1
|
Haas B, Roth I, Säcker L, Wos-Maganga M, Beltzig L, Kaina B. Apoptotic and senolytic effects of hERG/Eag1 channel blockers in combination with temozolomide in human glioblastoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03955-w. [PMID: 40126672 DOI: 10.1007/s00210-025-03955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
Temozolomide (TMZ) concomitant with radiotherapy is the first-line treatment for glioblastoma. However, treatment resistance is frequently observed in patients. Cellular senescence (CSEN) induced by TMZ has been proposed to be one underlying mechanism resulting in resting cells, causing inflammation and possibly recurrences if senescent cells re-enter the cell cycle after treatment. Inhibition of the K+ channels human ether-à-go-go type 1 (Eag1) and human ether-à-go-go-related gene (hERG) has shown promising effects in several tumor types including glioblastoma through growth inhibition and induction of apoptosis. In the present study, we analyzed the impact of hERG/Eag1 inhibition on apoptosis and CSEN on its own and in combination with TMZ in a panel of human glioblastoma cell lines and primary glioblastoma cells. hERG/Eag1 protein expression was determined by Western blotting and immunocytochemistry. Cytotoxicity of astemizole and terfenadine alone or in combination with TMZ was assessed by MTT assays. Apoptotic yields were determined by Annexin V/propidium iodide staining, and CSEN was quantified by determining SA-β-galactosidase levels through flow cytometry. We observed a similar protein expression of hERG and Eag1 in all glioblastoma cell lines and primary glioblastoma cells. Astemizole and terfenadine were cytotoxic in glioblastoma cells at low micromolar concentrations (5-10 µM range) through induction of apoptosis. In combination with TMZ, both drugs synergistically sensitized glioblastoma cells to TMZ-induced apoptosis. Moreover, astemizole reduced significantly the TMZ-induced CSEN level, indicating its impact on CSEN induction. Here, we show for the first time that blocking hERG/Eag1 channels in glioblastoma cells can relief TMZ-induced CSEN and synergistically ameliorates cytotoxicity through the induction of apoptosis.
Collapse
Affiliation(s)
- Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| | - Inken Roth
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campus Platz 1, 51379, Leverkusen, Germany
| | - Luisa Säcker
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campus Platz 1, 51379, Leverkusen, Germany
| | - Maria Wos-Maganga
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Lea Beltzig
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| |
Collapse
|
2
|
Ho AN, Kiesel VA, Gates CE, Brosnan BH, Connelly SP, Glenny EM, Cozzo AJ, Hursting SD, Coleman MF. Exogenous Metabolic Modulators Improve Response to Carboplatin in Triple-Negative Breast Cancer. Cells 2024; 13:806. [PMID: 38786030 PMCID: PMC11119195 DOI: 10.3390/cells13100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks targeted therapies, leaving cytotoxic chemotherapy as the current standard treatment. However, chemotherapy resistance remains a major clinical challenge. Increased insulin-like growth factor 1 signaling can potently blunt chemotherapy response, and lysosomal processes including the nutrient scavenging pathway autophagy can enable cancer cells to evade chemotherapy-mediated cell death. Thus, we tested whether inhibition of insulin receptor/insulin-like growth factor 1 receptor with the drug BMS-754807 and/or lysosomal disruption with hydroxychloroquine (HCQ) could sensitize TNBC cells to the chemotherapy drug carboplatin. Using in vitro studies in multiple TNBC cell lines, in concert with in vivo studies employing a murine syngeneic orthotopic transplant model of TNBC, we show that BMS-754807 and HCQ each sensitized TNBC cells and tumors to carboplatin and reveal that exogenous metabolic modulators may work synergistically with carboplatin as indicated by Bliss analysis. Additionally, we demonstrate the lack of overt in vivo toxicity with our combination regimens and, therefore, propose that metabolic targeting of TNBC may be a safe and effective strategy to increase sensitivity to chemotherapy. Thus, we conclude that the use of exogenous metabolic modulators, such as BMS-754807 or HCQ, in combination with chemotherapy warrants additional study as a strategy to improve therapeutic responses in women with TNBC.
Collapse
Affiliation(s)
- Alyssa N. Ho
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Violet A. Kiesel
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Claire E. Gates
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bennett H. Brosnan
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P. Connelly
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Francis Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
3
|
Demir S, Razizadeh N, Indersie E, Branchereau S, Cairo S, Kappler R. Targeting G9a/DNMT1 methyltransferase activity impedes IGF2-mediated survival in hepatoblastoma. Hepatol Commun 2024; 8:e0378. [PMID: 38285887 PMCID: PMC10830081 DOI: 10.1097/hc9.0000000000000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.
Collapse
Affiliation(s)
- Salih Demir
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| | - Negin Razizadeh
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| | | | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, AP-HP Paris Saclay University, France
| | - Stefano Cairo
- XenTech, Evry, France
- Champions Oncology, Inc., Rockville, Maryland, USA
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
4
|
Almeida-Nunes DL, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Enhancing Immunotherapy in Ovarian Cancer: The Emerging Role of Metformin and Statins. Int J Mol Sci 2023; 25:323. [PMID: 38203494 PMCID: PMC10779012 DOI: 10.3390/ijms25010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer metastization is accompanied by the development of malignant ascites, which are associated with poor prognosis. The acellular fraction of this ascitic fluid contains tumor-promoting soluble factors, bioactive lipids, cytokines, and extracellular vesicles, all of which communicate with the tumor cells within this peritoneal fluid. Metabolomic profiling of ovarian cancer ascites has revealed significant differences in the pathways of fatty acids, cholesterol, glucose, and insulin. The proteins involved in these pathways promote tumor growth, resistance to chemotherapy, and immune evasion. Unveiling the key role of this liquid tumor microenvironment is crucial for discovering more efficient treatment options. This review focuses on the cholesterol and insulin pathways in ovarian cancer, identifying statins and metformin as viable treatment options when combined with standard chemotherapy. These findings are supported by clinical trials showing improved overall survival with these combinations. Additionally, statins and metformin are associated with the reversal of T-cell exhaustion, positioning these drugs as potential combinatory strategies to improve immunotherapy outcomes in ovarian cancer patients.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4169-007 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
- FOREN—Forensic Science Experts, 1400-136 Lisboa, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Adamson AW, Ding YC, Steele L, Leong LA, Morgan R, Wakabayashi MT, Han ES, Dellinger TH, Lin PS, Hakim AA, Wilczynski S, Warden CD, Tao S, Bedell V, Cristea MC, Neuhausen SL. Genomic analyses of germline and somatic variation in high-grade serous ovarian cancer. J Ovarian Res 2023; 16:141. [PMID: 37460928 PMCID: PMC10351177 DOI: 10.1186/s13048-023-01234-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancers (HGSCs) display a high degree of complex genetic alterations. In this study, we identified germline and somatic genetic alterations in HGSC and their association with relapse-free and overall survival. Using a targeted capture of 557 genes involved in DNA damage response and PI3K/AKT/mTOR pathways, we conducted next-generation sequencing of DNA from matched blood and tumor tissue from 71 HGSC participants. In addition, we performed the OncoScan assay on tumor DNA from 61 participants to examine somatic copy number alterations (SCNA). RESULTS Approximately one-third of tumors had loss-of-function (LOF) germline (18/71, 25.4%) or somatic (7/71, 9.9%) variants in the DNA homologous recombination repair pathway genes BRCA1, BRCA2, CHEK2, MRE11A, BLM, and PALB2. LOF germline variants also were identified in other Fanconi anemia genes and in MAPK and PI3K/AKT/mTOR pathway genes. Most tumors harbored somatic TP53 variants (65/71, 91.5%). Using the OncoScan assay on tumor DNA from 61 participants, we identified focal homozygous deletions in BRCA1, BRCA2, MAP2K4, PTEN, RB1, SLX4, STK11, CREBBP, and NF1. In total, 38% (27/71) of HGSC patients harbored pathogenic variants in DNA homologous recombination repair genes. For patients with multiple tissues from the primary debulking or from multiple surgeries, the somatic mutations were maintained with few newly acquired point mutations suggesting that tumor evolution was not through somatic mutations. There was a significant association of LOF variants in homologous recombination repair pathway genes and high-amplitude somatic copy number alterations. Using GISTIC analysis, we identified NOTCH3, ZNF536, and PIK3R2 in these regions that were significantly associated with an increase in cancer recurrence and a reduction in overall survival. CONCLUSIONS From 71 patients with HGCS, we performed targeted germline and tumor sequencing and provided a comprehensive analysis of these 557 genes. We identified germline and somatic genetic alterations including somatic copy number alterations and analyzed their associations with relapse-free and overall survival. This single-site long-term follow-up study provides additional information on genetic alterations related to occurrence and outcome of HGSC. Our findings suggest that targeted treatments based on both variant and SCNA profile potentially could improve relapse-free and overall survival.
Collapse
Affiliation(s)
- A W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - Y C Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - L Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - L A Leong
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - R Morgan
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - M T Wakabayashi
- Currently at Regeneron Pharmaceuticals Inc, Formerly City of Hope National Medical Center, Duarte, CA, USA
- Formerly, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - E S Han
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - T H Dellinger
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - P S Lin
- Formerly, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - A A Hakim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - S Wilczynski
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - C D Warden
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - S Tao
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - V Bedell
- Cytogenetics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - M C Cristea
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
- Currently at Regeneron Pharmaceuticals Inc, Formerly City of Hope National Medical Center, Duarte, CA, USA
| | - S L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA.
| |
Collapse
|
6
|
Davidson TM, Lebreton CL, Hendricksen AEW, Atkinson HJ, Larson MC, Oberg AL, Provencher DM, Glaspy JA, Karlan BY, Slamon DJ, Konecny GE, Ray-Coquard IL. Results of TRIO-15, a multicenter, open-label, phase II study of the efficacy and safety of ganitumab in patients with recurrent platinum-sensitive ovarian cancer. Gynecol Oncol 2023; 170:221-228. [PMID: 36709663 PMCID: PMC10425916 DOI: 10.1016/j.ygyno.2023.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND IGF signaling has been implicated in the pathogenesis and progression of ovarian carcinoma (OC). Single agent activity and safety of ganitumab (AMG 479), a fully human monoclonal antibody against IGF1R that blocks binding of IGF1 and IGF2, were evaluated in patients with platinum-sensitive recurrent OC. METHODS Patients with CA125 progression (GCIG criteria) or measurable disease per RECIST following primary platinum-based therapy received 18 mg/kg of ganitumab q3w. The primary endpoint was objective response rate (ORR) assessed per RECIST 1.1 by an independent radiology review committee (IRC) and/or GCIG CA125 criteria. Secondary endpoints included clinical benefit rate (CBR), progression free survival (PFS) and overall survival (OS). RESULTS 61 pts. were accrued. Objective responses were seen in 5/61 patients (ORR 8.2%, 95% CI, 3.1-18.8) with 1 partial response (PR) by RECIST and 2 complete responses (CR) as well as 2 PR by CA125 criteria. CBR was 80.3% (95% CI, 67.8-89.0%). The median PFS according to RECIST by IRC was 2.1 months (95% CI, 2.0-3.1). The median PFS per RECIST IRC and/or CA125 was 2.0 months (95% CI, 1.8-2.2). The median OS was 21 months (95% CI, 19.5-NA). The most common overall adverse events were fatigue (36.1%) and hypertension (34.4%). Grade 1/2 hyperglycemia occurred in 30.4% of patients. Hypertension (11.5%) and hypersensitivity (8.2%) were the most frequent grade 3 adverse events. CONCLUSIONS IGF1R inhibition with ganitumab was well-tolerated, however, our results do not support further study of ganitumab as a single agent in unselected OC patients.
