMM models.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
3
|
Kulkarni S, Alampally H, Guddattu V, Rodrigues G, Carnelio S. Expression of Fascin and SALL4 in odontogenic cysts and tumors: an immunohistochemical appraisal. F1000Res 2024; 11:1578. [PMID: 38895097 PMCID: PMC11184278 DOI: 10.12688/f1000research.126091.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 06/21/2024] Open
Abstract
Background Various stemness markers (SOX2, OCT4, and NANOG) have been studied in odontogenic cysts and tumors. However, studies on SALL4 having similar properties of stemness has not been documented. Additionally, insight into fascin as a migratory molecule is less explored. In this study, the expression of SALL4 and fascin were evaluated in ameloblastoma, adenomatoid odontogenic tumor (AOT), odontogenic keratocyst (OKC), dentigerous cyst (DC), radicular cyst (RC), and calcifying odontogenic cyst (COC). Methods Semi-quantitative analysis of fascin and SALL4 immuno-positive cells was done in a total of 40 cases of ameloblastoma (11 plexiform, 12 follicular, 12 unicystic, and 5 desmoplastic) variants, 6 cases of AOT, 15 each of OKC, DC, RC and 5 of COC. Chi-square test was applied to evaluate the association between SALL4 and fascin expression in odontogenic cysts and tumors. Results Fascin immunopositivity was observed in peripheral ameloblast-like cells, and the expression was weak or absent in stellate reticulum-like cells. A moderate to weak immune-reactivity to SALL4 was observed in the cytoplasm of ameloblastoma, epithelial cells of dentigerous and radicular cysts, having a marked inflammatory infiltrate, which was an interesting observation. COC and AOT had negative to weak expressions. No recurrence has been reported. Conclusions Expression of fascin in ameloblastomas elucidate their role in motility and localized invasion. Its expression in less aggressive lesions like DC, COC, AOT will incite to explore the other functional properties of fascin. SALL4 expression in the cytoplasm of odontogenic cysts and tumors may represent inactive or mutant forms which requires further validation.
Collapse
Affiliation(s)
- Spoorti Kulkarni
- Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Harishanker Alampally
- Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vasudev Guddattu
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gabriel Rodrigues
- Department of General Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sunitha Carnelio
- Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| |
Collapse
|
4
|
Akhoundova D, Fischer S, Triscott J, Lehner M, Thienger P, Maletti S, Jacquet M, Lubis DSH, Bubendorf L, Jochum W, Rubin MA. Rare histologic transformation of a CTNNB1 (β-catenin) mutated prostate cancer with aggressive clinical course. Diagn Pathol 2024; 19:83. [PMID: 38907236 PMCID: PMC11191256 DOI: 10.1186/s13000-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Catenin (Cadherin-Associated Protein), Beta 1 (CTNNB1) genomic alterations are rare in prostate cancer (PCa). Gain-of-function mutations lead to overexpression of β-catenin, with consequent hyperactivation of the Wnt/β-catenin signaling pathway, implicated in PCa progression and treatment resistance. To date, successful targeted treatment options for Wnt/β-catenin - driven PCa are lacking. METHODS We report a rare histologic transformation of a CTNNB1 (β-catenin) mutated metastatic castration resistant prostate cancer (mCRPC), clinically characterized by highly aggressive disease course. We histologically and molecularly characterized the liver metastatic tumor samples, as well as successfully generated patient-derived organoids (PDOs) and patient-derived xenograft (PDX) from a liver metastasis. We used the generated cell models for further molecular characterization and drug response assays. RESULTS Immunohistochemistry of liver metastatic biopsies and PDX tumor showed lack of expression of typical PCa (e.g., AR, PSA, PSAP, ERG) or neuroendocrine markers (synaptophysin), compatible with double-negative CRPC, but was positive for nuclear β-catenin expression, keratin 7 and 34βE12. ERG rearrangement was confirmed by fluorescent in situ hybridization (FISH). Drug response assays confirmed, in line with the clinical disease course, lack of sensitivity to common drugs used in mCRPC (e.g., enzalutamide, docetaxel). The casein kinase 1 (CK1) inhibitor IC261 and the tankyrase 1/2 inhibitor G700-LK showed modest activity. Moreover, despite harbouring a CTNNB1 mutation, PDOs were largely insensitive to SMARCA2/4- targeting PROTAC degraders and inhibitor. CONCLUSIONS The reported CTNNB1-mutated mCRPC case highlights the potential challenges of double-negative CRPC diagnosis and underlines the relevance of further translational research to enable successful targeted treatment of rare molecular subtypes of mCRPC.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital of Bern, Bern, 3010, Switzerland
| | - Stefanie Fischer
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9007, Switzerland
| | - Joanna Triscott
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Marika Lehner
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Phillip Thienger
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Sina Maletti
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Muriel Jacquet
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Dinda S H Lubis
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital of Basel, Basel, 4031, Switzerland
| | - Wolfram Jochum
- Institute of Pathology, Cantonal Hospital St. Gallen, St. Gallen, 9007, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland.
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
5
|
Mahdi-Esferizi R, Haji Molla Hoseyni B, Mehrpanah A, Golzade Y, Najafi A, Elahian F, Zadeh Shirazi A, Gomez GA, Tahmasebian S. DeeP4med: deep learning for P4 medicine to predict normal and cancer transcriptome in multiple human tissues. BMC Bioinformatics 2023; 24:275. [PMID: 37403016 DOI: 10.1186/s12859-023-05400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND P4 medicine (predict, prevent, personalize, and participate) is a new approach to diagnosing and predicting diseases on a patient-by-patient basis. For the prevention and treatment of diseases, prediction plays a fundamental role. One of the intelligent strategies is the design of deep learning models that can predict the state of the disease using gene expression data. RESULTS We create an autoencoder deep learning model called DeeP4med, including a Classifier and a Transferor that predicts cancer's gene expression (mRNA) matrix from its matched normal sample and vice versa. The range of the F1 score of the model, depending on tissue type in the Classifier, is from 0.935 to 0.999 and in Transferor from 0.944 to 0.999. The accuracy of DeeP4med for tissue and disease classification was 0.986 and 0.992, respectively, which performed better compared to seven classic machine learning models (Support Vector Classifier, Logistic Regression, Linear Discriminant Analysis, Naive Bayes, Decision Tree, Random Forest, K Nearest Neighbors). CONCLUSIONS Based on the idea of DeeP4med, by having the gene expression matrix of a normal tissue, we can predict its tumor gene expression matrix and, in this way, find effective genes in transforming a normal tissue into a tumor tissue. Results of Differentially Expressed Genes (DEGs) and enrichment analysis on the predicted matrices for 13 types of cancer showed a good correlation with the literature and biological databases. This led that by using the gene expression matrix, to train the model with features of each person in a normal and cancer state, this model could predict diagnosis based on gene expression data from healthy tissue and be used to identify possible therapeutic interventions for those patients.
Collapse
Affiliation(s)
- Roohallah Mahdi-Esferizi
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Amir Mehrpanah
- Faculty of Mathematics, Shahid Beheshti University, Tehran, Iran
| | - Yazdan Golzade
- Department of Mathematics, Faculty of Basic Sciences, Iran University of Science and Technology,(IUST), Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Zadeh Shirazi
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Guillermo A Gomez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Shahram Tahmasebian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Fleming-de-Moraes CD, Rocha MR, Tessmann JW, de Araujo WM, Morgado-Diaz JA. Crosstalk between PI3K/Akt and Wnt/β-catenin pathways promote colorectal cancer progression regardless of mutational status. Cancer Biol Ther 2022; 23:1-13. [PMID: 35944058 PMCID: PMC9367664 DOI: 10.1080/15384047.2022.2108690] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The PI3K/Akt and Wnt/β-catenin pathways play an important role in the acquisition of the malignant phenotype in cancer. However, there are few data regarding the role of the interplay between both pathways in colorectal cancer (CRC) progression. The mutational status and the clinicopathological characteristics of PI3K/Akt and Wnt/β-catenin pathways were accessed by bioinformatic analysis whereas that the impact of the interplay between the activity of both pathways to explain tumorigenic potential was performed in vitro using IGF-1 and Wnt3a treatments in CRC cell models. The mutational status of these pathways did not influence the survival of CRC patients, but an association between clinicopathological characteristics in patients with mutations in one, but not in both pathways was observed. A potentiating effect on the activation of both pathways and enhanced cellular migration and proliferation was observed when both pathways were activated simultaneously with IGF-1 and Wnt3a. In addition, these effects were hindered after pretreatment with LY294002, a specific PI3K inhibitor, suggesting some dependence between these two signaling cascades. Our findings show that, regardless of mutational status, there is an interplay between the activity of PI3K/Akt and Wnt/β-catenin pathways that contributes to events related to CRC progression and that the reversal of such events using a PI3K inhibitor highlights the value of targeting these pathways for potential directed therapies in CRC patients.
