1
|
Liu Y, Li X, Chen S, Zhu C, Shi Y, Dang S, Zhang W, Li W. Pan-cancer analysis of SERPINE family genes as biomarkers of cancer prognosis and response to therapy. Front Mol Biosci 2024; 10:1277508. [PMID: 38274096 PMCID: PMC10808646 DOI: 10.3389/fmolb.2023.1277508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Serine protease inhibitor E (SERPINE) family genes participate in the tumor growth, cancer cell survival and metastasis. However, the SERPINE family members role in the prognosis and their clinical therapeutic potentials in various human cancer types have not been elaborately explored. Methods: We preliminarily analyzed expression levels and prognostic values of SERPINE family genes, and investigated the correlation between SERPINEs expression and tumor microenvironment (TME), Stemness score, clinical characteristic, immune infiltration, tumor mutational burden (TMB), immune subtype, and drug sensitivity in pan-cancer, which based on updated public databases and integrated some bioinformatics analysis methods. In addition, we conducted the enrichment analysis of SERPINEs from DAVID and KOBAS databases. Results: SERPINE1, SERPINE2, and SERPINE3 expression were upregulated in nine cancers, twelve cancers, and six cancers, respectively. The expression of SERPINE family genes was associated with the prognosis in several cancers from The Cancer Genome Atlas (TCGA). Furthermore, SERPINE family genes expression also had a significant relation to stromal and immune scores, and RNA stemness score and DNA stemness score in pan-cancer. SERPINE1 and SERPINE2 expression significantly increased in tumor advanced stage in colon adenocarcinoma (COAD). Results showed that SERPINE1 and SERPINE2 expression were negatively related with B cells and Monocytes, respectively. SERPINE2 expression had a significantly positive relation with B cells and Macrophages. In terms of TMB, SERPINE1, SERPINE2, and SERPINE3 were found to associated with TMB in seven cancers, fourteen cancers, and four cancers, respectively. Moreover, all SERPINE gene family members were significantly correlated with immune subtypes. SERPINE1 expression had a significantly positive or negative correlation with drug sensitivity. Conclusion: The study indicated the great potential of SERPINE family genes as biomarkers for prognosis and provided valuable strategies for further investigation of SERPINE family genes as potential targets in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Li
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Damalanka VC, Voss JJLP, Mahoney MW, Primeau T, Li S, Klampfer L, Janetka JW. Macrocyclic Inhibitors of HGF-Activating Serine Proteases Overcome Resistance to Receptor Tyrosine Kinase Inhibitors and Block Lung Cancer Progression. J Med Chem 2021; 64:18158-18174. [PMID: 34902246 DOI: 10.1021/acs.jmedchem.1c01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatocyte growth factor (HGF), the ligand for the MET receptor tyrosine kinase, is a tumor-promoting factor that is abundant in the tumor microenvironment. Proteolytic activation of inactive pro-HGF by one or more of the serine endopeptidases matriptase, hepsin, and HGF activator is the rate-limiting step in HGF/MET signaling. Herein, we have rationally designed a novel class of side chain cyclized macrocyclic peptide inhibitors. The new series of cyclic tripeptides has superior metabolic stability and significantly improved pharmacokinetics in mice relative to the corresponding linear peptides. We identified the lead compound VD2173 that potently inhibits matriptase and hepsin, which was tested in parallel alongside the acyclic inhibitor ZFH7116 using both in vitro and in vivo models of lung cancer. We demonstrated that both compounds block pro-HGF activation, abrogate HGF-mediated wound healing, and overcome resistance to EGFR- and MET-targeted therapy in lung cancer models. Furthermore, VD2173 inhibited HGF-dependent growth of lung cancer tumors in mice.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Jorine J L P Voss
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew W Mahoney
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - Tina Primeau
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lidija Klampfer
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States.,ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| |
Collapse
|
3
|
Xu D, Sun D, Wang W, Peng X, Zhan Z, Ji Y, Shen Y, Geng M, Ai J, Duan W. Discovery of pyrrolo[2,3-d]pyrimidine derivatives as potent Axl inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2021; 220:113497. [PMID: 33957388 DOI: 10.1016/j.ejmech.2021.113497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
Axl has emerged as an attractive target for cancer therapy due to its strong correlation with tumor growth, metastasis, poor survival, and drug resistance. Herein, we report the design, synthesis and structure-activity relationship (SAR) investigation of a series of pyrrolo[2,3-d]pyrimidine derivatives as new Axl inhibitors. Among them, the most promising compound 13b showed high enzymatic and cellular Axl potencies. Furthermore, 13b possessed preferable pharmacokinetic properties and displayed promising therapeutic effect in BaF3/TEL-Axl xenograft tumor model. Compound 13b may serve as a lead compound for new antitumor drug discovery.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Deqiao Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; School of Life Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210, China
| | - Wei Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Zhengsheng Zhan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yanyan Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; School of Life Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210, China
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Branch Lane, Xihu District, Hangzhou, 330106, China.
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
4
|
Rabia E, Garambois V, Hubert J, Bruciamacchie M, Pirot N, Delpech H, Broyon M, Theillet C, Colombo PE, Vie N, Tosi D, Gongora C, Khellaf L, Jarlier M, Radosevic-Robin N, Chardès T, Pèlegrin A, Larbouret C. Anti-tumoral activity of the Pan-HER (Sym013) antibody mixture in gemcitabine-resistant pancreatic cancer models. MAbs 2021; 13:1914883. [PMID: 33876707 PMCID: PMC8078530 DOI: 10.1080/19420862.2021.1914883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemoresistance, particularly to gemcitabine, is a major challenge in pancreatic cancer. The epidermal growth factor receptor (EGFR) and human epidermal growth factor receptors 2 and 3 (HER2, HER3) are expressed in many tumors, and they are relevant therapeutic targets due to their synergistic interaction to promote tumor aggressiveness and therapeutic resistance. Cocktails of antibodies directed against different targets are a promising strategy to overcome these processes. Here, we found by immunohistochemistry that these three receptors were co-expressed in 11% of patients with pancreatic adenocarcinoma. We then developed gemcitabine-resistant pancreatic cancer cell models (SW-1990-GR and BxPC3-GR) and one patient-derived xenograft (PDX2846-GR) by successive exposure to increasing doses of gemcitabine. We showed that expression of EGFR, HER2 and HER3 was increased in these gemcitabine-resistant pancreatic cancer models, and that an antibody mixture against all three receptors inhibited tumor growth in mice and downregulated HER receptors. Finally, we demonstrated that the Pan-HER and gemcitabine combination has an additive effect in vitro and in mice xenografted with the gemcitabine-sensitive or resistant pancreatic models. The mixture of anti-EGFR, HER2 and HER3 antibodies is a good candidate therapeutic approach for gemcitabine-sensitive and -resistant pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antimetabolites, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Female
- Humans
- Mice, Nude
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Emilia Rabia
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Véronique Garambois
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Julie Hubert
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Marine Bruciamacchie
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Nelly Pirot
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
- BioCampus Montpellier, Université Montpellier, CNRS UAR3426, INSERM US09, Université De Montpellier, Montpellier, France
| | - Hélène Delpech
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Morgane Broyon
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
- BioCampus Montpellier, Université Montpellier, CNRS UAR3426, INSERM US09, Université De Montpellier, Montpellier, France
| | - Charles Theillet
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | | | - Nadia Vie
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Diego Tosi
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
- Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Celine Gongora
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Lakhdar Khellaf
- Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Marta Jarlier
- Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Nina Radosevic-Robin
- Centre Jean Perrin, Université Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| | - Thierry Chardès
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - André Pèlegrin
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Christel Larbouret
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| |
Collapse
|
5
|
Yao HP, Tong XM, Hudson R, Wang MH. MET and RON receptor tyrosine kinases in colorectal adenocarcinoma: molecular features as drug targets and antibody-drug conjugates for therapy. J Exp Clin Cancer Res 2020; 39:198. [PMID: 32962738 PMCID: PMC7510328 DOI: 10.1186/s13046-020-01711-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced colorectal adenocarcinoma (CRAC), featured by distinctive histopathological appearance, distant organ metastasis, acquired chemoresistance, and tumorigenic stemness is a group of heterogeneous cancers with unique genetic signatures and malignant phenotypes. Treatment of CRAC is a daunting task for oncologists. Currently, various strategies including molecular targeting using therapeutic monoclonal antibodies, small molecule kinase inhibitors and immunoregulatory checkpoint therapy have been applied to combat this deadly disease. However, these therapeutic modalities and approaches achieve only limited success. Thus, there is a pharmaceutical need to discover new targets and develop novel therapeutics for CRAC therapy. MET and RON receptor tyrosine kinases have been implicated in CRAC pathogenesis. Clinical studies have revealed that aberrant MET and/or RON expression and signaling are critical in regulating CRAC progression and malignant phenotypes. Increased MET and/or RON expression also has prognostic value for CRAC progression and patient survival. These features provide the rationale to target MET and RON for clinical CRAC intervention. At present, the use of small molecule kinase inhibitors targeting MET for CRAC treatment has achieved significant progress with several approvals for clinical application. Nevertheless, antibody-based biotherapeutics, although under clinical trials for more than 8 years, have made very little progress. In this review, we discuss the importance of MET and/or RON in CRAC tumorigenesis and development of anti-MET, anti-RON, and MET and RON-dual targeting antibody-drug conjugates for clinical application. The findings from both preclinical studies and clinical trials highlight the potential of this novel type of biotherapeutics for CRAC therapy in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, TX, Amarillo, USA
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, TX, Amarillo, USA.
| |
Collapse
|
6
|
Luo T, Zhang SG, Zhu LF, Zhang FX, Li W, Zhao K, Wen XX, Yu M, Zhan YQ, Chen H, Ge CH, Gao HY, Wang L, Yang XM, Li CY. A selective c-Met and Trks inhibitor Indo5 suppresses hepatocellular carcinoma growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:130. [PMID: 30885237 PMCID: PMC6421704 DOI: 10.1186/s13046-019-1104-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/11/2019] [Indexed: 11/18/2022]
Abstract
Background Human hepatocellular carcinoma (HCC) lacks effective curative therapy and there is an urgent need to develop a novel molecular-targeted therapy for HCC. Selective tyrosine kinase inhibitors have shown promise in treating cancers including HCC. Tyrosine kinases c-Met and Trks are potential therapeutic targets of HCC and strategies to interrupt c-Met and Trks cross-signaling may result in increased effects on HCC inhibition. Methods The effects of Indo5 on c-Met and Trks activity were determined with in vitro kinase activity assay, cell-based signaling pathway activation, and kinases-driven cell transformation. The in vivo anti-tumor activity was determined with xenograft mice and liver orthotopic mice models. The co-expression of c-Met and TrkB in 180 pairs of HCC and adjacent normal tissues were detected using immunohistochemical staining. Results Indo5, a novel lead compound displayed biochemical potency against both c-Met and Trks with selectivity over 13 human kinases. Indo5 abrogated HGF-induced c-Met signaling activation and BDNF/NGF-induced Trks signal activation, c-Met or TrkB-mediated cell transformation and migration. Furthermore, Indo5 significantly decreased the growth of HCC cells in xenograft mice and improved the survival of mice with liver orthotopic tumors. In addition, co-expression of c-Met and TrkB in HCC patients was a predictor of poor prognosis, and combined inhibition of c-Met and TrkB exerted a synergistic suppressive effect on HCC. Conclusions These findings indicate that Indo5 is associated with marked suppression of c-Met and Trks co-expressing HCC, supporting its clinical development as an antitumor treatment for HCC patients with co-active c-Met and Trks signaling. Electronic supplementary material The online version of this article (10.1186/s13046-019-1104-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teng Luo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China.,Institute of NBC Defence, Beijing, 102205, China
| | - Shou-Guo Zhang
- Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China
| | | | - Fei-Xiang Zhang
- Guangdong pharmaceutical university, School of Pharmacy, Guangzhou, 510006, China
| | - Wei Li
- Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiao-Xue Wen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lin Wang
- Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China.
