1
|
Nutsch K, Trujillo MN, Song L, Erb MA, Chen JJ, Galligan JJ, Bollong MJ. Augmented Acyl-CoA Biosynthesis Promotes Resistance to TEAD Palmitoylation Site Inhibition. ACS Chem Biol 2025; 20:967-975. [PMID: 40179049 DOI: 10.1021/acschembio.5c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Activation of the YAP-TEAD transcriptional complex drives the growth of several cancer types and is a key resistance mechanism to targeted therapies. Accordingly, a host of pharmacological inhibitors to TEAD family paralogs have been developed, yet little is known as to the resistance mechanisms that might arise against this emerging therapeutic class. Here, we report that genetic augmentation of de novo coenzyme A biosynthesis desensitizes YAP-dependent cancer cells to treatment with TEAD inhibitors, an effect driven by increased levels of palmitoyl-CoA that outcompete drug for engagement of the lipid-binding pocket. This work uncovers a potential therapeutic resistance mechanism to TEAD palmitoylation site inhibition with implications for future combinatorial treatments in the clinic.
Collapse
Affiliation(s)
- Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-0202, United States
| | - Lirui Song
- A Division of Scripps Research, Calibr-Skaggs Institute for Innovative Medicines, La Jolla, California 92037-1000, United States
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Jian Jeffery Chen
- A Division of Scripps Research, Calibr-Skaggs Institute for Innovative Medicines, La Jolla, California 92037-1000, United States
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-0202, United States
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| |
Collapse
|
2
|
Wen Y, Yang X, Li S, Huang L, Chen J, Tan L, Ma X, Zhu Y, Li Z, Shan C, Zhang C, Zhang Q, Liang M, Zhang H, Liu T. Targeting CDK4/6 suppresses colorectal cancer by destabilizing YAP1. MedComm (Beijing) 2025; 6:e70103. [PMID: 39968498 PMCID: PMC11832431 DOI: 10.1002/mco2.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly cancers worldwide. The Yes-associated protein 1 (YAP1) is frequently dysregulated in cancers, contributing to cancer stemness, chemoresistance, and cancer-related death. However, strategies directly targeting YAP1 have not yet been successful because of the lack of active binding pockets and unregulated toxicity. In this study, our Food and Drug Administration (FDA)-approved drug screening reveals that abemaciclib, a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, dramatically promotes the proteasome-dependent degradation of YAP1, thereby inhibiting tumor progression in CRC cells and patient-derived xenograft models. We further identify deubiquitinating enzyme 3 (DUB3) as the bona fide deubiquitinase of YAP1 in CRC. Mechanistically, CDK4/6 directly phosphorylates DUB3 at Ser41, activating DUB3 to deubiquitinate and stabilize YAP1. Conversely, loss of Ser41 phosphorylation by CDK4/6 inhibition or Ser41A mutation, promotes YAP1 degradation and suppresses YAP1-driven tumor progression. Histological analysis shows a positive correlation between DUB3 and YAP1 expression in CRC specimens. Collectively, our study uncovers a novel oncogenic role of the CDK4/6-DUB3 pathway, which promotes YAP1 stabilization and tumor-promoting function, highlighting that targeting CDK4/6 offers a potential therapeutic strategy for CRC with aberrantly upregulated DUB3 and YAP1.
Collapse
Affiliation(s)
- Yalei Wen
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of PharmacyJinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Xiao Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Shengrong Li
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of PharmacyJinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Lei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Lirong Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Xiuqing Ma
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Yingjie Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of PharmacyJinan UniversityGuangzhouChina
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical CenterNankai UniversityTianjinChina
| | - Qiushi Zhang
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of PharmacyJinan UniversityGuangzhouChina
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General HospitalJinan UniversityGuangzhouChina
| | - Mingchao Liang
- The Affiliated Shunde Hospital of Jinan UniversityFoshanChina
| | - Haoxing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Tongzheng Liu
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of PharmacyJinan UniversityGuangzhouChina
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
3
|
Furutake Y, Yamaguchi K, Yamanoi K, Kitamura S, Takamatsu S, Taki M, Ukita M, Hosoe Y, Murakami R, Abiko K, Horie A, Hamanishi J, Baba T, Matsumura N, Mandai M. YAP1 Suppression by ZDHHC7 Is Associated with Ferroptosis Resistance and Poor Prognosis in Ovarian Clear Cell Carcinoma. Mol Cancer Ther 2024; 23:1652-1665. [PMID: 38958503 DOI: 10.1158/1535-7163.mct-24-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment because of excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear yes-associated protein 1 (YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.
Collapse
MESH Headings
- Ferroptosis
- Humans
- Female
- Animals
- Mice
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Prognosis
- YAP-Signaling Proteins/metabolism
- Acyltransferases
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Cell Line, Tumor
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- Cell Proliferation
- Drug Resistance, Neoplasm
- Signal Transduction
Collapse
Affiliation(s)
- Yoko Furutake
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Masayo Ukita
- Department of Obstetrics and Gynecology, Shizuoka General Hospital, Shizuoka, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Li N, Liu YH, Wu J, Liu QG, Niu JB, Zhang Y, Fu XJ, Song J, Zhang SY. Strategies that regulate Hippo signaling pathway for novel anticancer therapeutics. Eur J Med Chem 2024; 276:116694. [PMID: 39047607 DOI: 10.1016/j.ejmech.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Fujimoto H, Yoshihara M, Rodgers R, Iyoshi S, Mogi K, Miyamoto E, Hayakawa S, Hayashi M, Nomura S, Kitami K, Uno K, Sugiyama M, Koya Y, Yamakita Y, Nawa A, Enomoto A, Ricciardelli C, Kajiyama H. Tumor-associated fibrosis: a unique mechanism promoting ovarian cancer metastasis and peritoneal dissemination. Cancer Metastasis Rev 2024; 43:1037-1053. [PMID: 38546906 PMCID: PMC11300578 DOI: 10.1007/s10555-024-10169-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 08/06/2024]
Abstract
Epithelial ovarian cancer (EOC) is often diagnosed in advanced stage with peritoneal dissemination. Recent studies indicate that aberrant accumulation of collagen fibers in tumor stroma has a variety of effects on tumor progression. We refer to remodeled fibrous stroma with altered expression of collagen molecules, increased stiffness, and highly oriented collagen fibers as tumor-associated fibrosis (TAF). TAF contributes to EOC cell invasion and metastasis in the intraperitoneal cavity. However, an understanding of molecular events involved is only just beginning to emerge. Further development in this field will lead to new strategies to treat EOC. In this review, we focus on the recent findings on how the TAF contributes to EOC malignancy. Furthermore, we will review the recent initiatives and future therapeutic strategies for targeting TAF in EOC.
Collapse
Affiliation(s)
- Hiroki Fujimoto
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Masato Yoshihara
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Raymond Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Shohei Iyoshi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Kazumasa Mogi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emiri Miyamoto
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sae Hayakawa
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maia Hayashi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynaecology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kaname Uno
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University Graduate School of Medicine, Lund, Sweden
| | - Mai Sugiyama
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Koya
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiko Yamakita
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Nawa
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Yang X, Liu Z, Wang X, Tian W, Zhao T, Yang Q, Li W, Yang L, Yang H, Jia Y. Anti-cancer effects of nitazoxanide in epithelial ovarian cancer in-vitro and in-vivo. Chem Biol Interact 2024; 400:111176. [PMID: 39084502 DOI: 10.1016/j.cbi.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Epithelial ovarian cancer is one of the most lethal gynecologic malignancies and poses a considerable threat to women's health. Although the progression-free survival of patients has been prolonged with the application of anti-angiogenesis drugs and Poly (ADP-ribose) polymerases (PARP) inhibitors, overall survival has not substantially improved. Thus, new therapeutic strategies are essential for the treatment of ovarian cancer. Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, has garnered attention for its potential anti-cancer activity. However, the anti-tumor effects and possible underlying mechanisms of NTZ on ovarian cancer remain unclear. In this study, we investigated the anti-tumor effects and the mechanism of NTZ on ovarian cancer in vitro and in vivo. We found that NTZ inhibited the proliferation of A2780 and SKOV3 epithelial ovarian cancer cells in a time- and concentration-dependent manner; Furthermore, NTZ suppressed the metastasis and invasion of A2780 and SKOV3 cells in vitro, correlating with the inhibition of epithelial-mesenchymal transition; Additionally, NTZ suppressed the Hippo/YAP/TAZ signaling pathway both in vitro and in vivo and demonstrated a good binding activity with core genes of Hippo pathway, including Hippo, YAP, TAZ, LATS1, and LATS2. Oral administration of NTZ inhibited tumor growth in xenograft ovarian cancer mice models without causing considerable damage to major organs. Overall, these data suggest that NTZ has therapeutic potential for treating epithelial ovarian cancer.
