1
|
Britton WR, Cioffi I, Stonebraker C, Spence M, Okolo O, Martin C, Henick B, Nakagawa H, Parikh AS. Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3047. [PMID: 39272905 PMCID: PMC11394608 DOI: 10.3390/cancers16173047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide according to GLOBOCAN estimates from 2022. Current therapy options for recurrent or metastatic disease are limited to conventional cytotoxic chemotherapy and immunotherapy, with few targeted therapy options readily available. Recent single-cell transcriptomic analyses identified TGF-β signaling as an important mediator of functional interplays between cancer-associated fibroblasts and a subset of mesenchymal cancer cells. This signaling was shown to drive invasiveness, treatment resistance, and immune evasion. These data provide renewed interest in the TGF-β pathway as an alternative therapeutic target, prompting a critical review of previous clinical data which suggest a lack of benefit from TGF-β inhibitors. While preclinical data have demonstrated the great anti-tumorigenic potential of TGF-β inhibitors, the underwhelming results of ongoing and completed clinical trials highlight the difficulty actualizing these benefits into clinical practice. This topical review will discuss the relevant preclinical and clinical findings for TGF-β inhibitors in HNSCC and will explore the potential role of patient stratification in the development of this therapeutic strategy.
Collapse
Affiliation(s)
- William R Britton
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Isabel Cioffi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Corinne Stonebraker
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Matthew Spence
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Cecilia Martin
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
| | - Brian Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anuraag S Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Agar S, Mokhtari M, Yanik M, Akkurt B, Ulukaya E, Terzi R. De novo Antineoplastic Drug Design to Suppress Head, Neck and Oral Cancer using Theoretical Organic and Biochemistry via Comprehensive Molecular Docking and Dynamics. Asian Pac J Cancer Prev 2024; 25:2905-2909. [PMID: 39205589 PMCID: PMC11495462 DOI: 10.31557/apjcp.2024.25.8.2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE A de novo antineoplastic drug was planned to suppress and modulate the Head, Neck, and Oral Cancer. METHODS Using the computational software tools including molecular docking, molecular dynamics (MD), and post-molecular dynamics bond contact analyses, it has been shown that the new drug called ''Innovative Head, Neck, and Oral Cancer Suppressor'', or simply abbreviated as "IHNOCS" is very effective in terms of suppressing and co-modulating TGF-β and KRTAP2-3 together. RESULT The drug suppresses the KRTAP2-3 protein activity while also holding onto TGF-β and modulating it to slow down and halt the metastasis. CONCLUSION We have effectively created a novel medication using principles of theoretical chemistry, biochemistry, pharmaceutical chemistry and organic chemistry and organic chemistry to inhibit Head, Neck, and Oral Cancer. This medication should further undergo experimental testing in various stages, including in vitro, in vivo, and human clinical phases. It exhibits significant effectiveness in inhibiting the progression of cancer by simultaneously targeting TGF-β and KRTAP2-3, thereby impeding metastasis and suppressing the disease.
Collapse
Affiliation(s)
- Soykan Agar
- Kocaeli Health and Technology University, Faculty of Pharmacy, Kocaeli 41275, Türkiye.
| | - Mohaddeseh Mokhtari
- Kocaeli Health and Technology University, Faculty of Pharmacy, Kocaeli 41275, Türkiye.
| | - Muhammed Yanik
- Graduate Software System Manager, Vocational School of Computer Programming, Ankara University, Ankara, Türkiye.
| | - Barbaros Akkurt
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Istanbul, Türkiye.
| | - Engin Ulukaya
- Istinye University Medical Faculty, Clinical Biochemistry Department, Istanbul, Türkiye.
| | - Rabia Terzi
- Kocaeli Health and Technology University, Faculty of Health Sciences, Kocaeli 41275, Türkiye.
| |
Collapse
|
3
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Chen FW, Wu YL, Cheng CC, Hsiao YW, Chi JY, Hung LY, Chang CP, Lai MD, Wang JM. Inactivation of pentraxin 3 suppresses M2-like macrophage activity and immunosuppression in colon cancer. J Biomed Sci 2024; 31:10. [PMID: 38243273 PMCID: PMC10799366 DOI: 10.1186/s12929-023-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The tumor microenvironment is characterized by inflammation-like and immunosuppression situations. Although cancer-associated fibroblasts (CAFs) are among the major stromal cell types in various solid cancers, including colon cancer, the interactions between CAFs and immune cells remains largely uncharacterized. Pentraxin 3 (PTX3) is responsive to proinflammatory cytokines and modulates immunity and tissue remodeling, but its involvement in tumor progression appears to be context-dependent and is unclear. METHODS Open-access databases were utilized to examine the association of PTX3 expression and the fibroblast signature in colon cancer. Loss-of-function assays, including studies in tamoxifen-induced Ptx3 knockout mice and treatment with an anti-PTX3 neutralizing antibody (WHC-001), were conducted to assess the involvement of PTX3 in colon cancer progression as well as its immunosuppressive effect. Finally, bioinformatic analyses and in vitro assays were performed to reveal the downstream effectors and decipher the involvement of the CREB1/CEBPB axis in response to PTX3 and PTX3-induced promotion of M2 macrophage polarization. RESULTS Clinically, higher PTX3 expression was positively correlated with fibroblasts and inflammatory response signatures and associated with a poor survival outcome in colon cancer patients. Blockade of PTX3 significantly reduced stromal cell-mediated tumor development. The decrease of the M2 macrophage population and an increase of the cytotoxic CD8+ T-cell population were observed following PTX3 inactivation in allografted colon tumors. We further revealed that activation of cyclic AMP-responsive element-binding protein 1 (CREB1) mediated the PTX3-induced promotion of M2 macrophage polarization. CONCLUSIONS PTX3 contributes to stromal cell-mediated protumor immunity by increasing M2-like macrophage polarization, and inhibition of PTX3 with WHC-001 is a potential therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Ling Wu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Chao-Chun Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Jhih-Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Liu J, Lin WP, Xiao Y, Yang QC, Bushabu Fidele N, Yu HJ, Sun ZJ. VISTA blockade alleviates immunosuppression of MDSCs in oral squamous cell carcinoma. Int Immunopharmacol 2023; 125:111128. [PMID: 37907049 DOI: 10.1016/j.intimp.2023.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
V-domain Ig suppressor of T-cell activation (VISTA) is a novel immune checkpoint regulator that can inhibit T cell-mediated antitumor immunity. Although the use of anti-VISTA monoclonal antibody has demonstrated encouraging outcomes in the therapy of various malignancies, its specific impact and underlying mechanisms in oral squamous cell carcinoma (OSCC) remain to be explored. In this work, we analyzed human OSCC tissue microarrays, human peripheral blood mononuclear cells, and immunocompetent transgenic mouse models to investigate the relationship between high VISTA expression and markers of myeloid-derived immunosuppressive cells (MDSCs; CD11b, CD33, Arginase-1), tumor-associated macrophages (CD68, CD163, CD206), and T cell function (CD8, PD-L1, Granzyme B). In OSCC, we discovered that VISTA was highly expressed and stably expressed in MDSCs. Furthermore, we established a mouse OSCC orthotopic xenograft tumor model to investigate the impact of VISTA blockade on the tumor microenvironment. We found that VISTA blockade reduces the immunosuppressive microenvironment and delays tumor growth. This is achieved by suppressing the quantity and function of MDSCs while boosting the function of tumor-infiltrating T cells. Our research indicated that VISTA expressed by MDSCs has a crucial function in the progression of OSCC and that VISTA blockade therapy is a promising immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Wen-Ping Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Nyimi Bushabu Fidele
- The National Key Laboratory of Basic Science of Stomatology of Kinshasa University, School of Dental Medicine, University of Kinshasa, Kinshasa B.P. 834 KIN XI, Democratic Republic of Congo
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
6
|
Zhang Y, Sun Y, Gan J, Zhou H, Guo S, Wang X, Zhang C, Zheng W, Zhao X, Zhang Y, Ning S, Li X. Reconstructing the immunosenescence core pathway reveals global characteristics in pan-cancer. Cancer Immunol Immunother 2023; 72:3693-3705. [PMID: 37608128 PMCID: PMC10992234 DOI: 10.1007/s00262-023-03521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Immunosenescence has been demonstrated to play an important role in tumor progression. However, there is lacking comprehensive analyses of immunosenescence-related pathways. Meanwhile, the sex disparities of immunosenescence in cancer are still poorly understood. In this study, we analyzed the multi-omics data of 12,836 tumor samples, including genomics, transcriptomics, epigenomics, proteomics, and metabolomics. We systematically identified immunosenescence pathways that were disordered across cancer types. The mutations and copy number variations of immunosenescence pathways were found to be more active in pan-cancer. We reconstructed the immunosenescence core pathways (ISC-pathways) to improve the ability of prognostic stratification in 33 cancer types. We also found the head and neck squamous carcinoma (HNSC) contained abundant sex-specific immunosenescence features and showed sex differences in survival. We found that OSI-027 was a potential sex-specific drug in HNSC tumors, which tended to be more effective in male HNSC by targeting the MTOR gene in the PI3K-Akt signaling pathway. In conclusion, our study provided a systematic understanding of immunosenescence pathways and revealed the global characteristics of immunosenescence in pan-cancer. We highlighted MTOR gene could be a powerful immunosenescence biomarker of HNSC that helps to develop sex-specific immunosenescence drugs.