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China. .,School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin University, Tianjin, 300072, China.
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China. .,An Hui Medical University, Hefei, 230032, China. .,Guangdong pharmaceutical university, School of Pharmacy, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Bach DH, Kim D, Bae SY, Kim WK, Hong JY, Lee HJ, Rajasekaran N, Kwon S, Fan Y, Luu TTT, Shin YK, Lee J, Lee SK. Targeting Nicotinamide N-Methyltransferase and miR-449a in EGFR-TKI-Resistant Non-Small-Cell Lung Cancer Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:455-467. [PMID: 29858080 PMCID: PMC5992482 DOI: 10.1016/j.omtn.2018.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/05/2018] [Accepted: 03/26/2018] [Indexed: 12/29/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used clinically as target therapies for lung cancer patients, but the occurrence of acquired drug resistance limits their efficacy. Nicotinamide N-methyltransferase (NNMT), a cancer-associated metabolic enzyme, is commonly overexpressed in various human tumors. Emerging evidence also suggests a crucial loss of function of microRNAs (miRNAs) in modulating tumor progression in response to standard therapies. However, their precise roles in regulating the development of drug-resistant tumorigenesis are still poorly understood. Herein, we established EGFR-TKI-resistant non-small-cell lung cancer (NSCLC) models and observed a negative correlation between the expression levels of NNMT and miR-449a in tumor cells. Additionally, knockdown of NNMT suppressed p-Akt and tumorigenesis, while re-expression of miR-449a induced phosphatase and tensin homolog (PTEN), and inhibited tumor growth. Furthermore, yuanhuadine, an antitumor agent, significantly upregulated miR-449a levels while critically suppressing NNMT expression. These findings suggest a novel therapeutic approach for overcoming EGFR-TKI resistance to NSCLC treatment.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Donghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Song Yi Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Ji-Young Hong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Hye-Jung Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Nirmal Rajasekaran
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Soonbum Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yanhua Fan
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Thi-Thu-Trang Luu
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
8
|
Tan EH, Lim WT, Ahn MJ, Ng QS, Ahn JS, Shao-Weng Tan D, Sun JM, Han M, Payumo FC, McKee K, Yin W, Credi M, Agarwal S, Jac J, Park K. Phase 1b Trial of Ficlatuzumab, a Humanized Hepatocyte Growth Factor Inhibitory Monoclonal Antibody, in Combination With Gefitinib in Asian Patients With NSCLC. Clin Pharmacol Drug Dev 2018; 7:532-542. [PMID: 29346833 PMCID: PMC6032914 DOI: 10.1002/cpdd.427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Hepatocyte growth factor (HGF)/c-Met pathway dysregulation is a mechanism for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). Ficlatuzumab (AV-299; SCH 900105), a humanized IgG1 κ HGF inhibitory monoclonal antibody, prevents HGF/c-Met pathway ligand-mediated activation. This phase 1b study assessed the safety/tolerability, pharmacokinetics/pharmacodynamics, and antitumor activity of ficlatuzumab plus gefitinib in Asian patients with previously treated advanced non-small cell lung cancer (NSCLC). Patients received intravenous ficlatuzumab either 10 mg/kg (cohort 1; n = 3) or 20 mg/kg (cohort 2; n = 12) every 2 weeks plus oral gefitinib 250 mg daily. Patients tolerated the drug combination well. Four treatment-related grade 3/4 adverse events were reported in 3 patients (cohort 2). Pharmacokinetic profiles for ficlatuzumab and gefitinib were consistent with prior single-agent trials. Partial responses were achieved in 5 patients (4 confirmed), all in cohort 2; objective response rate (ORR) was 33% (duration, 1.9-6.4 months). Responding patients had no prior EGFR TKI treatment, 2 without an EGFR mutation. Four additional patients had disease stabilization (cohort 2; duration, 2.7-9.1 months; 42% ORR). The recommended phase 2 dose for ficlatuzumab plus gefitinib 250 mg/day was 20 mg/kg every 2 weeks. This drug combination has shown preliminary dose-related antitumor activity in advanced NSCLC.
Collapse
Affiliation(s)
- Eng-Huat Tan
- National Cancer Centre, Department of Medical Oncology, Singapore
| | - Wan-Teck Lim
- National Cancer Centre, Department of Medical Oncology, Singapore
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Quan-Sing Ng
- National Cancer Centre, Department of Medical Oncology, Singapore
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jong-Mu Sun
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - May Han
- AVEO Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | | - Wei Yin
- AVEO Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Marc Credi
- AVEO Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | | - Keunchil Park
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Engstrom LD, Aranda R, Lee M, Tovar EA, Essenburg CJ, Madaj Z, Chiang H, Briere D, Hallin J, Lopez-Casas PP, Baños N, Menendez C, Hidalgo M, Tassell V, Chao R, Chudova DI, Lanman RB, Olson P, Bazhenova L, Patel SP, Graveel C, Nishino M, Shapiro GI, Peled N, Awad MM, Jänne PA, Christensen JG. Glesatinib Exhibits Antitumor Activity in Lung Cancer Models and Patients Harboring MET Exon 14 Mutations and Overcomes Mutation-mediated Resistance to Type I MET Inhibitors in Nonclinical Models. Clin Cancer Res 2017; 23:6661-6672. [DOI: 10.1158/1078-0432.ccr-17-1192] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
|
10
|
Ortiz-Zapater E, Lee RW, Owen W, Weitsman G, Fruhwirth G, Dunn RG, Neat MJ, McCaughan F, Parker P, Ng T, Santis G. MET-EGFR dimerization in lung adenocarcinoma is dependent on EGFR mtations and altered by MET kinase inhibition. PLoS One 2017; 12:e0170798. [PMID: 28141869 PMCID: PMC5283661 DOI: 10.1371/journal.pone.0170798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/11/2017] [Indexed: 01/06/2023] Open
Abstract
Advanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors (TKIs) have high response rates in patients with activating EGFR mutations, but acquired resistance is inevitable. Acquisition of the EGFR T790M mutation causes over 50% of resistance; MET amplification is also common. Preclinical data suggest synergy between MET and EGFR inhibitors. We hypothesized that EGFR-MET dimerization determines response to MET inhibition, depending on EGFR mutation status, independently of MET copy number. We tested this hypothesis by generating isogenic cell lines from NCI-H1975 cells, which co-express L858R and T790M EGFR mutations, namely H1975L858R/T790M (EGFR TKI resistant); H1975L858R (sensitized) and H1975WT (wild-type). We assessed cell proliferation in vitro and tumor growth/stroma formation in derived xenograft models in response to a MET TKI (SGX523) and correlated with EGFR-MET dimerization assessed by Förster Resonance Energy Transfer (FRET). SGX523 significantly reduced H1975L858R/T790M cell proliferation, xenograft tumor growth and decreased ERK phosphorylation. The same was not seen in H1975L858R or H1975WT cells. SGX523 only reduced stroma formation in H1975L858R. SGX523 reduced EGFR-MET dimerization in H1975L858R/T790M but induced dimer formation in H1975L858R with no effect in H1975WT. Our data suggests that MET inhibition by SGX523 and EGFR-MET heterodimerisation are determined by EGFR genotype. As tumor behaviour is modulated by this interaction, this could determine treatment efficacy.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Richard W. Lee
- Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - William Owen
- Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King’s College London, Guy's Medical School Campus, London, United Kingdom
| | - Gilbert Fruhwirth
- Department of Imaging Chemistry and Biology, Division of Imaging Science and Biomedical Engineering, King’s College London, The Rayne Institute/St. Thomas' Hospital, London, United Kingdom
| | - Robert G. Dunn
- Department of Cancer Genetics, Viapath, Guy’s and St Thomas’ NHS Foundation Trust, Guy's Hospital, London, United Kingdom
| | - Michael J. Neat
- Department of Cancer Genetics, Viapath, Guy’s and St Thomas’ NHS Foundation Trust, Guy's Hospital, London, United Kingdom
| | - Frank McCaughan
- Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Peter Parker
- Division of Cancer Studies, King’s College London, Guy's Medical School Campus, London, United Kingdom
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King’s College London, Guy's Medical School Campus, London, United Kingdom
- Division of Cancer Studies, King’s College London, Guy's Medical School Campus, London, United Kingdom
- Breast Cancer Research Unit, King’s College London, Guy's Hospital, London, United Kingdom
- UCL Cancer Institute, Paul O' Gorman Building, University College London, London, United Kingdom
| | - George Santis
- Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
11
|
Li S, Choi YL, Gong Z, Liu X, Lira M, Kan Z, Oh E, Wang J, Ting JC, Ye X, Reinhart C, Liu X, Pei Y, Zhou W, Chen R, Fu S, Jin G, Jiang A, Fernandez J, Hardwick J, Kang MW, I H, Zheng H, Kim J, Mao M. Comprehensive Characterization of Oncogenic Drivers in Asian Lung Adenocarcinoma. J Thorac Oncol 2016; 11:2129-2140. [PMID: 27615396 DOI: 10.1016/j.jtho.2016.08.142] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The incidence rate of lung adenocarcinoma (LUAD), the predominant histological subtype of lung cancer, is elevated in Asians, particularly in female nonsmokers. The mutation patterns in LUAD in Asians might be distinct from those in LUAD in whites. METHODS We profiled 271 resected LUAD tumors (mainly stage I) to characterize the genomic landscape of LUAD in Asians with a focus on female nonsmokers. RESULTS Mutations in EGFR, KRAS, erb-b2 receptor tyrosine kinase 2 gene (ERBB2), and BRAF; gene fusions involving anaplastic lymphoma receptor tyrosine kinase gene (ALK), ROS1, and ret proto-oncogene (RET); and Met Proto-Oncogene Tyrosine Kinase (MET) exon 14 skipping were the major drivers in LUAD in Asians, exhibiting mutually exclusive and differing prevalence from those reported in studies of LUAD in non-Asians. In addition, we identified a novel mutational signature of XNX (the mutated base N in the middle flanked by two identical bases at the 5' and 3' positions) that was overrepresented in LUAD tumors in nonsmokers and negatively correlated with the overall mutational frequency. CONCLUSIONS In this cohort, approximately 85% of individuals have known driver mutations (EGFR 59.4%, KRAS 7.4%, ALK 7.4%, ERBB2 2.6%, ROS1 2.2%, RET 2.2%, MET 1.8%, BRAF 1.1%, and NRAS 0.4%). Seventy percent of smokers and 90% of nonsmokers had defined oncogenic drivers matching the U.S. Food and Drug Administration-approved targeted therapies.