Collapse
Affiliation(s)
- Xiangqun Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Zhenyan Liu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Xin Wang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenda Tian
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Taoyu Zhao
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Yunnan, 678400, PR China
| | - Qiaoling Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenliang Li
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Linlin Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Hongying Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Yue Jia
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| |
Collapse
|
7
|
Choi SH, Kim DY. Regulation of Tumor Microenvironment through YAP/TAZ under Tumor Hypoxia. Cancers (Basel) 2024; 16:3030. [PMID: 39272887 PMCID: PMC11394240 DOI: 10.3390/cancers16173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Institute of Health & Environment, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs Inc., Seoul 08826, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Yonsei Liver Cancer Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Chen X, Lin X, Xia X, Xiang X. YAP1-induced RBM24 promotes the tumorigenesis of triple-negative breast cancer through the β-catenin pathway. J Investig Med 2024; 72:403-413. [PMID: 38441112 DOI: 10.1177/10815589241239577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and refractory to current treatments. RBM24 is an RNA-binding protein and shows the ability to regulate tumor progression in multiple cancer types. However, its role in TNBC is still unclear. In this study, we analyzed publicly available profiling data from TNBC tissues and cells. Loss- and gain-of-function experiments were performed to determine the function of RBM24 in TNBC cells. The mechanism for RBM24 action in TNBC was investigated. RBM24 was deregulated in TNBC tissues and TNBC cells with depletion of SIPA1, YAP1, or ARID1A, three key regulators of TNBC. Compared to MCF10A breast epithelial cells, TNBC cells had higher levels of RBM24. Knockdown of RBM24 inhibited TNBC cell proliferation, colony formation, and tumorigenesis, while overexpression of RBM24 promoted aggressive phenotype in TNBC cells. YAP1 overexpression induced the expression of RBM24 and the RBM24 promoter-driven luciferase reporter. YAP1 was enriched at the promoter region of RBM24. Overexpression of RBM24 increased β-catenin-dependent transcriptional activity. Most importantly, knockdown of CTNNB1 rescued RBM24 aggressive phenotype in TNBC cells. Collectively, the YAP1/RBM24/β-catenin axis plays a critical role in driving TNBC progression. RBM24 may represent a novel therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Xiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Jaliffa C, Rogel U, Sen I, Singer G. Comprehensive Genomic Characterization in Ovarian Low-Grade and Chemosensitive and Chemoresistant High-Grade Serous Carcinomas. Oncology 2024; 102:979-987. [PMID: 38697030 DOI: 10.1159/000538948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION Genomic characterization of serous ovarian carcinoma (SOC), which includes low-grade serous carcinoma (LGSC) and high-grade serous carcinoma (HGSC), remains necessary to improve efficacy of platinum-based chemotherapy. The aim of this study was to investigate the genomic variations in these SOC groups, also in relation to chemoresponse. METHODS Forty-five samples of SOC were retrospectively analyzed by next-generation sequencing on DNA/RNA extracts from formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained at diagnosis. HGSCs were classified as platinum-resistant and platinum-sensitive. RESULTS In the LGSC group, 44% of the carcinomas had mutually exclusive variants in the RAS/RAF pathway, while additional likely oncogenic variants in the CDKN2A, SMARCA4, and YAP1 genes were observed in the remaining LGSCs. Tumor mutation burden (TMB) was significantly lower in the intrinsically chemoresistant LGSC group than in the HGSC group. In the HGSC cohort, TP53 variants were found in 90% and homologous recombination repair (HRR) pathway variants in 41% of the neoplasms. HGSCs of the chemoresistant group without classic mutations in the HRR pathway were characterized by additional variants in FGFR2 and with an FGFR3::TACC3 fusion. In addition, HGSCs showed MYC, CCNE1, and AKT2 gains that were almost exclusively observed in the chemosensitive HGSC group. CONCLUSION These results suggest that very low TMB and MYC, CCNE1, and AKT2 gains in SOC patients may be biomarkers related to platinum treatment efficacy. Thorough genomic characterization of SOCs prior to treatment might lead to more specific platinum-based chemotherapy strategies.
Collapse
Affiliation(s)
- Carolina Jaliffa
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland,
| | - Uwe Rogel
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| | - Indrani Sen
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| | - Gad Singer
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| |
Collapse
|
10
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
11
|
Weidle UH, Birzele F. Deregulated circRNAs in Epithelial Ovarian Cancer With Activity in Preclinical In Vivo Models: Identification of Targets and New Modalities for Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:213-237. [PMID: 38670587 PMCID: PMC11059596 DOI: 10.21873/cgp.20442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is associated with a dismal prognosis due to development of resistance to chemotherapy and metastasis in the peritoneal cavity and distant organs. In order to identify new targets and treatment modalities we searched the literature for up- and and down-regulated circRNAs with efficacy in preclinical EOC-related in vivo systems. Our search yielded circRNAs falling into the following categories: cisplatin and paclitaxel resistance, transmembrane receptors, secreted factors, transcription factors, RNA splicing and processing factors, RAS pathway-related components, proteolysis and cell-cycle regulation, signaling-related proteins, and circRNAs regulating proteins in additional categories. These findings can be potentially translated by validation and manipulation of the corresponding targets, inhibition of circRNAs with antisense oligonucleotides (ASO), small interfering RNAs (siRNA) or small hairpin RNA (shRNA) or by reconstituting their activity.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
12
|
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H, Zou D. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer 2024; 23:66. [PMID: 38539161 PMCID: PMC10976737 DOI: 10.1186/s12943-024-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related death. Drug resistance is the bottleneck in ovarian cancer treatment. The increasing use of novel drugs in clinical practice poses challenges for the treatment of drug-resistant ovarian cancer. Continuing to classify drug resistance according to drug type without understanding the underlying mechanisms is unsuitable for current clinical practice. We reviewed the literature regarding various drug resistance mechanisms in ovarian cancer and found that the main resistance mechanisms are as follows: abnormalities in transmembrane transport, alterations in DNA damage repair, dysregulation of cancer-associated signaling pathways, and epigenetic modifications. DNA methylation, histone modifications and noncoding RNA activity, three key classes of epigenetic modifications, constitute pivotal mechanisms of drug resistance. One drug can have multiple resistance mechanisms. Moreover, common chemotherapies and targeted drugs may have cross (overlapping) resistance mechanisms. MicroRNAs (miRNAs) can interfere with and thus regulate the abovementioned pathways. A subclass of miRNAs, "epi-miRNAs", can modulate epigenetic regulators to impact therapeutic responses. Thus, we also reviewed the regulatory influence of miRNAs on resistance mechanisms. Moreover, we summarized recent phase I/II clinical trials of novel drugs for ovarian cancer based on the abovementioned resistance mechanisms. A multitude of new therapies are under evaluation, and the preliminary results are encouraging. This review provides new insight into the classification of drug resistance mechanisms in ovarian cancer and may facilitate in the successful treatment of resistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xin Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueping Zhu
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Zhong
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qingxiu Jiang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ya Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qin Tang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiaoling Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Cong Zhang
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Biological and Pharmaceutical Engineering, School of Medicine, Chongqing University, Chongqing, China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
13
|
Zhou W, Lim A, Elmadbouh OHM, Edderkaoui M, Osipov A, Mathison AJ, Urrutia R, Liu T, Wang Q, Pandol SJ. Verteporfin induces lipid peroxidation and ferroptosis in pancreatic cancer cells. Free Radic Biol Med 2024; 212:493-504. [PMID: 38184120 PMCID: PMC10906657 DOI: 10.1016/j.freeradbiomed.2024.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has extremely poor prognosis, with a 5-year survival rate of approximately 11 %. Yes-associated protein (YAP) is a major downstream effector of the Hippo-YAP pathway and plays a pivotal role in regulation of cell proliferation and organ regeneration and tumorigenesis. Activation of YAP signaling has been associated with PDAC progression and drug resistance. Verteporfin (VP) is a photosensitizer used for photodynamic therapy and previous work showed that it can function as a YAP inhibitor. The efficacy of VP on human cancer are being tested in several trials. In this study, we examined the effect of VP on reactive oxygen species (ROS) and lipid peroxidation in pancreatic cancer cells, by using fluorescent molecular probes and by measuring the levels of malondialdehyde, a metabolic byproduct and marker of lipid peroxidation. We found that VP causes rapid increase of both overall ROS and lipid peroxide levels, independent of light activation. These effects were not dependent on YAP, as knockdown of YAP did not cause ROS or lipid peroxidation or enhance VP-induced ROS production. Temoporfin, another photodynamic drug, did not show similar activities. In addition, VP treatment led to loss of cell membrane integrity and reduction of viability. Notably, the activity of VP to induce lipid peroxidation was neutralized by ferroptosis inhibitors ferrostatin-1 or liproxstatin-1. VP treatment also reduced the levels of glutathione peroxidase 4 (GPX4), an enzyme that protects against lipid peroxidation. These results indicate that VP can induce lipid peroxidation and ferroptosis in the absence of light activation. Our findings reveal a novel mechanism by which VP inhibits tumor growth and provide insights into development of new therapeutic strategies for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Arsen Osipov
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Angela J Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
14
|
Licaj M, Mhaidly R, Kieffer Y, Croizer H, Bonneau C, Meng A, Djerroudi L, Mujangi-Ebeka K, Hocine HR, Bourachot B, Magagna I, Leclere R, Guyonnet L, Bohec M, Guérin C, Baulande S, Kamal M, Le Tourneau C, Lecuru F, Becette V, Rouzier R, Vincent-Salomon A, Gentric G, Mechta-Grigoriou F. Residual ANTXR1+ myofibroblasts after chemotherapy inhibit anti-tumor immunity via YAP1 signaling pathway. Nat Commun 2024; 15:1312. [PMID: 38346978 PMCID: PMC10861537 DOI: 10.1038/s41467-024-45595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Although cancer-associated fibroblast (CAF) heterogeneity is well-established, the impact of chemotherapy on CAF populations remains poorly understood. Here we address this question in high-grade serous ovarian cancer (HGSOC), in which we previously identified 4 CAF populations. While the global content in stroma increases in HGSOC after chemotherapy, the proportion of FAP+ CAF (also called CAF-S1) decreases. Still, maintenance of high residual CAF-S1 content after chemotherapy is associated with reduced CD8+ T lymphocyte density and poor patient prognosis, emphasizing the importance of CAF-S1 reduction upon treatment. Single cell analysis, spatial transcriptomics and immunohistochemistry reveal that the content in the ECM-producing ANTXR1+ CAF-S1 cluster (ECM-myCAF) is the most affected by chemotherapy. Moreover, functional assays demonstrate that ECM-myCAF isolated from HGSOC reduce CD8+ T-cell cytotoxicity through a Yes Associated Protein 1 (YAP1)-dependent mechanism. Thus, efficient inhibition after treatment of YAP1-signaling pathway in the ECM-myCAF cluster could enhance CD8+ T-cell cytotoxicity. Altogether, these data pave the way for therapy targeting YAP1 in ECM-myCAF in HGSOC.
