1
|
Søland TM, Lipka A, Ruus AK, Molværsmyr AK, Galtung HK, Haug TM. Extracellular vesicles from cancer cell lines of different origins drive the phenotype of normal oral fibroblasts in a CAF-like direction. Front Oncol 2024; 14:1456346. [PMID: 39381039 PMCID: PMC11458688 DOI: 10.3389/fonc.2024.1456346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Normal oral fibroblasts (NOFs) are located in the connective tissue of the oral mucosa. The NOFs play an important role in wound healing, tumor progression, and metastasis. They are subjected to influence by external and internal stimuli, among them extracellular vesicles (EVs), that are considered as important players in cell to cell communication, especially in carcinogenesis and metastatic processes. During tumorigenesis, stromal NOFs may undergo activation into cancer-associated fibroblasts (CAFs) that modify their phenotype to provide pro-oncogenic signals that in turn facilitate tumor initiation, progression, and metastasis. The aim of the study was to reveal the effect of EVs derived from local (oral squamous cell carcinoma - OSCC) and distant (pancreatic adenocarcinoma - PDAC; malignant melanoma brain metastasis - MBM) cancer origin on NOFs and their possible change into a CAF-like direction. Methods The effect of each of the cancer EV types on NOFs proliferation, viability, and migration was tested. Also, changes in gene expression of the well-established CAF biomarkers ACTA2, FAP, PDGFR, and two putative CAF biomarkers, the Ca2+- activated ion channels ANO1 and KCNMA, were studied. Results Obtained results indicate that NOFs receive and process signals transmitted by EVs originating from both OSCC, PDAC, and MBM. The fibroblast response was dependent on EV origin and concentration, and duration of EV exposure. Conclusion The present results indicate that the molecular cargo of the EVs direct NOFs towards a pro-tumorigenic phenotype.
Collapse
|
2
|
Rigg E, Wang J, Xue Z, Lunavat TR, Liu G, Hoang T, Parajuli H, Han M, Bjerkvig R, Nazarov PV, Nicot N, Kreis S, Margue C, Nomigni MT, Utikal J, Miletic H, Sundstrøm T, Ystaas LAR, Li X, Thorsen F. Inhibition of extracellular vesicle-derived miR-146a-5p decreases progression of melanoma brain metastasis via Notch pathway dysregulation in astrocytes. J Extracell Vesicles 2023; 12:e12363. [PMID: 37759347 PMCID: PMC10533779 DOI: 10.1002/jev2.12363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Melanoma has the highest propensity of all cancers to metastasize to the brain with a large percentage of late-stage patients developing metastases in the central nervous system (CNS). It is well known that metastasis establishment, cell survival, and progression are affected by tumour-host cell interactions where changes in the host cellular compartments likely play an important role. In this context, miRNAs transferred by tumour derived extracellular vesicles (EVs) have previously been shown to create a favourable tumour microenvironment. Here, we show that miR-146a-5p is highly expressed in human melanoma brain metastasis (MBM) EVs, both in MBM cell lines as well as in biopsies, thereby modulating the brain metastatic niche. Mechanistically, miR-146a-5p was transferred to astrocytes via EV delivery and inhibited NUMB in the Notch signalling pathway. This resulted in activation of tumour-promoting cytokines (IL-6, IL-8, MCP-1 and CXCL1). Brain metastases were significantly reduced following miR-146a-5p knockdown. Corroborating these findings, miR-146a-5p inhibition led to a reduction of IL-6, IL-8, MCP-1 and CXCL1 in astrocytes. Following molecular docking analysis, deserpidine was identified as a functional miR-146a-5p inhibitor, both in vitro and in vivo. Our results highlight the pro-metastatic function of miR-146a-5p in EVs and identifies deserpidine for targeted adjuvant treatment.