Collapse
Affiliation(s)
- Shiyong Li
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Yoon-La Choi
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Zhuolin Gong
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | | | | | - Ensel Oh
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jian Wang
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | - Xiaoqiao Liu
- Merck Research Laboratories, Boston, Massachusetts
| | - Yunfei Pei
- Merck Research Laboratories, Boston, Massachusetts
| | - Wei Zhou
- Merck Research Laboratories, Boston, Massachusetts
| | - Ronghua Chen
- Merck Research Laboratories, Boston, Massachusetts
| | - Shijun Fu
- Shanghai Biochip Company, Shanghai, People's Republic of China
| | - Gang Jin
- Shanghai Biochip Company, Shanghai, People's Republic of China
| | - Awei Jiang
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | | | | | - Min Woong Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Daejun, Republic of Korea
| | - Hoseok I
- Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine, Pusan, Republic of Korea
| | | | - Jhingook Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mao Mao
- Pfizer Oncology, San Diego, California.
| |
Collapse
|
12
|
Profiling of cMET and HER Family Receptor Expression in Pancreatic Ductal Adenocarcinomas and Corresponding Lymph Node Metastasis to Assess Relevant Pathways for Targeted Therapies: Looking at the Soil Before Planting the Seed. Pancreas 2016; 45:1167-74. [PMID: 26825865 DOI: 10.1097/mpa.0000000000000604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Comprehensive assessment of cMET and HER family receptor tyrosine kinases expression, changes of expression during metastatic progression, amplification status of the MET gene, and correlations with patient characteristics in pancreatic ductal adenocarcinoma (PDAC) was conducted. METHODS We investigated 56 PDACs and corresponding lymph node metastases for HER1 to HER4 and cMET expression by immunohistochemistry, as well as cMET gene copy numbers by chromogenic in situ hybridization. RESULTS Of all receptor tyrosine kinases evaluated, cMET expression was highest with 46.5% of tumors showing moderate or strong expression and a weak correlation with gene copy number status (P = 0.04; Spearman ρ = 0.28). cMET expression was increased in metastases. In contrast, expression levels of HER family receptors were generally low both in primaries and metastases. A weak yet significant correlation of HER1 and cMET expression levels was observed (P < 0.001; Spearman ρ = 0.44) and HER1 was often present in poorly differentiated tumors (G3, P = 0.049). CONCLUSIONS Our data suggest that cMET might constitute an interesting molecule for combining targeted and chemotherapeutic approaches in PDAC, because expression is frequent and increased during metastatic progression. In PDAC, cMET protein expression might be a more useful stratification biomarker than cMET gene amplification, which does not seem to be its primary regulator.
Collapse
|
13
|
Cataisson C, Michalowski AM, Shibuya K, Ryscavage A, Klosterman M, Wright L, Dubois W, Liu F, Zhuang A, Rodrigues KB, Hoover S, Dwyer J, Simpson MR, Merlino G, Yuspa SH. MET signaling in keratinocytes activates EGFR and initiates squamous carcinogenesis. Sci Signal 2016; 9:ra62. [PMID: 27330189 DOI: 10.1126/scisignal.aaf5106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The receptor tyrosine kinase MET is abundant in many human squamous cell carcinomas (SCCs), but its functional significance in tumorigenesis is not clear. We found that the incidence of carcinogen-induced skin squamous tumors was substantially increased in transgenic MT-HGF (mouse metallothionein-hepatocyte growth factor) mice, which have increased abundance of the MET ligand HGF. Squamous tumors also erupted spontaneously on the skin of MT-HGF mice that were promoted by wounding or the application of 12-O-tetradecanoylphorbol 13-acetate, an activator of protein kinase C. Carcinogen-initiated tumors had Ras mutations, but spontaneous tumors did not. Cultured keratinocytes from MT-HGF mice and oncogenic RAS-transduced keratinocytes shared phenotypic and biochemical features of initiation that were dependent on autocrine activation of epidermal growth factor receptor (EGFR) through increased synthesis and release of EGFR ligands, which was mediated by the kinase SRC, the pseudoproteases iRhom1 and iRhom2, and the metallopeptidase ADAM17. Pharmacological inhibition of EGFR caused the regression of MT-HGF squamous tumors that developed spontaneously in orthografts of MT-HGF keratinocytes combined with dermal fibroblasts and implanted onto syngeneic mice. The global gene expression profile in MET-transformed keratinocytes was highly concordant with that in RAS-transformed keratinocytes, and a core RAS/MET coexpression network was activated in precancerous and cancerous human skin lesions. Tissue arrays revealed that many human skin SCCs have abundant HGF at both the transcript and protein levels. Thus, through the activation of EGFR, MET activation parallels a RAS pathway to contribute to human and mouse cutaneous cancers.
Collapse
Affiliation(s)
- Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Shibuya
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Klosterman
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Wright
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fan Liu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne Zhuang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kameron B Rodrigues
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shelley Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A 2016; 113:4464-9. [PMID: 27035983 DOI: 10.1073/pnas.1600007113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a "don't eat me" signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90(hi)cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo.
Collapse
|
15
|
Abstract
Lung cancer is the leading cause of cancer-related deaths in United States, accounting for more than one-fourth of the deaths annually. Although comparatively rare and relatively less studied, genetic abnormalities other than epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) rearrangements, and Kirsten rat sarcoma (KRAS) mutations account for significant proportion of the driver mutations identified thus far. The targeted agents against B-rapidly accelerated fibrosarcoma (BRAF) V600E mutation, MNNG-HOS transforming gene (MET) pathway, ROS1 rearrangement, rearranged during transfection (RET) rearrangement, and HER2 pathways offer promising therapeutic options. Recruiting patients with these rarer mutations to well-designed, large multicenter trials to further validate the use of targeted agents remains a challenge. The clinical data and ongoing trials with these agents are reviewed in this article.
Collapse
Affiliation(s)
- Nabin Khanal
- a Department of Internal Medicine , Creighton University Medical Center , Omaha , NE , USA
| | - Apar Kishor Ganti
- b Division of Oncology-Hematology, Department of Internal Medicine , VA-Nebraska Western Iowa Health Care System , Omaha , NE , USA.,c Division of Oncology-Hematology, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
16
|
Ahsan A. Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors and Therapeutic Approaches: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 893:137-153. [DOI: 10.1007/978-3-319-24223-1_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Gadgeel SM. Personalized Therapy of Non-small Cell Lung Cancer (NSCLC). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:203-22. [PMID: 26703806 DOI: 10.1007/978-3-319-24932-2_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer remains the most common cause of cancer related deaths in both men and women in the United States and non-small cell lung cancer (NSCLC) accounts for over 85 % of all lung cancers. Survival of these patients has not significantly altered in over 30 years. This chapter initially discusses the clinical presentation of lung cancer patients. Most patients diagnosed with lung cancer due to symptoms have advanced stage cancer. Once diagnosed, lung cancer patients need imaging studies to assess the stage of the disease before decisions regarding therapy are finalized. The most important prognostic factors are stage of the disease and performance status and these factors also determine therapy. The chapter subsequently discusses management of each stage of the disease and the impact of several pathologic, clinical factors in personalizing therapy for each individual patient. Transition from chemotherapy for every patient to a more personalized approach based on histology and molecular markers has occurred in the management of advanced stage NSCLC. It is expected that such a personalized approach will extend to all stages of NSCLC and will likely improve the outcomes of all NSCLC patients.
Collapse
Affiliation(s)
- Shirish M Gadgeel
- Karmanos Cancer Institute, Wayne State University, 4100 John R, 4, HWCRC, Detroit, MI, 48201, USA.