Collapse
Affiliation(s)
- Monika Licaj
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Rana Mhaidly
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Yann Kieffer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Hugo Croizer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Claire Bonneau
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Arnaud Meng
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Lounes Djerroudi
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Kevin Mujangi-Ebeka
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Hocine R Hocine
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Brigitte Bourachot
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Ilaria Magagna
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Renaud Leclere
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Lea Guyonnet
- Cytometry platform, PSL University, Institut Curie, 75005, Paris, France
| | - Mylene Bohec
- ICGex Next-Generation Sequencing Platform, PSL University, Institut Curie, 75005, Paris, France
| | - Coralie Guérin
- Cytometry platform, PSL University, Institut Curie, 75005, Paris, France
| | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, PSL University, Institut Curie, 75005, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris-Saclay University, Institut Curie, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Fabrice Lecuru
- Breast, gynecology and reconstructive surgery Department, Institut Curie Hospital Group, Paris Cité University, 26, rue d'Ulm, F-75248, Paris, France
| | - Véronique Becette
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Roman Rouzier
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Geraldine Gentric
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France.
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France.
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France.
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France.
| |
Collapse
|
15
|
Zhou X, Yan Z, Hou J, Zhang L, Chen Z, Gao C, Ahmad NH, Guo M, Wang W, Han T, Chang T, Kang X, Wang L, Liang Y, Li X. The Hippo-YAP signaling pathway drives CD24-mediated immune evasion in esophageal squamous cell carcinoma via macrophage phagocytosis. Oncogene 2024; 43:495-510. [PMID: 38168654 PMCID: PMC10857940 DOI: 10.1038/s41388-023-02923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world with poor prognosis. Despite the promising applications of immunotherapy, the objective response rate is still unsatisfactory. We have previously shown that Hippo/YAP signaling acts as a powerful tumor promoter in ESCC. However, whether Hippo/YAP signaling is involved in tumor immune escape in ESCC remains largely unknown. Here, we show that YAP directly activates transcription of the "don't eat me" signal CD24, and plays a crucial role in driving tumor cells to avoid phagocytosis by macrophages. Mechanistically, YAP regulates CD24 expression by interacting with TEAD and binding the CD24 promoter to initiate transcription, which facilitates tumor cell escape from macrophage-mediated immune attack. Our animal model data and clinical data show that YAP combined with CD24 in tumor microenvironment redefines the impact of TAMs on the prognosis of ESCC patients which will provide a valuable basis for precision medicine. Moreover, treatment with YAP inhibitor altered the distribution of macrophages and suppressed tumorigenesis and progression of ESCC in vivo. Together, our study provides a novel link between Hippo/YAP signaling and macrophage-mediated immune escape, which suggests that the Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of ESCC patients. A proposed model for the regulatory mechanism of Hippo-YAP-CD24-signaling axis in the tumor-associated macrophages mediated immune escape.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Ziyi Yan
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jinghan Hou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Lichen Zhang
- Henan Key Laboratory of immunology and targeted therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zhen Chen
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science Advanced Medical and Science Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Can Gao
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Nor Hazwani Ahmad
- Department of Biomedical Science Advanced Medical and Science Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, PR China
| | - Weilong Wang
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science Advanced Medical and Science Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Tao Han
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Tingmin Chang
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Xiaohong Kang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Yinming Liang
- Henan Key Laboratory of immunology and targeted therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Xiumin Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
16
|
Li Y, Zheng Z, Xiao L, Chen Y, Liu X, Long D, Chai L, Li Y, Tan C. Dinaciclib exerts a tumor-suppressing effect via β-catenin/YAP axis in pancreatic ductal adenocarcinoma. Anticancer Drugs 2024; 35:140-154. [PMID: 37694833 DOI: 10.1097/cad.0000000000001545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Dinaciclib, a cyclin-dependent kinase-5 (CDK5) inhibitor, has significant anti-tumor properties. However, the precise mechanism of dinaciclib requires further investigation. Herein, we investigated the anti-tumor functions and molecular basis of dinaciclib in pancreatic ductal adenocarcinoma (PDAC). PDAC and matched para-carcinoma specimens were collected from the patients who underwent radical resection. Immunohistochemistry was performed to assess CDK5 expression. Cell proliferation ability, migration, and invasion were measured using Cell Counting Kit-8, wound healing, and transwell assay, respectively. The cell cycle and apoptosis were assessed using flow cytometry. Gene expression was examined using RNA-seq and quantitative real-time PCR. Protein expression of proteins was measured by western blot analysis and immunofluorescence microscopy. Tumor-bearing mice were intraperitoneally injected with dinaciclib. CDK5 is highly expressed in PDAC. The expression level of CDK5 was significantly related to tumor size, T stage, and the American Joint Committee on Cancer stage. High CDK5 expression can predict poor survival in PDAC patients. In addition, the expression level of CDK5 might be an independent prognostic factor for PDAC patients. Dinaciclib inhibits the growth and motility of PDAC cells and induces apoptosis and cell cycle arrest in the G2/M phase. Mechanistically, dinaciclib down-regulated yes-associated protein (YAP) mRNA and protein expression by reducing β-catenin expression. Moreover, dinaciclib significantly inhibited PDAC cell growth in vivo . Our findings reveal a novel anti-tumor mechanism of dinaciclib in which it decreases YAP expression by down-regulating β-catenin at the transcriptional level rather than by activating Hippo pathway-mediated phosphorylation-dependent degradation.
Collapse
Affiliation(s)
- Yichen Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Zhenjiang Zheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Li Xiao
- Department of Traditional Chinese Medicine, Chengdu Third People's Hospital
| | - Yonghua Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Xubao Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Diseaserelated Molecular Network, West China Hospital, Sichuan University
| | - Li Chai
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunlu Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| |
Collapse
|
17
|
Pattnaik B, Mohanty S, Das SN, Rath R, Bhatta A, Mishra S. Immunohistochemical evaluation of yes-associated protein molecule in the odontogenic epithelium of different histopathological variants of ameloblastoma and unicystic ameloblastoma. J Oral Maxillofac Pathol 2024; 28:49-55. [PMID: 38800449 PMCID: PMC11126258 DOI: 10.4103/jomfp.jomfp_215_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 05/29/2024] Open
Abstract
Background Ameloblastoma is one of the major odontogenic neoplasms with an invasive and recurrence potential. Its tumourigenesis and proliferative capacity can be attributed to the activation or inactivation of certain molecular signalling pathways. Hippo signalling pathway is known to regulate diverse physiological processes related to mitosis and organ growth and is an emerging tumour suppressor pathway, the dysfunction of which is implicated in various diseases including cancers. Yes-associated protein1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the downstream effectors in the Hippo cascade, which on nuclear activation leads to cellular proliferation in various tumours. Aim The current study was undertaken to evaluate the expression of YAP in various histopathological variants of ameloblastoma and unicystic ameloblastoma. Materials and Methods Fifty formalin-fixed paraffin-embedded tissue samples of histopathologically diagnosed cases of ameloblastoma, and 10 histopathologically diagnosed cases of unicystic ameloblastoma were obtained from the departmental archives to evaluate the immunohistochemical expression of YAP both manually and by software analysis. Results More than 90% of cases of conventional ameloblastoma and unicystic ameloblastoma elicited positive expression of YAP. No statistical difference was found among different histopathological variants of conventional ameloblastoma. Significant difference between the means of all four quantitative score groups was observed. Conclusion In view of the modulating effect of YAP in tumourigenesis and its higher expression in ameloblastoma, further exploration of this molecule appears to be a promising area of research.
Collapse
Affiliation(s)
- Bodhiswata Pattnaik
- Department of Oral Pathology and Microbiology, SCB Government Dental College and Hospital, Cuttack, Odisha, India
| | - Sweta Mohanty
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India
| | - Surya Narayan Das
- Department of Oral Pathology and Microbiology, SCB Government Dental College and Hospital, Cuttack, Odisha, India
| | - Rachna Rath
- Department of Oral Pathology and Microbiology, SCB Government Dental College and Hospital, Cuttack, Odisha, India
| | - Archana Bhatta
- Department of Oral Pathology and Microbiology, SCB Government Dental College and Hospital, Cuttack, Odisha, India
| | - Sourav Mishra
- Department of Oral Pathology and Microbiology, SCB Government Dental College and Hospital, Cuttack, Odisha, India
| |
Collapse
|
18
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
19
|
Shi H, Zou Y, Zhong W, Li Z, Wang X, Yin Y, Li D, Liu Y, Li M. Complex roles of Hippo-YAP/TAZ signaling in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:15311-15322. [PMID: 37608027 DOI: 10.1007/s00432-023-05272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The Hippo signaling pathway is an evolutionarily conserved signaling module that controls organ size in different species, and the disorder of the Hippo pathway can induce liver cancer in organisms, especially hepatocellular carcinoma (HCC). The exact mechanism that causes cancer is still unknown. Recent studies have shown that it is a classical kinase cascade that phosphorylates the Mst1/2-sav1 complex and activates the phosphorylation of the Lats1/2-mob1A/B complex for inactivating Yap and Taz. These kinases and scaffolds are regarded as primary regulators of the Hippo pathway, and help in activating a variety of carcinogenic processes. Among them, Yap/Taz is seen to be the main effector molecule, which is downstream of the Hippo pathway, and its abnormal activation is related to a variety of human cancers including liver cancer. Currently, since Yap/Taz plays a variety of roles in cancer promotion and tumor regeneration, the Hippo pathway has emerged as an attractive target in recent drug development research. METHODS We collect and review relevant literature in web of Science and Pubmed. CONCLUSION This review highlights the important roles of Yap/Taz in activating Hippo pathway in liver cancer. The recent findings on the crosstalks between the Hippo and other cancer associated pathways and moleculars are also discussed. In this review, we summarized and discussed recent breakthroughs in our understanding of how key components of the Hippo-YAP/TAZ pathway influence the hepatocellular carcinoma, including their effects on tumor occurrence and development, their roles in regulating metastasis, and their function in chemotherapy resistance. Further, the molecular mechanism and roles in regulating cross talk between Hippo-YAP/TAZ pathway and other cancer-associated pathways or oncogenes/cancer suppressor genes were summarized and discussed. More, many other inducers and inhibitors of this signaling cascade and available experimental therapies against the YAP/TAZ/TEAD axis were discussed. Targeting this pathway for cancer therapy may have great significance in the treatment of hepatocellular carcinoma. Graphical summary of the complex role of Hippo-YAP/TAZ signaling in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hewen Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Zou
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Weiwei Zhong
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhaoying Li
- Traditional Chinese Medicine Research Center, Shandong Public Health Clinical Center, Jinan, 250102, People's Republic of China
| | - Xiaoxue Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Park I, Lee Y, Kim JH, Bae SJ, Ahn SG, Jeong J, Cha YJ. YAP1 Expression in HR+HER2- Breast Cancer: 21-Gene Recurrence Score Analysis and Public Dataset Validation. Cancers (Basel) 2023; 15:5034. [PMID: 37894401 PMCID: PMC10605327 DOI: 10.3390/cancers15205034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND YAP1, an oncogene in numerous cancers, is a downstream transcription factor of the Hippo pathway. This study focuses on its relationship with the Oncotype Dx (ODX) test risk score (RS) in patients with hormone-receptor-positive, HER2-negative (HR+HER2-) breast cancer. METHODS We retrospectively analyzed 401 HR+HER2- breast cancer patients from Gangnam Severance Hospital who underwent ODX tests (May 2014-April 2020). YAP1 nuclear localization was evaluated via immunohistochemical staining and its clinical correlation with clinicopathological parameters, including RS, was analyzed. Public datasets TCGA-BRCA and METABRIC validated clinical outcomes. RESULTS YAP1 expression negatively correlated with ODX RS (OR 0.373, p = 0.002). Elevated YAP1 mRNA levels corresponded to better clinical outcomes, specifically in ER-positive patients, with significant results in METABRIC and TCGA-BRCA datasets (p < 0.0001 OS in METABRIC, p = 0.00085 RFS in METABRIC, p = 0.040 DFS in TCGA-BRCA). In subsets with varying ESR1 mRNA expression and pronounced YAP1 expression, superior survival outcomes were consistently observed. CONCLUSION YAP1 may be a valuable prognostic marker and potential therapeutic target in HR+HER2- breast cancer patients.