Collapse
Affiliation(s)
- Cassio Dejair Fleming-de-Moraes
- Cellular and Molecular Oncobiology Program, Cellular Dynamic and Structure Group, Instituto Nacional de Cancer - INCA, Rio de Janeiro, Brazil
| | - Murilo Ramos Rocha
- Cellular and Molecular Oncobiology Program, Cellular Dynamic and Structure Group, Instituto Nacional de Cancer - INCA, Rio de Janeiro, Brazil
| | - Josiane Weber Tessmann
- Cellular and Molecular Oncobiology Program, Cellular Dynamic and Structure Group, Instituto Nacional de Cancer - INCA, Rio de Janeiro, Brazil
| | - Wallace Martins de Araujo
- Cellular and Molecular Oncobiology Program, Cellular Dynamic and Structure Group, Instituto Nacional de Cancer - INCA, Rio de Janeiro, Brazil.,Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Andres Morgado-Diaz
- Cellular and Molecular Oncobiology Program, Cellular Dynamic and Structure Group, Instituto Nacional de Cancer - INCA, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Fang L, Li D, Yin J, Pan H, Ye H, Bowman J, Capaldo B, Kelly K. TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence. Cancer Gene Ther 2022; 29:1463-1476. [PMID: 35393570 PMCID: PMC9537368 DOI: 10.1038/s41417-022-00454-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
ERG translocations are commonly involved in the initiation of prostate neoplasia, yet previous experimental approaches have not addressed mechanisms of oncogenic inception. Here, in a genetically engineered mouse model, combining TMPRSS2-driven ERG with KrasG12D led to invasive prostate adenocarcinomas, while ERG or KrasG12D alone were non-oncogenic. In primary prostate luminal epithelial cells, following inducible oncogenic Kras expression or Pten depletion, TMPRSS2-ERG suppressed oncogene-induced senescence, independent of TP53 induction and RB1 inhibition. Oncogenic KRAS and TMPRSS2-ERG synergized to promote tumorigenesis and metastasis of primary luminal cells. The presence of TMPRSS2-ERG compared to a wild-type background was associated with a stemness phenotype and with relatively increased RAS-induced differential gene expression for MYC and mTOR-regulated pathways, including protein translation and lipogenesis. In addition, mTOR inhibitors abrogated ERG-dependent senescence resistance. These studies reveal a previously unappreciated function whereby ERG expression primes preneoplastic cells for the accumulation of additional gene mutations by suppression of oncogene-induced senescence.
Collapse
Affiliation(s)
- Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Hong Pan
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, P. R. China
| | - Huihui Ye
- Department of Pathology and Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Joel Bowman
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Brian Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
8
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
9
|
An Q, Lin R, Wang D, Wang C. Emerging roles of fatty acid metabolism in cancer and their targeted drug development. Eur J Med Chem 2022; 240:114613. [PMID: 35853429 DOI: 10.1016/j.ejmech.2022.114613] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Metabolic reprogramming is now considered as one of hallmark of tumor cells and provides them with a selective survival/growth advantage to resist harsh micro-environmental stress. Fatty acid (FA) metabolism of tumor cells supports the biosynthetic needs and provides fuel sources for energy supply. Since FA metabolic reprogramming is a critical link in tumor metabolism, its various roles in tumors have attracted increasing interest. Herein, we review the mechanisms through which cancer cells rewire their FA metabolism with a focus on the pathway of FA metabolism and its targeting drug development. The failure and successful cases of targeting tumor FA metabolism are expected to bypass the metabolic vulnerability and improve the efficacy of targeted therapy.
Collapse
Affiliation(s)
- Qi An
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Rui Lin
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Dongmei Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China.
| |
Collapse
|
10
|
Wang K, Huang D, Zhou P, Su X, Yang R, Shao C, Wu J. Bisphenol A exposure triggers the malignant transformation of prostatic hyperplasia in beagle dogs via cfa-miR-204/KRAS axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113430. [PMID: 35325610 DOI: 10.1016/j.ecoenv.2022.113430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The prostatic toxicity of bisphenol A (BPA) exposure is mainly associated with hormonal disturbances, thus interfering with multiple signal pathways and increasing the susceptibility to prostatic lesions. This study concentrates predominantly on the potential effect and mechanisms of low-dose BPA exposure on prostates in adult beagle dogs. The dogs were orally given BPA (2, 6, 18 μg/kg/day) and vehicle for 8 weeks, followed by blood collection and dissection. The ascended organ coefficient and volume of prostates, thickened epithelium, as well as histopathological observation have manifested that BPA exposure could trigger the aberrant prostatic hyperplasia in beagle dogs. Hormone level detection revealed that the ratios of estradiol (E2) to testosterone (T) (E2/T) and prolactin (PRL) to T (PRL/T) were up-regulated in the serum from BPA group. Based on microRNA (miRNA) microarray screening and functional enrichment analysis, BPA might facilitate the progression of prostate tumorigenesis in beagle dogs via cfa-miR-204 and its downstream target KRAS oncogene. Subsequently, the overexpression of KRAS, CDKN1A, MAPK1, VEGFA, BCL2 and PTGS2 was validated. These findings provide a series of underlying targets for preventing the initiation and metastasis of BPA-induced prostatic hyperplasia and tumorigenesis, while the regulatory relationship headed with KRAS requires further investigation.
Collapse
Affiliation(s)
- Kaiyue Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Ping Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China.
| |
Collapse
|
11
|
Koushyar S, Meniel VS, Phesse TJ, Pearson HB. Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer. Biomolecules 2022; 12:309. [PMID: 35204808 PMCID: PMC8869457 DOI: 10.3390/biom12020309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of the Wnt pathway is emerging as a frequent event during prostate cancer that can facilitate tumor formation, progression, and therapeutic resistance. Recent discoveries indicate that targeting the Wnt pathway to treat prostate cancer may be efficacious. However, the functional consequence of activating the Wnt pathway during the different stages of prostate cancer progression remains unclear. Preclinical work investigating the efficacy of targeting Wnt signaling for the treatment of prostate cancer, both in primary and metastatic lesions, and improving our molecular understanding of treatment responses is crucial to identifying effective treatment strategies and biomarkers that help guide treatment decisions and improve patient care. In this review, we outline the type of genetic alterations that lead to activated Wnt signaling in prostate cancer, highlight the range of laboratory models used to study the role of Wnt genetic drivers in prostate cancer, and discuss new mechanistic insights into how the Wnt cascade facilitates prostate cancer growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Sarah Koushyar
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | - Valerie S. Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
| | - Toby J. Phesse
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
| |
Collapse
|
12
|
Young JC, Kerr G, Micati D, Nielsen JE, Rajpert-De Meyts E, Abud HE, Loveland KL. WNT signalling in the normal human adult testis and in male germ cell neoplasms. Hum Reprod 2021; 35:1991-2003. [PMID: 32667987 DOI: 10.1093/humrep/deaa150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Is WNT signalling functional in normal and/or neoplastic human male germ cells? SUMMARY ANSWER Regulated WNT signalling component synthesis in human testes indicates that WNT pathway function changes during normal spermatogenesis and is active in testicular germ cell tumours (TGCTs), and that WNT pathway blockade may restrict seminoma growth and migration. WHAT IS KNOWN ALREADY Regulated WNT signalling governs many developmental processes, including those affecting male fertility during early germ cell development at embryonic and adult (spermatogonial) ages in mice. In addition, although many cancers arise from WNT signalling alterations, the functional relevance and WNT pathway components in TGCT, including germ cell neoplasia in situ (GCNIS), are unknown. STUDY DESIGN, SIZE, DURATION The cellular distribution of transcripts and proteins in WNT signalling pathways was assessed in fixed human testis sections with normal spermatogenesis, GCNIS and seminoma (2-16 individuals per condition). Short-term (1-7 h) ligand activation and long-term (1-5 days) functional outcomes were examined using the well-characterised seminoma cell line, TCam-2. Pathway inhibition used siRNA or chemical exposures over 5 days to assess survival and migration. PARTICIPANTS/MATERIALS, SETTING, METHODS The cellular localisation of WNT signalling components was determined using in situ hybridisation and immunohistochemistry on Bouin's- and formalin-fixed human testis sections with complete spermatogenesis or germ cell neoplasia, and was also assessed in TCam-2 cells. Pathway function tests included exposure of TCam-2 cells to ligands, small molecules and siRNAs. Outcomes were measured by monitoring beta-catenin (CTNNB1) intracellular localisation, cell counting and gap closure measurements. MAIN RESULTS AND THE ROLE OF CHANCE Detection of nuclear-localised beta-catenin (CTNNB1), and key WNT signalling components (including WNT3A, AXIN2, TCF7L1 and TCF7L2) indicate dynamic and cell-specific pathway activity in the adult human testis. Their presence in germ cell neoplasia and functional analyses in TCam-2 cells indicate roles for active canonical WNT signalling in TGCT relating to viability and migration. All data were analysed to determine statistical significance. LARGE SCALE DATA No large-scale datasets were generated in this study. LIMITATIONS, REASONS FOR CAUTION As TGCTs are rare and morphologically heterogeneous, functional studies in primary cancer cells were not performed. Functional analysis was performed with the only well-characterised, widely accepted seminoma-derived cell line. WIDER IMPLICATIONS OF THE FINDINGS This study demonstrated the potential sites and involvement of the WNT pathway in human spermatogenesis, revealing similarities with murine testis that suggest the potential for functional conservation during normal spermatogenesis. Evidence that inhibition of canonical WNT signalling leads to loss of viability and migratory activity in seminoma cells suggests that potential treatments using small molecule or siRNA inhibitors may be suitable for patients with metastatic TGCTs. STUDY FUNDING AND COMPETING INTEREST(S) This study was funded by National Health and Medical Research Council of Australia (Project ID 1011340 to K.L.L. and H.E.A., and Fellowship ID 1079646 to K.L.L.) and supported by the Victorian Government's Operational Infrastructure Support Program. None of the authors have any competing interests.