| |
Collapse
|
18
|
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. TRANSLATIONAL ONCOGENOMICS 2015; 7:13-31. [PMID: 26628860 DOI: 10.4137/togog.s30534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
MET and its ligand HGF are involved in many biological processes, both physiological and pathological, making this signaling pathway an attractive therapeutic target in oncology. Downstream signaling effects are transmitted via mitogen-activated protein kinase (MAPK), PI3K (phosphoinositide 3-kinase protein kinase B)/AKT, signal transducer and activator of transcription proteins (STAT), and nuclear factor-κB. The final output of the terminal effector components of these pathways is activation of cytoplasmic and nuclear processes leading to increases in cell proliferation, survival, mobilization and invasive capacity. In addition to its role as an oncogenic driver, increasing evidence implicates MET as a common mechanism of resistance to targeted therapies including EGFR and VEGFR inhibitors. In the present review, we summarize the current knowledge on the role of the HGF-MET signaling pathway in cancer and its therapeutic targeting (HGF activation inhibitors, HGF inhibitors, MET antagonists and selective/nonselective MET kinase inhibitors). Recent advances in understanding the role of this pathway in the resistance to current anticancer strategies used in lung, kidney and pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. ; Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. ; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. TRANSLATIONAL ONCOGENOMICS 2015; 7:13-31. [PMID: 26628860 PMCID: PMC4659440 DOI: 10.4137/tog.s30534] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022]
Abstract
MET and its ligand HGF are involved in many biological processes, both physiological and pathological, making this signaling pathway an attractive therapeutic target in oncology. Downstream signaling effects are transmitted via mitogen-activated protein kinase (MAPK), PI3K (phosphoinositide 3-kinase protein kinase B)/AKT, signal transducer and activator of transcription proteins (STAT), and nuclear factor-κB. The final output of the terminal effector components of these pathways is activation of cytoplasmic and nuclear processes leading to increases in cell proliferation, survival, mobilization and invasive capacity. In addition to its role as an oncogenic driver, increasing evidence implicates MET as a common mechanism of resistance to targeted therapies including EGFR and VEGFR inhibitors. In the present review, we summarize the current knowledge on the role of the HGF-MET signaling pathway in cancer and its therapeutic targeting (HGF activation inhibitors, HGF inhibitors, MET antagonists and selective/nonselective MET kinase inhibitors). Recent advances in understanding the role of this pathway in the resistance to current anticancer strategies used in lung, kidney and pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Sameni M, Tovar EA, Essenburg CJ, Chalasani A, Linklater ES, Borgman A, Cherba DM, Anbalagan A, Winn ME, Graveel CR, Sloane BF. Cabozantinib (XL184) Inhibits Growth and Invasion of Preclinical TNBC Models. Clin Cancer Res 2015; 22:923-34. [PMID: 26432786 DOI: 10.1158/1078-0432.ccr-15-0187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/20/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is associated with poor clinical outcome. There is a vital need for effective targeted therapeutics for TNBC patients, yet treatment strategies are challenged by the significant intertumoral heterogeneity within the TNBC subtype and its surrounding microenvironment. Receptor tyrosine kinases (RTK) are highly expressed in several TNBC subtypes and are promising therapeutic targets. In this study, we targeted the MET receptor, which is highly expressed across several TNBC subtypes. EXPERIMENTAL DESIGN Using the small-molecule inhibitor cabozantinib (XL184), we examined the efficacy of MET inhibition in preclinical models that recapitulate human TNBC and its microenvironment. To analyze the dynamic interactions between TNBC cells and fibroblasts over time, we utilized a 3D model referred to as MAME (Mammary Architecture and Microenvironment Engineering) with quantitative image analysis. To investigate cabozantinib inhibition in vivo, we used a novel xenograft model that expresses human HGF and supports paracrine MET signaling. RESULTS XL184 treatment of MAME cultures of MDA-MB-231 and HCC70 cells (± HGF-expressing fibroblasts) was cytotoxic and significantly reduced multicellular invasive outgrowths, even in cultures with HGF-expressing fibroblasts. Treatment with XL184 had no significant effects on MET(neg) breast cancer cell growth. In vivo assays demonstrated that cabozantinib treatment significantly inhibited TNBC growth and metastasis. CONCLUSIONS Using preclinical TNBC models that recapitulate the breast tumor microenvironment, we demonstrate that cabozantinib inhibition is an effective therapeutic strategy in several TNBC subtypes.
Collapse
Affiliation(s)
- Mansoureh Sameni
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth A Tovar
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Curt J Essenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| | - Erik S Linklater
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Andrew Borgman
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - David M Cherba
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Arulselvi Anbalagan
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Carrie R Graveel
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan.
| | - Bonnie F Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan. Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
21
|
Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma. J Transl Med 2015; 13:306. [PMID: 26381735 PMCID: PMC4574608 DOI: 10.1186/s12967-015-0667-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Constitutive MET signaling promotes invasiveness in most primary and recurrent GBM. However, deployment of available MET-targeting agents is confounded by lack of effective biomarkers for selecting suitable patients for treatment. Because endogenous HGF overexpression often causes autocrine MET activation, and also indicates sensitivity to MET inhibitors, we investigated whether it drives the expression of distinct genes which could serve as a signature indicating vulnerability to MET-targeted therapy in GBM. Methods Interrogation of genomic data from TCGA GBM (Student’s t test, GBM patients with high and low HGF expression, p ≤ 0.00001) referenced against patient-derived xenograft (PDX) models (Student’s t test, sensitive vs. insensitive models, p ≤ 0.005) was used to identify the HGF-dependent signature. Genomic analysis of GBM xenograft models using both human and mouse gene expression microarrays (Student’s t test, treated vs. vehicle tumors, p ≤ 0.01) were performed to elucidate the tumor and microenvironment cross talk. A PDX model with EGFRamp was tested for MET activation as a mechanism of erlotinib resistance. Results We identified a group of 20 genes highly associated with HGF overexpression in GBM and were up- or down-regulated only in tumors sensitive to MET inhibitor. The MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall impede tumor growth by inhibiting cell cycle progression. EGFRamp tumors undergo erlotinib resistance responded to a combination of MET and EGFR inhibitors. Conclusions Combining TCGA primary tumor datasets (human) and xenograft tumor model datasets (human tumor grown in mice) using therapeutic efficacy as an endpoint may serve as a useful approach to discover and develop molecular signatures as therapeutic biomarkers for targeted therapy. The HGF dependent signature may serve as a candidate predictive signature for patient enrollment in clinical trials using MET inhibitors. Human and mouse microarrays maybe used to dissect the tumor-host interactions. Targeting MET in EGFRamp GBM may delay the acquired resistance developed during treatment with erlotinib. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0667-x) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Le Du F, Eckhardt BL, Lim B, Litton JK, Moulder S, Meric-Bernstam F, Gonzalez-Angulo AM, Ueno NT. Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget 2015; 6:12890-908. [PMID: 25973541 PMCID: PMC4536987 DOI: 10.18632/oncotarget.3849] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
Significant research has been conducted to better understand the extensive, heterogeneous molecular features of triple-negative breast cancer (TNBC). We reviewed published TNBC molecular classifications to identify major groupings that have potential for clinical trial development. With the ultimate aim to streamline translational medicine, we linked these categories of TNBC according to their gene-expression signatures, biological function, and clinical outcome. To this end, we define five potential clinically actionable groupings of TNBC: 1) basal-like TNBC with DNA-repair deficiency or growth factor pathways; 2) mesenchymal-like TNBC with epithelial-to-mesenchymal transition and cancer stem cell features; 3) immune-associated TNBC; 4) luminal/apocrine TNBC with androgen-receptor overexpression; and 5) HER2-enriched TNBC. For each defined subtype, we highlight the major biological pathways and discuss potential targeted therapies in TNBC that might abrogate disease progression. However, many of these potential targets need clinical validation by clinical trials. We have yet to know how we can enrich the targets by molecular classifications.
Collapse
Affiliation(s)
- Fanny Le Du
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Oncology, Eugène Marquis Cancer Center, Rennes, France
| | - Bedrich L. Eckhardt
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Women's Cancer Moons Shot Program, Houston, TX, USA
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Clinical Cancer Genetics Program, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- The University of Texas MD Anderson Women's Cancer Moons Shot Program, Houston, TX, USA
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Women's Cancer Moons Shot Program, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Women's Cancer Moons Shot Program, Houston, TX, USA
| | - Ana M. Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Women's Cancer Moons Shot Program, Houston, TX, USA
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Women's Cancer Moons Shot Program, Houston, TX, USA
| |
Collapse
|
23
|
Neuzillet C, Couvelard A, Tijeras-Raballand A, de Mestier L, de Gramont A, Bédossa P, Paradis V, Sauvanet A, Bachet JB, Ruszniewski P, Raymond E, Hammel P, Cros J. High c-Met expression in stage I-II pancreatic adenocarcinoma: proposal for an immunostaining scoring method and correlation with poor prognosis. Histopathology 2015; 67:664-76. [PMID: 25809563 DOI: 10.1111/his.12691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/14/2015] [Indexed: 12/11/2022]
Abstract
AIMS c-Met is an emerging biomarker in pancreatic ductal adenocarcinoma (PDAC); there is no consensus regarding the immunostaining scoring method for this marker. We aimed to assess the prognostic value of c-Met overexpression in resected PDAC, and to elaborate a robust and reproducible scoring method for c-Met immunostaining in this setting. METHODS AND RESULTS c-Met immunostaining was graded according to the validated MetMab score, a classic visual scale combining surface and intensity (SI score), or a simplified score (high c-Met: ≥ 20% of tumour cells with strong membranous staining), in stage I-II PDAC. A computer-assisted classification method (Aperio software) was developed. Clinicopathological parameters were correlated with disease-free survival (DFS) and overall survival(OS). One hundred and forty-nine patients were analysed retrospectively in a two-step process. Thirty-seven samples (whole slides) were analysed as a pre-run test. Reproducibility values were optimal with the simplified score (kappa = 0.773); high c-Met expression (7/37) was associated with shorter DFS [hazard ratio (HR) 3.456, P = 0.0036] and OS (HR 4.257, P = 0.0004). c-Met expression was concordant on whole slides and tissue microarrays in 87.9% of samples, and quantifiable with a specific computer-assisted algorithm. In the whole cohort (n = 131), patients with c-Met(high) tumours (36/131) had significantly shorter DFS (9.3 versus 20.0 months, HR 2.165, P = 0.0005) and OS (18.2 versus 35.0 months, HR 1.832, P = 0.0098) in univariate and multivariate analysis. CONCLUSIONS Simplified c-Met expression is an independent prognostic marker in stage I-II PDAC that may help to identify patients with a high risk of tumour relapse and poor survival.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149.,Department of Digestive Oncology, Beaujon University Hospital, Clichy, France.,Paris 7 Denis Diderot University, Paris, France
| | - Anne Couvelard
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | | | | | - Armand de Gramont
- Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Bédossa
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | - Valérie Paradis
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | - Alain Sauvanet
- Paris 7 Denis Diderot University, Paris, France.,Department of Biliary and Pancreatic Surgery, Beaujon University Hospital, Clichy, France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Philippe Ruszniewski
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Gastroenterology and Pancreatology, Beaujon University Hospital, Clichy, France
| | - Eric Raymond
- Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pascal Hammel
- INSERM UMR1149.,Department of Digestive Oncology, Beaujon University Hospital, Clichy, France.,Paris 7 Denis Diderot University, Paris, France
| | - Jérôme Cros
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| |
Collapse
|
24
|
Hwang S, Kim HE, Min M, Raghunathan R, Panova IP, Munshi R, Ryu B. Epigenetic Silencing of SPINT2 Promotes Cancer Cell Motility via HGF-MET Pathway Activation in Melanoma. J Invest Dermatol 2015; 135:2283-2291. [PMID: 25910030 PMCID: PMC4537358 DOI: 10.1038/jid.2015.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 12/23/2022]
Abstract
Aberrant HGF-MET signaling activation via interactions with surrounding stromal cells in tumor microenvironment plays significant roles in malignant tumor progression. However, extracellular proteolytic regulation of HGF activation which is influenced by the tumor microenvironment and its consequential effects on melanoma malignancy remain uncharacterized. In this study we identified SPINT2: a proteolytic inhibitor of hepatocyte growth factor activator (HGFA), which plays a significant role in the suppression of the HGF-MET pathway and malignant melanoma progression. SPINT2 expression is significantly lower in metastatic melanoma tissues compared to those in early stage primary melanomas which also corresponded with DNA methylation levels isolated from tissue samples. Treatment with the DNA hypomethylating agent decitabine in cultured melanoma cells induced transcriptional reactivation of SPINT2, suggesting that this gene is epigenetically silenced in malignant melanomas. Furthermore, we show that ectopically expressed SPINT2 in melanoma cells inhibits HGF induced MET-AKT signaling pathway and decreases malignant phenotype potential such as cell motility, and invasive growth of melanoma cells. These results suggest that SPINT2 is associated with tumor suppressive functions in melanoma by inhibiting an extracellular signal regulator of HGF which is typically activated by tumor-stromal interactions. These findings indicate that epigenetic impairment of the tightly regulated cytokine-receptor communications in tumor microenvironment may contribute to malignant tumor progression.