Collapse
Affiliation(s)
- Yakun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Caiyu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wen Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoxi Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
7
|
Zhang MJ, Liu J, Wan SC, Li JX, Wang S, Fidele NB, Huang CF, Sun ZJ. CSRP2 promotes cell stemness in head and neck squamous cell carcinoma. Head Neck 2023; 45:2161-2172. [PMID: 37466293 DOI: 10.1002/hed.27464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Cysteine-rich protein 2 (CSRP2) is discovered as oncogene. The study aims to investigate the clinical significance and potential mechanism of CSRP2 in head and neck squamous cell carcinoma (HNSCC). METHODS CSRP2 expression was explored by immunohistochemistry tissue microarrays and Western blotting in HNSCC. The effect of CSRP2 on the cancer stemness and epithelial-to-mesenchymal transition (EMT) of HNSCC cells was investigated by sphere formation, wound healing, and transwell assays. The vitro and vivo experiments revealed that CSRP2 modulated cancer stemness and EMT phenotypes in HNSCC. RESULTS CSRP2 was overexpressed in HNSCC patients and presented poor prognosis. CSRP2 knockdown inhibited the migration and invasion ability of the HNSCC cells. And CSRP2 expression was closely associated with CSCs markers, EMT-transcription factor, new oncoprotein, and immune checkpoint. CONCLUSION The overexpression of CSRP2 indicates poor prognosis and plays a key role in maintaining the cancer cell stemness and EMT.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia-Xing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nyimi Bushabu Fidele
- The National keys laboratory of Basic Sciences of Stomatology of Kinshasa University, School of Medical University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Cong-Fa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Lamenza FF, Ryan NM, Upadhaya P, Siddiqui A, Jordanides PP, Springer A, Roth P, Pracha H, Iwenofu OH, Oghumu S. Inducible TgfbR1 and Pten deletion in a model of tongue carcinogenesis and chemoprevention. Cancer Gene Ther 2023; 30:1167-1177. [PMID: 37231058 PMCID: PMC10754272 DOI: 10.1038/s41417-023-00629-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant public health problem, with a need for novel approaches to chemoprevention and treatment. Preclinical models that recapitulate molecular alterations that occur in clinical HNSCC patients are needed to better understand molecular and immune mechanisms of HNSCC carcinogenesis, chemoprevention, and efficacy of treatment. We optimized a mouse model of tongue carcinogenesis with discrete quantifiable tumors via conditional deletion of Tgfβr1 and Pten by intralingual injection of tamoxifen. We characterized the localized immune tumor microenvironment, metastasis, systemic immune responses, associated with tongue tumor development. We further determined the efficacy of tongue cancer chemoprevention using dietary administration of black raspberries (BRB). Three Intralingual injections of 500 µg tamoxifen to transgenic K14 Cre, floxed Tgfbr1, Pten (2cKO) knockout mice resulted in tongue tumors with histological and molecular profiles, and lymph node metastasis similar to clinical HNSCC tumors. Bcl2, Bcl-xl, Egfr, Ki-67, and Mmp9, were significantly upregulated in tongue tumors compared to surrounding epithelial tissue. CD4+ and CD8 + T cells in tumor-draining lymph nodes and tumors displayed increased surface CTLA-4 expression, suggestive of impaired T-cell activation and enhanced regulatory T-cell activity. BRB administration resulted in reduced tumor growth, enhanced T-cell infiltration to the tongue tumor microenvironment and robust antitumoral CD8+ cytotoxic T-cell activity characterized by greater granzyme B and perforin expression. Our results demonstrate that intralingual injection of tamoxifen in Tgfβr1/Pten 2cKO mice results in discrete quantifiable tumors suitable for chemoprevention and therapy of experimental HNSCC.
Collapse
Affiliation(s)
- Felipe F Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Nathan M Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Arham Siddiqui
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pete P Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - O Hans Iwenofu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Conrad O, Burgy M, Foppolo S, Jehl A, Thiéry A, Guihard S, Vauchelles R, Jung AC, Mourtada J, Macabre C, Ledrappier S, Chenard MP, Onea MA, Danic A, Dourlhes T, Thibault C, Schultz P, Dontenwill M, Martin S. Tumor-Suppressive and Immunomodulating Activity of miR-30a-3p and miR-30e-3p in HNSCC Cells and Tumoroids. Int J Mol Sci 2023; 24:11178. [PMID: 37446353 DOI: 10.3390/ijms241311178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are heterogeneous tumors, well known for their frequent relapsing nature. To counter recurrence, biomarkers for early diagnosis, prognosis, or treatment response prediction are urgently needed. miRNAs can profoundly impact normal physiology and enhance oncogenesis. Among all of the miRNAs, the miR-30 family is frequently downregulated in HNSCC. Here, we determined how levels of the 3p passenger strands of miR-30a and miR-30e affect tumor behavior and clarified their functional role in LA-HNSCC. In a retrospective study, levels of miR-30a-3p and miR-30e-3p were determined in 110 patients and correlated to overall survival, locoregional relapse, and distant metastasis. miR-30a/e-3p were expressed in HNSCC cell lines and HNSCC patient-derived tumoroids (PDTs) to investigate their effect on tumor cells and their microenvironment. Both miRNAs were found to have a prognosis value since low miR-30a/e-3p expression correlates to adverse prognosis and reduces overall survival. Low expression of miR-30a/e-3p is associated with a shorter time until locoregional relapse and a shorter time until metastasis, respectively. miR-30a/e-3p expression downregulates both TGF-βR1 and BMPR2 and attenuates the survival and motility of HNSCC. Results were confirmed in PDTs. Finally, secretomes of miR-30a/e-3p-transfected HNSCC activate M1-type macrophages, which exert stronger phagocytic activities toward tumor cells. miR-30a/e-3p expression can discriminate subgroups of LA-HNSCC patients with different prognosis, making them good candidates as prognostic biomarkers. Furthermore, by targeting members of the TGF-β family and generating an immune-permissive microenvironment, they may emerge as an alternative to anti-TGF-β drugs to use in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ombline Conrad
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Mickaël Burgy
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sophie Foppolo
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Aude Jehl
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Alicia Thiéry
- Department of Public Health, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sébastien Guihard
- Department of Radiotherapy, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Romain Vauchelles
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Alain C Jung
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Jana Mourtada
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
| | - Christine Macabre
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sonia Ledrappier
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Marie-Pierre Chenard
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Mihaela-Alina Onea
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Aurélien Danic
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Thomas Dourlhes
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Claire Thibault
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Philippe Schultz
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Monique Dontenwill
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Sophie Martin
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| |
Collapse
|
10
|
Jin S, Ramos R. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data. Biochem Soc Trans 2022; 50:297-308. [PMID: 35191953 PMCID: PMC9022991 DOI: 10.1042/bst20210863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
Abstract
Tissue development and homeostasis require coordinated cell-cell communication. Recent advances in single-cell sequencing technologies have emerged as a revolutionary method to reveal cellular heterogeneity with unprecedented resolution. This offers a great opportunity to explore cell-cell communication in tissues systematically and comprehensively, and to further identify signaling mechanisms driving cell fate decisions and shaping tissue phenotypes. Using gene expression information from single-cell transcriptomics, several computational tools have been developed for inferring cell-cell communication, greatly facilitating analysis and interpretation. However, in single-cell transcriptomics, spatial information of cells is inherently lost. Given that most cell signaling events occur within a limited distance in tissues, incorporating spatial information into cell-cell communication analysis is critical for understanding tissue organization and function. Spatial transcriptomics provides spatial location of cell subsets along with their gene expression, leading to new directions for leveraging spatial information to develop computational approaches for cell-cell communication inference and analysis. These computational approaches have been successfully applied to uncover previously unrecognized mechanisms of intercellular communication within various contexts and across organ systems, including the skin, a formidable model to study mechanisms of cell-cell communication due to the complex interactions between the different cell populations that comprise it. Here, we review emergent cell-cell communication inference tools using single-cell transcriptomics and spatial transcriptomics, and highlight the biological insights gained by applying these computational tools to exploring cellular communication in skin development, homeostasis, disease and aging, as well as discuss future potential research avenues.
Collapse
Affiliation(s)
- Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, U.S.A
| |
Collapse
|
11
|
Kusmardi K, Wiyarta E, Rusdi NK, Maulana AM, Estuningtyas A, Sunaryo H. The potential of lunasin extract for the prevention of breast cancer progression by upregulating E-Cadherin and inhibiting ICAM-1. F1000Res 2021; 10:902. [PMID: 34691393 PMCID: PMC8506221 DOI: 10.12688/f1000research.55385.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Research in natural substances for their anticancer potential has become increasingly popular. Lunasin, a soybean protein, is known to inhibit cancer progression via various pathways. The aim of this study was to investigate the effect of Lunasin Extract (LE) on the expression of Intercellular Adhesion Molecule 1 (ICAM-1) and epithelial cadherins (E-Cadherin) in breast cancer. Methods: In this true-experimental in vivo study, 24 Sprague-Dawley rats that were induced by 7,12-Dimethylbenz[a]anthracene (DMBA), were used. Based on the therapy given, the groups were divided into, normal, positive control (PC), negative control (NC), adjuvant, curative, and preventive. Lunasin was extracted from soybean seeds of the Grobogan variety in Indonesia. Tissue samples were obtained, processed, stained with anti-ICAM-1 and anti-E-Cadherin antibodies, examined under a microscope, and quantified using H-score. The data were analyzed using ANOVA, which was then followed by Duncan's test. Results: Statistically significant difference in ICAM-1 expression was observed between the following groups: adjuvant and NC, normal and NC, PC and NC, adjuvant and preventive, normal and preventive, PC and preventive, adjuvant and curative, normal and curative, PC and curative. E-Cadherin expression was significantly different between preventive and NC, adjuvant and NC, PC and NC, normal and NC, adjuvant and curative, PC and curative, normal and curative, normal and preventive. Significant negative correlation was found between ICAM-1 and E-Cadherin [-0.616 (-0.8165; -0.283)] with p = 0.001. Conclusion: Preventive dose of LE was able to reduce ICAM-1 expression while increasing E-Cadherin expression.