Collapse
Affiliation(s)
- Julia C Young
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia
| | - Diana Micati
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton 3168, Australia
| | - John E Nielsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, 3800 Australia
| | - Kate L Loveland
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton 3168, Australia.,Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, 3168, Australia
| |
Collapse
|
13
|
Kaur HB, Salles DC, Paulk A, Epstein JI, Eshleman JR, Lotan TL. PIN-like ductal carcinoma of the prostate has frequent activating RAS/RAF mutations. Histopathology 2020; 78:327-333. [PMID: 32740981 DOI: 10.1111/his.14224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
AIMS Prostatic intraepithelial neoplasia-like (PIN-like) ductal carcinoma is a rare tumour characterised by often cystically dilated glands architecturally resembling high-grade PIN, but lacking basal cells. These tumours are frequently accompanied by grade group 1 acinar cancer and behave relatively indolently. In contrast, conventional ductal adenocarcinoma of the prostate is an aggressive variant comparable to grade group 4 acinar cancer. Here, we used targeted next-generation sequencing to molecularly profile PIN-like ductal carcinoma cases at radical prostatectomy. METHODS AND RESULTS Five PIN-like ductal carcinoma samples at radical prostatectomy with sufficient tumour tissue available were analysed for genomic alterations by targeted next-generation sequencing using the Johns Hopkins University (JHU) solid tumour panel. DNA was captured using SureSelect for 640 genes and sequenced on the Illumina HiSeq platform. Three of five (60%) of the PIN-like ductal carcinomas showed activating mutations in the RAS/RAF pathways, which are extraordinarily rare in conventional primary prostate carcinoma (<3% of cases), including an activating hot-spot BRAF mutation (p.K601E), an activating hot-spot mutation in HRAS (p.Q61K) and an in-frame activating deletion in BRAF (p.T488_Q493delinsK). An additional two cases lacked BRAF or HRAS mutations, but harboured in-frame insertions of uncertain significance in MAP2K4 and MAP3K6. One case had sufficient acinar tumour for sequencing, and showed a similar molecular profile as the concurrent PIN-like ductal carcinoma, suggesting a clonal relationship between the two components. CONCLUSIONS PIN-like ductal carcinoma represents a molecularly unique tumour, enriched for potentially targetable oncogenic driver mutations in the RAS/RAF/MAPK pathway. This molecular profile contrasts with that of conventional ductal adenocarcinoma, which is typically enriched for pathogenic mutations in the mismatch repair (MMR) and homologous recombination (HR) DNA repair pathways.
Collapse
Affiliation(s)
- Harsimar B Kaur
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adina Paulk
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan I Epstein
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|
15
|
Lin SR, Mokgautsi N, Liu YN. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis. Molecules 2020; 25:E2380. [PMID: 32443915 PMCID: PMC7287876 DOI: 10.3390/molecules25102380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and malignant cancer types in men, which causes more than three-hundred thousand cancer death each year. At late stage of PCa progression, bone marrow is the most often metastatic site that constitutes almost 70% of metastatic cases of the PCa population. However, the characteristic for the osteo-philic property of PCa is still puzzling. Recent studies reported that the Wnt and Ras signaling pathways are pivotal in bone metastasis and that take parts in different cytological changes, but their crosstalk is not well studied. In this review, we focused on interactions between the Wnt and Ras signaling pathways during each stage of bone metastasis and present the fate of those interactions. This review contributes insights that can guide other researchers by unveiling more details with regard to bone metastasis and might also help in finding potential therapeutic regimens for preventing PCa bone metastasis.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| |
Collapse
|
16
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
17
|
Abstract
β-Catenin is essential for embryonic development and required for cell renewal/regeneration in adult life. Cellular β-catenin exists in three different pools: membranous, cytoplasmic and nuclear. In this review, we focus on functions of the nuclear pool in relation to tumorigenesis. In the nucleus, beta-catenin functions as both activator and repressor of transcription in a context-dependent manner. It promotes cell proliferation and supports tumour growth by enhancing angiogenesis. β-Catenin-mediated signalling regulates cancer cell metabolism and is associated with tumour-initiating cells in multiple malignancies. In addition, it functions as both pro- and anti-apoptotic factor besides acting to inhibit recruitment of inflammatory anti-tumour T-cells. Thus, β-catenin appears to possess a multifaceted nuclear function that may significantly impact tumour initiation and progression.
Collapse
Affiliation(s)
- Raju Kumar
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | |
Collapse
|
18
|
Calcium and Nuclear Signaling in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19041237. [PMID: 29671777 PMCID: PMC5979488 DOI: 10.3390/ijms19041237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.