Collapse
Affiliation(s)
- Soonyean Hwang
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Hye-Eun Kim
- Department of Anatomy, BK21 Plus Program, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Michelle Min
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Rekha Raghunathan
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Izabela P Panova
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Ruchi Munshi
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Byungwoo Ryu
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA.
| |
Collapse
|
25
|
Padda S, Neal JW, Wakelee HA. MET inhibitors in combination with other therapies in non-small cell lung cancer. Transl Lung Cancer Res 2015; 1:238-53. [PMID: 25806189 DOI: 10.3978/j.issn.2218-6751.2012.10.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022]
Abstract
MET and its ligand hepatocyte growth factor/scatter factor (HGF) influence cell motility and lead to tumor growth, invasion, and angiogenesis. Alterations in MET have been observed in non-small cell lung cancer (NSCLC) tumors, with increased expression associated with more aggressive cancer, as well as acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI). MET inhibitors act via two basic mechanisms. Small molecule inhibitors antagonize ATP in the intracellular tyrosine kinase domain of MET, with studies on the following agents reviewed here: tivantinib (ARQ-197), cabozantinib (XL-184), crizotinib (PF-02341066), amuvatinib (MP470), MGCD265, foretinib (EXEL-2880), MK2461, SGX523, PHA665752, JNJ-38877605, SU11274, and K252A. The monoclonal monovalent antibody fragment onartuzumab (MetMAb) is also discussed here, which binds to and prevents the extracellular activation of the receptor by ligand. MET inhibition may both overcome the negative prognostic effect of MET tumor expression as well as antagonize MET-dependent acquired resistance to EGFR inhibitors. Here we discuss MET inhibitors in combination with other therapies in lung cancer.
Collapse
Affiliation(s)
- Sukhmani Padda
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| | - Joel W Neal
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| | - Heather A Wakelee
- Stanford University/Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, USA
| |
Collapse
|
26
|
Viticchiè G, Muller PAJ. c-Met and Other Cell Surface Molecules: Interaction, Activation and Functional Consequences. Biomedicines 2015; 3:46-70. [PMID: 28536399 PMCID: PMC5344229 DOI: 10.3390/biomedicines3010046] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022] Open
Abstract
The c-Met receptor, also known as the HGF receptor, is one of the most studied tyrosine kinase receptors, yet its biological functions and activation mechanisms are still not fully understood. c-Met has been implicated in embryonic development and organogenesis, in tissue remodelling homeostasis and repair and in cancer metastasis. These functions are indicative of the many cellular processes in which the receptor plays a role, including cell motility, scattering, survival and proliferation. In the context of malignancy, sustained activation of c-Met leads to a signalling cascade involving a multitude of kinases that initiate an invasive and metastatic program. Many proteins can affect the activation of c-Met, including a variety of other cell surface and membrane-spanning molecules or receptors. Some cell surface molecules share structural homology with the c-Met extracellular domain and can activate c-Met via clustering through this domain (e.g., plexins), whereas other receptor tyrosine kinases can enhance c-Met activation and signalling through intracellular signalling cascades (e.g., EGFR). In this review, we provide an overview of c-Met interactions and crosstalk with partner molecules and the functional consequences of these interactions on c-Met activation and downstream signalling, c-Met intracellular localization/recycling and c-Met degradation.
Collapse
Affiliation(s)
- Giuditta Viticchiè
- MRC (Medical Research Council) Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.
| | - Patricia A J Muller
- MRC (Medical Research Council) Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
27
|
|
28
|
Lee JK, Joo KM, Lee J, Yoon Y, Nam DH. Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. Onco Targets Ther 2014; 7:1933-44. [PMID: 25364264 PMCID: PMC4211615 DOI: 10.2147/ott.s36582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common human primary brain malignancy and has a dismal prognosis. Aggressive treatments using maximal surgical resection, radiotherapy, and temozolomide result in median survival of only 14.6 months in patients with GBM. Numerous clinical approaches using small molecule inhibitors have shown disappointing results because of the genetic heterogeneity of GBM. The epithelial to mesenchymal transition (EMT) is a crucial biological process occurring in the early development stages of many species. However, cancer cells often obtain the ability to invade and metastasize through the EMT, which triggers the scattering of cells. The hepatocyte growth factor (HGF)/MET signaling pathway is indicative of the EMT during both embryogenesis and the invasive growth of tumors, because HGF potently induces mesenchymal transition in epithelial-driven cells. Activation of MET signaling or co-overexpression of HGF and MET frequently represents aggressive growth and poor prognosis of various cancers, including GBM. Thus, efforts to treat cancers by inhibiting MET signaling using neutralizing antibodies or small molecule inhibitors have progressed during the last decade. In this review, we discuss HGF/MET signaling in the development of diseases, including cancers, as well as updates on MET inhibition therapy.
Collapse
Affiliation(s)
- Jin-Ku Lee
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea ; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yeup Yoon
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea ; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Sohn J, Liu S, Parinyanitikul N, Lee J, Hortobagyi GN, Mills GB, Ueno NT, Gonzalez-Angulo AM. cMET Activation and EGFR-Directed Therapy Resistance in Triple-Negative Breast Cancer. J Cancer 2014; 5:745-53. [PMID: 25368674 PMCID: PMC4216798 DOI: 10.7150/jca.9696] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/15/2014] [Indexed: 01/17/2023] Open
Abstract
Background: EGFR expression and pathway activation are common in triple-negative breast cancer (TNBC). However, anti-EGFR therapies have not been effective in these patients. We aimed to study the efficacy of targeting MET in overcoming resistance to EGFR therapy in TNBC cell lines. Methods: TNBC lines (MDA-MB-468, HCC-1395, and MDA-MB-231), and a hormone receptor-positive breast cancer line (T47D) were stimulated with epidermal growth factor (EGF) and hepatocyte growth factor (HGF). Lines were then treated with different concentrations of EGFR inhibitors (gefitinib or cetuximab), with or without a MET tyrosine kinase inhibitor (EMD 1214063). Proliferation was measured by MTS assay, in soft agar and with a matrigel assay. Synergy was measured with Calcusyn. Protein expression and signaling were examined with immunoblotting. Results: There was activation of ligand-receptor-downstream signaling pathways in MDA-MB-468 and HCC-1395 upon stimulation with EGF and HGF. In these cell lines, we observed synergism when combining EGFR and MET inhibitors. These results were observed across assays. In western blotting, combination therapy resulted in abrogation of pAKT and pMAPK while monotherapy did not. Conclusion: Our data demonstrate that dual EGFR/MET inhibition is synergistic in TNBC. Targeting both EGFR and MET receptors may provide an effective therapeutic strategy in TNBC.
Collapse
Affiliation(s)
- Joohyuk Sohn
- 1. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA ; 2. Division of Medical Oncology, Department of Internal Medicine, Breast Cancer Clinic, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Shuying Liu
- 1. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Napa Parinyanitikul
- 1. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jangsoon Lee
- 1. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel N Hortobagyi
- 1. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- 3. Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- 1. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana M Gonzalez-Angulo
- 1. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA ; 3. Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Patnaik A, Weiss GJ, Papadopoulos KP, Hofmeister CC, Tibes R, Tolcher A, Isaacs R, Jac J, Han M, Payumo FC, Cotreau MM, Ramanathan RK. Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br J Cancer 2014; 111:272-80. [PMID: 24901237 PMCID: PMC4102944 DOI: 10.1038/bjc.2014.290] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Ficlatuzumab, a humanised hepatocyte growth factor (HGF) IgG1κ inhibitory monoclonal antibody, was evaluated for recommended phase II dose (RP2D), safety, pharmacokinetics (PKs), antidrug antibody (ADA), pharmacodynamics (PDs) and antitumour activity as monotherapy or combined with erlotinib. METHODS Patients with solid tumours received ficlatuzumab 2, 5, 10 or 20 mg kg(-1) intravenously every 2 weeks (q2w). Additional patients were treated at the RP2D erlotinib. RESULTS Forty-one patients enrolled at doses ⩽20 mg kg(-1). Common adverse events (AEs) included peripheral oedema, fatigue and nausea. Three patients experienced grade ⩾3 treatment-related hyperkalaemia/hypokalaemia, diarrhoea or fatigue. Best overall response (44%) was stable disease (SD); median duration was 5.5 months (0.4-18.7 months). One patient has been on therapy with SD for >4 years. Pharmacokinetics of ficlatuzumab showed low clearance (0.17-0.26 ml h(-1) kg(-1)), a half-life of 6.8-9.4 days and dose-proportional exposure. Ficlatuzumab/erlotinib had no impact on the PK of either agent. No ADAs were detected. Ficlatuzumab increased serum HGF levels. CONCLUSIONS Recommended phase II dose is 20 mg kg(-1) q2w for ficlatuzumab monotherapy or with erlotinib. Preliminary antitumour activity and manageable AEs were observed. Pharmacokinetics were dose-proportional and consistent with other IgG therapeutics. Ficlatuzumab was not immunogenic, and serum HGF was a potential PD marker.