Collapse
Affiliation(s)
- Kusmardi Kusmardi
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
- Drug Development Research Cluster, Indonesian Medical Education and Research Institute, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
- Human Cancer Research Cluster, Indonesian Medical Education and Research Institute, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| | - Elvan Wiyarta
- Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| | - Numlil Khaira Rusdi
- Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. DR. Hamka, Limau II Street, Jakarta, 12130, Indonesia
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| | - Andi Muh. Maulana
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
- Faculty of Medicine, University of Muhammadiyah Purwakarta, KH. Ahmad Dahlan Street, Central Java, 53182, Indonesia
| | - Ari Estuningtyas
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| | - Hadi Sunaryo
- Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. DR. Hamka, Limau II Street, Jakarta, 12130, Indonesia
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| |
Collapse
|
12
|
Carreira V, Standeven AM, Ma JY, Hardisty J, Cohen SM, Kerns WD, Snook S. Inhibitors of TGFβR1/ALK4/JNK3/Flt1 Kinases in Cynomolgus Macaques Lead to the Rapid Induction of Renal Epithelial Tumors. Toxicol Sci 2021; 180:51-61. [PMID: 33483736 DOI: 10.1093/toxsci/kfaa190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two young cynomolgus macaques (Macaca fascicularis) given a small molecule kinase inhibitor ((S)-4-((2-(5-chloro-2-fluorophenyl)-5-isopropylpyrimidin-4-yl)amino)-N-(2-hydroxypropyl)nicotinamide [SCIO-120]) via nasogastric intubation gavage, once-daily for 21 days at 400 mg/kg/day, developed an unusual epithelial proliferative process in the renal parenchyma. Morphological and immunohistochemical characterization of the lesions confirmed an invasive malignant epithelial neoplasm (carcinoma). A similar renal neoplasm was seen in a third macaque after a 14-day exposure to a second kinase inhibitor in the same chemical series ((S) 4-((2-(5-chloro-2-fluorophenyl)-5-methoxypyrimidin-4-yl)amino)-N-cyclopropylnicotinamide [SCIO-974]). Despite remarkably short latency periods, exposure to these kinase inhibitors was likely causally associated with the induction of the renal tumors, as renal carcinomas are exceedingly rare spontaneously in macaques. Both SCIO-120 and SCIO-974 were designed as potent TGFβR1 inhibitors (IC50s 37 and 39 nM, respectively). SCIO-120 and SCIO-974 inhibited additional kinases, most notably closely related ALK4 (IC50 = 34 and 20 nM, respectively), c-Jun n-Terminal kinase 3 (JNK3, IC50 = 10 and 20 nM, respectively), and Fms-related tyrosine kinase 1 (29 and 76 nM, respectively). TGFβR1 has been specifically implicated in epithelial proliferative disorders, including neoplasia. Neither SCIO-120 nor SCIO-974 was genotoxic based on bacterial reverse mutation and/or clastogenicity screening assays. The rapid appearance of renal carcinomas in primates following short-term treatment with nongenotoxic kinase inhibitors is remarkable and suggests that the compounds had noteworthy tumor-enhancing effects, hypothetically linked to their TGFβR1 inhibition activity. These observations have implications for mechanisms of carcinogenesis and TGFβR1 biology.
Collapse
Affiliation(s)
| | - Andrew M Standeven
- Nonclinical Safety, Janssen R&D, South San Francisco, California 94080, USA
| | - Jing Ying Ma
- Nonclinical Safety, Janssen R&D, San Diego, California 92121, USA
| | - Jerry Hardisty
- Experimental Pathology Laboratories (EPL), Sterling, Virginia 20166, USA
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Williams D Kerns
- Department of Nonclinical Drug Development, Accellient Partners, Evergreen, Colorado, USA
| | - Sandra Snook
- Nonclinical Safety, Janssen R&D, San Diego, California 92121, USA
| |
Collapse
|
13
|
HOPX Exhibits Oncogenic Activity during Squamous Skin Carcinogenesis. J Invest Dermatol 2021; 141:2354-2368. [PMID: 33845078 DOI: 10.1016/j.jid.2020.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
Cutaneous squamous cell carcinomas (SCCs) are frequent heterogeneous tumors arising from sun-exposed regions of the skin and characterized by complex pathogenesis. HOPX is a member of the homeodomain-containing superfamily of proteins holding an atypical homeodomain unable to bind to DNA. First discovered in the heart as a regulator of cardiac development, in the skin, HOPX modulates the terminal differentiation of keratinocytes. There is a particular interest in studying HOPX in squamous skin carcinogenesis because it has the atypical structure and the functional duality as an oncogene and a tumor suppressor gene, reported in different malignancies. In this study, we analyzed the effects of HOPX knockdown and overexpression on SCC tumorigenicity in vitro and in vivo. Our data show that HOPX knockdown in SCC cells inhibits their proliferative and invasive activity through the acceleration of apoptosis. We established that methylation of two alternative HOPX promoters leads to differential expression of HOPX transcripts in normal keratinocytes and SCC cells. Importantly, we report that HOPX acts as an oncogene in the pathogenesis of SCC probably through the activation of the second alternative promoter and the modulation of apoptosis.
Collapse
|
14
|
Kim EA, Lee JH, Heo SJ, Jeon YJ. Saringosterol acetate isolated from Hizikia fusiforme, an edible brown alga, suppressed hepatocellular carcinoma growth and metastasis in a zebrafish xenograft model. Chem Biol Interact 2021; 335:109362. [PMID: 33358999 DOI: 10.1016/j.cbi.2020.109362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
Saringosterol acetate (SSA) was isolated from an edible brown alga Hizikia fusiforme. In this study, we developed an adult zebrafish human hepatocellular carcinoma (HCC) xenograft model to confirm that SSA inhibits tumor growth and metastasis. Established Hep3B cells labeled with the fluorescent tracker CM-Dil were xenografted into the abdominal cavity of zebrafish once every three days for one month. Compared with the control group, the fish injected with Hep3B showed a significant increase in α-fetoprotein (AFP) and factors related to tumor growth and metastasis (IL-6, TNF-α, TGFβ, MMP2, and MMP9). Using the model, it was proven that SSA affected survival rate, AFP production, and the levels of factors related to tumor growth and metastasis via the PI3K/AKT/mTOR and TGFβ/Smad pathways. In conclusion, this HCC model can be used for in vivo experiments to investigate the inhibition of cancer, and SSA may be useful for the treatment of cancer.
Collapse
Affiliation(s)
- Eun-A Kim
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Ji-Hyeok Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21936, Republic of Korea
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea; Jeju Department of Marine Biology, Korea University of Science and Technology, Deajeon, 34113, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
15
|
Li W, Qiu C, Wang S, Wu L, Zhao T. Inhibitory effect of glutathione S-transferase A3 in the progression of cutaneous squamous cell carcinoma. J Cosmet Dermatol 2020; 20:2287-2295. [PMID: 33089654 DOI: 10.1111/jocd.13806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/11/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is the second most common cutaneous malignancy with an incidence rate increasing each year. Glutathione S-transferase A3 (GSTA3), a member of the glutathione S-transferase family, is considered an antioxidative protease, but its role in cSCC remains unclear. AIM The present study was designed to explore the effect of GSTA3 on cSCC. PATIENTS/METHODS Through previous systematic studies, we screened GSTA3 to be a key gene with lower expression in cSCC. In the present study, we selected cSCC tissues and para-carcinoma tissue specimens from 20 patients in plastic surgery department. A431 cells were treated with GSTA3 transfection. The cell proliferation, apoptosis, colony formation, and cell migration as well as invasion were examined, respectively. And the expressions of GSTA3, TGF-β/Smad, and HIF-1α signalings were measured by Western blot and qRT-PCR. RESULTS GSTA3 was downregulated in both cSCC tissues and A431 cells. Additionally, overexpression of GSTA3 induced a phenotype with a lower degree of malignancy, while GSTA3 silencing induced more malignant phenotypes, including cell proliferation, colony formation, apoptosis, migration, and invasion. Moreover, we found that the TGF-β/Smad2/3 and HIF-1α signalings were activated in cSCC under hypoxic conditions. CONCLUSION GSTA3 could inhibit cSCC progression through suppression of the TGF-β/Smad and HIF-1α signalings. Therefore, GSTA3 may prove to be a prospective therapeutic target for cSCC.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Plastic and Burn Surgery, The First People's Hospital of Yancheng, Yancheng, China
| | - Cheng Qiu
- Department of Plastic and Burn Surgery, The First People's Hospital of Yancheng, Yancheng, China
| | - Shujun Wang
- Department of Plastic and Burn Surgery, The First People's Hospital of Yancheng, Yancheng, China
| | - Lijun Wu
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianlan Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Harsha C, Banik K, Ang HL, Girisa S, Vikkurthi R, Parama D, Rana V, Shabnam B, Khatoon E, Kumar AP, Kunnumakkara AB. Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials. Int J Mol Sci 2020; 21:ijms21093285. [PMID: 32384682 PMCID: PMC7246494 DOI: 10.3390/ijms21093285] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Oral cancer (OC) is a devastating disease that takes the lives of lots of people globally every year. The current spectrum of treatment modalities does not meet the needs of the patients. The disease heterogeneity demands personalized medicine or targeted therapies. Therefore, there is an urgent need to identify potential targets for the treatment of OC. Abundant evidence has suggested that the components of the protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway are intrinsic factors for carcinogenesis. The AKT protein is central to the proliferation and survival of normal and cancer cells, and its downstream protein, mTOR, also plays an indispensable role in the cellular processes. The wide involvement of the AKT/mTOR pathway has been noted in oral squamous cell carcinoma (OSCC). This axis significantly regulates the various hallmarks of cancer, like proliferation, survival, angiogenesis, invasion, metastasis, autophagy, and epithelial-to-mesenchymal transition (EMT). Activated AKT/mTOR signaling is also associated with circadian signaling, chemoresistance and radio-resistance in OC cells. Several miRNAs, circRNAs and lncRNAs also modulate this pathway. The association of this axis with the process of tumorigenesis has culminated in the identification of its specific inhibitors for the prevention and treatment of OC. In this review, we discussed the significance of AKT/mTOR signaling in OC and its potential as a therapeutic target for the management of OC. This article also provided an update on several AKT/mTOR inhibitors that emerged as promising candidates for therapeutic interventions against OC/head and neck cancer (HNC) in clinical studies.