Collapse
|
19
|
Jefferies MT, Cox AC, Shorning BY, Meniel V, Griffiths D, Kynaston HG, Smalley MJ, Clarke AR. PTEN loss and activation of K-RAS and β-catenin cooperate to accelerate prostate tumourigenesis. J Pathol 2017; 243:442-456. [PMID: 29134654 PMCID: PMC6128396 DOI: 10.1002/path.4977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
Aberrant phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK) and WNT signalling are emerging as key events in the multistep nature of prostate tumourigenesis and progression. Here, we report a compound prostate cancer murine model in which these signalling pathways cooperate to produce a more aggressive prostate cancer phenotype. Using Cre-LoxP technology and the probasin promoter, we combined the loss of Pten (Ptenfl/fl ), to activate the PI3K signalling pathway, with either dominant stabilized β-catenin [Catnb+/lox(ex3) ] or activated K-RAS (K-Ras+/V12 ) to aberrantly activate WNT and MAPK signalling, respectively. Synchronous activation of all three pathways (triple mutants) significantly reduced survival (median 96 days) as compared with double mutants [median: 140 days for Catnb+/lox(ex3) Ptenfl/fl ; 182 days for Catnb+/lox(ex3) K-Ras+/V12 ; 238 days for Ptenfl/fl K-Ras+/V12 ], and single mutants [median: 383 days for Catnb+/lox(ex3) ; 407 days for Ptenfl/fl ], reflecting the accelerated tumourigenesis. Tumours followed a stepwise progression from mouse prostate intraepithelial neoplasia to invasive adenocarcinoma, similar to that seen in human disease. There was significantly elevated cellular proliferation, tumour growth and percentage of invasive adenocarcinoma in triple mutants as compared with double mutants and single mutants. Triple mutants showed not only activated AKT, extracellular-signal regulated kinase 1/2, and nuclear β-catenin, but also significantly elevated signalling through mechanistic target of rapamycin complex 1 (mTORC1). In summary, we show that combined deregulation of the PI3K, MAPK and WNT signalling pathways drives rapid progression of prostate tumourigenesis, and that deregulation of all three pathways results in tumours showing aberrant mTORC1 signalling. As mTORC1 signalling is emerging as a key driver of androgen deprivation therapy resistance, our findings are important for understanding the biology of therapy-resistant prostate cancer and identifying potential approaches to overcome this. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Matthew T. Jefferies
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Adam C. Cox
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
- Department of Urology, Morriston Hospital, Swansea, UK
| | - Boris Y. Shorning
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
| | - Valerie Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
| | - David Griffiths
- Department of Pathology, University Hospital of Wales, Cardiff, UK
| | - Howard G. Kynaston
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, UK
- Department of Urology, University Hospital of Wales, Cardiff
| | - Matthew J. Smalley
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
| | - Alan R. Clarke
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
| |
Collapse
|
20
|
Valkenburg KC, De Marzo AM, Williams BO. Deletion of tumor suppressors adenomatous polyposis coli and Smad4 in murine luminal epithelial cells causes invasive prostate cancer and loss of androgen receptor expression. Oncotarget 2017; 8:80265-80277. [PMID: 29113300 PMCID: PMC5655195 DOI: 10.18632/oncotarget.17919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the most diagnosed non-skin cancer in the US and kills approximately 27,000 men per year in the US. Additional genetic mouse models are needed that recapitulate the heterogeneous nature of human prostate cancer. The Wnt/beta-catenin signaling pathway is important for human prostate tumorigenesis and metastasis, and also drives tumorigenesis in mouse models. Loss of Smad4 has also been found in human prostate cancer and drives tumorigenesis and metastasis when coupled with other genetic aberrations in mouse models. In this work, we concurrently deleted Smad4 and the tumor suppressor and endogenous Wnt/beta-catenin inhibitor adenomatous polyposis coli (Apc) in luminal prostate cells in mice. This double conditional knockout model produced invasive castration-resistant prostate carcinoma with no evidence of metastasis. We observed mixed differentiation phenotypes, including basaloid and squamous differentiation. Interestingly, tumor cells in this model commonly lose androgen receptor expression. In addition, tumors disappear in these mice during androgen cycling (castration followed by testosterone reintroduction). These mice model non-metastatic castration resistant prostate cancer and should provide novel information for tumors that have genetic aberrations in the Wnt pathway or Smad4.
Collapse
Affiliation(s)
- Kenneth C. Valkenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bart O. Williams
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
21
|
Shang S, Hua F, Hu ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 2017; 8:33972-33989. [PMID: 28430641 PMCID: PMC5464927 DOI: 10.18632/oncotarget.15687] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved and versatile pathway that is known to be involved in embryonic development, tissue homeostasis and a wide variety of human diseases. Aberrant activation of this pathway gives rise to the accumulation of β-catenin in the nucleus and promotes the transcription of many oncogenes such as c-Myc and CyclinD-1. As a result, it contributes to carcinogenesis and tumor progression of several cancers, including colon cancer, hepatocellular carcinoma, pancreatic cancer, lung cancer and ovarian cancer. β-Catenin is a pivotal component of the Wnt signaling pathway and it is tightly regulated at three hierarchical levels: protein stability, subcellular localization and transcriptional activity. Uncovering the regulatory mechanisms of β-catenin will provide new insights into the pathogenesis of cancer and other diseases, as well as new therapeutic strategies against these diseases. In this review we dissect the concrete regulatory mechanisms of β-catenin from three aspects mentioned above. Then we focus on the role of β-catenin in cancer initiation, progression, dormancy, immunity and cancer stem cell maintenance. At last, we summarize the recent progress in the development of agents for the pharmacological modulation of β-catenin activity in cancer therapy.
Collapse
Affiliation(s)
- Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
22
|
Polosukhina D, Love HD, Correa H, Su Z, Dahlman KB, Pao W, Moses HL, Arteaga CL, Lovvorn HN, Zent R, Clark PE. Functional KRAS mutations and a potential role for PI3K/AKT activation in Wilms tumors. Mol Oncol 2017; 11:405-421. [PMID: 28188683 PMCID: PMC5378659 DOI: 10.1002/1878-0261.12044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022] Open
Abstract
Wilms tumor (WT) is the most common renal neoplasm of childhood and affects 1 in 10 000 children aged less than 15 years. These embryonal tumors are thought to arise from primitive nephrogenic rests that derive from the metanephric mesenchyme during kidney development and are characterized partly by increased Wnt/β-catenin signaling. We previously showed that coordinate activation of Ras and β-catenin accelerates the growth and metastatic progression of a murine WT model. Here, we show that activating KRAS mutations can be found in human WT. In addition, high levels of phosphorylated AKT are present in the majority of WT. We further show in a mouse model and in renal epithelial cells that Ras cooperates with β-catenin to drive metastatic disease progression and promotes in vitro tumor cell growth, migration, and colony formation in soft agar. Cellular transformation and metastatic disease progression of WT cells are in part dependent on PI3K/AKT activation and are inhibited via pharmacological inhibition of this pathway. Our studies suggest both KRAS mutations and AKT activation are present in WT and may represent novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Dina Polosukhina
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harold D Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hernan Correa
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zengliu Su
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Kimberly B Dahlman
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Pao
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.,Department of Medicine (Hematology-Oncology), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harold L Moses
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine (Hematology-Oncology), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carlos L Arteaga
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine (Hematology-Oncology), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harold N Lovvorn
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roy Zent
- Department of Medicine, Nephrology & Cancer Biology Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter E Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
23
|
Lim HC, Jou TS. Ras-activated RSK1 phosphorylates EBP50 to regulate its nuclear localization and promote cell proliferation. Oncotarget 2016; 7:10283-96. [PMID: 26862730 PMCID: PMC4891120 DOI: 10.18632/oncotarget.7184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 11/25/2022] Open
Abstract
Differential subcellular localization of EBP50 leads to its controversial role in cancer biology either as a tumor suppressor when it resides at the membrane periphery, or a tumor facilitator at the nucleus. However, the mechanism behind nuclear localization of EBP50 remains unclear. A RNA interference screening identified the downstream effector of the Ras-ERK cascade, RSK1, as the molecule unique for nuclear transport of EBP50. RSK1 binds to EBP50 and phosphorylates it at a conserved threonine residue at position 156 (T156) under the regulation of growth factor. Mutagenesis experiments confirmed the significance of T156 residue in nuclear localization of EBP50, cellular proliferation, and oncogenic transformation. Our study sheds light on a possible therapeutic strategy targeting at this aberrant nuclear expression of EBP50 without affecting the normal physiological function of EBP50 at other subcellular localization.
Collapse
Affiliation(s)
- Hooi Cheng Lim
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzuu-Shuh Jou
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
25
|
Frizzled7: A Promising Achilles' Heel for Targeting the Wnt Receptor Complex to Treat Cancer. Cancers (Basel) 2016; 8:cancers8050050. [PMID: 27196929 PMCID: PMC4880867 DOI: 10.3390/cancers8050050] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer.
Collapse
|
26
|
Ma F, Ye H, He HH, Gerrin SJ, Chen S, Tanenbaum BA, Cai C, Sowalsky AG, He L, Wang H, Balk SP, Yuan X. SOX9 drives WNT pathway activation in prostate cancer. J Clin Invest 2016; 126:1745-58. [PMID: 27043282 DOI: 10.1172/jci78815] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/09/2016] [Indexed: 12/12/2022] Open
Abstract
The transcription factor SOX9 is critical for prostate development, and dysregulation of SOX9 is implicated in prostate cancer (PCa). However, the SOX9-dependent genes and pathways involved in both normal and neoplastic prostate epithelium are largely unknown. Here, we performed SOX9 ChIP sequencing analysis and transcriptome profiling of PCa cells and determined that SOX9 positively regulates multiple WNT pathway genes, including those encoding WNT receptors (frizzled [FZD] and lipoprotein receptor-related protein [LRP] family members) and the downstream β-catenin effector TCF4. Analyses of PCa xenografts and clinical samples both revealed an association between the expression of SOX9 and WNT pathway components in PCa. Finally, treatment of SOX9-expressing PCa cells with a WNT synthesis inhibitor (LGK974) reduced WNT pathway signaling in vitro and tumor growth in murine xenograft models. Together, our data indicate that SOX9 expression drives PCa by reactivating the WNT/β-catenin signaling that mediates ductal morphogenesis in fetal prostate and define a subgroup of patients who would benefit from WNT-targeted therapy.