Collapse
Affiliation(s)
- Inho Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (I.P.); (Y.L.)
- Center for Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (I.P.); (Y.L.)
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
| | - Jee Hung Kim
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Soong June Bae
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung Gwe Ahn
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Joon Jeong
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (I.P.); (Y.L.)
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
| |
Collapse
|
21
|
Han T, Chen T, Chen L, Li K, Xiang D, Dou L, Li H, Gu Y. HLF promotes ovarian cancer progression and chemoresistance via regulating Hippo signaling pathway. Cell Death Dis 2023; 14:606. [PMID: 37709768 PMCID: PMC10502110 DOI: 10.1038/s41419-023-06076-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Hepatic leukemia factor (HLF) is aberrantly expressed in human malignancies. However, the role of HLF in the regulation of ovarian cancer (OC) remains unknown. Herein, we reported that HLF expression was upregulated in OC tissues and ovarian cancer stem cells (CSCs). Functional studies have revealed that HLF regulates OC cell stemness, proliferation, and metastasis. Mechanistically, HLF transcriptionally activated Yes-associated protein 1 (YAP1) expression and subsequently modulated the Hippo signaling pathway. Moreover, we found that miR-520e directly targeted HLF 3'-UTR in OC cells. miR-520e expression was negatively correlated with HLF and YAP1 expression in OC tissues. The combined immunohistochemical (IHC) panels exhibited a better prognostic value for OC patients than any of these components alone. Importantly, the HLF/YAP1 axis determines the response of OC cells to carboplatin treatment and HLF depletion or the YAP1 inhibitor verteporfin abrogated carboplatin resistance. Analysis of patient-derived xenografts (PDXs) further suggested that HLF might predict carboplatin benefits in OC patients. In conclusion, these findings suggest a crucial role of the miR-520e/HLF/YAP1 axis in OC progression and chemoresistance, suggesting potential therapeutic targets for OC.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Tingsong Chen
- Department of Cancer Intervention, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200001, China
| | - Lujun Chen
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Postgraduate College, China Medical University, Shenyang, 110001, China
| | - Kerui Li
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Daimin Xiang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Military Medical University, Shanghai, 200433, China
- Department of hepatobiliary surgery, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Lei Dou
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Yubei Gu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Ruscone M, Montagud A, Chavrier P, Destaing O, Bonnet I, Zinovyev A, Barillot E, Noël V, Calzone L. Multiscale model of the different modes of cancer cell invasion. Bioinformatics 2023; 39:btad374. [PMID: 37289551 PMCID: PMC10293590 DOI: 10.1093/bioinformatics/btad374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
MOTIVATION Mathematical models of biological processes altered in cancer are built using the knowledge of complex networks of signaling pathways, detailing the molecular regulations inside different cell types, such as tumor cells, immune and other stromal cells. If these models mainly focus on intracellular information, they often omit a description of the spatial organization among cells and their interactions, and with the tumoral microenvironment. RESULTS We present here a model of tumor cell invasion simulated with PhysiBoSS, a multiscale framework, which combines agent-based modeling and continuous time Markov processes applied on Boolean network models. With this model, we aim to study the different modes of cell migration and to predict means to block it by considering not only spatial information obtained from the agent-based simulation but also intracellular regulation obtained from the Boolean model. Our multiscale model integrates the impact of gene mutations with the perturbation of the environmental conditions and allows the visualization of the results with 2D and 3D representations. The model successfully reproduces single and collective migration processes and is validated on published experiments on cell invasion. In silico experiments are suggested to search for possible targets that can block the more invasive tumoral phenotypes. AVAILABILITY AND IMPLEMENTATION https://github.com/sysbio-curie/Invasion_model_PhysiBoSS.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | | | - Philippe Chavrier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Andrei Zinovyev
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Emmanuel Barillot
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Laurence Calzone
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| |
Collapse
|
24
|
Shi H, Zou Y, Wang X, Wang G, Gao Y, Yi F, Xu J, Yin Y, Li D, Li M. Activating the Hippo pathway by nevadensin overcomes Yap-drived resistance to sorafenib in hepatocellular carcinoma. Discov Oncol 2023; 14:83. [PMID: 37243813 DOI: 10.1007/s12672-023-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant type of tumor that is insensitive to cytotoxic chemotherapy and often develops drug resistance. Nevadensin, a bioflavonoid, exhibits anti-cancer properties in some cancers. However, the precise underlying mechanism of nevadensin against liver cancer are poorly understood. We aim to evaluate the efficacy as well as the molecular mechanism of nevadensin in the treatment of liver cancer. METHODS Effects of nevadensin on HCC cell proliferation and apoptosis were detected using EdU labeling and flow cytometry assays. The molecular mechanism of nevadensin on HCC was determined using RNAseq. The effects of nevadensin on hippo-Yap signaling were verified using western blot and RT-PCR. RESULTS In this study, we show that nevadensin significantly inhibits growth of HCC cells via inducing cell cycle arrest and apoptosis. RNAseq analysis showed that nevadensin regulates multiple functional signaling pathways associated with cancer including Hippo signaling. Western Blot analysis revealed that nevadensin notably induces activation of the MST1/2- LATS1/2 kinase in HCC cells, further resulting in the primary effector molecule YAP phosphorylation and subsequent degradation. These results indicated that nevadensin might exert its anti-HCC activity through the Hippo-ON mechanism. Moreover, nevadensin could increase the sensitivity of HCC cells to sorafenib by down-regulating YAP and its downstream targets. CONCLUSIONS The present study indicates that nevadensin could be a potential effective approach to treating HCC, and overcoming sorafeni resistance via inducing activation of Hippo signaling.
Collapse
Affiliation(s)
- Hewen Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Ying Zou
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xiaoxue Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Yijia Gao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Fan Yi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Junqing Xu
- Department of Hematology, Qingdao University Medical College, Affiliated Yantai Yuhuangding Hoepital, Yantai, Shandong, People's Republic of China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, People's Republic of China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China.
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Gumusoglu-Acar E, Gunel T, Hosseini MK, Dogan B, Tekarslan EE, Gurdamar B, Cevik N, Sezerman U, Topuz S, Aydinli K. Metabolic pathways of potential miRNA biomarkers derived from liquid biopsy in epithelial ovarian cancer. Oncol Lett 2023; 25:142. [PMID: 36909377 PMCID: PMC9996378 DOI: 10.3892/ol.2023.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the type of OC with the highest mortality rate. Due to the asymptomatic nature of the disease and few available diagnostic tests, it is mostly diagnosed at the advanced stage. Therefore, the present study aimed to discover predictive and/or early diagnostic novel circulating microRNAs (miRNAs or miRs) for EOC. Firstly, microarray analysis of miRNA expression levels was performed on 32 samples of female individuals: Eight plasma samples from patients with pathologically confirmed EOC (mean age, 45 (30-54) years), eight plasma samples from matched healthy individuals (HIs) (mean age, 44 (30-65) years), eight EOC tissue samples (mean age, 45 (30-54) years) and eight benign ovarian (mean age, 35 (17-70) years) neoplastic tissue samples A total of 31 significantly dysregulated miRNAs in serum and three miRNAs in tissue were identified by microarray. The results were validated using reverse transcription-quantitative PCR on samples from 10 patients with pathologically confirmed EOC (mean age, 47(30-54) years), 10 matched His (mean age, 40(26-65) years], 10 EOC tissue samples (mean age, 47(30-54) years) and 10 benign ovarian neoplastic tissue samples (mean age, 40(17-70) years). The 'Kyoto Encyclopedia of Genes and Genomes' (KEGG) database was used for target gene and pathway analysis. A total of three miRNAs from EOC serum (hsa-miR-1909-5p, hsa-miR-885-5p and hsa-let-7d-3p) and one microRNA from tissue samples (hsa-miR-200c-3p) were validated as significant to distinguish patients with EOC from HIs. KEGG pathway enrichment analysis showed seven significant pathways, which included 'prion diseases', 'proteoglycans in cancer', 'oxytocin signaling pathway', 'hippo signaling pathway', 'adrenergic signaling in cardiomyocytes', 'oocyte meiosis' and 'thyroid hormone signaling pathway', in which the validated miRNAs served a role. This supports the hypothesis that four validated miRNAs, have the potential to be a biomarker of EOC diagnosis and target for treatment.