Collapse
Affiliation(s)
- Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Elina Khatoon
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| |
Collapse
|
17
|
Kim N, Ryu H, Kim S, Joo M, Jeon HJ, Lee MW, Song IC, Kim MN, Kim JM, Lee HJ. CXCR7 promotes migration and invasion in head and neck squamous cell carcinoma by upregulating TGF-β1/Smad2/3 signaling. Sci Rep 2019; 9:18100. [PMID: 31792315 PMCID: PMC6889124 DOI: 10.1038/s41598-019-54705-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 01/04/2023] Open
Abstract
The chemokine receptor CXCR7 has been suggested to play important roles in the progression of several types of cancers. However, few studies have investigated the biological roles of CXCR7 in head and neck squamous cell carcinoma (HNSCC). CXCR7 expression and its clinical implications were examined in 103 HNSCC tissues using immunohistochemistry (IHC). The biological roles and mechanisms of CXCR7-mediated signaling pathways were investigated in HNSCC cells through CXCR7 overexpression in vitro and in vivo. High expression of CXCR7 was significantly associated with tumor size (P = 0.007), lymph node metastasis (P = 0.004), and stage (P = 0.020) in HNSCC. Overexpression of CXCR7 in HNSCC cells enhanced cell migration and invasion in vitro and promoted lymph node metastasis in vivo. CXCR7 also induced epithelial-mesenchymal transition through PI3K/AKT. CXCR7 increased secretion of transforming growth factor-β1 (TGF-β1) and promoted EMT through phosphorylated Smad2/3. Taken together, our results provide functional and mechanistic roles of CXCR7 as a master regulator of oncogenic TGF-β1/Smad2/3 signaling in HNSCC, suggesting that CXCR7 might be a therapeutic target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Hyewon Ryu
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Solbi Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Mina Joo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Heung Jin Jeon
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Cancer Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Myung-Won Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Mi-Na Kim
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Pathology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Hyo Jin Lee
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
18
|
Zhang QL, Li XM, Lian DD, Zhu MJ, Yim SH, Lee JH, Jiang RH, Kim CD. Tumor Suppressive Function of NQO1 in Cutaneous Squamous Cell Carcinoma (SCC) Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2076579. [PMID: 31886179 PMCID: PMC6893255 DOI: 10.1155/2019/2076579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Cutaneous squamous cell carcinoma (SCC) is a common cancer that significantly decreases the quality of life. It is known that external stimulus such as ultraviolet (UV) radiation induces cutaneous SCC via provoking oxidative stress. NAD(P)H dehydrogenase 1 (NQO1) is a ubiquitous flavoenzyme that functions as a guardian against oxidative stress. However, the effect of NQO1 on cutaneous SCC is not clearly elucidated. In this study, we investigated the effect of NQO1 on cutaneous SCC cells using the recombinant adenoviruses that can upregulate and/or downregulate NQO1 expression. Overexpression of NQO1 resulted in significant decrease of cell proliferation and colony forming activity of SCC lines (SCC12 and SCC13 cells). By contrast, knockdown of NQO1 increased the cell proliferation and colony forming activity. Accordingly, the levels of proliferation-related regulators, such as Cyclin D1, Cyclin E, PCNA, SOX2, and p63, were decreased by the overexpression of NQO1, while those were increased by knockdown of NQO1. In addition, NQO1 affected the invasion and migration of SCC cells in a very similar way, with the regulation of epithelial-mesenchymal transition- (EMT-) related molecules, including E-cadherin, N-cadherin, Vimentin, Snail, and Slug. Finally, the overexpression of NQO1 decreased the level of phosphorylated AKT, JNK, and p38 MAPK, while the knockdown of NQO1 increased the level of phosphorylated signaling molecules. Based on these data, NQO1 has tumor suppressive function in cutaneous SCC cells.
Collapse
Affiliation(s)
- Qing-Ling Zhang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Xue Mei Li
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - De-De Lian
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ming Ji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Su-Hyuk Yim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Skin Med Company, Daejeon, Republic of Korea
| | - Ri-Hua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Zhang J, Jiang H, Xu D, Wu WJ, Chen HD, He L. DNA-PKcs Mediates An Epithelial-Mesenchymal Transition Process Promoting Cutaneous Squamous Cell Carcinoma Invasion And Metastasis By Targeting The TGF-β1/Smad Signaling Pathway. Onco Targets Ther 2019; 12:9395-9405. [PMID: 31807020 PMCID: PMC6844265 DOI: 10.2147/ott.s205017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023] Open
Abstract
Purpose DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has attracted extensive attention in various types of malignant tumors. However, the role of DNA-PKcs in cutaneous squamous cell carcinoma (cSCC) development has not been elucidated. In this study, we investigated the role of DNA-PKcs in cSCC and the molecular mechanisms of TGF-β1-induced cSCC progression mediated by DNA-PKcs. Methods We performed bioinformatic analysis and RT-PCR to examine the DNA-PKcs expression level in cSCC. Then, we downregulated DNA-PKcs using a DNA-PK-specific inhibitor or small interfering RNA (siRNA) to explore the effects of DNA-PKcs on SCL-1 cell migration and invasion. To further investigate the mechanism by which DNA-PKcs promotes cSCC progression, TGF-β1 and the TGF-β receptor (TGF-βR) I/II dual inhibitor LY2109761 were used to examine whether DNA-PKcs participates in TGF-β1/Smad signaling. Results DNA-PKcs expression was upregulated in cSCC. DNA-PK inhibition or expression knockdown resulted in inhibited migration and invasion and altered epithelial-mesenchymal transition (EMT) marker expression patterns in SCL-1 cells. Importantly, TGF-β1 mediated EMT induction in cSCC cells, and DNA-PKcs was identified as a TGF-β1-responsive gene. TGF-β1 promoted DNA-PKcs transcription, and DNA-PKcs enhanced the TGF-β1-induced EMT program involved in cSCC invasion and metastasis by phosphorylating Smad3. Conclusion This study is the first to show that DNA-PKcs mediates EMT to promote cSCC aggressiveness by targeting the TGF-β1/Smad signaling pathway, which provides insight into how DNA-PKcs impacts cSCC progression and identifies a new therapeutic target.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, People's Republic of China
| | - Hui Jiang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, People's Republic of China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, People's Republic of China
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, People's Republic of China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
20
|
Cozijnsen L, Plomp AS, Post JG, Pals G, Bogunovic N, Yeung KK, Niessen HWM, Goumans MJTH, Barge-Schaapveld DQCM, Micha D. Pathogenic effect of a TGFBR1 mutation in a family with Loeys-Dietz syndrome. Mol Genet Genomic Med 2019; 7:e00943. [PMID: 31475485 PMCID: PMC6785444 DOI: 10.1002/mgg3.943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background Thoracic aortic aneurysms and dissections (TAAD) may have a heritable cause in up to 20% of cases. We aimed to investigate the pathogenic effect of a TGFBR1 mutation in relation to TAAD. Methods Co‐segregation analysis was performed followed by functional investigations, including myogenic transdifferentiation. Results The c.1043G>A TGFBR1 mutation was found in the index patient, in a deceased brother, and in five presymptomatic family members. Evidence for pathogenicity was found by the predicted damaging effect of this mutation and the co‐segregation in the family. Functional analysis with myogenic transdifferentiation of dermal fibroblasts to smooth muscle‐like cells, revealed increased myogenic differentiation in patient cells with the TGFBR1 mutation, shown by a higher expression of myogenic markers ACTA2, MYH11 and CNN1 compared to cells from healthy controls. Conclusion Our findings confirm the pathogenic effect of the TGFBR1 mutation in causing TAAD in Loeys–Dietz syndrome and show increased myogenic differentiation of patient fibroblasts.
Collapse
Affiliation(s)
- Luc Cozijnsen
- Department of Cardiology, Gelre Hospital, Apeldoorn, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centre, AMC, Amsterdam, The Netherlands
| | - Jan G Post
- Department of Genetics, University Medical Centre, Utrecht, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Natalija Bogunovic
- Department of Physiology, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kak K Yeung
- Department of Physiology, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Marie-José T H Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Yang LL, Mao L, Wu H, Chen L, Deng WW, Xiao Y, Li H, Zhang L, Sun ZJ. pDC depletion induced by CD317 blockade drives the antitumor immune response in head and neck squamous cell carcinoma. Oral Oncol 2019; 96:131-139. [PMID: 31422204 DOI: 10.1016/j.oraloncology.2019.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Dysregulation of immune cells in the tumor microenvironment is a hallmark of head and neck squamous cell carcinoma (HNSCC). Increased infiltration of pDCs has been reported in the microenvironment of HNSCC. However, the precise immunological role of pDC and the therapeutic effects of pDC depletion in HNSCC need to be further investigated. MATERIALS AND METHODS CD317 antibodies were applied for depleting pDCs in an immunocompetent transgenic HNSCC mouse model. Tumor volume was monitored. Flow cytometric analysis was conducted for studying the immune profile changes after pDC depletion. In addition, immunohistochemical staining was carried out in a human HNSCC tissue microarray for detecting the infiltration of pDCs. We also analyzed the survival implication of pDCs and its correlation with other immune related markers in human HNSCC. RESULTS pDC depletion in the transgenic HNSCC mouse model significantly delayed tumor growth. After pDCs were depleted, T cells were markedly revitalized, and the proportions of regulatory T cells (Tregs) and monocytic myeloid-derived suppressor cells (MDSCs) were decreased. In human HNSCC microenvironment, pDC infiltration was upregulated and its high infiltration conferred a poor prognosis. Moreover, pDC infiltration was closely correlated with the expression of Foxp-3, PD-1, TIM-3, and LAG-3. CONCLUSION Our findings demonstrated that pDCs play a negative immunomodulatory role in HNSCC and may present as a target for effective immunotherapy.
Collapse
Affiliation(s)
- Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Rossa C, D'Silva NJ. Immune-relevant aspects of murine models of head and neck cancer. Oncogene 2019; 38:3973-3988. [PMID: 30696955 PMCID: PMC6533118 DOI: 10.1038/s41388-019-0686-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Head and neck cancers (HNCs) cause significant mortality and morbidity. There have been few advances in therapeutic management of HNC in the past 4 to 5 decades, which support the need for studies focusing on HNC biology. In recent years, increased recognition of the relevance of the host response in cancer progression has led to novel therapeutic strategies and putative biomarkers of tumor aggressiveness. However, tumor-immune interactions are highly complex and vary with cancer type. Pre-clinical, in vivo models represent an important and necessary step in understanding biological processes involved in development, progression and treatment of HNC. Rodents (mice, rats, hamsters) are the most frequently used animal models in HNC research. The relevance and utility of information generated by studies in murine models is unquestionable, but it is also limited in application to tumor-immune interactions. In this review, we present information regarding the immune-specific characteristics of the murine models most commonly used in HNC research, including immunocompromised and immunocompetent animals. The particular characteristics of xenograft, chemically induced, syngeneic, transgenic, and humanized models are discussed in order to provide context and insight for researchers interested in the in vivo study of tumor-immune interactions in HNC.
Collapse
Affiliation(s)
- Carlos Rossa
- Department of Diagnosis and Surgery, UNESP-State University of Sao Paulo, School of Dentistry at Araraquara, Araraquara - SP, Brazil. .,Department of Periodontics and Oral Medicine, School of Dentistry, Ann Arbor, MI, 48109, USA.