Collapse
|
27
|
Chen WY, Liu SY, Chang YS, Yin JJ, Yeh HL, Mouhieddine TH, Hadadeh O, Abou-Kheir W, Liu YN. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget 2016; 6:441-57. [PMID: 25436980 PMCID: PMC4381606 DOI: 10.18632/oncotarget.2690] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/02/2014] [Indexed: 01/07/2023] Open
Abstract
Aberrant activation of Ras and WNT signaling are key events that have been shown to be up-regulated in prostate cancer that has metastasized to the bone. However, the regulatory mechanism of combinatorial Ras and WNT signaling in advanced prostate cancer is still unclear. TCF7, a WNT signaling-related gene, has been implicated as a critical factor in bone metastasis, and here we show that TCF7 is a direct target of miR-34a. In samples of prostate cancer patients, miR-34a levels are inversely correlated with TCF7 expression and a WNT dependent gene signature. Ectopic miR-34a expression inhibited bone metastasis and reduced cancer cell proliferation in a Ras-dependent xenograft model. We demonstrate that miR-34a can directly interfere with the gene expression of the anti-proliferative BIRC5, by targeting BIRC5 3′UTR. Importantly, BIRC5 overexpression was sufficient to reconstitute anti-apoptotic signaling in cells expressing high levels of miR-34a. In prostate cancer patients, we found that BIRC5 levels were positively correlated with a Ras signaling signature expression. Our data show that the bone metastasis and anti-apoptotic effects found in Ras signaling-activated prostate cancer cells require miR-34a deficiency, which in turn aids in cell survival by activating the WNT and anti-apoptotic signaling pathways thereby inducing TCF7 and BIRC5 expressions.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yang Liu
- Department of Acupuncture and Manipulation, College of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yung-Sheng Chang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Juan Juan Yin
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hsiu-Lien Yeh
- Institute of Information System and Applications, National Tsing Hua University, HsinChu, Taiwan
| | - Tarek H Mouhieddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Abstract
INTRODUCTION The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. AREAS COVERED The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. EXPERT OPINION With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- The Johns Hopkins University, The James Buchanan Brady Urological Institute, Department of Urology , 600 North Wolfe Street, Baltimore, MD 21287 , USA
| | | |
Collapse
|
29
|
Lee SH, Luong R, Johnson DT, Cunha GR, Rivina L, Gonzalgo ML, Sun Z. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene 2015; 35:702-14. [PMID: 25893287 PMCID: PMC4615253 DOI: 10.1038/onc.2015.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/05/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022]
Abstract
Emerging evidence has demonstrated the critical roles for both androgen and Wnt pathways in prostate tumorigenesis. A recent integrative genomic analysis of human prostate cancers has revealed a unique enrichment of androgen and Wnt signaling in early onset prostate cancers, implying their clinical significance in the disease. Additionally, interaction between the androgen receptor (AR) and β-catenin has long been detected in prostate cancer cells. However, the consequence of this interaction in prostate tumorigenesis is still unknown. Because mutations in adenomatous polyposis coli (APC), β-catenin, and other components of the destruction-complex are generally rare in prostate cancers, other mechanisms of aberrant Wnt signaling activation have been speculated. To address these critical questions, we developed Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 mice, in which transgenic AR and stabilized β-catenin are co-expressed in prostatic epithelial cells. We observed accelerated tumor development, aggressive tumor invasion, and a decreased survival rate in Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 compound mice compared to age-matched Ctnnb1L(ex3)/+:PB-Cre4 littermate controls, which only have stabilized β-catenin expression in the prostate. Castration of the above transgenic mice resulted in significant tumor regression, implying an essential role of androgen signaling in tumor growth and maintenance. Implantation of the prostatic epithelial cells isolated from the transgenic mice regenerated PIN and prostatic adenocarcinoma lesions. Microarray analyses of transcriptional profiles showed more robust enrichment of known tumor and metastasis promoting genes: Spp1, Egr1, c-Myc, Sp5, and Sp6 genes in samples isolated from Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 compound mice than those from Ctnnb1L(ex3)/+:PB-Cre4 and R26hARL/+:PB-Cre4 littermate controls. Together, these data demonstrate a confounding role of androgen signaling in β-catenin initiated oncogenic transformation in prostate tumorigenesis.
Collapse
Affiliation(s)
- S H Lee
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - R Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - D T Johnson
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - G R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - L Rivina
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - M L Gonzalgo
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Z Sun
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep 2014; 9:75-89. [PMID: 25263564 DOI: 10.1016/j.celrep.2014.08.044] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/23/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023] Open
Abstract
Prosenescence therapy has recently emerged as a novel therapeutic approach for treating cancer. However, this concept is challenged by conflicting evidence showing that the senescence-associated secretory phenotype (SASP) of senescent tumor cells can have pro- as well as antitumorigenic effects. Herein, we report that, in Pten-null senescent tumors, activation of the Jak2/Stat3 pathway establishes an immunosuppressive tumor microenvironment that contributes to tumor growth and chemoresistance. Activation of the Jak2/Stat3 pathway in Pten-null tumors is sustained by the downregulation of the protein tyrosine phosphatase PTPN11/SHP2, providing evidence for the existence of a novel PTEN/SHP2 axis. Importantly, treatment with docetaxel in combination with a JAK2 inhibitor reprograms the SASP and improves the efficacy of docetaxel-induced senescence by triggering a strong antitumor immune response in Pten-null tumors. Altogether, these data demonstrate that immune surveillance of senescent tumor cells can be suppressed in specific genetic backgrounds but also evoked by pharmacological treatments.
Collapse
|
31
|
Bjerke GA, Pietrzak K, Melhuish TA, Frierson Jr. HF, Paschal BM, Wotton D. Prostate cancer induced by loss of Apc is restrained by TGFβ signaling. PLoS One 2014; 9:e92800. [PMID: 24651496 PMCID: PMC3961420 DOI: 10.1371/journal.pone.0092800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/25/2014] [Indexed: 01/07/2023] Open
Abstract
Recent work with mouse models of prostate cancer (CaP) has shown that inactivation of TGFβ signaling in prostate epithelium can cooperate with deletion of the Pten tumor suppressor to drive locally aggressive cancer and metastatic disease. Here, we show that inactivating the TGFβ pathway by deleting the gene encoding the TGFβ type II receptor (Tgfbr2) in combination with a deletion of the Apc tumor suppressor gene specifically in mouse prostate epithelium, results in the rapid onset of invasive CaP. Micro-metastases were observed in the lymph nodes and lungs of a proportion of the double mutant mice, whereas no metastases were observed in Apc single mutant mice. Prostate-specific Apc;Tgfbr2 mutants had a lower frequency of metastasis and survived significantly longer than Pten;Tgfbr2 double mutants. However, all Apc;Tgfbr2 mutants developed invasive cancer by 30 weeks of age, whereas invasive cancer was rarely observed in Apc single mutant animals, even by one year of age. Further comparison of the Pten and Apc models of CaP revealed additional differences, including adenosquamous carcinoma in the Apc;Tgfbr2 mutants that was not seen in the Pten model, and a lack of robust induction of the TGFβ pathway in Apc null prostate. In addition to causing high-grade prostate intra-epithelial neoplasia (HGPIN), deletion of either Pten or Apc induced senescence in affected prostate ducts, and this restraint was overcome by loss of Tgfbr2. In summary, this work demonstrates that TGFβ signaling restrains the progression of CaP induced by different tumor suppressor mutations, suggesting that TGFβ signaling exerts a general tumor suppressive effect in prostate.
Collapse
Affiliation(s)
- Glen A. Bjerke
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - Karolina Pietrzak
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Tiffany A. Melhuish
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - Henry F. Frierson Jr.