Collapse
Affiliation(s)
- A Patnaik
- Clinical Research, South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, San Antonio, TX 78229, USA
| | - G J Weiss
- Division of Hematology and Medical Oncology, Virginia G Piper Cancer Center, 10460 North 92nd Street, Suite 101, Scottsdale, AZ 85258, USA
| | - K P Papadopoulos
- Clinical Research, South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, San Antonio, TX 78229, USA
| | - C C Hofmeister
- Hematology Division Internal Medicine Department, Ohio State University, 320 West 10th Avenue, Columbus, OH 43210, USA
| | - R Tibes
- Division of Hematology and Medical Oncology, Virginia G Piper Cancer Center, 10460 North 92nd Street, Suite 101, Scottsdale, AZ 85258, USA
| | - A Tolcher
- Clinical Research, South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, San Antonio, TX 78229, USA
| | - R Isaacs
- Merck, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - J Jac
- AVEO Pharmaceuticals, Inc., 75 Sidney Street, Cambridge, MA 02139, USA
| | - M Han
- AVEO Pharmaceuticals, Inc., 75 Sidney Street, Cambridge, MA 02139, USA
| | - F C Payumo
- AVEO Pharmaceuticals, Inc., 75 Sidney Street, Cambridge, MA 02139, USA
| | - M M Cotreau
- AVEO Pharmaceuticals, Inc., 75 Sidney Street, Cambridge, MA 02139, USA
| | - R K Ramanathan
- Division of Hematology and Medical Oncology, Virginia G Piper Cancer Center, 10460 North 92nd Street, Suite 101, Scottsdale, AZ 85258, USA
| |
Collapse
|
31
|
Kim B, Wang S, Lee JM, Jeong Y, Ahn T, Son DS, Park HW, Yoo HS, Song YJ, Lee E, Oh YM, Lee SB, Choi J, Murray JC, Zhou Y, Song PH, Kim KA, Weiner LM. Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy. Oncogene 2014; 34:1083-93. [PMID: 24662823 DOI: 10.1038/onc.2014.51] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/30/2013] [Accepted: 01/14/2014] [Indexed: 12/28/2022]
Abstract
Met is a receptor tyrosine kinase that promotes cancer progression. In addition, Met has been implicated in resistance of tumors to various targeted therapies such as epidermal growth factor receptor inhibitors in lung cancers, and has been prioritized as a key molecular target for cancer therapy. However, the underlying mechanism of resistance to Met-targeting drugs is poorly understood. Here, we describe screening of 1310 genes to search for key regulators related to drug resistance to an anti-Met therapeutic antibody (SAIT301) by using a small interfering RNA-based synthetic lethal screening method. We found that knockdown of 69 genes in Met-amplified MKN45 cells sensitized the antitumor activity of SAIT301. Pathway analysis of these 69 genes implicated fibroblast growth factor receptor (FGFR) as a key regulator for antiproliferative effects of Met-targeting drugs. Inhibition of FGFR3 increased target cell apoptosis through the suppression of Bcl-xL expression, followed by reduced cancer cell growth in the presence of Met-targeting drugs. Treatment of cells with the FGFR inhibitors substantially restored the efficacy of SAIT301 in SAIT301-resistant cells and enhanced the efficacy in SAIT301-sensitive cells. In addition to FGFR3, integrin β3 is another potential target for combination treatment with SAIT301. Suppression of integrin β3 decreased AKT phosphorylation in SAIT301-resistant cells and restored SAIT301 responsiveness in HCC1954 cells, which are resistant to SAIT301. Gene expression analysis using CCLE database shows that cancer cells with high levels of FGFR and integrin β3 are resistant to crizotinib treatment, suggesting that FGFR and integrin β3 could be used as predictive markers for Met-targeted therapy and provide a potential therapeutic option to overcome acquired and innate resistance for the Met-targeting drugs.
Collapse
Affiliation(s)
- B Kim
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - S Wang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - J M Lee
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Y Jeong
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - T Ahn
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - D-S Son
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - H W Park
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - H-s Yoo
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Y-J Song
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - E Lee
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Y M Oh
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - S B Lee
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - J Choi
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - J C Murray
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Y Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - P H Song
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - K-A Kim
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - L M Weiner
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
32
|
Targeting of Both the c-Met and EGFR Pathways Results in Additive Inhibition of Lung Tumorigenesis in Transgenic Mice. Cancers (Basel) 2013; 2:2153-70. [PMID: 21390244 PMCID: PMC3049550 DOI: 10.3390/cancers2042153] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
EGFR and c-Met are both overexpressed in lung cancer and initiate similar downstream signaling, which may be redundant. To determine how frequently ligands that initiate signaling of both pathways are found in lung cancer, we analyzed serum for hepatocyte growth factor (HGF), transforming growth factor-alpha, and amphiregulin (AREG) in lung cancer cases and tobacco-exposed controls. HGF and AREG were both significantly elevated in cases compared to controls, suggesting that both HGF/c-Met and AREG/EGFR pathways are frequently active. When both HGF and AREG are present in vitro, downstream signaling to MAPK and Akt in non-small cell lung cancer (NSCLC) cells can only be completely inhibited by targeting both pathways. To test if dual blockade of the pathways could better suppress lung tumorigenesis in an animal model than single blockade, mice transgenic for airway expression of human HGF were treated with inhibitors of both pathways alone and in combination after exposure to a tobacco carcinogen. Mean tumor number in the group using both the HGF neutralizing antibody L2G7 and the EGFR inhibitor gefitinib was significantly lower than with single agents. A higher tumor K-ras mutation rate was observed with L2G7 alone compared to controls, suggesting that agents targeting HGF may be less effective against mutated K-ras lung tumors. This was not observed with combination treatment. A small molecule c-Met inhibitor decreased formation of both K-ras wild-type and mutant tumors and showed additive anti-tumor effects when combined with gefitinib. Dual targeting of c-Met/EGFR may have clinical benefit for lung cancer.
Collapse
|
33
|
Kim YJ, Choi JS, Seo J, Song JY, Eun Lee S, Kwon MJ, Kwon MJ, Kundu J, Jung K, Oh E, Shin YK, Choi YL. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. Int J Cancer 2013; 134:2424-36. [DOI: 10.1002/ijc.28566] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Jin Kim
- Laboratory of Cancer Genomics and Molecular Pathology; Samsung Biomedical Research Institute, Samsung Medical Center; Seoul Korea
| | - Jong-Sun Choi
- Department of Pathology; Ilsan Hospital, Dongguk University; Gyeonggi Korea
| | - Jinwon Seo
- Department of Pathology; Hallym University Sacred Heart Hospital; Hallym University College of Medicine; Gyeonggi Korea
| | - Ji-Young Song
- Laboratory of Cancer Genomics and Molecular Pathology; Samsung Biomedical Research Institute, Samsung Medical Center; Seoul Korea
- Institute for Refractory Cancer Research; Samsung Medical Center; Seoul Korea
| | - Seung Eun Lee
- Department of Pathology; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Mi Jung Kwon
- Department of Pathology; Hallym University Sacred Heart Hospital; Hallym University College of Medicine; Gyeonggi Korea
| | - Mi Jeong Kwon
- College of Pharmacy; Kyungpook National University; Daegu Korea
- Research Institute of Pharmaceutical Sciences; College of Pharmacy, Kyungpook National University; Daegu Korea
| | - Juthika Kundu
- College of Pharmacy; Keimyung University; Daegu Korea
| | - Kyungsoo Jung
- Laboratory of Cancer Genomics and Molecular Pathology; Samsung Biomedical Research Institute, Samsung Medical Center; Seoul Korea
- Samsung Advanced Institute for Health Sciences & Technology; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Ensel Oh
- Laboratory of Cancer Genomics and Molecular Pathology; Samsung Biomedical Research Institute, Samsung Medical Center; Seoul Korea
- Institute for Refractory Cancer Research; Samsung Medical Center; Seoul Korea
- Samsung Advanced Institute for Health Sciences & Technology; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy; College of Pharmacy, Seoul National University; Seoul Korea
| | - Yoon-La Choi
- Laboratory of Cancer Genomics and Molecular Pathology; Samsung Biomedical Research Institute, Samsung Medical Center; Seoul Korea
- Institute for Refractory Cancer Research; Samsung Medical Center; Seoul Korea
- Department of Pathology; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
- Samsung Advanced Institute for Health Sciences & Technology; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
34
|
Xie Q, Su Y, Dykema K, Johnson J, Koeman J, De Giorgi V, Huang A, Schlegel R, Essenburg C, Kang L, Iwaya K, Seki S, Khoo SK, Zhang B, Buonaguro F, Marincola FM, Furge K, Vande Woude GF, Shinomiya N. Overexpression of HGF Promotes HBV-Induced Hepatocellular Carcinoma Progression and Is an Effective Indicator for Met-Targeting Therapy. Genes Cancer 2013; 4:247-60. [PMID: 24167653 PMCID: PMC3807646 DOI: 10.1177/1947601913501075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/13/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B virus (HBV) is a well-known cause of hepatocellular carcinoma (HCC), but the regulators effectively driving virus production and HCC progression remain unclear. By using genetically engineered mouse models, we show that overexpression of hepatocyte growth factor (HGF) accelerated HCC progression, supporting the genomic analysis that an up-regulated HGF signature is associated with poor prognosis in HBV-positive HCC patients. We show that for both liver regeneration and spontaneous HCC development there is an inclusive requirement for MET expression, and when HGF induces autocrine activation the tumor displays sensitivity to a small-molecule Met inhibitor. Our results demonstrate that HGF is a driver of HBV-induced HCC progression and may serve as an effective biomarker for Met-targeted therapy. MET inhibitors are entering clinical trials against cancer, and our data provide a molecular basis for targeting the Met pathway in hepatitis B-induced HCC.
Collapse
Affiliation(s)
- Qian Xie
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Lung cancer remains the most common cause of cancer-related death in the United States. At presentation, the majority of patients have regional or systemic metastases and therefore require systemic therapy. For years, chemotherapy was the only systemic therapy option. A major paradigm shift has occurred in recent years with the identification of driver genetic alterations in some non-small cell lung cancers (NSCLCs). It is part of current standard of care to assess epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) translocations in tumors of patients with advanced NSCLC. Drugs targeting these mutations provide significant clinical benefit and are the preferred therapeutic option in these patients. Ongoing clinical trials are assessing the clinical benefit from targeting other driver genetic alterations. Further therapeutic targets have been identified through greater understanding of the variety of molecular processes that facilitate tumor formation and progression. Some of these new therapeutic targets are heat shock proteins and targets that can allow enhanced anti-tumor immune response. It is expected that these advances will allow personalized management of NSCLC patients and move us away from approaching all NSCLC patients with the same therapeutic tools.
Collapse
|
36
|
Haura EB, Smith MA. Signaling control by epidermal growth factor receptor and MET: rationale for cotargeting strategies in lung cancer. J Clin Oncol 2013; 31:4148-50. [PMID: 24101046 DOI: 10.1200/jco.2013.50.8234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eric B Haura
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | |
Collapse
|
37
|
van der Meel R, Oliveira S, Altintas I, Heukers R, Pieters EHE, van Bergen en Henegouwen PMP, Storm G, Hennink WE, Kok RJ, Schiffelers RM. Inhibition of tumor growth by targeted anti-EGFR/IGF-1R nanobullets depends on efficient blocking of cell survival pathways. Mol Pharm 2013; 10:3717-27. [PMID: 23889133 DOI: 10.1021/mp400212v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The clinical efficacy of epidermal growth factor receptor (EGFR)-targeted inhibitors is limited due to resistance mechanisms of the tumor such as activation of compensatory pathways. Crosstalk between EGFR and insulin-like growth factor 1 (IGF-1R) signaling has been frequently described to be involved in tumor proliferation and resistance. One of the attractive features of nanomedicines is the possibility to codeliver agents that inhibit different molecular targets in one nanocarrier system, thereby strengthening the antitumor effects of the individual agents. Additionally, exposure to healthy tissues and related unwanted side-effects can be reduced. To this end, we have recently developed anti-EGFR nanobody (Nb)-liposomes loaded with the anti-IGF-1R kinase inhibitor AG538, which showed promising antiproliferative effects in vitro. In the present study, we have further evaluated the potential of this dual-active nanomedicine in vitro and for the first time in vivo. As intended, the nanomedicine inhibited EGFR and IGF-1R signaling and subsequent activation of downstream cell proliferation and survival pathways. The degree of inhibition induced by the nanomedicine on a molecular level correlated with cytotoxicity in tumor cell proliferation assays and may even be predictive of the response to nanomedicine treatment in tumor xenograft models. Combination therapy with kinase inhibitor-loaded Nb-liposomes is therefore an appealing strategy for inhibiting the proliferation of tumors that are highly dependent on EGFR and IGF-1R signaling.