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, Ann Arbor, MI, 48109, USA. .,Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Pang X, Tang YL, Liang XH. Transforming growth factor-β signaling in head and neck squamous cell carcinoma: Insights into cellular responses. Oncol Lett 2018; 16:4799-4806. [PMID: 30250544 DOI: 10.3892/ol.2018.9319] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises in the oral cavity, salivary glands, larynx, pharynx, nasal cavity and paranasal sinuses, and is characterized by high morbidity and metastasis rates. Transforming growth factor-β (TGF-β) is a homodimeric protein known to be a multifunctional regulator in target cells and to serve a pivotal role in numerous types of cancer, including HNSCC. The role of TGF-β signaling in carcinogenesis can change from tumor-suppressing to tumor-promoting. In addition, TGF-β induces epithelial-mesenchymal transition and restrains immune surveillance on malignant cells. In the present review, the effects of TGF-β signaling at a cellular level were discussed, which includes the regulation of tumor cells, immune cells and other stromal cells, as well as the possible mechanisms underlying the conversion from a tumor suppressor to a tumor promoter in HNSCC. Further research is required to improve the understanding on how this network is involved in carcinogenesis, progression and metastases in HNSCC.
Collapse
Affiliation(s)
- Xin Pang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
24
|
Li YY, Zhou CX, Gao Y. Interaction between oral squamous cell carcinoma cells and fibroblasts through TGF-β1 mediated by podoplanin. Exp Cell Res 2018; 369:43-53. [PMID: 29719198 DOI: 10.1016/j.yexcr.2018.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022]
Abstract
Podoplanin is upregulated in the invasive front of oral squamous cell carcinoma (OSCC). Carcinoma-associated fibroblasts (CAFs) may mediate podoplanin expression. However, the role of podoplanin in OSCC cell and fibroblast interaction remains elusive. In the present study, we found that positive podoplanin expression in OSCC cells correlated with smooth muscle actin (α-SMA) expression in CAFs. Using CAFs and normal mucosal fibroblasts (NFs), we established indirect and direct co-culture systems mimicking the structure of OSCC. Podoplanin-overexpressing OSCC cells promoted NF activation; in direct co-culture, but not in indirect co-culture, podoplanin-overexpressing OSCC cells increased fibroblast invasion via matrix metalloproteinase 2 (MMP-2), MMP-14, and αv/β6 integrin receptor (ITGA5/ITGB6) signaling. CAFs also induced podoplanin expression through the transforming growth factor-β1 (TGF-β1)/Smad pathway. TGF-β1 increased the podoplanin-dependent activation of epidermal growth factor receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK) signaling. Additionally, CAFs promoted OSCC cell invasion by upregulating MMP-2 and MMP-14 expression in both indirect and direct co-culture. Taken together, our findings indicate that podoplanin regulates the interaction between OSCC cells and CAFs via the mutual paracrine effects of TGF-β1.
Collapse
Affiliation(s)
- Yao-Yin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 South Avenue Zhongguancun, Haidian District, Beijing 100081, PR China
| | - Chuan-Xiang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 South Avenue Zhongguancun, Haidian District, Beijing 100081, PR China.
| | - Yan Gao
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 South Avenue Zhongguancun, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
25
|
Tan J, Qian X, Song B, An X, Cai T, Zuo Z, Ding D, Lu Y, Li H. Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer. Oncol Rep 2018; 40:111-122. [PMID: 29749483 PMCID: PMC6059735 DOI: 10.3892/or.2018.6428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
The prognosis of the majority of patients with papillary thyroid cancer (PTC) is excellent, although there are patients who experience disease recurrence and progression. The aim of the present study was to identify potential prognostic risk markers in PTC. Differentially expressed genes (DEGs), identified from four Genome Expression Omnibus cohorts were subjected to functional enrichment analyses with Gene Ontology terms and the Kyoto Encyclopedia of Genes and Genome pathways. Hub genes, filtered from cytoHubba, were validated using the The Cancer Genome Atlas (TCGA) cohort, and their associations with clinicopathological features and prognosis were analyzed. A total of 277 DEGs were identified following data preprocessing. DEGs were primarily enriched in 'small cell lung cancer', 'ECM-receptor interaction', 'pathways in cancer'and 'tyrosine metabolism'. Hub genes [APOE, cathepsin S (CTSS), insulin receptor substrate 1 (IRS1), KIT, LGALS3, RUNX2 and TGFBR1] were extracted from cytoHubba. Their expression in the TCGA cohort was consistent with that in the GEO cohorts. CTSS (P=0.006) and IRS1 (P=0.005) were associated with disease‑free survival, as determined using the Kaplan-Meier analysis. CTSS was an independent risk factor for poor disease‑free survival (HR, 2.649; 95% CI, 1.095-6.409; P=0.031). Patients with high expression of CTSS exhibited different histological types (increased tall-cell subtype and reduced follicular subtype; P<0.001), more frequent lymph node metastasis (P<0.001) and advanced tumor-node-metastasis stages (P=0.049) compared with the low-expression group. High expression of CTSS was independently associated with lymph node metastasis (OR, 2.015; 95% CI, 1.225-3.315; P=0.006). Therefore, CTSS may serve as a predictive risk marker for the progression and prognosis of PTC.
Collapse
Affiliation(s)
- Juan Tan
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Gerontology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaoxiao Qian
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Bin Song
- Department of Endocrinology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiumin An
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tingting Cai
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhihua Zuo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Dafa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hong Li
- Medical Examination Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
26
|
Pang X, Tang YJ, Ren XH, Chen QM, Tang YL, Liang XH. Microbiota, Epithelium, Inflammation, and TGF-β Signaling: An Intricate Interaction in Oncogenesis. Front Microbiol 2018; 9:1353. [PMID: 29997586 PMCID: PMC6029488 DOI: 10.3389/fmicb.2018.01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
Microbiota has been widely considered to play a critical role in human carcinogenesis. Recent evidence demonstrated that microbiota, epithelial barrier and inflammation has made up a tightly interdependent triangle during the process of carcinogenesis. Hence, we discussed the triangle relationship of microbiota dysbiosis, epithelial barrier dysfunction and dysregulated immune responses to elucidate the mechanisms by which microbiota induces carcinogenesis, especially highlighting the reciprocal crosstalk between transforming growth factor-β signaling and every side of the tumorigenic triangle. This sophisticated interaction will provide insight into the basic mechanisms of carcinogenesis and may bring new hope to cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Xin Pang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xiao-Hua Ren
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Wu L, Yu GT, Deng WW, Mao L, Yang LL, Ma SR, Bu LL, Kulkarni AB, Zhang WF, Zhang L, Sun ZJ. Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. Oncoimmunology 2018; 7:e1397248. [PMID: 29632717 DOI: 10.1080/2162402x.2017.1397248] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/06/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is considered as an immunosuppressive disease, with impaired tumor-infiltrating T lymphocytes and increased suppressive immune cells. The efficacy of CD47 antibodies in immune checkpoint therapy is not clearly understood in HNSCC. In this study, human tissue microarrays and immunocompetent transgenic mouse models were used to explore the expression of CD47 and the use of CD47 antibodies in HNSCC. We identified overexpression of CD47 in HNSCC as compared with the control normal human tissue and also in HNSCC mouse models. The expression of CD47 also correlated with clinicopathological parameters as well as outcome. Furthermore, inhibition of CD47 delayed tumor growth and improved tumor microenvironment by stimulating effector T cells and decreasing suppressive immune cells and regulating the function of CD11b+ Ly6G+ MDSC. Our data suggest that CD47 blockade may be a potential immunotherapeutic target in human HNSCC.
Collapse
Affiliation(s)
- Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University,Wuhan, Hubei, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University,Wuhan, Hubei, China
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University,Wuhan, Hubei, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, Hubei, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University,Wuhan, Hubei, China.,Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
28
|
Yang LL, Wu L, Yu GT, Zhang WF, Liu B, Sun ZJ. CD317 Signature in Head and Neck Cancer Indicates Poor Prognosis. J Dent Res 2018; 97:787-794. [PMID: 29486141 DOI: 10.1177/0022034518758604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Targeted therapy using monoclonal antibodies (mAbs) has emerged as a widely used form of immunotherapy in head and neck squamous cell carcinoma (HNSCC). Membrane-associated glycoprotein CD317 has been preferentially overexpressed by multiple myeloma cells, and its humanized mAb has been previously used in clinical trials. However, overexpression of CD317 in HNSCC and its correlation with tumor immunity is still uncertain. Here, the immunoreactivity of CD317 was detected in human HNSCC tissue microarrays, which contained 43 oral mucosa samples, 48 dysplasia samples, and 165 primary HNSCC. We found that CD317 expression was up-regulated in HNSCC tumor cells, and the CD317 expression level was independent of the histological grade, tumor size, and lymph node metastasis. Moreover, Kaplan–Meier survival curve analysis showed that patients with high expression of CD317 had a poor prognosis compared with patients with low expression. Furthermore, CD317 overexpression in HNSCC was correlated with immune checkpoint molecules PD-L1, B7-H3, and B7-H4 and tumor-associated macrophage markers (CD68 and CD163). We also observed that CD317 was overexpressed in immunocompetent mouse HNSCC tissue compared with normal tissue. Taken together, our findings demonstrate that CD317 overexpression indicates poor prognosis and is correlated with immune-related components in this patient cohort. CD317 may serve as a potential target for effective immunotherapy of HNSCC.