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Bryce M. Paschal
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Carstens JL, Shahi P, Van Tsang S, Smith B, Creighton CJ, Zhang Y, Seamans A, Seethammagari M, Vedula I, Levitt JM, Ittmann MM, Rowley DR, Spencer DM. FGFR1-WNT-TGF-β signaling in prostate cancer mouse models recapitulates human reactive stroma. Cancer Res 2013; 74:609-20. [PMID: 24305876 DOI: 10.1158/0008-5472.can-13-1093] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reactive stroma surrounding tumor lesions performs critical roles ranging from supporting tumor cell proliferation to inducing tumorigenesis and metastasis. Therefore, it is critical to understand the cellular components and signaling control mechanisms that underlie the etiology of reactive stroma. Previous studies have individually implicated fibroblast growth factor receptor 1 (FGFR1) and canonical WNT/β-catenin signaling in prostate cancer progression and the initiation and maintenance of a reactive stroma; however, both pathways are frequently found to be coactivated in cancer tissue. Using autochthonous transgenic mouse models for inducible FGFR1 (JOCK1) and prostate-specific and ubiquitously expressed inducible β-catenin (Pro-Cat and Ubi-Cat, respectively) and bigenic crosses between these lines (Pro-Cat × JOCK1 and Ubi-Cat × JOCK1), we describe WNT-induced synergistic acceleration of FGFR1-driven adenocarcinoma, associated with a pronounced fibroblastic reactive stroma activation surrounding prostatic intraepithelial neoplasia (mPIN) lesions found both in in situ and reconstitution assays. Both mouse and human reactive stroma exhibited increased transforming growth factor-β (TGF-β) signaling adjacent to pathologic lesions likely contributing to invasion. Furthermore, elevated stromal TGF-β signaling was associated with higher Gleason scores in archived human biopsies, mirroring murine patterns. Our findings establish the importance of the FGFR1-WNT-TGF-β signaling axes as driving forces behind reactive stroma in aggressive prostate adenocarcinomas, deepening their relevance as therapeutic targets.
Collapse
Affiliation(s)
- Julienne L Carstens
- Authors' Affiliations: Departments of Pathology and Immunology and Molecular and Cellular Biology; and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston; M.E. DeBakey, Department of Veterans Affairs Medical Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Luscan A, Shackleford G, Masliah-Planchon J, Laurendeau I, Ortonne N, Varin J, Lallemand F, Leroy K, Dumaine V, Hivelin M, Borderie D, De Raedt T, Valeyrie-Allanore L, Larousserie F, Terris B, Lantieri L, Vidaud M, Vidaud D, Wolkenstein P, Parfait B, Bièche I, Massaad C, Pasmant E. The activation of the WNT signaling pathway is a Hallmark in neurofibromatosis type 1 tumorigenesis. Clin Cancer Res 2013; 20:358-71. [PMID: 24218515 DOI: 10.1158/1078-0432.ccr-13-0780] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The hallmark of neurofibromatosis type 1 (NF1) is the onset of dermal or plexiform neurofibromas, mainly composed of Schwann cells. Plexiform neurofibromas can transform into malignant peripheral nerve sheath tumors (MPNST) that are resistant to therapies. EXPERIMENTAL DESIGN The aim of this study was to identify an additional pathway in the NF1 tumorigenesis. We focused our work on Wnt signaling that is highly implicated in cancer, mainly in regulating the proliferation of cancer stem cells. We quantified mRNAs of 89 Wnt pathway genes in 57 NF1-associated tumors including dermal and plexiform neurofibromas and MPNSTs. Expression of two major stem cell marker genes and five major epithelial-mesenchymal transition marker genes was also assessed. The expression of significantly deregulated Wnt genes was then studied in normal human Schwann cells, fibroblasts, endothelial cells, and mast cells and in seven MPNST cell lines. RESULTS The expression of nine Wnt genes was significantly deregulated in plexiform neurofibromas in comparison with dermal neurofibromas. Twenty Wnt genes showed altered expression in MPNST biopsies and cell lines. Immunohistochemical studies confirmed the Wnt pathway activation in NF1-associated MPNSTs. We then confirmed that the knockdown of NF1 in Schwann cells but not in epithelial cells provoked the activation of Wnt pathway by functional transfection assays. Furthermore, we showed that the protein expression of active β-catenin was increased in NF1-silenced cell lines. Wnt pathway activation was strongly associated to both cancer stem cell reservoir and Schwann-mesenchymal transition. CONCLUSION We highlighted the implication of Wnt pathway in NF1-associated tumorigenesis.
Collapse
Affiliation(s)
- Armelle Luscan
- Authors' Affiliations: UMR_S745 INSERM, Université Paris Descartes Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques; Department of Plastic and Reconstructive Surgery, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), PRES Sorbonne Paris Cité; Service d'Anatomie et Cytologie Pathologiques, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Université Paris Descartes; Service de Biochimie et de Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP); UMR8194 CNRS, PRES Sorbonne Paris Cité, Paris Descartes; Department of Orthopedic Surgery, Cochin Hospital; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Laboratory of Biochemistry; Tumour bank, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris Descartes University; INSERM, U1016, Institut Cochin, and CNRS, UMR8104, Paris; Département de pathologie Assistance Publique-Hôpitaux de Paris (AP-HP) and Université Paris Est Créteil (UPEC); Platform of Biological Ressources; Department of Plastic and Reconstructive Surgery, Assistance Publique-Hôpitaux de Paris (AP-HP) and Université Paris Est Créteil (UPEC), Hôpital Henri-Mondor; Department of Dermatology, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP) and EA 4393 LIC, UPEC, Créteil, France; Laboratoire d'Oncogénétique, Institut Curie, Hôpital René Huguenin; FNCLCC, Saint-Cloud; and Genetics Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wu L, Zhao JC, Kim J, Jin HJ, Wang CY, Yu J. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res 2013; 73:6068-79. [PMID: 23913826 DOI: 10.1158/0008-5472.can-13-0882] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chromosomal translocations juxtaposing the androgen-responsive TMPRSS2 promoter with the ETS-family transcription factor ERG result in aberrant ERG upregulation in approximately 50% of prostate cancers. Studies to date have shown important roles of ERG in inducing oncogenic properties of prostate cancer. Its molecular mechanisms of action, however, are yet to be fully understood. Here, we report that ERG activates Wnt/LEF1 signaling cascade through multiple mechanisms. ERG bound to the promoters of various Wnt genes to directly increase ligand expression. Consequently, ERG overexpression increased active β-catenin level in the cells and enhanced TCF/LEF1 luciferase reporter activity, which could be partially blocked by WNT-3A inhibitor IWP-2. Most importantly, our data defined LEF1 as a direct target of ERG and that LEF1 inhibition fully abolished ERG-induced Wnt signaling and target gene expression. Furthermore, functional assays showed that Wnt/LEF1 activation phenocopied that of ERG in inducing cell growth, epithelial-to-mesenchymal transition, and cell invasion, whereas blockade of Wnt signaling attenuated these effects. Concordantly, LEF1 expression is significantly upregulated in ERG-high human prostate cancers. Overall, this study provides an important mechanism of activation of Wnt signaling in prostate cancer and nominates LEF1 as a critical mediator of ERG-induced tumorigenesis. Wnt/LEF1 pathway might provide novel targets for therapeutic management of patients with fusion-positive prostate cancer.
Collapse
Affiliation(s)
- Longtao Wu
- Authors' Affiliations: Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
35
|
Irshad S, Abate-Shen C. Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic. Cancer Metastasis Rev 2013; 32:109-22. [PMID: 23114843 PMCID: PMC3584242 DOI: 10.1007/s10555-012-9409-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More than 15 years ago, the first generation of genetically engineered mouse (GEM) models of prostate cancer was introduced. These transgenic models utilized prostate-specific promoters to express SV40 oncogenes specifically in prostate epithelium. Since the description of these initial models, there have been a plethora of GEM models of prostate cancer representing various perturbations of oncogenes or tumor suppressors, either alone or in combination. This review describes these GEM models, focusing on their relevance for human prostate cancer and highlighting their strengths and limitations, as well as opportunities for the future.
Collapse
Affiliation(s)
- Shazia Irshad
- Herbert Irving Comprehensive Cancer Center, Departments of Urology and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | |
Collapse
|
36
|
Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer. Prostate Cancer 2013; 2013:920612. [PMID: 23738079 PMCID: PMC3657461 DOI: 10.1155/2013/920612] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies found in males. The development of PCa involves several mutations in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways. A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention strategies for this disease.