Collapse
Affiliation(s)
- Ece Gumusoglu-Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berkcan Dogan
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Efnan Elif Tekarslan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berk Gurdamar
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Nazife Cevik
- Computer Engineering Department, Engineering and Architecture Faculty, Istanbul Arel University, 34537 Istanbul, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Samet Topuz
- Department of Obstetrics and Gynecology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | | |
Collapse
|
26
|
Zhu N, Yang R, Wang X, Yuan L, Li X, Wei F, Zhang L. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36942989 DOI: 10.3724/abbs.2023035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Evolutionarily conserved, the Hippo signaling pathway is critical in regulating organ size and tissue homeostasis. The activity of this pathway is tightly regulated under normal circumstances, since its physical function is precisely maintained to control the rate of cell proliferation. Failure of maintenance leads to a variety of tumors. Our understanding of the mechanism of Hippo dysregulation and tumorigenesis is becoming increasingly precise, relying on the emergence of upstream inhibitor or activator and the connection linking Hippo target genes, mutations, and related signaling pathways with phenotypes. In this review, we summarize recent reports on the signaling network of the Hippo pathway in tumorigenesis and progression by exploring its critical mechanisms in cancer biology and potential targeting in cancer therapy.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruizeng Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
27
|
Deciphering the role of Hippo pathway in lung cancer. Pathol Res Pract 2023; 243:154339. [PMID: 36736143 DOI: 10.1016/j.prp.2023.154339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Hippo pathway has been initially recognized as a regulatory mechanism for modulation of organ size in fruitfly. Subsequently, its involvement in the regulation of homeostasis and tumorigenesis has been identified. This pathway contains some tumor suppressor genes such as hippo (hpo) and warts (wts), as well as a number of oncogenic ones such as yorkie (yki). Recent studies have shown participation of Hippo pathway in the lung carcinogenesis. This pathway can affect lung cancer via different mechanisms. The interaction between some miRNAs and Hippo pathway is a possible mechanism for carcinogenic processes. Moreover, some other types of non-coding RNAs including PVT1, SFTA1P, NSCLCAT1 and circ_0067741 are implicated in this process. Besides, anti-cancer effects of gallic acid, icotinib hydrochloride, curcumin, ginsenoside Rg3, cryptotanshinone, nitidine chloride, cucurbitacin E, erlotinib, verteporfin, sophoridine, cisplatin and verteporfin in lung cancer are mediated through modulation of Hippo pathway. Here, we summarize the results of recent studies that investigated the role of Hippo signaling in the progression of lung cancer, the impact of non-coding RNAs on this pathway and the effects of anti-cancer agents on Hippo signaling in the context of lung cancer.
Collapse
|
28
|
Ye D, Wang Y, Deng X, Zhou X, Liu D, Zhou B, Zheng W, Wang X, Fang L. DNMT3a-dermatopontin axis suppresses breast cancer malignancy via inactivating YAP. Cell Death Dis 2023; 14:106. [PMID: 36774339 PMCID: PMC9922281 DOI: 10.1038/s41419-023-05657-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023]
Abstract
Breast cancer (BC) is the most common malignant tumor in women worldwide, and its recurrence and metastasis negatively affect patient prognosis. However, the mechanisms underlying its tumorigenesis and progression remain unclear. Recently, the influence of dermatopontin (DPT), which is an extracellular matrix protein, has been proposed in the development of cancer. Here we found that DNMT3a-mediated DPT, promoter hypermethylation results in the downregulation of DPT expression in breast cancer and its low expression correlated with poor prognosis. Notably, DPT directly interacted with YAP to promote YAP Ser127 phosphorylation, and restricted the translocation of endogenous YAP from the cytoplasm to the nucleus, thereby suppressing malignant phenotypes in BC cells. In addition, Ectopic YAP overexpression reversed the inhibitory effects of DPT on BC growth and metastasis. Our study showed the critical role of DPT in regulating BC progression, making it easier to explore the clinical potential of modulating DPT/YAP activity in BC targeted therapies.
Collapse
Affiliation(s)
- Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaochong Deng
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
29
|
Tocci P, Roman C, Sestito R, Di Castro V, Sacconi A, Molineris I, Paolini F, Carosi M, Tonon G, Blandino G, Bagnato A. Targeting tumor-stroma communication by blocking endothelin-1 receptors sensitizes high-grade serous ovarian cancer to PARP inhibition. Cell Death Dis 2023; 14:5. [PMID: 36604418 PMCID: PMC9816119 DOI: 10.1038/s41419-022-05538-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
PARP inhibitors (PARPi) have changed the treatment paradigm of high-grade serous ovarian cancer (HG-SOC). However, the impact of this class of inhibitors in HG-SOC patients with a high rate of TP53 mutations is limited, highlighting the need to develop combinatorial therapeutic strategies to improve responses to PARPi. Here, we unveil how the endothelin-1/ET-1 receptor (ET-1/ET-1R) axis, which is overexpressed in human HG-SOC and associated with poor prognosis, instructs HG-SOC/tumor microenvironment (TME) communication via key pro-malignant factors and restricts the DNA damage response induced by the PARPi olaparib. Mechanistically, the ET-1 axis promotes the p53/YAP/hypoxia inducible factor-1α (HIF-1α) transcription hub connecting HG-SOC cells, endothelial cells and activated fibroblasts, hence fueling persistent DNA damage signal escape. The ET-1R antagonist macitentan, which dismantles the ET-1R-mediated p53/YAP/HIF-1α network, interferes with HG-SOC/stroma interactions that blunt PARPi efficacy. Pharmacological ET-1R inhibition by macitentan in orthotopic HG-SOC patient-derived xenografts synergizes with olaparib to suppress metastatic progression, enhancing PARPi survival benefit. These findings reveal ET-1R as a mechanistic determinant in the regulation of HG-SOC/TME crosstalk and DNA damage response, indicating the use of macitentan in combinatorial treatments with PARPi as a promising and emerging therapy.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Francesca Paolini
- Tumor Immunology and Immunotherapy Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Pathology Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Tonon
- Center for Omics Sciences (COSR) and Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
30
|
Jia YS, Yang L, Zhu YQ, Ma CB. Beta-catenin knockdown impairs the viability of ovarian cancer cells by modulating YAP-dependent glycolysis. Am J Transl Res 2023; 15:982-994. [PMID: 36915794 PMCID: PMC10006774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/26/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Ovarian cancer (OC) ranks fifth among the main causes of cancer-related deaths in women worldwide. PCLAF/KIAA0101 and Yes-associated protein (YAP) have been linked to several human malignant cancers, including OC. However, the roles of KIAA0101 and YAP in glycolysis-dependent OC cell proliferation remain unknown. METHODS qRT-PCR and western blot were performed to analyze the KIAA0101 expression. Short hairpin RNA transfection was performed to silence KIAA0101 expression in cells. Cell viability and apoptosis were assayed by colony formation and flow cytometry, respectively. Glucose uptake, lactate production, and glycolytic enzyme expression were assessed to determine the level of cellular glycolysis. Phosphorylation and the nuclear localization of YAP were assessed to determine YAP activation. RESULTS OC tissue and cell lines exhibited higher KIAA0101 expression than the non-cancerous tissues and cells. KIAA0101 silencing reduced the proliferation and increased the apoptosis of both A2780 and ES-2 OC cell lines. Furthermore, KIAA0101 depletion suppressed glycolysis and YAP activation, as evidenced by increased YAP phosphorylation and decreased nuclear localization. Reactivation of YAP was performed by administration of mitochonic acid 5 in both OC cell lines with KIAA0101 knockdown. Glucose uptake, lactate production, phosphofructokinase, pyruvate dehydrogenase beta, pyruvate kinase M2, triosephosphate isomerase 1, glucose-6-phosphate dehydrogenase, enolase 1, and lactate dehydrogenase expression levels in cells recovered after the reactivation of YAP. Additionally, YAP reactivation increased cell proliferation and inhibited apoptosis. CONCLUSIONS This study showed that KIAA0101 could promote glycolysis during nasopharyngeal carcinoma development through YAP signaling activation, suggesting that KIAA0101 could serve as a target for OC treatment.
Collapse
Affiliation(s)
- Yan-Shuang Jia
- Department of Gynecology, Changning Maternity and Infant Health Hospital, East China Normal University Shanghai 200051, China
| | - Ling Yang
- Department of Gynecology, Changning Maternity and Infant Health Hospital, East China Normal University Shanghai 200051, China
| | - Yong-Qing Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University Shanghai 200090, China
| | - Cheng-Bin Ma
- Department of Gynecology, Changning Maternity and Infant Health Hospital, East China Normal University Shanghai 200051, China
| |
Collapse
|
31
|
Piccolo S, Panciera T, Contessotto P, Cordenonsi M. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. NATURE CANCER 2023; 4:9-26. [PMID: 36564601 PMCID: PMC7614914 DOI: 10.1038/s43018-022-00473-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
Our understanding of the function of the transcriptional regulators YAP and TAZ (YAP/TAZ) in cancer is advancing. In this Review, we provide an update on recent progress in YAP/TAZ biology, their regulation by Hippo signaling and mechanotransduction and highlight open questions. YAP/TAZ signaling is an addiction shared by multiple tumor types and their microenvironments, providing many malignant attributes. As such, it represents an important vulnerability that may offer a broad window of therapeutic efficacy, and here we give an overview of the current treatment strategies and pioneering clinical trials.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
32
|
Govorov I, Attarha S, Kovalevska L, Andersson E, Kashuba E, Mints M. STK4 protein expression pattern follows different trends in endometrioid and serous endometrial adenocarcinoma upon tumor progression. Sci Rep 2022; 12:22154. [PMID: 36550267 PMCID: PMC9780310 DOI: 10.1038/s41598-022-26391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In a previous study, we showed that serine/threonine-protein kinase 4 (STK4) is involved in the control on proliferation and migration of endometrial cancer (EC) cells in vitro. In the present paper, we studied STK4 expression in EC tissues from a large cohort of patients to determine whether STK4 can serve as a marker for the aggressiveness and prognosis of EC. Tissue samples from patients with EC were examined for tumor type, grade, and stage. The STK4 protein expression in EC cells was assessed by immunohistochemistry and related to clinicopathological data of patients, such as progression and patient survival rate. The STK4 mRNA levels and its relation to the survival rate were analyzed also in publicly available databases. The STK4 gene expression was low at both, the mRNA and protein levels in EC, especially in serous tumors. Comparison of STK4 expression with the patient survival rate shows that the higher expression is associated with worse prognosis in serous EC, while no such dependence was found in endometrioid EC. Hence, the determination of the SKT4 expression pattern could be used as a putative prognostic marker for serous EC.