Collapse
Affiliation(s)
- T M Davidson
- Division of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - H J Atkinson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Science, Mayo Clinic, Rochester, MN, USA
| | - M C Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Science, Mayo Clinic, Rochester, MN, USA
| | - A L Oberg
- Division of Computational Biology, Department of Quantitative Health Science, Mayo Clinic, Rochester, MN, USA
| | | | - J A Glaspy
- Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - B Y Karlan
- Division of Gynecologic Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - D J Slamon
- Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - G E Konecny
- Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA; Division of Gynecologic Oncology, University of California Los Angeles, Los Angeles, CA, USA.
| | - I L Ray-Coquard
- Centre Léon Bérard, Lyon, France; Health Services and Performance Research Lab (EA 7425 HESPER), University Claude Bernard Lyon 1, 69008 Lyon, France
| |
Collapse
|
7
|
Levi L, Hikri E, Popovtzer A, Dayan A, Levi A, Bachar G, Mizrachi A, Shoffel-Havakuk H. Effect of Opioid Receptor Activation and Blockage on the Progression and Response to Treatment of Head and Neck Squamous Cell Carcinoma. J Clin Med 2023; 12:jcm12041277. [PMID: 36835812 PMCID: PMC9967316 DOI: 10.3390/jcm12041277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Recent studies suggest that opioids have a role in the progression of HNSCC mediated by mu opioid receptors (MOR), however, the effects of their activation or blockage remains unclear. Expression of MOR-1 was explored in seven HNSCC cell lines using Western blotting (WB). XTT cell proliferation and cell migration assays were performed on four selected cell lines (Cal-33, FaDu, HSC-2, and HSC-3), treated with opiate receptor agonist (morphine), antagonist (naloxone), alone and combined with cisplatin. All four selected cell lines display an increased cell proliferation and upregulation of MOR-1 when exposed to morphine. Furthermore, morphine promotes cell migration, while naloxone inhibits it. The effects on cell signaling pathways were analyzed using WB, demonstrating morphine activation of AKT and S6, key proteins in the PI3K/AKT/mTOR axis. A significant synergistic cytotoxic effect between cisplatin and naloxone in all cell lines is observed. In vivo studies of nude mice harboring HSC3 tumor treated with naloxone demonstrate a decrease in tumor volume. The synergistic cytotoxic effect between cisplatin and naloxone is observed in the in vivo studies as well. Our findings suggest that opioids may increase HNSCC cell proliferation via the activation of the PI3K/Akt/mTOR signaling pathway. Moreover, MOR blockage may chemo-sensitize HNSCC to cisplatin.
Collapse
Affiliation(s)
- Lirit Levi
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elad Hikri
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Aron Popovtzer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avraham Dayan
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Levi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gideon Bachar
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Aviram Mizrachi
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3-9376456; Fax: +972-3-9372717
| | - Hagit Shoffel-Havakuk
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Drug resistance in NSCLC is associated with tumor micro-environment. Reprod Biol 2022; 22:100680. [PMID: 35926330 DOI: 10.1016/j.repbio.2022.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Tumor cell resistance to chemotherapy is the most critical factor that influences the prognosis of cancer patients. It is generally believed that drug resistance is caused by genetic alterations in tumor cells; however, the relationship between drug resistance and the tumor microenvironment (TME) has not been adequately studied. Herein, we successfully identified drug resistance and sensitivity clusters using single-cell transcriptome sequencing data from GSE149383 and established a proportional hazards model to find genes that affected prognosis. The results showed that marker genes between resistant and sensitive clusters were significantly associated with the TME; additionally, the model showed good reliability. Furthermore, we used bulk RNA-seq data to analyze the expression of CD24 and CYP1B1, which revealed little difference in the levels of the two genes in normal and tumor tissues but a significant difference in their expression between drug-resistant and -sensitive cells. In conclusion, our study demonstrated a link between drug resistance and the TME, and we found that CD24 and CYP1B1 may be key regulators of drug resistance development in tumor cells via altering the TME.
Collapse
|
9
|
Nii T, Tabata Y. Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro invasion of cancer cells. Regen Ther 2022; 18:516-522. [PMID: 34977285 PMCID: PMC8668441 DOI: 10.1016/j.reth.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The objective of this study is to design a co-culture system of cancer cells and three-dimensional (3D) mesenchymal stem cells (MSC) aggregates for the in vitro evaluation of cancer invasion. Methods First, the MSC of an immunosuppressive phenotype (MSC2) were prepared by the MSC stimulation of polyriboinosinic polyribocytidylic acid. By simple mixing MSC2 and gelatin hydrogel microspheres (GM) in a U-bottomed well of 96 well plates which had been pre-coated with poly (vinyl alcohol), 3D MSC2 aggregates incorporating GM were obtained. The amount of chemokine (C–C motif) ligand 5 (CCL5) secreted from the MSC2 aggregates incorporating GM. Finally, an invasion assay was performed to evaluate the cancer invasion rate by co-cultured cancer cells and the 3D MSC2 incorporating GM. Results The amount of CCL5 secreted for the 3D MSC2 aggregates incorporating GM was significantly higher than that of two-dimensional (2D) MSC, 2D MSC2, and 3D MSC aggregates incorporating GM. When MDA-MB-231 human breast cancer cells were co-cultured with the 3D MSC2 aggregates incorporating GM, the invasion rate of cancer cells was significantly high compared with that of 2D MSC or 2D MSC2 and 3D MSC aggregates incorporating GM. In addition, high secretion of matrix metalloproteinase-2 was observed for the 3D MSC2 aggregates/cancer cells system. Conclusions It is concluded that the co-culture system of 3D MSC2 aggregates incorporating GM and cancer cells is promising to evaluate the invasion of cancer cells in vitro. This invasion model is an important tool for anti-cancer drug screening. Mesenchymal stem cells of an immunosuppressive phenotype (MSC2) were obtained. 3D MSC2 aggregates incorporating gelatin hydrogel microspheres were prepared. 3D MSC2 aggregates promoted the invasion rate of cancer cells.
Collapse
Key Words
- (CCL)5, chemokine (C–C motif) ligand
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cells
- MSC2, MSC of an immunosuppressive phenotype
- Mesenchymal stem cells
- PBS, phosphate buffered-saline
- PVA, poly (vinyl alcohol)
- TAM, tumor-associated macrophages
- Three-dimensional cell culture
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
10
|
Liu L, Liang C, Zhuo C, Jiang H, Ye H, Ruan T, Song J, Jiang S, Zhang Y, Li X. OSI-906 restores the sensitivity of ovarian clear cell carcinoma to cisplatin by targeting the IGF1R/AKT pathway. Med Oncol 2022; 39:26. [PMID: 34982265 DOI: 10.1007/s12032-021-01592-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
Among the various histologic subtypes of ovarian cancers (OCs), ovarian clear cell carcinoma (OCCC) represents a great challenge due to its disease aggressiveness and resistance to chemotherapy. IGF1 is overexpressed in epithelial ovarian cancer (EOC), and IGF1 pathway activation is related to the chemoresistance of various cancers. In this study, we found that the expression level of IGF1 was higher in OCCC than in the most common type of OC, high-grade serous adenocarcinoma (HGSC). Then, we investigated the role of IGF1 pathway activation in the progression of OCCC, observing that activation of the IGF1 pathway using IGF1 promoted the proliferation and migration of ES2 cells, while inactivation of the IGF1 pathway using the selective IGF1R inhibitor OSI-906 reversed the alteration mediated by IGF1. Based on the role of the IGF1 pathway in cancer chemoresistance, we proposed that OSI-906 may restore the sensitivity of OCCC to cisplatin. We first validated that IGF1 increased the IC50 value of cisplatin in ES2 cells, while OSI-906 decreased it. Then we confirmed that IGF1 decreased the apoptosis rate of ES2 cells induced by cisplatin, while OSI-906 increased it. Finally, we conducted animal experiments to investigate whether OSI-906 helps cisplatin control the growth of OCCC. As expected, OSI-906 increased the effect of cisplatin in attenuating the growth of OCCC in vivo. Therefore, we conclude that using OSI-906 may be an effective method to restore the sensitivity of OCCC to cisplatin by targeting the IGF1R/AKT pathway.
Collapse
Affiliation(s)
- Li Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changyan Liang
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyun Jiang
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huixia Ye
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianyuan Ruan
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiao Song
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Senwei Jiang
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhang
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaomao Li
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
IGF1R/IR Mediates Resistance to BRAF and MEK Inhibitors in BRAF-Mutant Melanoma. Cancers (Basel) 2021; 13:cancers13225863. [PMID: 34831014 PMCID: PMC8616282 DOI: 10.3390/cancers13225863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Melanoma accounts for only 4% of skin cancer, but is the major cause of skin cancer related deaths. The use of dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor), two FDA approved drugs to treat patients with BRAFV600E melanoma, is limited in the clinic due to the development of resistance. The IGF family of receptors is known to play a crucial role in cancer progression. In our in vitro screening, we identified that the activation of Insulin-like growth factor 1 receptor (IGF1R) and Insulin Receptor (IR) mediates resistance to dabrafenib and trametinib. Patients with high levels of IGF1R and IR have worse survival outcomes compared to patients with low levels of these receptors. We demonstrate that combining dabrafenib and trametinib with an IGF1R/IR inhibitor, BMS-754807, in vitro and in vivo, is efficacious and inhibits proliferation and tumor growth. This research opens up avenues for the development of novel and potent IGF1R/IR inhibitors for patients with BRAF-mutant melanoma. Abstract The use of BRAF and MEK inhibitors for patients with BRAF-mutant melanoma is limited as patients relapse on treatment as quickly as 6 months due to acquired resistance. We generated trametinib and dabrafenib resistant melanoma (TDR) cell lines to the MEK and BRAF inhibitors, respectively. TDR cells exhibited increased viability and maintenance of downstream p-ERK and p-Akt as compared to parental cells. Receptor tyrosine kinase arrays revealed an increase in p-IGF1R and p-IR in the drug resistant cells versus drug sensitive cells. RNA-sequencing analysis identified IGF1R and INSR upregulated in resistant cell lines compared to parental cells. Analysis of TCGA PanCancer Atlas (skin cutaneous melanoma) showed that patients with a BRAF mutation and high levels of IGF1R and INSR had a worse overall survival. BMS-754807, an IGF1R/IR inhibitor, suppressed cell proliferation along with inhibition of intracellular p-Akt in TDR cells. Dual inhibition of IGF1R and INSR using siRNA reduced cell proliferation. The combination of dabrafenib, trametinib, and BMS-754807 treatment reduced in vivo xenograft tumor growth. Examining the role of IGF1R and IR in mediating resistance to BRAF and MEK inhibitors will expand possible treatment options to aid in long-term success for BRAF-mutant melanoma patients.