Collapse
Affiliation(s)
- L.-L. Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L. Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G.-T. Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - W.-F. Zhang
- Department of Oral Maxillofacial–Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B. Liu
- Department of Oral Maxillofacial–Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z.-J. Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial–Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Wu F, Weigel KJ, Zhou H, Wang XJ. Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2018; 50:98-105. [PMID: 29206939 PMCID: PMC5846704 DOI: 10.1093/abbs/gmx127] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling either promotes or inhibits tumor formation and/or progression of many cancer types including squamous cell carcinoma (SCC). Canonical TGF-β signaling is mediated by a number of downstream proteins including Smad family proteins. Alterations in either TGF-β or Smad signaling can impact cancer. For instance, defects in TGF-β type I and type II receptors (TGF-βRI and TGF-βRII) and in Smad2/3/4 could promote tumor development. Conversely, increased TGF-β1 and activated TGF-βRI and Smad3 have all been shown to have tumor-promoting effects in experimental systems of human and mouse SCCs. Among TGF-β/Smad signaling, only TGF-βRII or Smad4 deletion in mouse epithelium causes spontaneous SCC in the mouse model, highlighting the critical roles of TGF-βRII and Smad4 in tumor suppression. Herein, we review the dual roles of the TGF-β/Smad signaling pathway and related mechanisms in SCC, highlighting the potential benefits and challenges of TGF-β/Smad-targeted therapies.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelsey J Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Hypoxia induces TFE3 expression in head and neck squamous cell carcinoma. Oncotarget 2017; 7:11651-63. [PMID: 26872381 PMCID: PMC4905500 DOI: 10.18632/oncotarget.7309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/23/2016] [Indexed: 12/16/2022] Open
Abstract
To assess the role of transcription factor μE3 (TFE3) in the tumorigenesis of head and neck squamous cell carcinoma (HNSCC), human HNSCC tissue arrays were investigated for TFE3 expression. Human HNSCC tissues with neoadjuvant inductive chemotherapey (docetaxel, cisplatin and fluorouracil, TPF) and mice HNSCC tissues from transgenic mice model were evaluated for TFE3 expression and the hypoxia pathway. The roles of EGF/EGFR mediated hypoxia in TFE3 nuclear expression were analyzed in vitro and in vivo. TFE3 expression was higher in human HNSCC tissues compared with that in normal oral mucosa. Moreover, high TFE3 expression was related to HIF-1α, PAI-1, and EGFR, which demonstrated the activation of the hypoxia pathway in HNSCC tissues. Furthermore, elevated TFE3 expression was observed in HNSCC after cisplatin-based chemotherapy, and high TFE3 expression may indicate poor response to TPF inductive chemotherapy. Furthermore, similar changes with increased TFE3 were observed in HNSCC of the transgenic mouse HNSCC model. Hypoxic culture in the human HNSCC cell line increased TFE3 expression, which promoted cell survival under hypoxia. EGFR inhibiton by cetuximab could attenuate hypoxia-induced TFE3 in the HNSCC cell line and transgenic mouse HNSCC model. These findings indicated that TFE3 was an important hypoxia-induced transcriptional factor in HNSCC. TFE3 could be regarded as a durgable therapeutic oncotarget by EGFR inhibition.
Collapse
|
31
|
Fu H, He Y, Qi L, Chen L, Luo Y, Chen L, Li Y, Zhang N, Guo H. cPLA2α activates PI3K/AKT and inhibits Smad2/3 during epithelial-mesenchymal transition of hepatocellular carcinoma cells. Cancer Lett 2017. [PMID: 28649002 DOI: 10.1016/j.canlet.2017.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytosolic phospholipase A2α (cPLA2α), a key phospholipase that regulates lipid metabolism, plays an important role in tumor progression. In the present study of hepatocellular carcinoma (HCC), cPLA2α was overexpressed in highly metastatic HCC cell lines. Immunohistochemical staining showed increased levels of cPLA2α at the invasive edges of HCC, and a clinicopathological analysis of samples from 111 patients revealed that its expression level was linked with micro-vascular invasion and cirrhosis. Knockdown of cPLA2α inhibited migration, probably due to its role in actin polymerization. Overexpression of cPLA2α promoted cell migration and invasion. Based on the mechanistic analysis, our data suggested that cPLA2α mediate epidermal growth factor (EGF) induced epithelial-mesenchymal transition (EMT) through PI3K/AKT/ERK pathway. cPLA2α activity was required for the transforming growth factor-(TGF)-β-induced EMT. However, cPLA2α inhibited Smad2/3 activation and promoted the activation of the PI3K/AKT/ERK pathway. A xenograft tumor transplant model confirmed the role of cPLA2α in HCC invasion and metastasis. Based on the mechanistic analysis, cPLA2α mediated both EGF- and TGF-β-induced EMT, which are essential for HCC metastasis. cPLA2α is a potentially target for novel therapies of HCC.
Collapse
Affiliation(s)
- Hui Fu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lu Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongmei Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ning Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
32
|
Zhang Y, You X, Liu H, Xu M, Dang Q, Yang L, Huang J, Shi W. High KIF2A expression predicts unfavorable prognosis in diffuse large B cell lymphoma. Ann Hematol 2017; 96:1485-1491. [PMID: 28616658 PMCID: PMC5537331 DOI: 10.1007/s00277-017-3047-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023]
Abstract
Kinesin family member 2A (KIF2A), a conserved motor protein, plays a critical role in the pathogenesis and prognosis of several malignant tumors. The aim of the present study was to investigate KIF2A expression in diffuse large B cell lymphoma (DLBCL), evaluate the association between KIF2A expression and the clinical parameters of the disease, and determine its prognostic value. KIF2A expression was evaluated in 134 DLBCL and 57 reactive hyperplasia samples using immunohistochemistry on a tissue microarray. The correlations between KIF2A expression with clinical parameters and prognosis were estimated using univariate and multivariate analyses. The expression of KIF2A was significantly higher in DLBCL tissue samples compared with those from subjects with reactive hyperplasia (P=0.002). Furthermore, increased expression of KIF2A protein in DLBCL was related to Ann Arbor stage (P=0.027) and international prognostic index (IPI) score (P=0.01). The survival analysis showed that KIF2A expression (P=0.016), serum LDH level (P=0.049), and IPI score (P<0.001) were independent prognostic markers for DLBCL. Our findings also confirmed that downregulating KIF2A expression decreased tumor cell viability, accompanied by downregulation of pAKT levels. Taken together, these data provide the first evidence that increased KIF2A expression predicts poor prognosis in patients with DLBCL, and a rationale for treatment of DLBCL by targeting KIF2A.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xuefen You
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Mengqi Xu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Qingxiu Dang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Li Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianfei Huang
- Clinical biological sample library, Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenyu Shi
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
33
|
Ma SR, Deng WW, Liu JF, Mao L, Yu GT, Bu LL, Kulkarni AB, Zhang WF, Sun ZJ. Blockade of adenosine A2A receptor enhances CD8 + T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol Cancer 2017; 16:99. [PMID: 28592285 PMCID: PMC5461710 DOI: 10.1186/s12943-017-0665-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer immunotherapy offers a promising approach in cancer treatment. The adenosine A2A receptor (A2AR) could protect cancerous tissues from immune clearance via inhibiting T cells response. To date, the role of A2AR in head and neck squamous cell carcinoma (HNSCC) has not been investigated. Here, we sought to explore the expression and immunotherapeutic value of A2AR blockade in HNSCC. METHODS The expression of A2AR was evaluated by immunostaining in 43 normal mucosae, 48 dysplasia and 165 primary HNSCC tissues. The immunotherapeutic value of A2AR blockade was assessed in vivo in genetically defined immunocompetent HNSCC mouse model. RESULTS Immunostaining of HNSCC tissue samples revealed that increased expression of A2AR on tumor infiltrating immune cells correlated with advanced pathological grade, larger tumor size and positive lymph node status. Elevated A2AR expression was also detected in recurrent HNSCC and HNSCC tissues with induction chemotherapy. The expression of A2AR was found to be significantly correlated with HIF-1α, CD73, CD8 and Foxp3. Furthermore, the increased population of CD4+Foxp3+ regulatory T cells (Tregs), which partially expressed A2AR, was observed in an immunocompetent mouse model that spontaneously develops HNSCC. Pharmacological blockade of A2AR by SCH58261 delayed the tumor growth in the HNSCC mouse model. Meanwhile, A2AR blockade significantly reduced the population of CD4+ Foxp3+ Tregs and enhanced the anti-tumor response of CD8+ T cells. CONCLUSIONS These results offer a preclinical proof for the administration of A2AR inhibitor on prophylactic experimental therapy of HNSCC and suggest that A2AR blockade can be a potential novel strategy for HNSCC immunotherapy.
Collapse
Affiliation(s)
- Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
34
|
Clinical value of monoclonal antibodies and tyrosine kinase inhibitors in the treatment of head and neck squamous cell carcinoma. Med Oncol 2017; 34:60. [PMID: 28315228 PMCID: PMC5357244 DOI: 10.1007/s12032-017-0918-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of malignant tumours that affects over 500,000 patients per year. Treatment failure is generally due to the heterogeneity of these tumours and to the serious adverse effects associated with treatment. Immunological system impairment, which is common in HNSCC, further contributes to treatment failure by mediating tumour escape mechanisms. To date, the only clinically approved targeted therapy agent is cetuximab, a monoclonal antibody (mAb) that binds to, and inhibits, epidermal growth factor receptor, which is widely overexpressed in HNSCC. Cetuximab has been proven to induce antibody-dependent cellular cytotoxicity, further magnifying its therapeutic effect. DNA sequencing of HNSCC cells has identified the presence of mutated genes, thus making their protein products potential targets for therapeutic inhibition. Immune mechanisms have been found to have a significant impact on carcinogenesis, thus providing the rationale to support efforts to identify anticancer compounds with immunomodulatory properties. In the context of the rapid development of novel targeted agents, the aim of the present paper is to review our current understanding of HNSCC and to review the novel anticancer agents (mAbs and TKIs) introduced in recent years, including an assessment of their efficacy and mechanisms of action.