Collapse
Affiliation(s)
- Roy van der Meel
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Spiess C, Merchant M, Huang A, Zheng Z, Yang NY, Peng J, Ellerman D, Shatz W, Reilly D, Yansura DG, Scheer JM. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat Biotechnol 2013; 31:753-8. [DOI: 10.1038/nbt.2621] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/20/2013] [Indexed: 11/09/2022]
|
39
|
Castoldi R, Ecker V, Wiehle L, Majety M, Busl-Schuller R, Asmussen M, Nopora A, Jucknischke U, Osl F, Kobold S, Scheuer W, Venturi M, Klein C, Niederfellner G, Sustmann C. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013; 32:5593-601. [PMID: 23812422 PMCID: PMC3898114 DOI: 10.1038/onc.2013.245] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 02/08/2023]
Abstract
Simultaneous targeting of epidermal growth factor receptor (EGFR) and Met in cancer therapy is under pre-clinical and clinical evaluation. Here, we report the finding that treatment with EGFR inhibitors of various tumor cells, when stimulated with hepatocyte growth factor (HGF) and EGF, results in transient upregulation of phosphorylated AKT. Furthermore, EGFR inhibition in this setting stimulates a pro-invasive phenotype as assessed in Matrigel-based assays. Simultaneous treatment with AKT and EGFR inhibitors abrogates this invasive growth, hence functionally linking signaling and phenotype. This observation implies that during treatment of tumors a balanced ratio of EGFR and Met inhibition is required. To address this, we designed a bispecific antibody targeting EGFR and Met, which has the advantage of a fixed 2:1 stoichiometry. This bispecific antibody inhibits proliferation in tumor cell cultures and co-cultures with fibroblasts in an additive manner compared with treatment with both single agents. In addition, cell migration assays reveal a higher potency of the bispecific antibody in comparison with the antibodies' combination at low doses. We demonstrate that the bispecific antibody inhibits invasive growth, which is specifically observed with cetuximab. Finally, the bispecific antibody potently inhibits tumor growth in a non-small cell lung cancer xenograft model bearing a strong autocrine HGF-loop. Together, our findings strongly support a combination treatment of EGFR and Met inhibitors and further evaluation of resistance mechanisms to EGFR inhibition in the context of active Met signaling.
Collapse
Affiliation(s)
- R Castoldi
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - V Ecker
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - L Wiehle
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Majety
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - R Busl-Schuller
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Asmussen
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - A Nopora
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - U Jucknischke
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - F Osl
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - S Kobold
- Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - W Scheuer
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Venturi
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - C Klein
- pRED, Roche Glycart AG, Schlieren, Switzerland
| | - G Niederfellner
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - C Sustmann
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
40
|
Graveel CR, Tolbert D, Vande Woude GF. MET: a critical player in tumorigenesis and therapeutic target. Cold Spring Harb Perspect Biol 2013; 5:a009209. [PMID: 23818496 PMCID: PMC3685898 DOI: 10.1101/cshperspect.a009209] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its discovery more than 25 years ago, numerous studies have established that the MET receptor is unique among tyrosine kinases. Signaling through MET is necessary for normal development and for the progression of a wide range of human cancers. MET activation has been shown to drive numerous signaling pathways; however, it is not clear how MET signaling mediates diverse cellular responses such as motility, invasion, growth, and angiogenesis. Great strides have been made in understanding the pleotropic aspects of MET signaling using three-dimensional molecular structures, cell culture systems, human tumors, and animal models. These combined approaches have driven the development of MET-targeted therapeutics that have shown promising results in the clinic. Here we examine the unique features of MET and hepatocyte growth factor/scatter factor (HGF/SF) structure and signaling, mutational activation, genetic mouse models of MET and HGF/SF, and MET-targeted therapeutics.
Collapse
Affiliation(s)
- Carrie R Graveel
- Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | |
Collapse
|
41
|
Koudelakova V, Kneblova M, Trojanec R, Drabek J, Hajduch M. Non-small cell lung cancer - genetic predictors. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 157:125-36. [DOI: 10.5507/bp.2013.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/25/2013] [Indexed: 01/14/2023] Open
|
42
|
Mehta R, Katta H, Alimirah F, Patel R, Murillo G, Peng X, Muzzio M, Mehta RG. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells. PLoS One 2013; 8:e65113. [PMID: 23762292 PMCID: PMC3677900 DOI: 10.1371/journal.pone.0065113] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/23/2013] [Indexed: 12/24/2022] Open
Abstract
Background Treatment of breast cancer patients with antiestrogens and aromatase inhibitor(s) or Herceptin have shown significant success in steroid receptor positive or Her-2+ breast cancers respectively. However, choice of treatments for breast cancer patients with negative status for estrogen, progesterone receptors and HER2/neu is limited. As a result, search for appropriate therapy regimen for these triple negative breast cancers (TNBC) has become a major focus of investigations for many laboratories. Recently, Deguelin, a natural product isolated from African plant Mundulea sericea (Leguminossae) has shown both antiproliferative actions in various cancers including breast as well as chemoprenventive activity against carcinogen induced experimental cancers. In this report we evaluated efficacy and mechanism of action of Deguelin in triple negative breast cancer cell lines. Methods/Findings In vitro, Deguelin in a dose and time dependent manner inhibited the growth of MDA-MB-231, MDA-MB-468, BT-549 and BT-20 cells. Deguelin (2 or 4 mg/kg body weight), when injected intraperitoneally, reduced the in vivo tumor growth of MDA-MB-231 cells transplanted subcutaneously in athymic mice. Moreover it was nontoxic as evident from daily observations on mobility, food and water consumption and comparison of bodyweight and other visceral organ weights with those in control animals at the termination of the study. The western blot analyses and immunostaining studies indicated that the deguelin effects may be mediated through EGFR-PAKT/c-Met p-ERK and NF-κB by down regulating their downstream targets such as p-STAT3, c-Myc, Survivin. Conclusion/Significance These results suggest that Deguelin may have a significant therapeutic value for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Rajeshwari Mehta
- Cancer Biology and Analytical Chemistry Divisions, IIT Research Institute, Chicago, Illinois, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang YW, Staal B, Essenburg C, Lewis S, Kaufman D, Vande Woude GF. Strengthening context-dependent anticancer effects on non-small cell lung carcinoma by inhibition of both MET and EGFR. Mol Cancer Ther 2013; 12:1429-41. [PMID: 23720767 DOI: 10.1158/1535-7163.mct-13-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MET and EGFR receptor tyrosine kinases (RTK) are often coexpressed and may cross-talk in driving the development and progression of non-small cell lung carcinoma (NSCLC). In addition, MET amplification is an alternative resistance mechanism for escaping EGFR-targeted therapy. To assess the benefits of combined targeting of MET and EGFR for treating NSCLCs, we investigated the activities of these two RTK pathways in NSCLC cell lines and evaluated their responses to SGX523 and erlotinib, the small-molecule kinase inhibitors of MET and EGFR, respectively. We showed that MET interacts with and cross-activates EGFR in MET-amplified or -overexpressed cells. The inhibition of both MET and EGFR results in maximal suppression of downstream signaling and of cell proliferation when their ligands are present. Furthermore, we showed that SGX523 plus erlotinib strengthens anticancer activity in vivo in a cellular context-dependent manner. The combination led to the regression of H1993 tumors by enhancing the suppression of proliferation and inducing apoptosis, whereas H1373 tumor growth was significantly reduced by the combination via suppression of proliferation without inducing apoptosis. SGX523 alone was sufficient to achieve near-complete regression of EBC-1 tumors; its combination with erlotinib strongly inhibited the viability of a population of insensitive cells emerging from an SGX523-treated EBC-1 tumor recurrence. Our data suggest that inhibition of both MET and EGFR can enhance anticancer effects against NSCLCs in a context-dependent manner and thus provide a strong rationale for combining MET and EGFR inhibitors in treating NSCLCs.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Awazu Y, Nakamura K, Mizutani A, Kakoi Y, Iwata H, Yamasaki S, Miyamoto N, Imamura S, Miki H, Hori A. A novel inhibitor of c-Met and VEGF receptor tyrosine kinases with a broad spectrum of in vivo antitumor activities. Mol Cancer Ther 2013; 12:913-24. [PMID: 23548264 DOI: 10.1158/1535-7163.mct-12-1011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are dysregulated in a wide variety of human cancers and are linked with tumorigenesis and metastatic progression. VEGF also plays a key role in tumor angiogenesis and progression by stimulating the proangiogenic signaling of endothelial cells via activation of VEGF receptor tyrosine kinases (VEGFR). Therefore, inhibiting both HGF/c-Met and VEGF/VEGFR signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of tumors. Toward this goal, we generated and characterized T-1840383, a small-molecule kinase inhibitor that targets both c-Met and VEGFRs. T-1840383 inhibited HGF-induced c-Met phosphorylation and VEGF-induced VEGFR-2 phosphorylation in cancer epithelial cells and vascular endothelial cells, respectively. It also inhibited constitutively activated c-Met phosphorylation in c-met-amplified cancer cells, leading to suppression of cell proliferation. In addition, T-1840383 potently blocked VEGF-dependent proliferation and capillary tube formation of endothelial cells. Following oral administration, T-1840383 showed potent antitumor efficacy in a wide variety of human tumor xenograft mouse models, along with reduction of c-Met phosphorylation levels and microvessel density within tumor xenografts. These results suggest that the efficacy of T-1840383 is produced by direct effects on tumor cell growth and by an antiangiogenic mechanism. Furthermore, T-1840383 showed profound antitumor activity in a gastric tumor peritoneal dissemination model. Collectively, our findings indicate the therapeutic potential of targeting both c-Met and VEGFRs simultaneously with a single small-molecule inhibitor for the treatment of human cancers.