Collapse
|
12
|
Konecny GE, Hendrickson AEW, Davidson TM, Winterhoff BJ, Ma S, Mahner S, Sehouli J, Fasching PA, Feisel-Schwickardi G, Poelcher M, Roman LD, Rody A, Karlan BY, Mullany SA, Chen H, Ray-Coquard IL, Provencher DM, Yachnin A, Cottu PH, Glaspy JA, Haluska P, Slamon DJ. Results of TRIO-14, a phase II, multicenter, randomized, placebo-controlled trial of carboplatin-paclitaxel versus carboplatin-paclitaxel-ganitumab in newly diagnosed epithelial ovarian cancer. Gynecol Oncol 2021; 163:465-472. [PMID: 34642026 DOI: 10.1016/j.ygyno.2021.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE Insulin-like growth factor (IGF) signaling is implicated in pathogenesis and chemotherapy resistance of epithelial ovarian cancer (EOC). We explored efficacy and safety of adding ganitumab, a monoclonal antibody targeting IGF-1R, to carboplatin/paclitaxel (CP) chemotherapy in patients with primary EOC. DESIGN Patients were randomly assigned to receive CP/ganitumab (18 mg/kg q3w) or CP/placebo for 6 cycles followed by 6 cycles of single agent ganitumab/placebo maintenance therapy as front-line therapy. Primary endpoint was progression free survival. Secondary endpoints were time to progression and overall survival. Pretreatment samples were prospectively collected for retrospective biomarker analyses. RESULTS 170 patients enrolled. 165 patients assessable for toxicity. Median PFS was 15.7 months with CP/ganitumab and 16.7 months with CP/placebo (HR 1.23; 95% CI 0.82-1.83, P = 0.313). All grade neutropenia (84.1% vs 71.4%), thrombocytopenia (75.3% vs 57.1%) and hyperglycemia (15.9% vs 2.6%) were more common in the ganitumab group compared to the placebo group. Ganitumab/placebo related serious adverse events were reported in 26.1% of the patients with ganitumab and in 6.5% with placebo. Non-progression related fatal events were more common with ganitumab (5 versus 2 patients). The ganitumab group experienced more dose delays which resulted in lower relative dose intensity of chemotherapy in the experimental group. In an exploratory model IGFBP2 expression was predictive of ganitumab response (treatment interaction; PFS, P = 0.03; OS, P = 0.01). CONCLUSION Addition of ganitumab to CP chemotherapy in primary EOC did not improve PFS. Our results do not support further study of ganitumab in unselected EOC patients.
Collapse
Affiliation(s)
- G E Konecny
- Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA; Division of Gynecologic Oncology, University of California Los Angeles, Los Angeles, CA, USA.
| | | | - T M Davidson
- Division of Oncology Mayo Clinic, Rochester, MN, USA
| | - B J Winterhoff
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN, USA
| | - S Ma
- Institute for Health Informatics, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - S Mahner
- Department of Gynecology and Gynecologic Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - J Sehouli
- University Hospital Charite, Campus Virchow-Klinikum, Klinik für Frauenheilkunde und Geburtshilfe & Nord-Ostdeutsche-Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany
| | - P A Fasching
- Department of Obstetrics and Gynecology, University of Erlangen, Erlangen, Germany
| | | | - M Poelcher
- Department of Gynecology, Rotkreutzklinikum, Munich, Germany
| | - L D Roman
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - A Rody
- Department of Obstetrics and Gynecology, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Germany
| | - B Y Karlan
- Division of Gynecologic Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - S A Mullany
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN, USA
| | - H Chen
- Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - A Yachnin
- Department of Oncology, Kaplan Medical Center, Rehovot, Israel
| | | | - J A Glaspy
- Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - P Haluska
- Bristol-Myers Squibb Inc, Lawrenceville, NJ, USA
| | - D J Slamon
- Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Leonce C, Saintigny P, Ortiz-Cuaran S. Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol Cancer Res 2021; 20:11-29. [PMID: 34389691 DOI: 10.1158/1541-7786.mcr-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
In cancer patients with metastatic disease, the rate of complete tumor response to systemic therapies is low, and residual lesions persist in the majority of patients due to early molecular adaptation in cancer cells. A growing body of evidence suggests that a subpopulation of drug-tolerant « persister » cells - a reversible phenotype characterized by reduced drug sensitivity and decreased cell proliferation - maintains residual disease and may serve as a reservoir for resistant phenotypes. The survival of these residual tumor cells can be caused by reactivation of specific signaling pathways, phenotypic plasticity (i.e., transdifferentiation), epigenetic or metabolic reprogramming, downregulation of apoptosis as well as transcriptional remodeling. In this review, we discuss the molecular mechanisms that enable adaptive survival in drug-tolerant cells. We describe the main characteristics and dynamic nature of this persistent state, and highlight the current therapeutic strategies that may be used to interfere with the establishment of drug-tolerant cells, as an alternative to improve objective response to systemic therapies and delay the emergence of resistance to improve long-term survival.
Collapse
Affiliation(s)
- Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| | - Pierre Saintigny
- Department of Medical Oncology, Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon. Department of Medical Oncology, Centre Léon Bérard
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| |
Collapse
|
14
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
15
|
Cohen G, Chandran P, Lorsung RM, Aydin O, Tomlinson LE, Rosenblatt RB, Burks SR, Frank JA. Pulsed-Focused Ultrasound Slows B16 Melanoma and 4T1 Breast Tumor Growth through Differential Tumor Microenvironmental Changes. Cancers (Basel) 2021; 13:cancers13071546. [PMID: 33801627 PMCID: PMC8036693 DOI: 10.3390/cancers13071546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Focused ultrasound (FUS) has shown promise as a non-invasive treatment modality for solid malignancies. FUS targeting to tumors has been shown to initiate pro-inflammatory immune responses within the tumor microenvironment. Pulsed FUS (pFUS) can alter the expression of cytokines, chemokines, trophic factors, cell adhesion molecules, and immune cell phenotypes within tissues. Here, we investigated the molecular and immune cell effects of pFUS on murine B16 melanoma and 4T1 breast cancer flank tumors. Temporal changes following sonication were evaluated by proteomics, RNA-seq, flow-cytometry, and histological analyses. Proteomic profiling revealed molecular changes occurring over 24 h post-pFUS that were consistent with a shift toward inflamed tumor microenvironment. Over 5 days post-pFUS, tumor growth rates were significantly decreased while flow cytometric analysis revealed differences in the temporal migration of immune cells. Transcriptomic analyses following sonication identified differences in gene expression patterns between the two tumor types. Histological analyses further demonstrated reduction of proliferation marker, Ki-67 in 4T1, but not in B16 tumors, and activated cleaved-caspase 3 for apoptosis remained elevated up to 3 days post-pFUS in both tumor types. This study revealed diverse biological mechanisms following pFUS treatment and supports its use as a possible adjuvant to ablative tumor treatment to elicit enhanced anti-tumor responses and slow tumor growth.
Collapse
Affiliation(s)
- Gadi Cohen
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA; (R.M.L.); (O.A.); (L.E.T.); (R.B.R.); (S.R.B.)
- Correspondence: (G.C.); (P.C.); (J.A.F.)
| | - Parwathy Chandran
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA; (R.M.L.); (O.A.); (L.E.T.); (R.B.R.); (S.R.B.)
- Correspondence: (G.C.); (P.C.); (J.A.F.)
| | - Rebecca M. Lorsung
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA; (R.M.L.); (O.A.); (L.E.T.); (R.B.R.); (S.R.B.)
| | - Omer Aydin
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA; (R.M.L.); (O.A.); (L.E.T.); (R.B.R.); (S.R.B.)
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Lauren E. Tomlinson
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA; (R.M.L.); (O.A.); (L.E.T.); (R.B.R.); (S.R.B.)
| | - Robert B. Rosenblatt
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA; (R.M.L.); (O.A.); (L.E.T.); (R.B.R.); (S.R.B.)
| | - Scott R. Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA; (R.M.L.); (O.A.); (L.E.T.); (R.B.R.); (S.R.B.)
| | - Joseph A. Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA; (R.M.L.); (O.A.); (L.E.T.); (R.B.R.); (S.R.B.)
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1074, USA
- Correspondence: (G.C.); (P.C.); (J.A.F.)
| |
Collapse
|
16
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Haas B, Ciftcioglu J, Jermar S, Weickhardt S, Eckstein N, Kaina B. Methadone-mediated sensitization of glioblastoma cells is drug and cell line dependent. J Cancer Res Clin Oncol 2021; 147:779-792. [PMID: 33315125 PMCID: PMC7872955 DOI: 10.1007/s00432-020-03485-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE D,L-methadone (MET), an analgesic drug used for pain treatment and opiate addiction, has achieved attention from oncologists and social media as possible chemoensitizing agent in cancer therapy, notably brain cancer (glioblastoma multiforme, GBM). MET has been reported to enhance doxorubicin-induced cytotoxicity in GBM cells via activation of the µ-opioid receptor (MOR). Here, we extended this work and quantified the toxic effect of MET in comparison to other opioids alone and in combination with doxorubicin and the clinically more relevant alkylating drug temozolomide (TMZ), using a set of GBM cell lines and primary GBM cells. METHODS MOR expression in GBM cells was investigated by immunofluorescence and immunoblotting. Resistance to drugs alone and in combination with anticancer drugs was assessed by MTT assays. Concentration effect curves were fitted by nonlinear regression analysis and IC50 values were calculated. Apoptosis and necrosis rates were determined by annexin V/propidium iodide (PI)-flow cytometry. RESULTS MET alone was cytotoxic in all GBM cell lines and primary GBM cells at high micromolar concentrations (IC50 ~ 60-130 µM), observed both in the metabolic MTT assay and by quantifying apoptosis and necrosis, while morphine and oxycodone were not cytotoxic in this concentration range. Naloxone was not able to block MET-induced cytotoxicity, indicating that cell death-inducing effects of MET are not MOR-dependent. We recorded doxorubicin and TMZ concentration- response curves in combination with fixed MET concentrations. MET enhanced doxorubicin-induced cytotoxicity in only one cell line, and in primary cells it was observed only in a particular MET concentration range. In all assays, MET was not effective in sensitizing cells to TMZ. In two cell lines, MET even decreased the cell's sensitivity to TMZ. CONCLUSION MET was found to be cytotoxic in GBM cells in vitro only at high, clinically not relevant concentrations, where it was effective in inducing apoptosis and necrosis. Sensitizing effects were only observed in combination with doxorubicin, but not with TMZ, and are dependent on cell line and the applied drug concentration. Therefore, our findings do not support the use of MET in the treatment of GBM in combination with TMZ, as no sensitizing effect of MET was observed.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Brain Neoplasms/drug therapy
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Drug Screening Assays, Antitumor
- Drug Synergism
- Glioblastoma/drug therapy
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- Methadone/administration & dosage
- Methadone/pharmacology
- Morphine/pharmacology
- Naloxone/pharmacology
- Oxycodone/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/biosynthesis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Bodo Haas
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| | - Janine Ciftcioglu
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany
| | - Sanja Jermar
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Niels Eckstein
- Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953, Pirmasens, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| |
Collapse
|
18
|
Novel Regulators of the IGF System in Cancer. Biomolecules 2021; 11:biom11020273. [PMID: 33673232 PMCID: PMC7918569 DOI: 10.3390/biom11020273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system is a dynamic network of proteins, which includes cognate ligands, membrane receptors, ligand binding proteins and functional downstream effectors. It plays a critical role in regulating several important physiological processes including cell growth, metabolism and differentiation. Importantly, alterations in expression levels or activation of components of the IGF network are implicated in many pathological conditions including diabetes, obesity and cancer initiation and progression. In this review we will initially cover some general aspects of IGF action and regulation in cancer and then focus in particular on the role of transcriptional regulators and novel interacting proteins, which functionally contribute in fine tuning IGF1R signaling in several cancer models. A deeper understanding of the biological relevance of this network of IGF1R modulators might provide novel therapeutic opportunities to block this system in neoplasia.