Collapse
|
37
|
Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol 2013; 87:611-32. [PMID: 23483189 DOI: 10.1007/s00204-013-1035-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Signaling through the WNT/β-catenin and the RAS (rat sarcoma)/MAPK (mitogen-activated protein kinase) pathways plays a key role in the regulation of various physiological cellular processes including proliferation, differentiation, and cell death. Aberrant mutational activation of these signaling pathways is closely linked to the development of cancer in many organs, in humans as well as in laboratory animals. Over the past years, more and more evidence for a close linkage of the two oncogenic signaling cascades has accumulated. Using different experimental approaches, model systems, and experimental conditions, a variety of molecular mechanisms have been identified by which signal transduction through WNT/β-catenin and RAS interact, either in a synergistic or an antagonistic manner. Mechanisms of interaction comprise an upstream crosstalk at the level of pathway-activating ligands and their receptors, interrelations of cytosolic kinases involved in either pathways, as well as interaction in the nucleus related to the joint regulation of target gene transcription. Here, we present a comprehensive review of the current knowledge on the interaction of RAS/MAPK- and WNT/β-catenin-driven signal transduction in mammalian cells.
Collapse
Affiliation(s)
- Eva Zeller
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
38
|
Genetically engineered mouse models of prostate cancer. Mol Oncol 2013; 7:190-205. [PMID: 23481269 DOI: 10.1016/j.molonc.2013.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022] Open
Abstract
Despite major improvement in treatment of early stage localised prostate cancer, the distinction between indolent tumors and those that will become aggressive, as well as the lack of efficient therapies of advanced prostate cancer, remain major health problems. Genetically engineered mice (GEM) have been extensively used to investigate the molecular and cellular mechanisms underlying prostate tumor initiation and progression, and to evaluate new therapies. Moreover, the recent development of conditional somatic mutagenesis in the mouse prostate offers the possibility to generate new models that more faithfully reproduce the human disease, and thus should contribute to improve diagnosis and treatments. The strengths and weaknesses of various models will be discussed, as well as future opportunities.
Collapse
|
39
|
Abstract
Transgene expression from short promoters in transgenic animals can lead to unwanted transgene expression patterns, often as a byproduct of random integration of the expression cassette into the host genome. Here I demonstrate that the often used PB-Cre4 line (also referred to as “Probasin-Cre”), although expressing exclusively in the male prostate epithelium when transmitted through male mice, can lead to recombination of loxP-flanked alleles in a large variety of tissues when transmitted through female mice. This aberrant Cre activity due to Cre expression in the oocytes leads to different outcomes for maternally or paternally transmitted loxP-flanked alleles: Maternally inherited loxP-flanked alleles undergo recombination very efficiently, making female PB-Cre4 mice an efficient monoallelic “Cre deleter line”. However, paternally inherited loxP-flanked alleles are inefficiently recombined by maternal PB-Cre4, giving rise to mosaic expression patterns in the offspring. This mosaic recombination is difficult to detect with standard genotyping approaches of many mouse lines and should therefore caution researchers using PB-Cre4 to use additional approaches to exclude the presence of recombined alleles. However, mosaic recombination should also be useful in transgenic “knockout” approaches for mosaic gene deletion experiments.
Collapse
Affiliation(s)
- Andreas Birbach
- Department of Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
β-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet 2013; 9:e1003180. [PMID: 23300485 PMCID: PMC3536663 DOI: 10.1371/journal.pgen.1003180] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/04/2012] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is a major cause of male death in the Western world, but few frequent genetic alterations that drive prostate cancer initiation and progression have been identified. β-Catenin is essential for many developmental processes and has been implicated in tumorigenesis in many tissues, including prostate cancer. However, expression studies on human prostate cancer samples are unclear on the role this protein plays in this disease. We have used in vivo genetic studies in the embryo and adult to extend our understanding of the role of β-Catenin in the normal and neoplastic prostate. Our gene deletion analysis revealed that prostate epithelial β-Catenin is required for embryonic prostate growth and branching but is dispensable in the normal adult organ. During development, β-Catenin controls the number of progenitors in the epithelial buds and regulates a discrete network of genes, including c-Myc and Nkx3.1. Deletion of β-Catenin in a Pten deleted model of castration-resistant prostate cancer demonstrated it is dispensable for disease progression in this setting. Complementary overexpression experiments, through in vivo protein stabilization, showed that β-Catenin promotes the formation of squamous epithelia during prostate development, even in the absence of androgens. β-Catenin overexpression in combination with Pten loss was able to drive progression to invasive carcinoma together with squamous metaplasia. These studies demonstrate that β-Catenin is essential for prostate development and that an inherent property of high levels of this protein in prostate epithelia is to drive squamous fate differentiation. In addition, they show that β-Catenin overexpression can promote invasive prostate cancer in a clinically relevant model of this disease. These data provide novel information on cancer progression pathways that give rise to lethal prostate disease in humans. Prostate cancer is a major cause of male death in the Western world, but few genes involved in this disease have been identified. We have undertaken an in-depth in vivo analysis in the prostate of the β-Catenin protein, which has been shown to be important in many processes during embryogenesis and has been implicated in tumorigenesis. Our studies demonstrate that β-Catenin is essential for prostate development but is dispensable in the normal adult organ. Analysis of a mouse model of a frequently mutated human prostate tumour suppressor, Pten loss, revealed that β-Catenin is not required for neoplastic formation in this model, even in castrated conditions. However, increased β-Catenin levels can cooperate with Pten loss to promote the progression of aggressive invasive prostate cancer together with squamous metaplasia. These data uncover the role of β-Catenin in the prostate and provide new insights on how pathways interact to drive human prostate cancer.
Collapse
|
41
|
Abstract
Since the initial discovery of the oncogenic activity of WNT1 in mouse mammary glands, our appreciation for the complex roles for WNT signalling pathways in cancer has increased dramatically. WNTs and their downstream effectors regulate various processes that are important for cancer progression, including tumour initiation, tumour growth, cell senescence, cell death, differentiation and metastasis. Although WNT signalling pathways have been difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can alter WNT signalling in preclinical models, thus setting the stage for clinical trials in humans.
Collapse
Affiliation(s)
- Jamie N Anastas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
42
|
Hsieh IS, Chang KC, Tsai YT, Ke JY, Lu PJ, Lee KH, Yeh SD, Hong TM, Chen YL. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 2012. [PMID: 23188675 DOI: 10.1093/carcin/bgs371] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prostate cancer (PCa) is a leading cause of mortality and morbidity in men worldwide, and emerging evidence suggests that the CD44(high) prostate tumor-initiating cells (TICs) are associated with its poor prognosis. Although microRNAs are frequently dysregulated in human cancers, the influence of microRNAs on PCa malignancy and whether targeting TIC-associated microRNAs inhibit PCa progression remain unclear. In this study, we found that miR-320 is significantly downregulated in PCa. Overexpression of miR-320 in PCa cells decreases PCa tumorigenesis in vitro and in vivo. Global gene expression profiling of miR-320-overexpressing PCa cells reveals that downstream target genes of Wnt/β-catenin pathway and cancer stem cell markers are significantly decreased. MicroRNA-320 inhibits β-catenin expression by targeting the 3'-untranslated region of β-catenin mRNA. The reduction of miR-320 associated with increased β-catenin was also found in CD44(high) subpopulation of prostate cancer cells and clinical PCa specimens. Interestingly, knockdown of miR-320 significantly increases the cancer stem-like properties, such as tumorsphere formation, chemoresistance and tumorigenic abilities, although enriching the population of stem-like TICs among PCa cells. Furthermore, increased miR-320 expression in prostate stem-like TICs significantly suppresses stem cell-like properties of PCa cells. These results support that miR-320 is a key negative regulator in prostate TICs, and suggest developing miR-320 as a novel therapeutic agent may offer benefits for PCa treatment.
Collapse
Affiliation(s)
- I-Shan Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Expression of Sprouty genes is frequently decreased or absent in human prostate cancer, implicating them as suppressors of tumorigenesis. Here we show they function in prostate tumor suppression in the mouse. Concomitant inactivation of Spry1 and Spry2 in prostate epithelium causes ductal hyperplasia and low-grade prostatic intraepithelial neoplasia (PIN). However, when Spry1 and Spry2 loss-of-function occurs in the context of heterozygosity for a null allele of the tumor suppressor gene Pten, there is a striking increase in PIN and evidence of neoplastic invasion. Conversely, expression of a Spry2 gain-of-function transgene in Pten null prostatic epithelium suppresses the tumorigenic effects of loss of Pten function. We show that Sprouty gene loss-of-function results in hyperactive RAS/ERK1/2 signaling throughout the prostate epithelium and cooperates with heterozygosity for a Pten null allele to promote hyperactive PI3K/AKT signaling. Furthermore, Spry2 gain-of-function can suppress hyperactivation of AKT caused by the absence of PTEN. Together, these results point to a key genetic interaction between Sprouty genes and Pten in prostate tumorigenesis and provide strong evidence that Sprouty genes can function to modulate signaling via the RAS/ERK1/2 and PI3K/AKT pathways. The finding that Sprouty genes suppress tumorigenesis caused by Pten loss-of-function suggests that therapeutic approaches aimed at restoring normal feedback mechanisms triggered by receptor tyrosine kinase signaling, including Sprouty gene expression, may provide an effective strategy to delay or prevent high-grade PIN and invasive prostate cancer.