Collapse
Affiliation(s)
- Igor Govorov
- grid.4714.60000 0004 1937 0626Division of Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska University Hospital, Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanaz Attarha
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Larysa Kovalevska
- grid.430311.40000 0004 0560 6108R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of NAS of Ukraine, Kyiv, 03022 Ukraine
| | - Emil Andersson
- grid.4714.60000 0004 1937 0626Division of Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska University Hospital, Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elena Kashuba
- grid.430311.40000 0004 0560 6108R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of NAS of Ukraine, Kyiv, 03022 Ukraine ,grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Biomedicum, 17165 Stockholm, Sweden
| | - Miriam Mints
- grid.4714.60000 0004 1937 0626Division of Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska University Hospital, Solna, Karolinska Institutet, 171 77 Stockholm, Sweden ,grid.15895.300000 0001 0738 8966School of Medical Science, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
| |
Collapse
|
33
|
Duong NX, Le M, Kondo T, Mitsui T. Heterogeneity of Hippo signalling activity in different histopathologic subtypes of renal cell carcinoma. J Cell Mol Med 2022; 27:66-75. [PMID: 36478130 PMCID: PMC9806300 DOI: 10.1111/jcmm.17632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to reveal the prognostic role of the Hippo pathway in different histopathological subtypes of renal cell carcinoma (RCC). The TCGA-KIRC (n = 537), TCGA-KIRP (n = 291) and TCGA-KICH (n = 113), which contain data about clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC), respectively, were investigated. Gene Set Variation Analysis was used to compare the activity of many pathways within a single sample. Oncogenic pathway-related expression differed between cases of ccRCC involving low and high Hippo pathway activity. There were two subsets of ccRCC, in which the cancer exhibited lower and higher Hippo signalling activity, respectively, compared with normal tissue. In the ccRCC cohort, lower Hippo pathway activity was associated with a higher clinical stage (p < 0.001). The Hippo pathway (HR = 0.29; 95% CI = 0.17-0.50, p < 0.001), apoptosis (HR = 6.02; 95% CI = 1.47-24.61; p = 0.013) and the p53 pathway (HR = 0.09; 95% CI = 0.02-0.36; p < 0.001) were identified as independent prognostic factors for ccRCC. The 5-year overall survival of the ccRCC patients with low and high Hippo pathway activity were 51.9% (95% CI = 45.0-59.9) and 73.6% (95% CI = 67.8-79.9), respectively. In conclusion, the Hippo pathway plays an important role in the progression of ccRCC. Low Hippo pathway activity is associated with poor outcomes in ccRCC, indicating the tumour suppressor function of this pathway.
Collapse
Affiliation(s)
- Nguyen Xuong Duong
- Department of UrologyUniversity of Yamanashi Graduate School of Medical SciencesChuo‐cityJapan
| | - Minh‐Khang Le
- Department of PathologyUniversity of Yamanashi Graduate School of Medical SciencesChuo‐cityJapan
| | - Tetsuo Kondo
- Department of PathologyUniversity of Yamanashi Graduate School of Medical SciencesChuo‐cityJapan
| | - Takahiko Mitsui
- Department of UrologyUniversity of Yamanashi Graduate School of Medical SciencesChuo‐cityJapan
| |
Collapse
|
34
|
Han S, Zhao X, Zhang Y, Amevor FK, Tan B, Ma M, Kang H, Wang J, Zhu Q, Yin H, Cui C. MiR-34a-5p promotes autophagy and apoptosis of ovarian granulosa cells via the Hippo-YAP signaling pathway by targeting LEF1 in chicken. Poult Sci 2022; 102:102374. [PMID: 36529101 PMCID: PMC9791594 DOI: 10.1016/j.psj.2022.102374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Follicular atresia is a natural physiological phenomenon in poultry reproduction. It is well known that follicular atresia is caused by both autophagy and apoptosis of granulosa cells. In current experiment, we evaluated the function of miR-34a-5p on autophagy and apoptosis in chicken follicular atresia. First, the follicular atresia model of chicken was successfully constructed by subcutaneous injection of tamoxifen (TMX), and found the expression of miR-34a-5p in the atresia follicles obviously increased. Then, we confirmed that miR-34a-5p accelerates autophagy and apoptosis of chicken granulose cells in vitro, and miR-34a-5p could induce apoptosis by mediating autophagy. Mechanistically, lymphoid enhancer binding factor 1 (LEF1) was deemed as a target gene for miR-34a-5p. On the contrary, LEF1 overexpression attenuated the autophagy and apoptosis of chicken granular cells. In addition, it was confirmed that the miR-34a-5p/LEF1 axis plays a regulatory role in chicken granulosa cells by mediating the Hippo-YAP signaling pathway. Taken together, this study demonstrated that miR-34a-5p contributes to autophagy and apoptosis of chicken follicular granulosa cells by targeting LEF1 to mediate the Hippo-YAP signaling pathway.
Collapse
Affiliation(s)
- Shunshuan Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiyu Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Tan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mengen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jianping Wang
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China,Corresponding author:
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
35
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
36
|
Xiong Y, Dong L, Bai Y, Tang H, Li S, Luo D, Liu F, Bai J, Yang S, Song X. Piezo1 activation facilitates ovarian cancer metastasis via Hippo/YAP signaling axis. Channels (Austin) 2022; 16:159-166. [PMID: 35942515 PMCID: PMC9367648 DOI: 10.1080/19336950.2022.2099381] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer (OC) is a highly malignant cancer with great metastatic potential. Here we aimed to investigate the role of Piezo1, a gene related to the mechanical environment of the tumor, in promoting the metastasis of OC. We performed Piezo1 knockdown in A-1847 cells using small hairpin RNAs, and the cells were inoculated subcutaneously in nude mice. Piezo1 knockdown decreased the tumor growth rate of OC tumor xenografts in mice and reduced cell migration in vitro. Metastasis in the lung was also attenuated after Piezo1 knockdown as revealed by HE staining of the lung tissues, which was concomitant with downregulation of E-Cadherin and vimentin and upregulation of N-Cadherin analyzed using western blot analysis, suggesting suppressed epithelial-to-mesenchymal transition. Migration of Piezo1-knockdown cells was also analyzed for their migratory capabilities using the scratch assay. We also analyzed the key proteins in the Hippo/YAP signaling pathway using western blot after treating A-1847 and 3AO cells with a Piezo1 inducer, Yoda1. Piezo1 inducer Yoda1 activated Hippo/YAP signal in OC cells. In conclusion, Piezo1 is overexpressed in OC tissues and contributes to OC tumor growth and metastasis. Suppression of Piezo1 is a potential therapeutic strategy for OC.
Collapse
Affiliation(s)
- Yanjie Xiong
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| | - Liru Dong
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| | - Yun Bai
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei China
| | - Hui Tang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| | - Shuang Li
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| | - Dan Luo
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| | - Fang Liu
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| | - Jie Bai
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| | - Shikun Yang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| | - Xudong Song
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei China
| |
Collapse
|
37
|
Clark KL, George JW, Przygrodzka E, Plewes MR, Hua G, Wang C, Davis JS. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr Rev 2022; 43:1074-1096. [PMID: 35596657 PMCID: PMC9695108 DOI: 10.1210/endrev/bnac013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jitu W George
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John S Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
38
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
39
|
Effects of Long Noncoding RNA HOXA-AS2 on the Proliferation and Migration of Gallbladder Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:6051512. [PMID: 36299503 PMCID: PMC9592229 DOI: 10.1155/2022/6051512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
To explore the function and mechanism of lncRNA HOXA-AS2 in cancer-associated fibroblasts (CAFs)-derived exosomes in gallbladder cancer metastasis, and provide new research targets for the treatment of gallbladder cancer. At the same time, in order to clarify the early predictive value of lncRNA HOXA-AS2 for gallbladder cancer metastasis, and to provide a theoretical basis for clinical individualized treatment of gallbladder cancer. Methods. In our previous work, we used TCGA database analysis to find that lncRNA HOXA-AS2 was highly expressed in gallbladder cancer tissues compared with normal tissues. In this study, the expression levels of HOXA-AS2 in gallbladder cancer cell lines and control cells were first verified by QPCR and Western blot methods. Then, lentiviral tools were used to construct knockdown vectors (RNAi#1, RNAi#2) and negative control vectors targeting two different sites of HOXA-AS2, and the vectors were transfected into NOZ and OCUG-1 cells, respectively. Real-time PCR was used to detect knockdown efficiency. Then, the effects of silencing HOXA-AS2 on the proliferation, cell viability, cell migration, and invasion ability of gallbladder cancer cells were detected by MTT, plate cloning assay, Transwell migration chamber assay, and Transwell invasion chamber assay. Finally, the interaction between HOXA-AS2 and miR-6867 and the 3′UTR of YAP1 protein was detected by luciferase reporter gene. The results showed that the expression level of HOXA-AS2 in gallbladder cancer cell lines was higher than that in control cells. The expression of HOXA-AS2 in gallbladder carcinoma tissues was significantly higher than that in adjacent tissues (p < 0.05). After successful knockout of HOXA-AS2 by lentiviral transfection, the expression of HOXA-AS2 in gallbladder cancer cell lines was significantly decreased. Through cell proliferation and plate clone detection, it was found that silencing HOXA-AS2 inhibited cell proliferation and invasion. Through software prediction and fluorescein reporter gene detection, it was found that HOXA-AS2 has a binding site with miR-6867, and the two are negatively correlated, that is, the expression of miR-6867 is enhanced after the expression of HOXA-AS2 is downregulated. And the 3′UTR of YAP1 protein in the Hippo signaling pathway binds to miR-6867. Therefore, HOXA-AS2 may affect the expression of YAP1 protein by regulating miR-6867, thereby inhibiting the Hippo signaling pathway and promoting the proliferation and metastasis of gallbladder cancer cells. HOXA-AS2 is abnormally expressed in gallbladder cancer cells. HOXA-AS2 may promote the migration and invasion of gallbladder cancer cells by regulating the Hippo signaling pathway through miR-6867. HOXA-AS2 may serve as a potential diagnostic and therapeutic target for gallbladder cancer in clinic.