Collapse
|
19
|
Rodrigues Moita AJ, Bandolik JJ, Hansen FK, Kurz T, Hamacher A, Kassack MU. Priming with HDAC Inhibitors Sensitizes Ovarian Cancer Cells to Treatment with Cisplatin and HSP90 Inhibitors. Int J Mol Sci 2020; 21:ijms21218300. [PMID: 33167494 PMCID: PMC7663919 DOI: 10.3390/ijms21218300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths. Chemoresistance, particularly against platinum compounds, contributes to a poor prognosis. Histone deacetylase inhibitors (HDACi) and heat shock protein 90 inhibitors (HSP90i) are known to modulate pathways involved in chemoresistance. This study investigated the effects of HDACi (panobinostat, LMK235) and HSP90i (luminespib, HSP990) on the potency of cisplatin in ovarian cancer cell lines (A2780, CaOV3, OVCAR3 and cisplatin-resistant sub-clones). Preincubation with HDACi increased the cytotoxic potency of HSP90i, whereas preincubation with HSP90i had no effect. Preincubation with HSP90i or HDACi 48h prior to cisplatin enhanced the cisplatin potency significantly in all cell lines via apoptosis induction and affected the expression of apoptosis-relevant genes and proteins. For CaOV3CisR and A2780CisR, a preincubation with HDACi for 48–72 h led to complete reversal of cisplatin resistance. Furthermore, permanent presence of HDACi in sub-cytotoxic concentrations prevented the development of cisplatin resistance in A2780. However, triple combinations of HDACi, HSP90i and cisplatin were not superior to dual combinations. Overall, priming with HDACi sensitizes ovarian cancer cells to treatment with HSP90i or cisplatin and has an influence on the development of cisplatin resistance, both of which may contribute to an improved ovarian cancer treatment.
Collapse
Affiliation(s)
- Ana J. Rodrigues Moita
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Jan J. Bandolik
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Finn K. Hansen
- Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany;
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Alexandra Hamacher
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Matthias U. Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
- Correspondence:
| |
Collapse
|
20
|
Yuan D, Zhou H, Sun H, Tian R, Xia M, Sun L, Liu Y. Identification of key genes for guiding chemotherapeutic management in ovarian cancer using translational bioinformatics. Oncol Lett 2020; 20:1345-1359. [PMID: 32724377 PMCID: PMC7377160 DOI: 10.3892/ol.2020.11672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of resistance to chemotherapy drugs in patients with ovarian cancer is still the main cause of low survival rates. The present study aimed to identify key genes that may provide treatment guidance to reduce the incidence of drug resistance in patients with ovarian cancer. Original data of chemotherapy sensitivity and chemoresistance of ovarian cancer were obtained from the Gene Expression Omnibus dataset GSE73935. Differentially expressed genes (DEGs) between sensitive and resistant ovarian cancer cell lines were screened by Empirical Bayes methods. Overlapping DEGs between four chemoresistant groups were identified by Venn map analysis. Protein-protein interaction networks were also constructed, and hub genes were identified. The hub genes were verified by in vitro experiments as well as The Cancer Genome Atlas data. Results from the present study identified eight important genes that may guide treatment decisions regarding chemotherapy regimens for ovarian cancer, including epidermal growth factor-like repeats and discoidin I-like domains 3, NRAS proto-oncogene, hyaluronan and proteoglycan link protein 1, activated protein C receptor, CD53, cyclin-dependent kinase inhibitor 2A, insulin-like growth factor 1 receptor and roundabout guidance receptor 2 genes. Their expressions were found to have an impact on the prognosis of different treatment groups (cisplatin, paclitaxel, cisplatin + paclitaxel, cisplatin + doxorubicin and cisplatin + topotecan). The results indicated that these genes may minimise the occurrence of ovarian cancer drug resistance and may provide effective treatment options for patients with ovarian cancer.
Collapse
Affiliation(s)
- Danni Yuan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haohan Zhou
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyu Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Tian
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Meihui Xia
- Department of Obstetrics, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
21
|
Sinai-Livne T, Pasmanik-Chor M, Cohen Z, Tsarfaty I, Werner H, Berger R. Proteomic analysis of combined IGF1 receptor targeted therapy and chemotherapy identifies signatures associated with survival in breast cancer patients. Oncotarget 2020; 11:1515-1530. [PMID: 32391121 PMCID: PMC7197451 DOI: 10.18632/oncotarget.27566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
Clinical, epidemiological and experimental data identified the insulin-like growth factor-1 receptor (IGF1R) as a candidate therapeutic target in oncology. While this paradigm is based on well-established biological facts, including the potent anti-apoptotic and cell survival capabilities of the receptor, most Phase III clinical trials designed to target the IGF1R led to disappointing results. The present study was aimed at evaluating the hypothesis that combined treatment composed of selective IGF1R inhibitor along with classical chemotherapy might be more effective than individual monotherapies in breast cancer treatment. Analyses included comprehensive measurements of the synergism achieved by various combination regimens using the CompuSyn software. In addition, proteomic analyses were conducted to identify the proteins involved in the synergistic killing effect at a global level. Data presented here demonstrates that co-treatment of IGF1R inhibitor along with chemotherapeutic drugs markedly improves the therapeutic efficiency in breast cancer cells. Of clinical relevance, our analyses indicate that high IGF1R baseline expression may serve as a predictive biomarker for IGF1R targeted therapy. In addition, we identified a ten-genes signature with potential predictive value. In conclusion, the use of a series of bioinformatics tools shed light on some of the biological pathways that might be responsible for synergysm in cancer therapy.
Collapse
Affiliation(s)
- Tali Sinai-Livne
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zoya Cohen
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer 52620, Israel
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raanan Berger
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer 52620, Israel
| |
Collapse
|
22
|
Dhadve AC, Hari K, Rekhi B, Jolly MK, De A, Ray P. Decoding molecular interplay between RUNX1 and FOXO3a underlying the pulsatile IGF1R expression during acquirement of chemoresistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165754. [PMID: 32142859 DOI: 10.1016/j.bbadis.2020.165754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
Abstract
Hyperactive Insulin like growth factor-1-receptor (IGF1R) signalling is associated with development of therapy resistance in many cancers. We recently reported a pulsatile nature of IGF1R during acquirement of platinum-taxol resistance in Epithelial Ovarian Cancer (EOC) cells and a therapy induced upregulation in IGF1R expression in tumors of a small cohort of high grade serous EOC patients. Here, we report Runt-related transcription factor 1 (RUNX1) as a novel transcriptional regulator which along with another known regulator Forkhead Box O3 (FOXO3a), drives the dynamic modulation of IGF1R expression during platinum-taxol resistance development in EOC cells. RUNX1-FOXO3a cooperatively bind to IGF1R promoter and produce a transcriptional surge during onset of resistance and such co-operativity falls apart when cells attain maximal resistance resulting in decreased IGF1R expression. The intriguing descending trend in IGF1R and FOXO3a expressions is caused by a Protein Kinase B (AKT)-FOXO3a negative feedback loop exclusively present in the highly resistant cells eliciting the pulsatile behaviour of IGF1R and FOXO3a. In vivo molecular imaging revealed that RUNX1 inhibition causes significant attenuation of the IGF1R promoter activity, decreased tumorigenicity and enhanced drug sensitivity of tumors of early resistant cells. Altogether our findings delineate a dynamic interplay between several molecular regulators driving pulsatile IGF1R expression and identify a new avenue for targeting EOC through RUNX1-IGF1R axis during acquirement of chemoresistance.
Collapse
Affiliation(s)
- Ajit C Dhadve
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Bharat Rekhi
- Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai, Maharashtra, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India.
| |
Collapse
|
23
|
Huang W, Li BR, Feng H. PLAG1 silencing promotes cell chemosensitivity in ovarian cancer via the IGF2 signaling pathway. Int J Mol Med 2020; 45:703-714. [PMID: 31922228 PMCID: PMC7015041 DOI: 10.3892/ijmm.2020.4459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecological diseases. Novel prognostic biomarkers and therapeutic targets for OC are urgently required. The aim of this study was to investigate the mechanisms that govern how pleomorphic adenoma gene 1 (PLAG1) influences the biological processes and chemosensitivity of OC cells via the insulin‑like growth factor‑2 (IGF2) signaling pathway. Differentially expressed genes in OC were selected based on bioinformatics data. OC and adjacent tissue specimen were collected, followed by the determination of the expression of PLAG1 and IGF2 signaling pathway‑associated genes. The regulatory mechanisms of PLAG1 in OC cells were analyzed following treatment with pcDNA or small interfering RNA (siRNA), and included the assessment of cell proliferation, migration, invasion and cisplatin resistance. PLAG1 was identified as an upregulated gene in OC. OC tissues exhibited increased expression of PLAG1 and IGF2 compared with the controls. Moreover, PLAG1 was observed to positively regulate the IGF2 signaling pathway. The siRNA‑mediated silencing of PLAG1 resulted in decreased expression of IGF2, IGF1 receptor and insulin receptor substrate 1, as well as inhibited proliferation, migration, invasion and cisplatin resistance of OC cells. Furthermore, the effect of PLAG1 was dependent on IGF2. PLAG1 may therefore be considered as a possible target for the treatment of OC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Gynecology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Bi-Rong Li
- Department of Gynecology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
24
|
Dual targeting of IGF-1R and ErbB3 as a potential therapeutic regimen for ovarian cancer. Sci Rep 2019; 9:16832. [PMID: 31728045 PMCID: PMC6856132 DOI: 10.1038/s41598-019-53322-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Therapeutically targeting receptor tyrosine kinases has proven to be paramount to overcoming chemotherapy resistance in several cancer indications, improving patient outcomes. Insulin-Like Growth Factor Receptor 1 (IGF-1R) and Epidermal Growth Factor Receptor 3 (ErbB3) have been implicated as two such drivers of resistance, however their simultaneous role in ovarian cancer chemotherapy resistance remains poorly elucidated. The aim of this work is to determine the effects of dual IGF-1R/ErbB3 inhibition on ovarian cancer cell signaling, growth, and in vivo efficacy. Assessment of in vitro chemotherapy response across a panel of ovarian cancer cell lines revealed that increased IGF-1R cell surface expression correlates with decreased sensitivity to chemotherapy, and that growth induced by IGF-1R and ErbB3 ligands is blocked by the tetravalent bispecific antibody targeting IGF-1R and ErbB3, istiratumab. In vitro chemotherapy treatment increased ovarian cancer cell line capacity to activate prosurvival PI3K signaling in response to ligand, which could be prevented with istiratumab treatment. Furthermore, in vivo efficacy of standard of care chemotherapies using a xenograft model of ovarian cancer was potentiated with istiratumab. Our results suggest a role for IGF-1R and ErbB3 in driving chemotherapy resistance of ovarian cancer.
Collapse
|
25
|
Shen N, Wu J, Yang C, Yu H, Yang S, Li T, Chen J, Tang Z, Chen X. Combretastatin A4 Nanoparticles Combined with Hypoxia-Sensitive Imiquimod: A New Paradigm for the Modulation of Host Immunological Responses during Cancer Treatment. NANO LETTERS 2019; 19:8021-8031. [PMID: 31558024 DOI: 10.1021/acs.nanolett.9b03214] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vascular disrupting agents (VDAs) have great potential in cancer treatment. However, in addition to their direct tumoral vascular collapse effect, VDAs activate host immunological responses, which can remarkably impair their anticancer efficacy. Here, a VDA nanomedicine, poly(l-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 (CA4-NPs), is found to induce the intratumor infiltration of immature plasmacytoid dendritic cells (pDCs), thereby curtailing anticancer immunity. To overcome this problem, hypoxia-sensitive imiquimod (hs-IMQ) is developed, which is selectively activated into imiquimod (IMQ) in treated tumors following the catalysis of CA4-NPs-induced nitroreductase (NTR). The combination of hs-IMQ and CA4-NPs causes a 6.3-fold enhancement of active IMQ concentration in tumors, as compared to hs-IMQ treatment alone. The in situ-generated IMQ alters the tumor microenvironment from a state of immunosuppression to immune activation. Hs-IMQ achieves this effect through the conversion of immature pDCs into their active form, leading to the robust infiltration and priming of natural killer cells and cytotoxic T-lymphocytes in treated tumors. Thus, the CA4-NPs and hs-IMQ combination treatment synergistically inhibits tumor growth and metastasis in 4T1 tumor-bearing mice. This work offers new approaches to harness intratumor pDCs to reverse the immune suppression resulting from VDA treatment. These findings additionally provide a mechanistic rationale for the use of VDAs in combination with TLR agonists to trigger in situ immune activation and enhance anticancer efficacy.