Collapse
|
44
|
Xiong X, Chorzalska A, Dubielecka PM, White JR, Vedvyas Y, Hedvat CV, Haimovitz-Friedman A, Koutcher JA, Reimand J, Bader GD, Sawicki JA, Kotula L. Disruption of Abi1/Hssh3bp1 expression induces prostatic intraepithelial neoplasia in the conditional Abi1/Hssh3bp1 KO mice. Oncogenesis 2012; 1:e26. [PMID: 23552839 PMCID: PMC3503296 DOI: 10.1038/oncsis.2012.28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/10/2012] [Accepted: 07/31/2012] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of cancer-related deaths in the United States and a leading diagnosed non-skin cancer in American men. Genetic mutations underlying prostate tumorigenesis include alterations of tumor suppressor genes. We tested the tumor suppressor hypothesis for ABI1/hSSH3BP1 by searching for gene mutations in primary prostate tumors from patients, and by analyzing the consequences of prostate-specific disruption of the mouse Abi1/Hssh3bp1 ortholog. We sequenced the ABI1/hSSH3BP1 gene and identified recurring mutations in 6 out of 35 prostate tumors. Moreover, complementation and anchorage-independent growth, proliferation, cellular adhesion and xenograft assays using the LNCaP cell line, which contains a loss-of-function Abi1 mutation, and a stably expressed wild-type or mutated ABI gene, were consistent with the tumor suppressor hypothesis. To test the hypothesis further, we disrupted the gene in the mouse prostate by breeding the Abi1 floxed strain with the probasin promoter-driven Cre recombinase strain. Histopathological evaluation of mice indicated development of prostatic intraepithelial neoplasia (PIN) in Abi1/Hssh3bp1 knockout mouse as early as the eighth month, but no progression beyond PIN was observed in mice as old as 12 months. Observed decreased levels of E-cadherin, β-catenin and WAVE2 in mouse prostate suggest abnormal cellular adhesion as the mechanism underlying PIN development owing to Abi1 disruption. Analysis of syngeneic cell lines point to the possibility that upregulation of phospho-Akt underlies the enhanced cellular proliferation phenotype of cells lacking Abi1. This study provides proof-of-concept for the hypothesis that Abi1 downregulation has a role in the development of prostate cancer.
Collapse
Affiliation(s)
- X Xiong
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| | - A Chorzalska
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| | - P M Dubielecka
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| | - J R White
- Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Y Vedvyas
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| | - C V Hedvat
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - A Haimovitz-Friedman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J A Koutcher
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J Reimand
- The Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - G D Bader
- The Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - J A Sawicki
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - L Kotula
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| |
Collapse
|
45
|
Abstract
The Wnts are secreted cysteine-rich glycoproteins that have important roles in the developing embryo as well as in tissue homeostasis in adults. Dysregulation of Wnt signalling can lead to several types of cancer, including prostate cancer. A hallmark of the signalling pathway is the stabilization of the transcriptional co-activator β-catenin, which not only regulates expression of many genes implicated in cancer but is also an essential component of cadherin cell adhesion complexes. β-catenin regulates gene expression by binding members of the T-cell-specific transcription factor/lymphoid enhancer-binding factor 1 (TCF/LEF-1) family of transcription factors. In addition, β-catenin associates with the androgen receptor, a key regulator of prostate growth that drives prostate cancer progression. Wnt/β-catenin signalling can be controlled by secreted Wnt antagonists, many of which are downregulated in cancer. Activation of the Wnt/β-catenin pathway has effects on prostate cell proliferation, differentiation and the epithelial-mesenchymal transition, which is thought to regulate the invasive behaviour of tumour cells. However, whether targeting Wnt/β-catenin signalling is a good therapeutic option for prostate cancer remains unclear.
Collapse
|
46
|
Jeong WJ, Yoon J, Park JC, Lee SH, Lee SH, Kaduwal S, Kim H, Yoon JB, Choi KY. Ras Stabilization Through Aberrant Activation of Wnt/ -Catenin Signaling Promotes Intestinal Tumorigenesis. Sci Signal 2012; 5:ra30. [DOI: 10.1126/scisignal.2002242] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Majid S, Saini S, Dahiya R. Wnt signaling pathways in urological cancers: past decades and still growing. Mol Cancer 2012; 11:7. [PMID: 22325146 PMCID: PMC3293036 DOI: 10.1186/1476-4598-11-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 02/25/2023] Open
Abstract
The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, 4150 Clement Street, San Francisco CA 94121, USA
| | | | | |
Collapse
|
48
|
Pearson HB, Perez-Mancera PA, Dow LE, Ryan A, Tennstedt P, Bogani D, Elsum I, Greenfield A, Tuveson DA, Simon R, Humbert PO. SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. J Clin Invest 2011; 121:4257-67. [PMID: 21965329 DOI: 10.1172/jci58509] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/16/2011] [Indexed: 01/15/2023] Open
Abstract
Loss of cellular polarity is a hallmark of epithelial cancers, raising the possibility that regulators of polarity have a role in suppressing tumorigenesis. The Scribble complex is one of at least three interacting protein complexes that have a critical role in establishing and maintaining epithelial polarity. In human colorectal, breast, and endometrial cancers, expression of the Scribble complex member SCRIB is often mislocalized and deregulated. Here, we report that Scrib is indispensable for prostate homeostasis in mice. Scrib heterozygosity initiated prostate hyperplasia, while targeted biallelic Scrib loss predisposed mice to prostate intraepithelial neoplasia. Mechanistically, Scrib was shown to negatively regulate the MAPK cascade to suppress tumorigenesis. Further analysis revealed that prostate-specific loss of Scrib in mice combined with expression of an oncogenic Kras mutation promoted the progression of prostate cancer that recapitulated the human disease. The clinical significance of the work in mice was highlighted by our observation that SCRIB deregulation strongly correlated with poor survival in human prostate cancer. These data suggest that the polarity network could provide a new avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Helen B Pearson
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shiota M, Yokomizo A, Naito S. Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 2011; 47:R25-41. [PMID: 21504942 DOI: 10.1530/jme-11-0018] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Few effective therapies exist for the treatment of castration-resistant prostate cancer (CRPC). Recent evidence suggests that CRPC may be caused by augmented androgen/androgen receptor (AR) signaling, generally involving AR overexpression. Aberrant androgen/AR signaling associated with AR overexpression also plays a key role in prostate carcinogenesis. Although AR overexpression could be attributed to gene amplification, only 10-20% of CRPCs exhibit AR gene amplification, and aberrant AR expression in the remaining instances of CRPC is thought to be attributed to transcriptional, translational, and post-translational mechanisms. Overexpression of AR at the protein level, as well as the mRNA level, has been found in CRPC, suggesting a key role for transcriptional regulation of AR expression. Since the analysis of the AR promoter region in the 1990s, several transcription factors have been reported to regulate AR transcription. In this review, we discuss the molecules involved in the control of AR gene expression, with emphasis on its transcriptional control by transcription factors in prostate cancer. We also consider the therapeutic potential of targeting AR expression.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
50
|
Valkenburg KC, Graveel CR, Zylstra-Diegel CR, Zhong Z, Williams BO. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells. Cancers (Basel) 2011; 3:2050-79. [PMID: 24212796 PMCID: PMC3757404 DOI: 10.3390/cancers3022050] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 12/23/2022] Open
Abstract
The ability of Wnt ligands to initiate a signaling cascade that results in cytoplasmic stabilization of, and nuclear localization of, β-catenin underlies their ability to regulate progenitor cell differentiation. In this review, we will summarize the current knowledge of the mechanisms underlying Wnt/β-catenin signaling and how the pathway regulates normal differentiation of stem cells in the intestine, mammary gland, and prostate. We will also discuss how dysregulation of the pathway is associated with putative cancer stem cells and the potential therapeutic implications of regulating Wnt signaling.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
| | | | | | | | | |
Collapse
|