Collapse
|
40
|
Liu H, Yuan M, Mitra R, Zhou X, Long M, Lei W, Zhou S, Huang YE, Hou F, Eischen CM, Jiang W. CTpathway: a CrossTalk-based pathway enrichment analysis method for cancer research. Genome Med 2022; 14:118. [PMID: 36229842 PMCID: PMC9563764 DOI: 10.1186/s13073-022-01119-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Pathway enrichment analysis (PEA) is a common method for exploring functions of hundreds of genes and identifying disease-risk pathways. Moreover, different pathways exert their functions through crosstalk. However, existing PEA methods do not sufficiently integrate essential pathway features, including pathway crosstalk, molecular interactions, and network topologies, resulting in many risk pathways that remain uninvestigated. METHODS To overcome these limitations, we develop a new crosstalk-based PEA method, CTpathway, based on a global pathway crosstalk map (GPCM) with >440,000 edges by combing pathways from eight resources, transcription factor-gene regulations, and large-scale protein-protein interactions. Integrating gene differential expression and crosstalk effects in GPCM, we assign a risk score to genes in the GPCM and identify risk pathways enriched with the risk genes. RESULTS Analysis of >8300 expression profiles covering ten cancer tissues and blood samples indicates that CTpathway outperforms the current state-of-the-art methods in identifying risk pathways with higher accuracy, reproducibility, and speed. CTpathway recapitulates known risk pathways and exclusively identifies several previously unreported critical pathways for individual cancer types. CTpathway also outperforms other methods in identifying risk pathways across all cancer stages, including early-stage cancer with a small number of differentially expressed genes. Moreover, the robust design of CTpathway enables researchers to analyze both bulk and single-cell RNA-seq profiles to predict both cancer tissue and cell type-specific risk pathways with higher accuracy. CONCLUSIONS Collectively, CTpathway is a fast, accurate, and stable pathway enrichment analysis method for cancer research that can be used to identify cancer risk pathways. The CTpathway interactive web server can be accessed here http://www.jianglab.cn/CTpathway/ . The stand-alone program can be accessed here https://github.com/Bioccjw/CTpathway .
Collapse
Affiliation(s)
- Haizhou Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Ramkrishna Mitra
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA, 19107, USA
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Wanyue Lei
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Yu-E Huang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Christine M Eischen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA, 19107, USA.
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China.
| |
Collapse
|
41
|
Lee Y, Bae SJ, Eun NL, Ahn SG, Jeong J, Cha YJ. Correlation of Yes-Associated Protein 1 with Stroma Type and Tumor Stiffness in Hormone-Receptor Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14204971. [PMID: 36291755 PMCID: PMC9599900 DOI: 10.3390/cancers14204971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary YAP1 is an oncogene that can be activated by matrix stiffness, as it can act as a mechanotransducer. So far, only in vitro studies regarding YAP1 activation and matrix stiffness are present. We confirmed the activation of YAP1 in breast cancer using human breast cancer tissue and immunohistochemistry. Tumor stiffness was quantified by shear-wave elastography. Nuclear localization of YAP1 showed correlation with tumor stiffness in hormone-receptor positive (HR+) breast cancer. Also, tumors with non-collagen-type stroma showed an association between YAP1 expression and tumor stiffness. YAP1 expression, along with tumor stiffness, may serve as a prognostic candidate in HR+ breast cancer. Abstract (1) Background: Yes-associated protein 1 (YAP1) is an oncogene activated under the dysregulated Hippo pathway. YAP1 is also a mechanotransducer that is activated by matrix stiffness. So far, there are no in vivo studies on YAP1 expression related to stiffness. We aimed to investigate the association between YAP1 activation and tumor stiffness in human breast cancer samples, using immunohistochemistry and shear-wave elastography (SWE). (2) Methods: We included 488 patients with treatment-naïve breast cancer. Tumor stiffness was measured and the mean, maximal, and minimal elasticity values and elasticity ratios were recorded. Nuclear YAP1 expression was evaluated by immunohistochemistry and tumor-infiltrating lymphocytes (TILs); tumor-stroma ratio (TSR) and stroma type of tumors were also evaluated. (3) Results: Tumor stiffness was higher in tumors with YAP1 positivity, low TILs, and high TSR and was correlated with nuclear YAP1 expression; this correlation was observed in hormone receptor positive (HR+) tumors, as well as in tumors with non-collagen-type stroma. (4) Conclusions: We confirmed the correlation between nuclear YAP1 expression and tumor stiffness, and nuclear YAP1 expression was deemed a prognostic candidate in HR+ tumors combined with SWE-measured tumor stiffness.
Collapse
Affiliation(s)
- Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Soong June Bae
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Na Lae Eun
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sung Gwe Ahn
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Joon Jeong
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3540
| |
Collapse
|
42
|
TAZ Regulates the Cisplatin Resistance of Epithelial Ovarian Cancer Cells via the ANGPTL4/SOX2 Axis. Anal Cell Pathol 2022; 2022:5632164. [PMID: 36247876 PMCID: PMC9553699 DOI: 10.1155/2022/5632164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/20/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Epithelial ovarian cancer (EOC) is a fatal gynecological malignancy. This study explored the mechanism of TAZ in regulating drug sensitivity of cisplatin (DDP-)-resistant EOC cells through the ANGPTL4/SOX2 axis. Methods The A2780/DDP cells were prepared by stepwise progressive concentration method. The drug resistance and TAZ expression in EOC cells were determined. Drug sensitivity was measured after TAZ overexpression in A2780 cells and TAZ downregulation in A2780/DDP cells, respectively. The effects of TAZ knockdown on apoptosis rate, stemness, and cancer stem cell (CSC) marker (CD44, OCT4, and ALDH1A) levels in A2780/DDP and DDP-treated A2780/DDP cells were assessed. The binding of TAZ and ANGPTL4 was verified using ChIP-qPCR, and ANGPTL4 and SOX2 levels were determined. The effects of different combined treatments of TAZ, ANGPTL4, and SOX2 on drug sensitivity of A2780/DDP cells and DDP-treated A2780/DDP cells were evaluated. Results TAZ was upregulated in drug-resistant EOC cells. TAZ knockdown significantly increased the drug sensitivity of A2780/DDP cells, while TAZ overexpression markedly decreased the drug sensitivity of A2780 cells. TAZ silencing promoted apoptosis of drug-resistant EOC cells and inhibited cell stemness. TAZ targeted ANGPTL4 and TAZ silencing enhanced drug sensitivity of A2780/DDP cells by inhibiting ANGPTL4. ANGPTL4 overexpression elevated SOX2 expression, and SOX2 downregulation reduced the drug resistance and promoted the apoptosis of A2780/DDP cells. Conclusion TAZ regulates DDP sensitivity of drug-resistant EOC cells via the ANGPTL4/SOX2 axis.
Collapse
|
43
|
Circular RNA hsa_circ_0007367 promotes the progression of pancreatic ductal adenocarcinoma by sponging miR-6820-3p and upregulating YAP1 expression. Cell Death Dis 2022; 13:736. [PMID: 36008392 PMCID: PMC9411600 DOI: 10.1038/s41419-022-05188-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023]
Abstract
Circular RNAs (circRNAs) play critical regulatory roles in cancer biological processes. Nevertheless, the contributions and underlying mechanisms of circRNAs to pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. Dysregulated circRNAs between cancerous tissues and matched adjacent normal tissues were identified by circRNA microarray in PDAC. The biological effect of hsa_circ_007367 both in vitro and in vivo was demonstrated by gain- and loss-of-function experiments. Further, dual-luciferase reporter and RNA pull-down assays were performed to confirm the interaction among hsa_circ_007367, miR-6820-3p, and Yes-associated protein 1 (YAP1). The expression of hsa_circ_007367 and YAP1 were detected by in situ hybridization (ISH) and immunohistochemistry (IHC) using tissue microarray (TMA) in 128 PDAC samples. We first identified that a novel circRNA, hsa_circ_0007367, was markedly upregulated in PDAC tissues and cells. Functionally, in vivo and in vitro data indicated that hsa_circ_0007367 promotes the proliferation and metastasis of PDAC. Mechanistically, we confirmed that hsa_circ_0007367 could facilitate the expression of YAP1, a well-known oncogene, by sponging miR-6820-3p, which function as a tumor suppresser in PDAC cells. The results of ISH and IHC demonstrated that hsa_circ_0007367 and YAP1 were upregulated in PDAC tissues. Furthermore, clinical data showed that higher hsa_circ_0007367 expression was correlated with advanced histological grade and lymph node metastasis in PDAC patients. In conclusion, our findings reveal that hsa_circ_0007367 acts as an oncogene via modulating miR-6820-3p/YAP1 axis to promote the progression of PDAC, and suggest that hsa_circ_0007367 may serve as a potential therapeutic target for treatment of PDAC.