Collapse
Affiliation(s)
- Na Shen
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Jing Wu
- Institute of Translational Medicine , The First Hospital of Jilin University , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Chenguang Yang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Shengcai Yang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Tete Li
- Institute of Translational Medicine , The First Hospital of Jilin University , Changchun 130022 , PR China
| | - Jingtao Chen
- Institute of Translational Medicine , The First Hospital of Jilin University , Changchun 130022 , PR China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| |
Collapse
|
26
|
Phase I Study of IGF-Methotrexate Conjugate in the Treatment of Advanced Tumors Expressing IGF-1R. Am J Clin Oncol 2019; 42:862-869. [DOI: 10.1097/coc.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G. Chemotherapy Resistance in Advanced Ovarian Cancer Patients. BIOMARKERS IN CANCER 2019; 11:1179299X19860815. [PMID: 31308780 PMCID: PMC6613062 DOI: 10.1177/1179299x19860815] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is the seventh most common gynaecologic malignancy seen in women. Majority of the patients with ovarian cancer are diagnosed at the advanced stage making prognosis poor. The standard management of advanced ovarian cancer includes tumour debulking surgery followed by chemotherapy. Various types of chemotherapeutic regimens have been used to treat advanced ovarian cancer, but the most promising and the currently used standard first-line treatment is carboplatin and paclitaxel. Despite improved clinical response and survival to this combination of chemotherapy, numerous patients either undergo relapse or succumb to the disease as a result of chemotherapy resistance. To understand this phenomenon at a cellular level, various macromolecules such as DNA, messenger RNA and proteins have been developed as biomarkers for chemotherapy response. This review comprehensively summarizes the problem that pertains to chemotherapy resistance in advanced ovarian cancer and provides a good overview of the various biomarkers that have been developed in this field.
Collapse
Affiliation(s)
- Ruchika Pokhriyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Hariprasad
- Division of Clinical Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
Metformin in breast cancer: preclinical and clinical evidence. Curr Probl Cancer 2019; 44:100488. [PMID: 31235186 DOI: 10.1016/j.currproblcancer.2019.06.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Metformin, a well-acknowledged biguanide, safety profile and multiaction drug with low cost for management of type 2 diabetes, makes a first-class candidate for repurposing. The off-patent drug draws huge attention for repositioned for anticancer drug delivery recently. Still few unanswered questions are challenging, among them one leading question; can metformin use as a generic therapy for all breast cancer subtypes? And is metformin able to get over the problem of drug resistance? The review focused on the mechanisms of metformin action specifically for breast cancer therapy and overcoming the resistance; also discusses preclinical and ongoing and completed clinical trials. The existing limitation such as therapeutic dose specifically for cancer treatment, resistance of metformin in breast cancer and organic cation transporters heterogeneity of the drug opens up a new pathway for improved understanding and successful application as repurposed effective chemotherapeutics for breast cancer. However, much more additional research is needed to confirm the accurate efficacy of metformin treatment for prevention of cancer and its recurrence.
Collapse
|
29
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
30
|
Deo A, Chaudhury S, Kannan S, Rekhi B, Maheshwari A, Gupta S, Ray P. IGF1R predicts better survival in high-grade serous epithelial ovarian cancer patients and correlates with hCtr1 levels. Biomark Med 2019; 13:511-521. [PMID: 31140856 DOI: 10.2217/bmm-2018-0311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To evaluate the potential of IGF1R as a prognostic marker for high-grade serous ovarian cancer (HGSOC) patients. Patients & methods: The expression levels of IGF1R and drug transporters (ABCB1, hCtr1) were measured longitudinally in chemo-naive and chemo-treated tumor samples from 19 HGSOC patients, and their correlation with the clinical outcome was examined. Results: IGF1R expression was significantly upregulated in treated tumor samples, which positively correlated with hCtr1 levels. Patients with metastatic tumors with IGF1R expression higher than median showed better overall survival (median not reached) and disease-free survival (26.7 months) than those with less than median expression (overall survival: 27.5 months [p = 0.029]; disease-free survival: 11.9 months [p = 0.014]). Conclusion: IGF1R prognosticates prolonged survival in HGSOC patients, possibly due to its positive correlation with hCtr1.
Collapse
Affiliation(s)
- Abhilash Deo
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, Maharashtra, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Smrita Chaudhury
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sadhana Kannan
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, Maharashtra, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India.,Tata Memorial Hospital, Dr E Borges Road, Parel, Mumbai 400012, Maharashtra, India
| | - Amita Maheshwari
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India.,Tata Memorial Hospital, Dr E Borges Road, Parel, Mumbai 400012, Maharashtra, India
| | - Sudeep Gupta
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, Maharashtra, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India.,Tata Memorial Hospital, Dr E Borges Road, Parel, Mumbai 400012, Maharashtra, India
| | - Pritha Ray
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, Maharashtra, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| |
Collapse
|
31
|
Fan Y, Bian X, Qian P, Wen J, Yan P, Luo Y, Wu J, Zhang Q. miRNA‑30a‑3p inhibits metastasis and enhances radiosensitivity in esophageal carcinoma by targeting insulin‑like growth factor 1 receptor. Mol Med Rep 2019; 20:81-94. [PMID: 31115568 PMCID: PMC6580000 DOI: 10.3892/mmr.2019.10222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/29/2019] [Indexed: 01/17/2023] Open
Abstract
It has been demonstrated that microRNAs (miRNAs) serve important roles in various biological processes, such as tumorigenesis. In the present study, the role of miR‑30a‑3p in the pathogenesis of esophageal carcinoma (EC) was investigated. Reverse transcription‑quantitative polymerase chain reaction was performed to determine the levels of miR‑30a‑3p expression in EC tissues and cell lines. Then, the effects of miR‑30a‑3p on the migration, invasion and radiosensitivity of EC cells were investigated using scratch‑wound, Transwell and radiosensitivity assays, respectively. A dual‑luciferase reporter assay was performed to determine potential interactions between miR‑30a‑3p and the 3'‑untranslated region (3'‑UTR) of insulin‑like growth factor 1 receptor (IGF‑1R). The results demonstrated that the levels of miR‑30a‑3p expression in EC tissues and cell lines were significantly decreased compared with those in paired healthy tissues and a human esophageal epithelial cell line. Upregulation of miR‑30a‑3p expression significantly suppressed migration, invasion and epithelial‑mesenchymal transition (EMT), and enhanced radiosensitivity in EC cells. Analysis of luciferase activity demonstrated that miR‑30a‑3p interacted with the 3'‑UTR of IGF‑1R, and knockdown of IGF‑1R induced similar effects on the migration, invasion, EMT and radiosensitivity of EC cells. The results indicated that miR‑30a‑3p suppressed metastasis and enhanced the radiosensitivity of EC cells via downregulation IGF‑1R, suggesting that miR‑30a‑3p may be a potential therapeutic target in the treatment of EC.
Collapse
Affiliation(s)
- Yanxin Fan
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiuhua Bian
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Pudong Qian
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jing Wen
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Pengwei Yan
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yanhong Luo
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jing Wu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Qian Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
32
|
Zhang B, Ban D, Gou X, Zhang Y, Yang L, Chamba Y, Zhang H. Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under high-altitude hypoxia. J Anim Sci Biotechnol 2019; 10:25. [PMID: 30867905 PMCID: PMC6397503 DOI: 10.1186/s40104-019-0316-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Tibetan pigs, which inhabit the Tibetan Plateau, exhibit distinct phenotypic and physiological characteristics from those of lowland pigs and have adapted well to the extreme conditions at high altitude. However, the genetic and epigenetic mechanisms of hypoxic adaptation in animals remain unclear. Methods Whole-genome DNA methylation data were generated for heart tissues of Tibetan pigs grown in the highland (TH, n = 4) and lowland (TL, n = 4), as well as Yorkshire pigs grown in the highland (YH, n = 4) and lowland (YL, n = 4), using methylated DNA immunoprecipitation sequencing. Results We obtained 480 million reads and detected 280679, 287224, 259066, and 332078 methylation enrichment peaks in TH, YH, TL, and YL, respectively. Pairwise TH vs. YH, TL vs. YL, TH vs. TL, and YH vs. YL comparisons revealed 6829, 11997, 2828, and 1286 differentially methylated regions (DMRs), respectively. These DMRs contained 384, 619, 192, and 92 differentially methylated genes (DMGs), respectively. DMGs that were enriched in the hypoxia-inducible factor 1 signaling pathway and pathways involved in cancer and hypoxia-related processes were considered to be important candidate genes for high-altitude adaptation in Tibetan pigs. Conclusions This study elucidates the molecular and epigenetic mechanisms involved in hypoxic adaptation in pigs and may help further understand human hypoxia-related diseases.
Collapse
Affiliation(s)
- Bo Zhang
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Dongmei Ban
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xiao Gou
- 2College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Yawen Zhang
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Lin Yang
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yangzom Chamba
- 3College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000 Tibet China
| | - Hao Zhang
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
33
|
Khalil A, Jameson MJ. Downregulation of IGF1R Expression Inhibits Growth and Enhances Cisplatin Sensitivity of Head and Neck Squamous Cell Carcinoma Cells In Vitro. Discov Oncol 2018; 10:11-23. [PMID: 30350263 DOI: 10.1007/s12672-018-0352-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/03/2018] [Indexed: 01/07/2023] Open
Abstract
A lentivirus-mediated doxycycline-inducible pTRIPZ shRNAmir plasmid targeting IGF1R transcript was transfected into two head and neck squamous cell carcinoma (HNSCC) cell lines to silence IGF1R expression and to assess the effect of its downregulation on cisplatin sensitivity in vitro. In Cal27-regIGF1R and SCC25-regIGF1R cell lines, IGF1R protein expression was reduced by more than 90% after 72 h of incubation with doxycycline. Both basal and IGF-stimulated pIGF1R, pAKT, and pERK were significantly reduced, without influence on total AKT and ERK expression. Downregulation of the IGF1R was associated with decreased proliferation and cell viability in both cell lines. Reduced IGF1R expression was also associated with increased sub-G0/G1-phase and G0/G1-phase populations and decreased S-phase and G2/M-phase populations. IGF1R downregulation enhanced sensitivity to cisplatin with decrease of cisplatin IC50 from 15 to 7.1 in Cal27-regIGF1R cells and from 11 to 6.3 in SCC25-regIGF1R cells. Cisplatin exhibited increased pro-apoptotic activity by annexin V staining and PARP cleavage in both cells lines when cultured in doxycycline. Thus, in two HNSCC cell lines in vitro, reduced IGF1R expression results in reduced growth rate and increased sensitivity to cisplatin. Thus, IGF1R downregulation and/or inhibition may serve as a useful adjunct to platinum-based cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Ashraf Khalil
- Department of Otolaryngology - Head and Neck Surgery, Division of Head and Neck Oncologic and Microvascular Surgery, University of Virginia Health System, Charlottesville, VA, USA. .,Department of Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufiya University, Shebin El Kom, Egypt.
| | - Mark J Jameson
- Department of Otolaryngology - Head and Neck Surgery, Division of Head and Neck Oncologic and Microvascular Surgery, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
34
|
Kim IG, Lee JH, Kim SY, Hwang HM, Kim TR, Cho EW. Hypoxia-inducible transgelin 2 selects epithelial-to-mesenchymal transition and γ-radiation-resistant subtypes by focal adhesion kinase-associated insulin-like growth factor 1 receptor activation in non-small-cell lung cancer cells. Cancer Sci 2018; 109:3519-3531. [PMID: 30191639 PMCID: PMC6215889 DOI: 10.1111/cas.13791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/24/2018] [Accepted: 09/01/2018] [Indexed: 12/24/2022] Open
Abstract
Microenvironment, such as hypoxia common to cancer, plays a critical role in the epithelial‐to‐mesenchymal transition (EMT) program, which is a major route of cancer metastasis and confers γ‐radiation resistance to cells. Herein, we showed that transgelin 2 (TAGLN2), an actin‐binding protein, is significantly induced in hypoxic lung cancer cells and that Snail1 is simultaneously increased, which induces EMT by downregulating E‐cadherin expression. Forced TAGLN2 expression induced severe cell death; however, a small population of cells surviving after forced TAGLN2 overexpression showed γ‐radiation resistance, which might promote tumor relapse and recurrence. These surviving cells showed high metastatic activity with an increase of EMT markers including Snail1. In these cells, TAGLN2 activated the insulin‐like growth factor 1 receptor β (IGF1Rβ)/PI3K/AKT pathway by recruitment of focal adhesion kinase to the IGF1R signaling complex. Activation of the IGF1Rβ/PI3K/AKT pathway also induced inactivation of glycogen synthase kinase 3β (GSK3β), which is involved in Snail1 stabilization. Therefore, both the IGF1Rβ inhibitor (AG1024) and the PI3K inhibitor (LY294002) or AKT inactivation with MK2206 lower the cellular level of Snail1. Involvement of GSK3β was also confirmed by treatment with lithium chloride, the inducer of GSK3β phosphorylation, or MG132, the 26S proteasomal inhibitor, which also stabilized Snail1. In conclusion, the present study provides important evidence that hypoxia‐inducible TAGLN2 is involved in the selection of cancer cells with enhanced EMT properties to overcome the detrimental environment of cancer cells.