Collapse
Affiliation(s)
- Yoshiko Awazu
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company, Ltd., Fujisawa, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen G, Noor A, Kronenberger P, Teugels E, Umelo IA, De Grève J. Synergistic effect of afatinib with su11274 in non-small cell lung cancer cells resistant to gefitinib or erlotinib. PLoS One 2013; 8:e59708. [PMID: 23527257 PMCID: PMC3601073 DOI: 10.1371/journal.pone.0059708] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/17/2013] [Indexed: 11/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and c-MET receptors are expressed on many non-small cell lung cancer (NSCLC) cells. Current single agent therapeutic targeting of a mutant EGFR has a high efficacy in the clinic, but is not curative. Here, we investigated the combination of targeting EGFR and c-MET pathways in NSCLC cells resistant to receptor tyrosine kinase inhibitors (TKIs), using RNA interference and inhibition by TKIs. Different NSCLC cell lines with various genomic characteristics (H358, H1650 and H1975) were transfected with EGFR-specific-siRNA, T790M-specific-siRNA, c-MET siRNA or the combination. Subsequently EGFR TKIs (gefitinib, erlotinib or afatinib) or monoclonal antibody cetuximab were combined respectively with the c-MET-specific TKI su11274 in NSCLC cell lines. The cell proliferation, viability, caspase-3/7 activity and apoptotic morphology were monitored by spectrophotometry, fluorimetry and fluorescence microscopy. The combined effect of EGFR TKIs, or cetuximab and su11274, was evaluated using a combination index. The results showed that the cell lines that were relatively resistant to EGFR TKIs, especially the H1975 cell line containing the resistance T790M mutation, were found to be more sensitive to EGFR-specific-siRNA. The combination of EGFR siRNA plus c-MET siRNA enhanced cell growth inhibition, apoptosis induction and inhibition of downstream signaling in EGFR TKI resistant H358, H1650 and H1975 cells, despite the absence of activity of the c-MET siRNA alone. EGFR TKIs or cetuximab plus su11274 were also consistently superior to either agent alone. The strongest biological effect was observed when afatinib, an irreversible pan-HER blocker was combined with su11274, which achieved a synergistic effect in the T790M mutant H1975 cells. In a conclusion, our findings offer preclinical proof of principle for combined inhibition as a promising treatment strategy for NSCLC, especially for patients in whom current EGFR-targeted treatments fail due to the presence of the T790M-EGFR-mutation or high c-MET expression.
Collapse
Affiliation(s)
- Gang Chen
- Department of Pathology, First Affiliated Hospital, Guangxi Medical University, Nanning Guangxi, People's Republic of China
- Laboratory of Medical and Molecular Oncology, Department of Medical Oncology, Oncology Center, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alfiah Noor
- Laboratory of Medical and Molecular Oncology, Department of Medical Oncology, Oncology Center, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Kronenberger
- Laboratory of Medical and Molecular Oncology, Department of Medical Oncology, Oncology Center, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Biotechnology, Departement Gezondheidszorg, Erasmushogeschool Brussel, Brussels, Belgium
| | - Erik Teugels
- Laboratory of Medical and Molecular Oncology, Department of Medical Oncology, Oncology Center, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ijeoma Adaku Umelo
- Laboratory of Medical and Molecular Oncology, Department of Medical Oncology, Oncology Center, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology, Department of Medical Oncology, Oncology Center, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
46
|
Abstract
Radiotherapy is the most widely used therapeutic modality in brain metastasis; however, it only provides palliation due to inevitable tumor recurrence. Resistance of tumor cells to ionizing radiation is a major cause of treatment failure. A critical unmet need in oncology is to develop rationale driven approaches that can enhance the efficacy of radiotherapy against metastatic tumor. Utilizing in vivo orthotopic primary tumor and brain metastasis models that recapitulate clinical situation of the patients with metastatic breast cancer, we investigated a molecular mechanism through which metastatic tumor cells acquire resistance to radiation. Recent studies have demonstrated that the hepatocyte growth factor (HGF)-c-Met pathway is essential for the pathologic development and progression of many human cancers such as proliferation, invasion and resistance to anticancer therapies. In this study, c-Met signaling activity as well as total c-Met expression was significantly upregulated in both breast cancer cell lines irradiated in vitro and ex vivo radio-resistant cells derived from breast cancer brain metastatic xenografts. To interrogate the role of c-Met signaling in radioresistance of brain metastasis, we evaluated the effects on tumor cell viability, clonogenicity, sensitivity to radiation, and in vitro/in vivo tumor growth after targeting c-Met by small-hairpin RNA (shRNA) or small-molecule kinase inhibitor (PF-2341066). Although c-Met silencing or radiation alone demonstrated a modest decrease in clonogenic growth of parental breast cancers and brain metastatic derivatives, combination of two modalities showed synergistic antitumor effects resulting in significant prolongation of overall survival in tumor-bearing mice. Taken together, optimizing c-Met targeting in combination with radiation is critical to enhance the effectiveness of radiotherapy in the treatments of brain metastasis.
Collapse
|
47
|
Robinson KW, Sandler AB. The role of MET receptor tyrosine kinase in non-small cell lung cancer and clinical development of targeted anti-MET agents. Oncologist 2013; 18:115-22. [PMID: 23345546 PMCID: PMC3579594 DOI: 10.1634/theoncologist.2012-0262] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the pathophysiology and evolution of non-small cell lung cancer (NSCLC) has identified a number of molecular targets and spurred development of novel targeted therapeutic agents. The MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) are implicated in tumor cell proliferation, migration, invasion, and angiogenesis in a broad spectrum of human cancers, including NSCLC. Amplification of MET has been reported in approximately 5%-22% of lung tumors with acquired resistance to small-molecule inhibitors of the epidermal growth factor receptor (EGFR). Resistance to EGFR inhibitors is likely mediated through downstream activation of the phosphoinositide 3-kinase /AKT pathway. Simultaneous treatment of resistant tumors with a MET inhibitor plus an EGFR inhibitor can abrogate activation of downstream effectors of cell growth, proliferation, and survival, thereby overcoming acquired resistance to EGFR inhibitors. Development and preclinical testing of multiple agents targeting the HGF-MET pathway, including monoclonal antibodies targeting HGF or the MET receptor and small-molecule inhibitors of the MET tyrosine kinase, have confirmed the crucial role of this pathway in NSCLC. Several agents are now in phase III clinical development for the treatment of NSCLC. This review summarizes the role of MET in the pathophysiology of NSCLC and in acquired resistance to EGFR inhibitors and provides an update on progress in the clinical development of inhibitors of MET for treatment of NSCLC.
Collapse
Affiliation(s)
- Kyle W Robinson
- Oregon Health & Science Center, 3181 SW Sam Jackson Park Road, MC: L586, Portland, Oregon 97239, USA
| | | |
Collapse
|
48
|
|
49
|
C-Met inhibitor MK-8003 radiosensitizes c-Met-expressing non-small-cell lung cancer cells with radiation-induced c-Met-expression. J Thorac Oncol 2012; 7:1211-7. [PMID: 22617250 DOI: 10.1097/jto.0b013e318257cc89] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The radiation doses used to treat unresectable lung cancer are often limited by the proximity of normal tissues. Overexpression of c-Met, a receptor tyrosine kinase, occurs in about half of non-small-cell lung cancers (NSCLCs) and has been associated with resistance to radiation therapy and poor patient survival. We hypothesized that inhibiting c-Met would increase the sensitivity of NSCLC cells to radiation, enhancing the therapeutic ratio, which may potentially translate into improved local control. METHODS We tested the radiosensitivity of two high-c-Met-expressing NSCLC lines, EBC-1 and H1993, and two low-c-Met-expressing lines, A549 and H460, with and without the small-molecule c-Met inhibitor MK-8033. Proliferation and protein expression were measured with clonogenic survival assays and Western blotting, respectively. γ-H2AX levels were evaluated by immunofluorescence staining. RESULTS MK-8033 radiosensitized the high-c-Met-expressing EBC-1 and H1993 cells but not the low-c-Met-expressing cell lines A549 and H460. However, irradiation of A549 and H460 cells increased the expression of c-Met protein at 30 minutes after the irradiation. Subsequent targeting of this up-regulated c-Met by using MK-8033 followed by a second radiation dose reduced the clonogenic survival of both A549 and H460 cells. MK-8033 reduced the levels of radiation-induced phosphorylated (activated) c-Met in A549 cells. CONCLUSIONS These results suggest that inhibition of c-Met could be an effective strategy to radiosensitize NSCLC tumors with high basal c-Met expression or tumors that acquired resistance to radiation because of up-regulation of c-Met.
Collapse
|
50
|
Mimae T, Tsuta K, Kondo T, Nitta H, Grogan TM, Okada M, Asamura H, Tsuda H. Protein expression and gene copy number changes of receptor tyrosine kinase in thymomas and thymic carcinomas. Ann Oncol 2012; 23:3129-3137. [PMID: 22700994 DOI: 10.1093/annonc/mds147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Insulin-like growth factor-1 receptor (IGF-1R), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor-type 2 (HER2), and c-Met are members of the receptor tyrosine kinases (RTKs). The associations between the RTK status [protein expression and gene copy number (GCN)] and patient characteristics and between the RTK status and prognosis remain undetermined. MATERIALS AND METHODS The study included 140 patients who underwent surgery for thymic tumors. Protein expression was evaluated by immunohistochemistry (IHC) and GCN was evaluated by bright-field in situ hybridization (BISH). The correlations between the RTK status and clinicopathological findings were examined. RESULTS IGF-1R protein was frequently detected in thymic carcinoma (83.8%) and EGFR in thymic tumors (91.4%). Thirty-six and 39 tumors were BISH high for IGF-1R and EGFR, respectively: 28 and 25 exhibited high polysomy; 8 and 14 exhibited gene amplification. No tumor was positive for HER2 or c-Met by IHC and BISH. Multivariate analysis revealed that IGF-1R gene amplification (P = 0.027), thymic carcinoma histology, and higher tumor stage were significantly correlated with an adverse prognosis. CONCLUSIONS Thymic epithelial tumors frequently express IGF-1R and/or EGFR proteins. IGF-1R gene amplification is suggested to define an unfavorable subset for thymic epithelial tumors.
Collapse
Affiliation(s)
- T Mimae
- Divisions of Pathology and Clinical Laboratories, Japan; Divisions of Pharmaco-Proteomics, Japan; Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - K Tsuta
- Divisions of Pathology and Clinical Laboratories, Japan.
| | - T Kondo
- Divisions of Pharmaco-Proteomics, Japan
| | - H Nitta
- Department of Medical Innovation, Ventana Medical Systems, Inc., Tucson, USA
| | - T M Grogan
- Department of Medical Innovation, Ventana Medical Systems, Inc., Tucson, USA
| | - M Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - H Asamura
- Divisions of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - H Tsuda
- Divisions of Pathology and Clinical Laboratories, Japan
| |
Collapse
|