Collapse
|
35
|
Chen Y, Zhao R, Zhao Q, Shao Y, Zhang S. Knockdown of HPIP Inhibits the Proliferation and Invasion of Head-and-Neck Squamous Cell Carcinoma Cells by Regulating PI3K/Akt Signaling Pathway. Oncol Res 2017; 24:153-60. [PMID: 27458096 PMCID: PMC7838746 DOI: 10.3727/096504016x14612603423476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP/PBXIP1) is a corepressor for the transcription factor PBX. Previous studies showed that HPIP is frequently overexpressed in many tumors. However, the role of HPIP in head-and-neck squamous cell carcinoma (HNSCC) has not yet been determined. Thus, we decided to investigate the effects and mechanisms of HPIP in HNSCC. Our results demonstrated that HPIP is highly expressed in human HNSCC cell lines and provides the first evidence that knockdown of HPIP obviously inhibits proliferation and migration/invasion in HNSCC cells in vitro, as well as inhibits tumor growth in vivo. Furthermore, knockdown of HPIP significantly inhibits the expression of p-PI3K and p-Akt in human HNSCC cells. In conclusion, our study demonstrated that knockdown of HPIP significantly inhibits the proliferation and migration/invasion of HNSCC cells by suppressing the PI3K/Akt signaling pathway. Therefore, HPIP may be a novel potential therapeutic target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Yangjing Chen
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
36
|
Deng WW, Mao L, Yu GT, Bu LL, Ma SR, Liu B, Gutkind JS, Kulkarni AB, Zhang WF, Sun ZJ. LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncoimmunology 2016; 5:e1239005. [PMID: 27999760 DOI: 10.1080/2162402x.2016.1239005] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/30/2023] Open
Abstract
Immunotherapy with immune checkpoint molecule-specific monoclonal antibody have obtained encouraging results from preclinical studies and clinical trials, which promoted us to explore whether this kind of immunotherapy could be applicable to head and neck squamous cell carcinoma (HNSCC). Lymphocyte activation gene-3 (LAG-3) is an immune checkpoint control protein that negatively regulates T cells and immune response. Here, using the human tissue samples, we report these findings that LAG-3 is overexpressed on tumor-infiltrating lymphocytes (TILs; p < 0.001) and its overexpression correlates with the high pathological grades, lager tumor size and positive lymph node status in human primary HNSCC. Survival analysis identifies LAG-3 as a prognostic factor independent of tumor size and pathological grades for primary HNSCC patients with negative lymph node status (p = 0.014). Study in immunocompetent genetically defined HNSCC mouse model reports that LAG-3 is upregulated on CD4+ T cells, CD8+ T cells and CD4+Foxp3+ regulatory T cells (Tregs). In vivo study, administration of LAG-3-specific antibody retards tumor growth in a way associated with enhanced systemic antitumor response by potentiating the antitumor response of CD8+ T cells and decreasing the population of immunosuppressive cells. Taken together, our results offer a preclinical proof supporting the immunomodulatory effects of LAG-3 and suggest a potential therapeutic target of immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Silvio Gutkind
- Department of Pharmacology, University of California , San Diego, CA, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, MD, USA
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Yu GT, Bu LL, Huang CF, Zhang WF, Chen WJ, Gutkind JS, Kulkarni AB, Sun ZJ. PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget 2016; 6:42067-80. [PMID: 26573233 PMCID: PMC4747210 DOI: 10.18632/oncotarget.5955] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) and tumor associated macrophages (TAMs) play key roles in the tumor immune suppressive network and tumor progression. However, precise roles of programmed death-1 (PD-1) in immunological functions of MDSCs and TAMs in head and neck squamous cell carcinoma (HNSCC) have not been clearly elucidated. In the present study, we show that PD-1 and PD-L1 levels were significantly higher in human HNSCC specimen than in normal oral mucosa. MDSCs and TAMs were characterized in mice and human HNSCC specimen, correlated well with PD-1 and PD-L1 expression. αPD-1 treatment was well tolerated and significantly reduced tumor growth in the HNSCC mouse model along with significant reduction in MDSCs and TAMs in immune organs and tumors. Molecular analysis suggests a reduction in the CD47/SIRPα pathway by PD-1 blockade, which regulates MDSCs, TAMs, dendritic cell as well as effector T cells. Hence, these data identify that PD-1/PD-L1 axis is significantly increased in human and mouse HNSCC. Adoptive αPD-1 immunotherapy may provide a novel therapeutic approach to modulate the micro- and macro- environment in HNSCC.
Collapse
Affiliation(s)
- Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wan-Jun Chen
- Oral and Pharyngeal Cancer Branch, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Wu L, Deng WW, Yu GT, Mao L, Bu LL, Ma SR, Liu B, Zhang WF, Sun ZJ. B7-H4 expression indicates poor prognosis of oral squamous cell carcinoma. Cancer Immunol Immunother 2016; 65:1035-45. [PMID: 27383830 PMCID: PMC11029220 DOI: 10.1007/s00262-016-1867-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Checkpoint blockade therapy utilizing monoclonal antibodies to reactivate T cells and recover their antitumor activity makes an epoch in cancer immunotherapy. The role of B7-H4, a novel negative immune checkpoint, in oral squamous cell carcinoma (OSCC) has still not been elucidated. In this study, tissue samples from human OSCC, which contains 165 primary OSCC, 48 oral epithelial dysplasia and 43 normal oral mucosa specimens, and Tgfbr1/Pten 2cKO mice OSCC model were stained with B7-H4 antibody to analyze the correlations between B7-H4 expression and clinicopathological characteristics. Kaplan-Meier analysis was used to compare the survival of patients with high B7-H4 expression and patients with low B7-H4 expression. We found B7-H4 is highly expressed in human OSCC tissue, and the B7-H4 expression level was associated with the clinicopathological parameters containing pathological grade and lymph node status. Moreover, we confirmed that B7-H4 was overexpressed in Tgfbr1/Pten 2cKO mice OSCC model. Our data also indicated that patients with high B7-H4 expression had poor overall survival compared with those with low B7-H4 expression. Furthermore, this study demonstrated that B7-H4 was positively associated with PD-L1, CD11b, CD33, PI3Kα p110, and p-S6 (S235/236). Taken together, these findings suggest B7-H4 is a potential target in the treatment of OSCC.
Collapse
Affiliation(s)
- Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, People's Republic of China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, People's Republic of China.
| |
Collapse
|
39
|
Zhang K, Liu X, Hao F, Dong A, Chen D. Targeting TGF-β1 inhibits invasion of anaplastic thyroid carcinoma cell through SMAD2-dependent S100A4-MMP-2/9 signalling. Am J Transl Res 2016; 8:2196-2209. [PMID: 27347327 PMCID: PMC4891432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/04/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Anaplastic thyroid cancer (ATC) is one of the most lethal human malignancies. However, the molecular mechanisms of ATC invasion are poorly understood. The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in promoting tumor metastasis. TGF-β1 was found to be overexpressed in anaplastic thyroid cancer (ATC). We therefore tested our hypothesis that targeted down-regulation of TGF-β1 inhibits invasion of ATC cells. METHODS Effects of TGF-β1 stimulation or TGF-β1 sliencing by small interfering RNA (TGF-β1 siRNA) on invasion in 8505C and SW1736 cells in vitro was detected. Using siRNAs and inhibitors to examine the TGF-β1 signaling pathway. RESULTS TGF-β1 siRNA inhibits cell migration and invasion in vitro, followed by inactivation of pSMAD2, S100A4 and MMP-2/9. TGF-β stimulation activated pSMAD2-dependent S100A4 and MMP-2/9 expression, and increased cell migration and invasion. The depletion of pSMAD2 or S100A4 or MMP-2/9 expression inhibited TGF-β signaling pathway. Moreover, it significantly weakened the proinvasive effects of TGF-β on ATC cells. CONCLUSIONS Therapies targeting the TGF-β1 inhibits invasion of ATC cells by impeding the SMAD2-dependent S100A4-MMP-2/9 signalling in vitro.
Collapse
Affiliation(s)
- Kejun Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| | - Xiaoli Liu
- Department of Endocrinology, The People’s Hospital of ZhangqiuJinan 250200, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| | - Anbing Dong
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| | - Dong Chen
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| |
Collapse
|
40
|
Melnik BC, John SM, Carrera-Bastos P, Schmitz G. Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation. Clin Transl Allergy 2016; 6:18. [PMID: 27175277 PMCID: PMC4864898 DOI: 10.1186/s13601-016-0108-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Breastfeeding has protective effects for the development of allergies and atopy. Recent evidence underlines that consumption of unboiled farm milk in early life is a key factor preventing the development of atopic diseases. Farm milk intake has been associated with increased demethylation of FOXP3 and increased numbers of regulatory T cells (Tregs). Thus, the questions arose which components of farm milk control the differentiation and function of Tregs, critical T cell subsets that promote tolerance induction and inhibit the development of allergy and autoimmunity. FINDINGS Based on translational research we identified at least six major signalling pathways that could explain milk's biological role controlling stable FoxP3 expression and Treg differentiation: (1) via maintaining appropriate magnitudes of Akt-mTORC1 signalling, (2) via transfer of milk fat-derived long-chain ω-3 fatty acids, (3) via transfer of milk-derived exosomal microRNAs that apparently decrease FOXP3 promoter methylation, (4) via transfer of exosomal transforming growth factor-β, which induces SMAD2/SMAD3-dependent FoxP3 expression, (5) via milk-derived Bifidobacterium and Lactobacillus species that induce interleukin-10 (IL-10)-mediated differentiation of Tregs, and (6) via milk-derived oligosaccharides that serve as selected nutrients for the growth of bifidobacteria in the intestine of the new born infant. CONCLUSION Accumulating evidence underlines that milk is a complex signalling and epigenetic imprinting network that promotes stable FoxP3 expression and long-lasting Treg differentiation, crucial postnatal events preventing atopic and autoimmune diseases.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
| | | | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
41
|
Wang D, Zhu H, Ye Q, Wang C, Xu Y. Prognostic Value of KIF2A and HER2-Neu Overexpression in Patients With Epithelial Ovarian Cancer. Medicine (Baltimore) 2016; 95:e2803. [PMID: 26937910 PMCID: PMC4779007 DOI: 10.1097/md.0000000000002803] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinesin family member 2A (KIF2A) is a member of Kinesin-13 family and involved in cell migration and cell signaling. Human epidermal growth factor receptor 2 (HER2-neu) is implicated in the development of many cancers. Both of these 2 proteins are upstream inducer of PI3K/AKT signaling pathway that plays an important role in the regulation of many cellular events including proliferation, survival, and invasion. We hypothesized that aberrant KIF2A and HER2-neu expression might be associated with aggressive behavior of epithelial ovarian cancer (EOC).To address the prognostic implications of KIF2A and HER2-neu in EOC, we assessed protein levels of KIF2A and HER2-neu in 159 ovarian and fallopian tube tissues (111 carcinomas and 48 normal ovary or fallopian tube tissues) by immunohistochemistry (IHC) analysis on tissue microarray and KIF2A mRNA levels in 35 ovarian and fallopian tube tissues (15 carcinomas and 20 normal ovary or fallopian tube tissues) by real-time PCR.We found that significantly higher KIF2A mRNA expression in EOC tumors than that in normal ovary or fallopian tube tissues. The IHC results showed that protein of KIF2A and HER2-neu was overexpressed in EOC tissues compared with normal ovary or fallopian tube tissues, and KIF2A expression level was significantly associated with lymph nodes, metastasis, ascites cells, and FIGO stage. No correlation between KIF2A and HER2-neu expression was observed. Survival analysis showed that patients with KIF2A and HER2-neu overexpression had a worse overall survival (OS) as compared to patients with low or none expression of the 2 proteins. Multivariate analysis of variance revealed that overexpression of KIF2A was an independent prognostic factor for OS.These findings indicate the important role of KIF2A in predicting EOC prognosis.