Collapse
Affiliation(s)
- In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Korea
| | - Jei-Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, Korea
| | - Seo-Yeon Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, Korea
| | - Hai-Min Hwang
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Tae-Rim Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
35
|
Chan D, Zhou Y, Chui CH, Lam KH, Law S, Chan ASC, Li X, Lam AKY, Tang JCO. Expression of Insulin-Like Growth Factor Binding Protein-5 ( IGFBP5) Reverses Cisplatin-Resistance in Esophageal Carcinoma. Cells 2018; 7:143. [PMID: 30241323 PMCID: PMC6210716 DOI: 10.3390/cells7100143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/16/2018] [Accepted: 09/16/2018] [Indexed: 01/18/2023] Open
Abstract
Cisplatin (CDDP) is one of the front-line chemotherapeutic drugs used in the treatment of esophageal squamous cell carcinoma (ESCC). Occurrence of resistance to CDDP has become one of the main challenges in cancer therapy. In this study, the gene expression profile of CDDP-resistant ESCC cells was investigated and molecular approaches were explored in an attempt to reverse the CDDP resistance. A CDDP-resistant SLMT-1/CDDP1R cell line was established from SLMT-1 cells by subculturing in the medium containing an increasing concentration of CDDP (0.1⁻1μg/mL). Mitochondrial (MTS) cytotoxicity assay, cell proliferation assay and cell morphology were used to assess the acquisition of cisplatin-resistance. The most differentially expressed gene in SLMT-1/CDDP1R cells was identified by cDNA microarray analysis compared with the parental SLMT-1 cells and validated by quantitative real-time polymerase chain reaction (qPCR). Association between expression of the most differentially expressed target gene to cisplatin-resistance was verified by RNA interference. An attempt to reversecisplatin-resistance phenotypes was made by using the vector expressing the most downregulated target gene in the CDDP-resistant cells. A CDDP-resistant ESCC cell line, SLMT-1/CDDP1R, was established with 2.8-fold increase CDDP-resistance (MTS50 = 25.8 μg/mL) compared with the parental SLMT-1 cells. cDNA microarray analysis revealed that IGFBP5 showed the highest level of downregulation in SLMT-1/CDDP1R cells compared with the parental SLMT-1 cells. Suppression of IGFBP5 mediated by IGFBP5-targeting siRNA in parental SLMT-1 cells confirmed that IGFBP5 suppression in ESCC cells would induce CDDP-resistance. More importantly, upregulation of IGFBP5 using IGFBP5 expression vector reduced cisplatin-resistance in SLMT-1/CDDP1R cells by 41%. Thus, our results demonstrated that IGFBP5 suppression is one of the mechanisms for the acquisition of cisplatin-resistance in ESCC cells. Cisplatin-resistance phenotype can be reversed by increasing the expression level of IGFBP5. The overall findings of this study thus offered a new direction for reversing the CDDP resistance in ESCC and possibly in other cancer types with further investigations in future.
Collapse
Affiliation(s)
- Dessy Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yuanyuan Zhou
- State Key Laboratory of Chemical Biology and Drug Discovery, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Chung Hin Chui
- State Key Laboratory of Chemical Biology and Drug Discovery, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Kim Hung Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Albert Sun-Chi Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Alfred King-Yin Lam
- Griffith Medical School, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Johnny Cheuk On Tang
- State Key Laboratory of Chemical Biology and Drug Discovery, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
36
|
Zhang J, Yang L, Xiang X, Li Z, Qu K, Li K. A panel of three oxidative stress-related genes predicts overall survival in ovarian cancer patients received platinum-based chemotherapy. Aging (Albany NY) 2018; 10:1366-1379. [PMID: 29910195 PMCID: PMC6046245 DOI: 10.18632/aging.101473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/07/2018] [Indexed: 04/13/2023]
Abstract
Ovarian cancer yields the highest mortality rate of all lethal gynecologic cancers, and the prognosis is unsatisfactory with the major obstacle in resistance to chemotherapy. The generation of reactive oxygen species (ROS) in tumor tissues was associated with chemotherapeutic effectiveness by mediating cellular longevity. In this study, we screened the prognostic values of oxidative stress-related genes in ovarian cancer patients received platinum-based chemotherapy, and conducted a prognostic gene signature composing of three genes, TXNRD1, GLA and GSTZ1. This three-gene signature was significantly associated with overall survival (OS), but not progression-free survival (PFS), in both training (n=276) and validation cohorts (n=230). Interestingly, we found that the prognostic value of three-gene signature was reinforced in platinum-sensitive patients. Subgroup analysis further suggested that patients with elder age, higher pathological grades and advanced tumor stages in low-risk score group could benefit from platinum-based chemotherapy. Functional analysis showed that the inactivation of several signaling pathways, including cell cycle, insulin-like growth factor 1 (IGF1) /mTOR and Fas pathways, was affected by three genes. Collectively, our results provided evidence that a panel of three oxidative stress-related gene signature had prognostic values for ovarian cancer patients received platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
- Equal contribution
| | - Lixiao Yang
- Department of Obstetrics and Gynecology, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
- Equal contribution
| | - Xiaohong Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhuoying Li
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
| |
Collapse
|
37
|
Abdel-Wahab R, Varadhachary GR, Bhosale PR, Wang X, Fogelman DR, Shroff RT, Overman MJ, Wolff RA, Javle M. Randomized, phase I/II study of gemcitabine plus IGF-1R antagonist (MK-0646) versus gemcitabine plus erlotinib with and without MK-0646 for advanced pancreatic adenocarcinoma. J Hematol Oncol 2018; 11:71. [PMID: 29843755 PMCID: PMC5975422 DOI: 10.1186/s13045-018-0616-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/06/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Binding of insulin-like growth factor-I (IGF-1) to its receptor (IGF-1R) initiates downstream signals that activate PI3K/Akt/mTOR and MEK/Erk pathways, which stimulate cancer cell proliferation and induce drug resistance. Cross talk between IGF-1R and epidermal growth factor receptor (EGFR) mediates resistance to anti-EGFR agents. We studied safety, tolerability, and outcomes of MK-0646, IGF-1 monoclonal antibody, in combination with gemcitabine (G) ± erlotinib (E) in metastatic pancreatic cancer. METHODS Our study included a phase I dose escalation and phase II randomization and expansion cohorts. A 3 + 3 dose escalation protocol was used to determine MK-0646 maximum tolerable dose (MTD) in combination with G ± E standard doses. For phase II, patients were randomized to arm A (G + MK), arm B (G + MK + E), or arm C (G + E). Primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), disease control rate, toxicity, and correlation between OS and IGF-1 in patients treated with MK-0646. RESULTS MK-0646 MTD was 10 mg/kg in combination with G and 5 mg/kg in combination with G + E. In randomization cohort, 15 patients were treated in each arm. Disease control rates were 50, 60, and 40% respectively. PFS was not different between the three arms. OS was significantly different between arm A (10.4 months) and C (5.7 months) (P = 0.02). However, addition of erlotinib in arm B yielded no OS benefit compared to arm A (P = 0.6). Plasma and tissue IGF-1 levels did not correlate with OS (P = 0.64, 0.87). Grade 3-4 toxicity during phase II cohorts were neutropenia (10/arm A, 14/arm B, 5/arm C), leukopenia (5/A, 5/B, 7/C), thrombocytopenia (8/A, 9/B, 2/C), hyponatremia (1/A, 3/B), and hyperglycemia (8/A, 1/B). CONCLUSIONS MK-0646 was tolerable in combination with G and associated with improvement in OS but not PFS as compared with G + E. Tissue and serum IGF-1 did not correlate with clinical outcome. TRIAL REGISTRATION This trial is registered in ClinicalTrial.gov under the Identifier NCT00769483 and registration date was October 9, 2008.
Collapse
Affiliation(s)
- Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030 USA
- Clinical Oncology Department, Assiut University Hospitals, Assiut, Egypt
| | - Gauri R. Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030 USA
| | - Priya R. Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David R. Fogelman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030 USA
| | - Rachna T. Shroff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030 USA
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030 USA
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030 USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030 USA
| |
Collapse
|
38
|
Taha AAA, Koshiyama M, Matsumura N, Abiko K, Yamaguchi K, Hamanishi J, Baba T, Kharma B, Mohamed IH, Ameen MM, Ismail SA, Konishi I, Mandai M. The effect of the type of dietary protein on the development of ovarian cancer. Oncotarget 2018; 9:23987-23999. [PMID: 29844867 PMCID: PMC5963616 DOI: 10.18632/oncotarget.25253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 04/08/2018] [Indexed: 01/09/2023] Open
Abstract
We evaluated whether different dietary protein qualities (isocaloric diets involving animal (casein) or plant protein (soy protein) could inhibit the ovarian cancer growth in mice and improve their prognosis and whether chemotherapy had different tumor reducing effects on these mice. In the mice of the 20% plant protein group, the ovarian cancer growth at 5 weeks after tumor implantation was clearly reduced in comparison to the mice in the 20% animal protein group (p< 0.001). The serum levels of insulin and IGF-1 levels were both lower in the mice of the 20% plant protein group than in the mice of the 20% animal protein group (p<0.001 and p<0.01, respectively). Immunohistochemistry revealed that the level of eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1) activity―one of the major downstream effectors of the mTOR pathway ―of the plant protein group was significantly weaker than that of the animal protein group (p<0.001). The prognosis of the 20% plant protein group was better than that of the 20% animal protein group (log-rank test, p=0.0062). The ovarian cancer growth in the 20% plant protein plus cisplatin treatment group was not significantly reduced in comparison to the 20% animal protein plus cisplatin treatment group. Our findings suggest that a diet high in plant protein reduces the growth of human ovarian cancer cells in mice compared to a diet high in animal protein, ―possibly through the lack of activation of the IGF/Akt/mTOR pathway, and leads to a better prognosis with or without cisplatin treatment.