Collapse
|
44
|
Luo X, Cao J, Zhang C, Huang H, Liu J. TRAF4 promotes the malignant progression of high-grade serous ovarian cancer by activating YAP pathway. Biochem Biophys Res Commun 2022; 627:68-75. [PMID: 36029535 DOI: 10.1016/j.bbrc.2022.07.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for the majority of deaths caused by epithelial ovarian cancer. The specific molecular changes attributable to the pathogenesis of HGSOC are still largely unknown. TRAF4 has been identified to be up-regulated in certain cancers. However, the role and mechanism of TRAF4 in HGSOC remain unclear. In this study, we aim to explore the prognostic value and function of TRAF4 in HGSOC. Immunohistochemical staining and prognostic analysis were used to estimate the prognosis value of TRAF4 in HGSOC. Cell counting assays, colony formation assays, sphere formation assays and tumorigenic assays were used to explore the function of TRAF4 in ovarian cancer cells. Furthermore, RNA-seq, qPCR and western blotting were performed to investigate the molecular mechanism of TRAF4 in ovarian cancer cells. The results showed that TRAF4 was significantly higher expressed in ovarian cancer than normal ovarian epithelium. Moreover, high expression of TRAF4 was significantly associated with shorter overall survival and recurrence-free survival in HGSOC. Knockdown of TRAF4 significantly inhibited the proliferation and tumorigenicity of ovarian cancer cells, whereas overexpression of TRAF4 promoted the proliferation and tumorigenicity of ovarian cancer cells both in vitro and in vivo. Mechanistically, our study demonstrated that TRAF4 expression was positively correlated with the YAP pathway gene signatures, and the malignant progression induced by TRAF4 was inhibited after silencing YAP signaling by its selective inhibitor. In conclusion, our findings suggested that TRAF4 promoted the malignant progression of ovarian cancer cells by activating YAP pathway and might serve as a prognostic biomarker for HGSOC.
Collapse
Affiliation(s)
- Xiaolin Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Junya Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chuyao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - He Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jihong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
45
|
Cheng X, Lou K, Ding L, Zou X, Huang R, Xu G, Zou J, Zhang G. Clinical potential of the Hippo-YAP pathway in bladder cancer. Front Oncol 2022; 12:925278. [PMID: 35912245 PMCID: PMC9336529 DOI: 10.3389/fonc.2022.925278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is one of the world’s most frequent cancers. Surgery coupled with adjuvant platinum-based chemotherapy is the current standard of therapy for BC. However, a high proportion of patients progressed to chemotherapy-resistant or even neoplasm recurrence. Hence, identifying novel treatment targets is critical for clinical treatment. Current studies indicated that the Hippo-YAP pathway plays a crucial in regulating the survival of cancer stem cells (CSCs), which is related to the progression and reoccurrence of a variety of cancers. In this review, we summarize the evidence that Hippo-YAP mediates the occurrence, progression and chemotherapy resistance in BC, as well as the role of the Hippo-YAP pathway in regulating bladder cancer stem-like cells (BCSCs). Finally, the clinical potential of Hippo-YAP in the treatment of BC was prospected.
Collapse
Affiliation(s)
- Xin Cheng
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liang Ding
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Ruohui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Gang Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
- *Correspondence: Guoxi Zhang,
| |
Collapse
|
46
|
Role of Yes-Associated Protein in Psoriasis and Skin Tumor Pathogenesis. J Pers Med 2022; 12:jpm12060978. [PMID: 35743763 PMCID: PMC9225571 DOI: 10.3390/jpm12060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis and skin tumors (such as basal cell carcinoma, squamous cell carcinoma, and melanoma) are chronic diseases that endanger physical and mental health, and yet the causes are largely unknown and treatment options limited. The development of targeted drugs requires a better understanding of the exact pathogenesis of these diseases, and Yes-associated protein (YAP), a member of the Hippo signaling pathway, is believed to play an important role. Psoriasis and skin tumors are characterized by excessive cell proliferation, abnormal differentiation, vasodilation, and proliferation. Here, we review the literature related to YAP-associated disease mechanisms and discuss the latest research. YAP regulates cell apoptosis, proliferation, and differentiation; inhibits cell density and intercellular contacts and angiogenesis; and maintains the three-dimensional structure of the skin. These mechanisms may be associated with the occurrence and development of psoriasis and skin tumors. The results of recent studies have shown that YAP expression is increased in psoriasis and skin tumors. High expression of YAP in psoriasis and skin tumors may indicate its positive functions in skin inflammation and malignancies and may play an important role in disease pathogenesis. The study of new drugs targeting YAP can provide novel approaches for the treatment of skin diseases.
Collapse
|
47
|
Pan X, Geng Z, Li J, Li X, Zhang M, Wang X, Cong Y, Huang K, Xu J, Jia X. Peptide PDHPS1 inhibits ovarian cancer growth through disrupting YAP signaling. Mol Cancer Ther 2022; 21:1160-1170. [PMID: 35545004 DOI: 10.1158/1535-7163.mct-21-0848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/09/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
The lives of ovarian cancer patients are threatened largely due to metastasis and drug resistance. Endogenous peptides attract increasing attention in oncologic therapeutic area, a few anti-tumor peptides have been approved by the food and drug administration (FDA) for clinical use over the past decades. However, only few peptides or peptide-derived drugs with anti-ovarian cancer effects have been identified. Here we focused on the biological roles and mechanism of a peptide named PDHPS1 in ovarian cancer development. Our results indicated that PDHPS1 reduced the proliferation ability of ovarian cancer cells in vitro and inhibited the ovarian cancer growth in vivo. Peptide pull down and following mass spectrometry, western blot and qRT-PCR revealed that PDHPS1 could bind to protein phosphatase 2 phosphatase activator (PTPA), an essential activator of protein phosphatase 2A (PP2A), which resulted in increase of phosphorylated YAP, further inactivated YAP and suppressed the expression of its downstream target genes. Flow cytometry, cell membrane permeability test and immunohistochemical staining study demonstrated that there are no observable side effects of PDHPS1 on normal ovarian epithelium and hepatorenal function. Besides, modification of membrane penetration could improve the physicochemical properties and biological activity of PDHPS1. In conclusion, our study demonstrated that the endogenous peptide PDHPS1 serves as an anti-tumor peptide to inhibit YAP signaling pathway though interacting with PTPA in ovarian cancer.
Collapse
Affiliation(s)
- Xinxing Pan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhe Geng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyun Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingxing Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mi Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xusu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yu Cong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ke Huang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Juan Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xuemei Jia
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
48
|
Fan H, He Y, Xiang J, Zhou J, Wan X, You J, Du K, Li Y, Cui L, Wang Y, Zhang C, Bu Y, Lei Y. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy. Redox Biol 2022; 53:102339. [PMID: 35636017 PMCID: PMC9144037 DOI: 10.1016/j.redox.2022.102339] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies with poor prognosis due to constant chemoresistance and repeated relapse. Ciclopirox olamine (CPX), a synthetic antifungal agent, has recently been identified to be a promising anti-cancer candidate. However, the detailed mechanisms related to its anti-cancer effects remain unclear and need to be further elucidated. In this study, we found that CPX could induce proliferation inhibition in cervical cancer cells by targeting PARK7. Further results demonstrated that CPX could induce cytoprotective autophagy by downregulating the expression of PARK7 to activate PRKAA1 or by PARK7-independent accumulation of ROS to inhibit mTOR signaling. Meanwhile, CPX treatment increased the glycogen clustering and glycophagy in cervical cancer cells. The presence of N-acetyl-l-cysteine (NAC), a ROS scavenger, led to further clustering of glycogen in cells by reducing autophagy and enhancing glycophagy, which promoted CPX-induced inhibition of cervical cancer cell proliferation. Together, our study provides new insights into the molecular mechanisms of CPX in the anti-cancer therapy and opens new avenues for the glycophagy in cancer therapeutics. CPX induces cytoprotective autophagy and inhibits proliferation of cervical cancer cells by targeting PARK7. ROS generation attenuates the anticancer effect of CPX by inducing cytoprotective autophagy and inhibiting glycophagy. ROS-triggered glycogen clustering and inactivation of YAP1 are involved in the anti-cancer effects of CPX.
Collapse
Affiliation(s)
- Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Junqi Xiang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiawei You
- Department of Basic Medicine, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
49
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
50
|
Li H, Sun Y, Li Q, Luo Q, Song G. Matrix Stiffness Potentiates Stemness of Liver Cancer Stem Cells Possibly via the Yes-Associated Protein Signal. ACS Biomater Sci Eng 2022; 8:598-609. [PMID: 35084830 DOI: 10.1021/acsbiomaterials.1c00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A hepatocellular carcinoma tissue has mechanical heterogeneity, where the stiffness gradually increases from the core to the invasion front. Furthermore, there is evidence that stem cells from liver cancer (LCSCs) preferentially enrich the invasion front, exhibiting the stiffest modulus in the tumor. LCSCs have the features of stem/progenitor cells and play a vital part in liver cancer development. However, whether matrix stiffness affects LCSC stemness remains unclear. Here, we established a three-dimensional hydrogel for culturing LCSCs to simulate the stiffness of the core and the invasion front of a liver cancer tissue. The results showed that a stiffer matrix (72.2 ± 0.90 kPa) significantly potentiated LCSC stemness as compared with a soft matrix (7.7 ± 0.41 kPa). Moreover, Yes-associated protein signaling might mediate this promotion. Together, our findings illustrate the relationship between matrix stiffness and LCSC stemness, which may aid the production of novel treatment approaches against liver cancer.
Collapse
Affiliation(s)
- Hong Li
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Yuchuan Sun
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Qing Li
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Qing Luo
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Guanbin Song
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| |
Collapse
|