Collapse
Affiliation(s)
- Di Wang
- From the Department of Obstetrics and Gynecology (DW, QY, CW, YX) and Department of Pathology (HZ), Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | | | | | | | | |
Collapse
|
42
|
Deng WW, Mao L, Yu GT, Bu LL, Ma SR, Liu B, Gutkind JS, Kulkarni AB, Zhang WF, Sun ZJ. LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncoimmunology 2016; 5:e1239005. [PMID: 27999760 DOI: 10.1080/2162402x.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 05/22/2023] Open
Abstract
Immunotherapy with immune checkpoint molecule-specific monoclonal antibody have obtained encouraging results from preclinical studies and clinical trials, which promoted us to explore whether this kind of immunotherapy could be applicable to head and neck squamous cell carcinoma (HNSCC). Lymphocyte activation gene-3 (LAG-3) is an immune checkpoint control protein that negatively regulates T cells and immune response. Here, using the human tissue samples, we report these findings that LAG-3 is overexpressed on tumor-infiltrating lymphocytes (TILs; p < 0.001) and its overexpression correlates with the high pathological grades, lager tumor size and positive lymph node status in human primary HNSCC. Survival analysis identifies LAG-3 as a prognostic factor independent of tumor size and pathological grades for primary HNSCC patients with negative lymph node status (p = 0.014). Study in immunocompetent genetically defined HNSCC mouse model reports that LAG-3 is upregulated on CD4+ T cells, CD8+ T cells and CD4+Foxp3+ regulatory T cells (Tregs). In vivo study, administration of LAG-3-specific antibody retards tumor growth in a way associated with enhanced systemic antitumor response by potentiating the antitumor response of CD8+ T cells and decreasing the population of immunosuppressive cells. Taken together, our results offer a preclinical proof supporting the immunomodulatory effects of LAG-3 and suggest a potential therapeutic target of immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Silvio Gutkind
- Department of Pharmacology, University of California , San Diego, CA, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, MD, USA
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Raudenska M, Gumulec J, Fribley AM, Masarik M. HNSCC Biomarkers Derived from Key Processes of Cancerogenesis. TARGETING ORAL CANCER 2016:115-160. [DOI: 10.1007/978-3-319-27647-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Gleich T, Chiticariu E, Huber M, Hohl D. Keratoacanthoma: a distinct entity? Exp Dermatol 2015; 25:85-91. [DOI: 10.1111/exd.12880] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Tobias Gleich
- Service of Dermatology; University Hospital Center and University of Lausanne; Lausanne Switzerland
| | - Elena Chiticariu
- Service of Dermatology; University Hospital Center and University of Lausanne; Lausanne Switzerland
| | - Marcel Huber
- Service of Dermatology; University Hospital Center and University of Lausanne; Lausanne Switzerland
| | - Daniel Hohl
- Service of Dermatology; University Hospital Center and University of Lausanne; Lausanne Switzerland
| |
Collapse
|
45
|
Yang H, Schramek D, Adam RC, Keyes BE, Wang P, Zheng D, Fuchs E. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas. eLife 2015; 4:e10870. [PMID: 26590320 PMCID: PMC4739765 DOI: 10.7554/elife.10870] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023] Open
Abstract
Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. DOI:http://dx.doi.org/10.7554/eLife.10870.001 Many cancers contain a mixture of different types of cells. Of these, cells known as cancer stem cells can form new tumours and drive the growth and spread of the cancer around the body. A central question is how cancer stem cells differ from healthy adult stem cells. Recent evidence suggests that, in addition to having genetic mutations, cancer stem cells live in a very different environment to other cells within the tumour. This 'microenvironment'also has a major impact on how these cells behave compared to normal stem cells. Together, the genetic and environmental differences profoundly change the way genes are expressed in the cancer cells. In 2013, a group of researchers identified regions of DNA called super-enhancers. These regions are long stretches of DNA that proteins called transcription factors can interact with to coordinate the expression of nearby genes to alter the production of certain proteins. Super-enhancers contain several transcription factor-binding sites that are close to each other with the different sites being associated with transcription factors that are only active in specific types of cells. Furthermore, super-enhancers are often self-regulatory, meaning that the binding of transcription factors to a super-enhancer can lead to an increase in the expression of the genes that encode the same transcription factors. Yang, Schramek et al. have now identified the super-enhancers in a skin cancer called squamous cell carcinoma and showed that they differ dramatically from the super-enhancers of normal skin stem cells. Their experiments show that the active super-enhancers in cancer stem cells are associated with a very different set of genes that are highly and often specifically expressed in cancer stem cells. In the cancer stem cells, a transcription factor called ETS2 binds to the super-enhancers and reprograms the expression of genes to promote the development of cancer. Yang, Schramek et al. also show that over-active ETS2 is a major driver of squamous cell carcinoma. Furthermore, ETS2 also increases the expression of genes that cause inflammation and promote the growth of cancers. Yang, Schramek et al.’s findings reveal a new regulatory network that governs the expression of genes involved in cancer. Furthermore, the experiments show that high levels of ETS2 are linked with poor outcomes for patients with head and neck squamous cell carcinoma, which is one of the most life-threatening cancers world-wide. In the future, these findings might lead to the development of new therapies to treat these cancers. DOI:http://dx.doi.org/10.7554/eLife.10870.002
Collapse
Affiliation(s)
- Hanseul Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Daniel Schramek
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Rene C Adam
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Brice E Keyes
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, New York, United States
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, New York, United States.,Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| |
Collapse
|
46
|
Abstract
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Germany
| |
Collapse
|
47
|
Dual induction of apoptotic and autophagic cell death by targeting survivin in head neck squamous cell carcinoma. Cell Death Dis 2015; 6:e1771. [PMID: 26018732 PMCID: PMC4669714 DOI: 10.1038/cddis.2015.139] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023]
Abstract
Survivin is ubiquitously expressed in patients with head neck squamous cell carcinoma (HNSCC) and is associated with poor survival and chemotherapy resistance. Sepantronium bromide (YM155) is a selective survivin suppressant that exhibits potent antitumor activities by inducing apoptosis and autophagy in various types of cancer. However, the curative effects and underlying mechanisms of YM155 in HNSCC remain unclear. This study showed that survivin overexpression positively correlated with p-S6, p-Rb and LAMP2 but negatively correlated with the autophagic marker LC3 in human HNSCC tissues. In vitro studies revealed that YM155 triggered apoptosis of HNSCC cells in mitochondria and death receptor-dependent manner. The treatment also significantly enhanced autophagy by upregulating Beclin1, which led to cell death. YM155 not only downregulated the expression of survivin but also remarkably suppressed the activation of the mTOR signaling pathway in vitro and in vivo. YM155 displayed potent antitumor activities in both CAL27 xenograft and transgenic HNSCC mice models by delaying tumor onset and suppressing tumor growth. Furthermore, YM155 combined with docetaxel promoted tumor regression better than either treatment alone without causing considerable body weight loss in the HNSCC xenograft models. Overall, targeting survivin by YM155 can benefit HNSCC therapy by increasing apoptotic and autophagic cell death, and suppressing prosurvival pathways.
Collapse
|
48
|
Yang Z, Zhong L, Zhong S, Xian R, Yuan B. Adenovirus encoding Smad4 suppresses glioma cell proliferation and increases apoptosis through cell cycle arrest at G1 phase. Int Immunopharmacol 2015; 25:169-73. [DOI: 10.1016/j.intimp.2015.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/15/2015] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
|
49
|
Wang WM, Zhao ZL, Ma SR, Yu GT, Liu B, Zhang L, Zhang WF, Kulkarni AB, Sun ZJ, Zhao YF. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma. PLoS One 2015; 10:e0119723. [PMID: 25723392 PMCID: PMC4344331 DOI: 10.1371/journal.pone.0119723] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC). The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR) inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α) was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO) mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Cetuximab/pharmacology
- Cetuximab/therapeutic use
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/metabolism
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
Collapse
Affiliation(s)
- Wei-Ming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Li Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Bing Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- * E-mail: (ZJS); (YFZ)
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- * E-mail: (ZJS); (YFZ)
| |
Collapse
|
50
|
Wang YF, Ma SR, Wang WM, Huang CF, Zhao ZL, Liu B, Zhang WF, Zhao YF, Zhang L, Sun ZJ. Inhibition of survivin reduces HIF-1α, TGF-β1 and TFE3 in salivary adenoid cystic carcinoma. PLoS One 2014; 9:e114051. [PMID: 25485635 PMCID: PMC4259474 DOI: 10.1371/journal.pone.0114051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022] Open
Abstract
In the present study, we explored the expression and correlation of survivin with HIF-1α, TGF-β1 and TFE3 in adenoid cystic carcinoma (AdCC). The expression of survivin, HIF-1α, TGF-β1 and TFE3 was assessed by immunohistochemical staining of a tissue microarray containing tissue samples of normal salivary gland (NSG), pleomorphic adenoma (PA) and AdCC. Correlation analysis of these proteins revealed that increased survivin expression was associated with the overexpression of HIF-1α (P<0.001, r = 0.5599), TGF-β1 (P<0.001, r = 0.6616) and TFE3 (P<0.001, r = 0.7747). The expression of survivin, HIF-1α, TGF-β1 and TFE3 was not correlated with the pathological type of human AdCC (P>0.05). Selective inhibition of survivin by YM155 and siRNA significantly reduced human SACC-83 cell proliferation, with the corresponding decrease in expression of HIF-1α, TGF-β1 and TFE3. The data indicate that the overexpression of survivin in AdCC is related to HIF-1α, TGF-β1 and TFE3. We hypothesize from these findings that the inhibition of survivin may be a novel strategy for neoadjuvant chemotherapeutic and radiosensitive treatment of AdCC.
Collapse
Affiliation(s)
- Yu-Fan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Ming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Li Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi-Fang Zhao
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- * E-mail: (ZJS); (LZ)
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- * E-mail: (ZJS); (LZ)
| |
Collapse
|