Collapse
Affiliation(s)
- Ahmed A A Taha
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Sohag Faculty of Medicine Sohag University, Sohag, Egypt
| | - Masafumi Koshiyama
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Women's Health, Graduate School of Human Nursing, The University of Shiga Prefecture, Shiga, Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jyunzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Budiman Kharma
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ibrahim Hassanin Mohamed
- Department of Gynecology and Obstetrics, Sohag Faculty of Medicine Sohag University, Sohag, Egypt
| | - Magdy Mohamed Ameen
- Department of Gynecology and Obstetrics, Sohag Faculty of Medicine Sohag University, Sohag, Egypt
| | - Salah Ali Ismail
- Department of Gynecology and Obstetrics, Sohag Faculty of Medicine Sohag University, Sohag, Egypt
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Haas B, Klinger V, Keksel C, Bonigut V, Kiefer D, Caspers J, Walther J, Wos-Maganga M, Weickhardt S, Röhn G, Timmer M, Frötschl R, Eckstein N. Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs. Cancer Cell Int 2018; 18:69. [PMID: 29755294 PMCID: PMC5935937 DOI: 10.1186/s12935-018-0565-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Intrinsic chemoresistance of glioblastoma (GBM) is frequently owed to activation of the PI3K and MEK/ERK pathways. These signaling cascades are tightly interconnected however the quantitative contribution of both to intrinsic resistance is still not clear. Here, we aimed at determining the activation status of these pathways in human GBM biopsies and cells and investigating the quantitative impact of both pathways to chemoresistance. Methods Receptor tyrosine kinase (RTK) pathways in temozolomide (TMZ) treatment naive or TMZ resistant human GBM biopsies and GBM cells were investigated by proteome profiling and immunoblotting of a subset of proteins. Resistance to drugs and RTK pathway inhibitors was assessed by MTT assays. Apoptotic rates were determined by Annexin V staining and DNA damage with comet assays and immunoblotting. Results We analyzed activation of RTK pathways by proteome profiling of tumor samples of patients which were diagnosed a secondary GBM and underwent surgery and patients which underwent a second surgery after TMZ treatment due to recurrence of the tumor. We observed substantial activation of the PI3K and MEK/ERK pathways in both groups. However, AKT and CREB phosphorylation was reduced in biopsies of resistant tumors while ERK phosphorylation remained unchanged. Subsequent proteome profiling revealed that multiple RTKs and downstream targets are also activated in three GBM cell lines. We then systematically describe a mechanism of resistance of GBM cell lines and human primary GBM cells to the alkylating drugs TMZ and cisplatin. No specific inhibitor of the upstream RTKs sensitized cells to drug treatment. In contrast, we were able to restore sensitivity to TMZ and cisplatin by inhibiting PI3K in all cell lines and in human primary GBM cells. Interestingly, an opposite effect was observed when we inhibited the MEK/ERK signaling cascade with two different inhibitors. Conclusions Temozolomide treatment naive and TMZ resistant GBM biopsies show a distinct activation pattern of the MEK/ERK and PI3K signaling cascades indicating a role of these pathways in resistance development. Both pathways are also activated in GBM cell lines, however, only the PI3K pathway seems to play a crucial role in resistance to alkylating agents and might serve as drug target for chemosensitization.
Collapse
Affiliation(s)
- Bodo Haas
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Veronika Klinger
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,2Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Christina Keksel
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Verena Bonigut
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Daniela Kiefer
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Julia Caspers
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,4Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany
| | - Julia Walther
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,2Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Maria Wos-Maganga
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Sandra Weickhardt
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Gabriele Röhn
- 5Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Marco Timmer
- 5Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Roland Frötschl
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Niels Eckstein
- 3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| |
Collapse
|
40
|
O'Flanagan CH, O'Shea S, Lyons A, Fogarty FM, McCabe N, Kennedy RD, O'Connor R. IGF-1R inhibition sensitizes breast cancer cells to ATM-related kinase (ATR) inhibitor and cisplatin. Oncotarget 2018; 7:56826-56841. [PMID: 27472395 PMCID: PMC5302955 DOI: 10.18632/oncotarget.10862] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/10/2016] [Indexed: 01/18/2023] Open
Abstract
The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sandra O'Shea
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Amy Lyons
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fionola M Fogarty
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Nuala McCabe
- Almac Diagnostics, Craigavon, Northern Ireland, UK
| | - Richard D Kennedy
- Almac Diagnostics, Craigavon, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rosemary O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Lee HJ, Pham PC, Hyun SY, Baek B, Kim B, Kim Y, Min HY, Lee J, Lee HY. Development of a 4-aminopyrazolo[3,4-d]pyrimidine-based dual IGF1R/Src inhibitor as a novel anticancer agent with minimal toxicity. Mol Cancer 2018; 17:50. [PMID: 29455661 PMCID: PMC5817804 DOI: 10.1186/s12943-018-0802-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Both the type I insulin-like growth factor receptor (IGF1R) and Src pathways are associated with the development and progression of numerous types of human cancer, and Src activation confers resistance to anti-IGF1R therapies. Hence, targeting both IGF1R and Src concurrently is one of the main challenges in combating resistance to the currently available anti-IGF1R-based anticancer therapies. However, the enhanced toxicity from this combinatorial treatment could be one of the main hurdles for this strategy, suggesting the necessity of developing a novel strategy for co-targeting IGF1R and Src to meet an urgent clinical need. METHODS We synthesized a series of 4-aminopyrazolo[3,4-d]pyrimidine-based dual IGF1R/Src inhibitors, selected LL28 as an active compound and evaluated its potential antitumor effects in vitro and in vivo using the MTT assay, colony formation assays, flow cytometric analysis, a tumor xenograft model, and the Kras G12D/+ -driven spontaneous lung tumorigenesis model. RESULTS LL28 markedly suppressed the activation of IGF1R and Src and significantly inhibited the viability of several NSCLC cell lines in vitro by inducing apoptosis. Administration of mice with LL28 significantly suppressed the growth of H1299 NSCLC xenograft tumors without overt toxicity and substantially reduced the multiplicity, volume, and load of lung tumors in the Kras G12D/+ -driven lung tumorigenesis model. CONCLUSIONS The present results suggest the potential of LL28 as a novel anticancer drug candidate targeting both IGF1R and Src, providing a new avenue to efficient anticancer therapies. Further investigation is warranted in advanced preclinical and clinical settings.
Collapse
Affiliation(s)
- Ho Jin Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Phuong Chi Pham
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Yeob Hyun
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byungyeob Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byungjin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea. .,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
42
|
Oza A, Kaye S, Van Tornout J, Sessa C, Gore M, Naumann RW, Hirte H, Colombo N, Chen J, Gorla S, Poondru S, Singh M, Steinberg J, Yuen G, Banerjee S. Phase 2 study evaluating intermittent and continuous linsitinib and weekly paclitaxel in patients with recurrent platinum resistant ovarian epithelial cancer. Gynecol Oncol 2018; 149:275-282. [PMID: 29454514 DOI: 10.1016/j.ygyno.2018.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Linsitinib, an oral, dual inhibitor of insulin-like growth factor-1 receptor and insulin receptor, in combination with weekly paclitaxel, may improve clinical outcomes compared with paclitaxel alone in patients with refractory or platinum-resistant ovarian cancer. PATIENTS AND METHODS This open-label phase 1/2 clinical trial (NCT00889382) randomized patients with refractory or platinum-resistant ovarian cancer (1:1:1) to receive either oral intermittent linsitinib (600mg once daily on Days 1-3 per week) combined with paclitaxel (80mg/m2 on Days 1, 8, and 15; Arm A) or continuous linsitinib (150mg twice daily) in combination with paclitaxel (Arm B), or paclitaxel alone (Arm C). Primary endpoint was progression-free survival (PFS); secondary endpoints included overall survival (OS), overall response rate (ORR), disease control rate (DCR), and safety/tolerability. RESULTS A total of 152 women were randomized to treatment (n=51 Arm A; n=51 Arm B, n=50 Arm C). In combination with paclitaxel, neither intermittent linsitinib (median PFS 2.8months; 95% confidence interval [CI]:2.5-4.4) nor continuous linsitinib (median PFS 4.2months; 95% CI:2.8-5.1) improved PFS over weekly paclitaxel alone (median PFS 5.6months; 95% CI:3.2-6.9). No improvement in ORR, DCR, or OS in either linsitinib dosing schedule was observed compared with paclitaxel alone. Adverse event (AE) rates, including all-grade and grade 3/4 treatment-related AEs, and treatment-related AEs leading to discontinuation, were higher among patients receiving intermittent linsitinib compared with the other treatment arms. CONCLUSION Addition of intermittent or continuous linsitinib with paclitaxel did not improve outcomes in patients with platinum-resistant/refractory ovarian cancer compared with paclitaxel alone.
Collapse
Affiliation(s)
- Amit Oza
- Princess Margaret Cancer Centre, University of Toronto, ON, Canada.
| | - Stanley Kaye
- The Royal Marsden and The Institute of Cancer Research, London, UK
| | | | - Cristiana Sessa
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Martin Gore
- The Royal Marsden and The Institute of Cancer Research, London, UK
| | - R Wendel Naumann
- Levine Cancer Institute at Carolinas Healthcare System, Charlotte, NC, USA
| | - Hal Hirte
- Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Nicoletta Colombo
- European Institute of Oncology and University of Milan-Bicocca, Milan, Italy
| | - Jihong Chen
- Astellas Pharma Global Development, Northbrook, IL, USA
| | - Seema Gorla
- Astellas Pharma Global Development, Northbrook, IL, USA
| | | | | | | | - Geoff Yuen
- Astellas Pharma Global Development, Northbrook, IL, USA
| | - Susana Banerjee
- The Royal Marsden and The Institute of Cancer Research, London, UK.
| |
Collapse
|
43
|
Selfe J, Goddard NC, McIntyre A, Taylor KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA, Gilbert DC, Shipley JM. IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance. J Pathol 2018; 244:242-253. [PMID: 29160922 PMCID: PMC5817239 DOI: 10.1002/path.5008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022]
Abstract
Testicular germ cell tumours (TGCTs) are the most frequent malignancy and cause of death from solid tumours in the 20‐ to 40‐year age group. Although most cases show sensitivity to cis‐platinum‐based chemotherapy, this is associated with long‐term toxicities and chemo‐resistance. Roles for receptor tyrosine kinases other than KIT are largely unknown in TGCT. We therefore conducted a phosphoproteomic screen and identified the insulin growth factor receptor‐1 (IGF1R) as both highly expressed and activated in TGCT cell lines representing the nonseminomatous subtype. IGF1R was also frequently expressed in tumour samples from patients with nonseminomas. Functional analysis of cell line models showed that long‐term shRNA‐mediated IGF1R silencing leads to apoptosis and complete ablation of nonseminoma cells with active IGF1R signalling. Cell lines with high levels of IGF1R activity also showed reduced AKT signalling in response to decreased IGF1R expression as well as sensitivity to the small‐molecule IGF1R inhibitor NVP‐AEW541. These results were in contrast to those in the seminoma cell line TCAM2 that lacked IGF1R signalling via AKT and was one of the two cell lines least sensitive to the IGF1R inhibitor. The dependence on IGF1R activity in the majority of nonseminomas parallels the known role of IGF signalling in the proliferation, migration, and survival of primordial germ cells, the putative cell of origin for TGCT. Upregulation of IGF1R expression and signalling was also found to contribute to acquired cisplatin resistance in an in vitro nonseminoma model, providing a rationale for targeting IGF1R in cisplatin‐resistant disease. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Neil C Goddard
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Alan McIntyre
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Kathryn R Taylor
- Glioma Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Jane Renshaw
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Sergey D Popov
- Glioma Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Khin Thway
- Sarcoma Unit, Department of Histopathology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Brenda Summersgill
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Robert A Huddart
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Duncan C Gilbert
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK.,Sussex Cancer Centre, Royal Sussex County Hospital, Brighton, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| |
Collapse
|
44
|
Oh SY, Shin A, Kim SG, Hwang JA, Hong SH, Lee YS, Kwon HC. Relationship between insulin-like growth factor axis gene polymorphisms and clinical outcome in advanced gastric cancer patients treated with FOLFOX. Oncotarget 2017; 7:31204-14. [PMID: 27144430 PMCID: PMC5058750 DOI: 10.18632/oncotarget.9100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023] Open
Abstract
The insulin-like growth factor (IGF) axis plays a crucial role in proliferation, differentiation, migration, angiogenesis, and apoptosis. The present study evaluated the associations between IGF axis single-nucleotide polymorphisms (SNPs) and clinical outcomes in advanced gastric cancer (AGC) patients treated with oxaliplatin, 5-fluorouracil, and leucovorin (FOLFOX). A total of 190 patients undergoing FOLFOX chemotherapy for AGC were considered eligible for this study. Forty-four SNPs of 10 IGF axis genes were genotyped. Levels of serum IGF1 were measured using enzyme-linked immunoassays. SNPs of the IGF1R (rs12423791), and IGF1 (rs2162679, rs5742612, rs35767) genes were significantly associated with tumor response to FOLFOX. SNPs of rs4619 and rs17847203 were significantly associated with PFS (hazard ratio [HR] 0.575, 95% CI 0.385–0.858, P = 0.007; and HR 2.530, 95% CI 1.289–4.966, P = 0.007; respectively). SNPs of rs2872060 were significantly associated with OS—OS was shorter in patients carrying the TT variant than in those with the GG/GT genotypes (HR, 1.708, 95% CI 1.024–2.850, P = 0.040). The GT genotype of rs12847203 was also identified as an independent prognostic factor (HR 2.087, 95% CI 1.070–4.069, P = 0.031). These results suggest that IGF axis-pathway SNPs could be used as prognostic biomarkers of the outcome of FOLFOX chemotherapy in AGC patients. This information may facilitate identification of population subgroups that could benefit from IGF1R-targeted agents.
Collapse
Affiliation(s)
- Sung Yong Oh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University, Korea
| | - Seong-Geun Kim
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jung-Ah Hwang
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Seung Hyun Hong
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | | |
Collapse
|
45
|
Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer 2017; 17:711. [PMID: 29100507 PMCID: PMC5670521 DOI: 10.1186/s12885-017-3695-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/19/2017] [Indexed: 12/29/2022] Open
Abstract
Background Widely established targeted therapies directed at triple negative breast cancer (TNBC) are missing. Classical chemotherapy remains the systemic treatment option. Cisplatin has been tested in TNBC but bears the disadvantage of resistance development. The purpose of this study was to identify resistance mechanisms in cisplatin-resistant TNBC cell lines and select targeted therapies based on these findings. Methods The TNBC cell lines HCC38 and MDA-MB231 were subjected to intermittent cisplatin treatment resulting in the 3.5-fold cisplatin-resistant subclone HCC38CisR and the 2.1-fold more resistant MDA-MB231CisR. Activation of pro-survival pathways was explored by immunostaining of phospho-receptor tyrosine kinases. Targeted therapies (NVP-AEW541, lapatinib and NVP-BEZ235) against activated pathways were investigated regarding cancer cell growth and cisplatin sensitivity. Results In HCC38CisR and MDA-MB231CisR, phosphorylation of epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) was observed. In HCC38CisR, treatment with NVP-AEW541 increased potency of lapatinib almost seven-fold, but both compounds could not restore cisplatin sensitivity. However, the dual phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 acted synergistically with cisplatin in HCC38CisR and fully restored cisplatin sensitivity. Similarly, NVP-BEZ235 increased cisplatin potency in MDA-MB231CisR. Furthermore, NVP-AEW541 in combination with lapatinib restored cisplatin sensitivity in MDA-MB231CisR. Conclusion Simultaneous inhibition of EGFR and IGF1R in cisplatin-resistant TNBC cell lines was synergistic regarding inhibition of proliferation and induction of apoptosis. Co-treatment with NVP-BEZ235 or with a combination of NVP-AEW541 and lapatinib restored cisplatin sensitivity and may constitute a targeted treatment option for cisplatin-resistant TNBC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3695-5) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Yuan J, Yin Z, Tao K, Wang G, Gao J. Function of insulin-like growth factor 1 receptor in cancer resistance to chemotherapy. Oncol Lett 2017; 15:41-47. [PMID: 29285186 DOI: 10.3892/ol.2017.7276] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a primary cause of chemotherapeutic failure; however, how this resistance develops is complex. A comprehensive understanding of chemotherapeutic resistance mechanisms may aid in identifying more effective drugs and improve the survival rates of patients with cancer. Insulin-like growth factor 1 receptor (IGF1R), a member of the insulin receptor family, has been extensively assessed for biological activity, and its putative contribution to tumor cell development and progression. Furthermore, researchers have attended to drugs that target IGF1R since IGF1R functions as a membrane receptor. However, how IGF1R participates in chemotherapeutic resistance remains unclear. Therefore, the present study described the IGF1R gene and its associated signaling pathways, and offered details of IGF1R-induced tumor chemoresistance associated with promoting cell proliferation, inhibition of apoptosis, regulation of ATP-binding cassette transporter proteins and interactions with the extracellular matrix. The present study offered additional explanations for tumor chemotherapy resistance and provided a theoretical basis of IGF1R and its downstream pathways for future possible chemotherapy treatment options.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhijie Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guobing Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
47
|
Crow J, Atay S, Banskota S, Artale B, Schmitt S, Godwin AK. Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget 2017; 8:11917-11936. [PMID: 28060758 PMCID: PMC5355315 DOI: 10.18632/oncotarget.14440] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Exosomes have been implicated in the cell-cell transfer of oncogenic proteins and genetic material. We speculated this may be one mechanism by which an intrinsically platinum-resistant population of epithelial ovarian cancer (EOC) cells imparts its influence on surrounding tumor cells. To explore this possibility we utilized a platinum-sensitive cell line, A2780 and exosomes derived from its resistant subclones, and an unselected, platinum-resistant EOC line, OVCAR10. A2780 cells demonstrate a ~2-fold increase in viability upon treatment with carboplatin when pre-exposed to exosomes from platinum-resistant cells as compared to controls. This coincided with increased epithelial to mesenchymal transition (EMT). DNA sequencing of EOC cell lines revealed previously unreported somatic mutations in the Mothers Against Decapentaplegic Homolog 4 (SMAD4) within platinum-resistant cells. A2780 cells engineered to exogenously express these SMAD4 mutations demonstrate up-regulation of EMT markers following carboplatin treatment, are more resistant to carboplatin, and release exosomes which impart a ~1.7-fold increase in resistance in naive A2780 recipient cells as compared to controls. These studies provide the first evidence that acquired SMAD4 mutations enhance the chemo-resistance profile of EOC and present a novel mechanism in which exchange of tumor-derived exosomes perpetuates an EMT phenotype, leading to the development of subpopulations of platinum-refractory cells.
Collapse
Affiliation(s)
- Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Safinur Atay
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Samagya Banskota
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, NC, USA
| | - Brittany Artale
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | - Sarah Schmitt
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
48
|
Liefers-Visser JAL, Meijering RAM, Reyners AKL, van der Zee AGJ, de Jong S. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer. Cancer Treat Rev 2017; 60:90-99. [PMID: 28934637 DOI: 10.1016/j.ctrv.2017.08.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential.
Collapse
Affiliation(s)
- J A L Liefers-Visser
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R A M Meijering
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A K L Reyners
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A G J van der Zee
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
49
|
Wang L, Hu Y, Xiang X, Qu K, Teng Y. Identification of long non-coding RNA signature for paclitaxel-resistant patients with advanced ovarian cancer. Oncotarget 2017; 8:64191-64202. [PMID: 28969062 PMCID: PMC5609994 DOI: 10.18632/oncotarget.19828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, characterized by late diagnosis, frequent relapse, and easy development of chemoresistance. Recent studies suggest that lncRNAs are involved in ovarian cancer onset and progression, as well as the resistance in paclitaxel-containing chemotherapy. However, the genome-wide expression pattern and associated functional implications of lncRNAs in paclitaxel-resistant ovarian cancer cells remain undetermined. In the present study, we identified a panel of lncRNAs aberrantly expressed in both paclitaxel resistant ovarian cancer tissues and cell lines, including XR_948297, XR_947831, XR_938728, XR_938392, NR_103801, NR_073113, and NR_036503. Moreover, the seven-lncRNA signature showed a relatively high predictive accuracy of chemoresistance with an area under the ROC curve (AUC) of 0.93, and was associated with progression-free survival inovarian cancer patients (HR=2.05, p=0.015). Our function prediction demonstrated that the seven-lncRNA signature was positively correlated with a cluster containing 129 genes enriched in insulin secretion-related pathway. Our findings suggest that the seven-lncRNA signature may be utilized as potent biomarkers for predicting chemoresistance for ovarian cancer patients with paclitaxel-containing chemotherapy.
Collapse
Affiliation(s)
- Luqing Wang
- Department of Nuclear Medicine, Liaocheng People's Hospital, Taishan Medical College, Liaocheng 252000, China
| | - Yanjun Hu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Taishan Medical College, Liaocheng 252000, China
| | - Xiaohong Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yue Teng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
50
|
Humar M, Kern I, Vlacic G, Hadzic V, Cufer T. Insulin-like Growth Factor 1 Receptor Expression in Advanced Non-small-cell Lung Cancer and its Impact on Overall Survival. Radiol Oncol 2017; 51:195-202. [PMID: 28740455 PMCID: PMC5514660 DOI: 10.1515/raon-2017-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The insulin-like growth factor 1 receptor (IGF1R) expression has been addressed as a potential prognostic marker in non-small-cell lung cancer (NSCLC) in various studies; however, the associations between IGF1R expression and prognosis of advanced NSCLC patients is still controversial. The aim of our observational, cohort study was to evaluate the expression of IGF1R in advanced NSCLC and its prognostic role. A subgroup analysis was performed to address the influence of pre-existing type 2 diabetes mellitus (T2DM) status on IGF1R expression and overall survival (OS). PATIENTS AND METHODS IGF1R expression was evaluated in 167 consecutive advanced NSCLC patients (stage IIIB and IV), diagnosed and treated at one university institution, between 2005 and 2010. All patients received at least one line of standard cytotoxic therapy and 18 of them had pre-existing T2DM. IGF1R expression was determined by immunohistochemical (IHC) staining, with score ≥ 1+ considered as positive. Information on baseline characteristics, as well as patients' follow-up data, were obtained from the hospital registry. Associations of IGF1R expression with clinical characteristics and overall survival were compared. RESULTS IGF1R expression was positive in 79.6% of patients, significantly more often in squamous-cell carcinoma (SCC) compared to non-squamous-cell (NSCC) histology (88.7% vs. 74.3%; P = 0.03). IGF1R positivity did not correlate with T2DM status or with other clinical features (sex, smoking status, performance status). Median OS was similar between IGF1R positive and IGF1R negative group (10.2 vs. 8.5 months, P = 0.168) and between patients with or without T2DM (8.7 vs. 9.8 months, P = 0.575). Neither IGF1R expression nor T2DM were significant predictors of OS. CONCLUSIONS IGF1R or T2DM status were not significantly prognostic in described above collective of advanced NSCLC treated with at least one line of chemotherapy. In addition, no association between T2DM status and IGF1R expression was found. Further studies on IGF1R expression and its prognostic as well as therapeutic consequences in a larger collective of advanced NSCLC patients, with or without T2DM, are needed.
Collapse
Affiliation(s)
- Mojca Humar
- General hospital of Nova Gorica, Ulica padlih borcev 13a, 5290 Šempeter Pri Gorici, Slovenia
| | | | | | - Vedran Hadzic
- Faculty of Sport, University of Ljubljana, Slovenia, Ljubljana, Slovenia
| | | |
Collapse
|