Collapse
Affiliation(s)
- Emma Rigg
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Zhiwei Xue
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Taral R. Lunavat
- Department of BiomedicineUniversity of BergenBergenNorway
- Department of Neurology, Molecular Neurogenetics Unit‐West, Massachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Guowei Liu
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Tuyen Hoang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Himalaya Parajuli
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Rolf Bjerkvig
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Petr V. Nazarov
- Bioinformatics Platform and Multiomics Data Science Research Group, Department of Cancer ResearchLuxembourg Institute of HealthLuxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of HealthLaboratoire National de SantéDudelangeLuxembourg
| | - Stephanie Kreis
- Department of Life Sciences and MedicineUniversity of LuxembourgLuxembourg
| | - Christiane Margue
- Department of Life Sciences and MedicineUniversity of LuxembourgLuxembourg
| | | | - Jochen Utikal
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center Mannheim, Ruprecht‐Karl University of HeidelbergMannheimGermany
- DKFZ Hector Cancer Institute at the University Medical Center MannheimMannheimGermany
| | - Hrvoje Miletic
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Terje Sundstrøm
- Department of NeurosurgeryHaukeland University HospitalBergenNorway
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Lars A. R. Ystaas
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xingang Li
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Frits Thorsen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Department of NeurosurgeryHaukeland University HospitalBergenNorway
- Molecular Imaging Center, Department of BiomedicineUniversity of BergenBergenNorway
| |
Collapse
|
3
|
Singh AK, Malviya R, Prajapati B, Singh S, Yadav D, Kumar A. Nanotechnology-Aided Advancement in Combating the Cancer Metastasis. Pharmaceuticals (Basel) 2023; 16:899. [PMID: 37375846 PMCID: PMC10304141 DOI: 10.3390/ph16060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Modern medicine has been working to find a cure for cancer for almost a century, but thus far, they have not been very successful. Although cancer treatment has come a long way, more work has to be carried out to boost specificity and reduce systemic toxicity. The diagnostic industry is on the cusp of a technological revolution, and early diagnosis is essential for improving prognostic outlook and patient quality of life. In recent years, nanotechnology's use has expanded, demonstrating its efficacy in enhancing fields such as cancer treatment, radiation therapy, diagnostics, and imaging. Applications for nanomaterials are diverse, ranging from enhanced radiation adjuvants to more sensitive early detection instruments. Cancer, particularly when it has spread beyond the original site of cancer, is notoriously tough to combat. Many people die from metastatic cancer, which is why it remains a huge issue. Cancer cells go through a sequence of events known as the "metastatic cascade" throughout metastasis, which may be used to build anti-metastatic therapeutic techniques. Conventional treatments and diagnostics for metastasis have their drawbacks and hurdles that must be overcome. In this contribution, we explore in-depth the potential benefits that nanotechnology-aided methods might offer to the detection and treatment of metastatic illness, either alone or in conjunction with currently available conventional procedures. Anti-metastatic drugs, which can prevent or slow the spread of cancer throughout the body, can be more precisely targeted and developed with the help of nanotechnology. Furthermore, we talk about how nanotechnology is being applied to the treatment of patients with cancer metastases.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Arvind Kumar
- Chandigarh Engineering College, Jhanjeri, Mohali 140307, India;
| |
Collapse
|
4
|
Spitzer D, Khel MI, Pütz T, Zinke J, Jia X, Sommer K, Filipski K, Thorsen F, Freiman TM, Günther S, Plate KH, Harter PN, Liebner S, Reiss Y, Di Tacchio M, Guérit S, Devraj K. A flow cytometry-based protocol for syngenic isolation of neurovascular unit cells from mouse and human tissues. Nat Protoc 2023; 18:1510-1542. [PMID: 36859615 DOI: 10.1038/s41596-023-00805-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/16/2022] [Indexed: 03/03/2023]
Abstract
The neurovascular unit (NVU), composed of endothelial cells, pericytes, juxtaposed astrocytes and microglia together with neurons, is essential for proper central nervous system functioning. The NVU critically regulates blood-brain barrier (BBB) function, which is impaired in several neurological diseases and is therefore a key therapeutic target. To understand the extent and cellular source of BBB dysfunction, simultaneous isolation and analysis of NVU cells is needed. Here, we describe a protocol for the EPAM-ia method, which is based on flow cytometry for simultaneous isolation and analysis of endothelial cells, pericytes, astrocytes and microglia. This method is based on differential processing of NVU cell types using enzymes, mechanical homogenization and filtration specific for each cell type followed by combining them for immunostaining and fluorescence-activated cell sorting. The gating strategy encompasses cell-type-specific and exclusion markers for contaminating cells to isolate the major NVU cell types. This protocol takes ~6 h for two sets of one or two animals. The isolation part requires experience in animal handling, fresh tissue processing and immunolabeling for flow cytometry. Sorted NVU cells can be used for downstream applications including transcriptomics, proteomics and cell culture. Multiple cell-type analyses using UpSet can then be applied to obtain robust targets from single or multiple NVU cell types in neurological diseases associated with BBB dysfunction. The EPAM-ia method is also amenable to isolation of several other cell types, including cancer cells and immune cells. This protocol is applicable to healthy and pathological tissue from mouse and human sources and to several cell types compared with similar protocols.
Collapse
Affiliation(s)
- Daniel Spitzer
- Department of Neurology, Goethe University, Frankfurt, Germany.,Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Maryam I Khel
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Tim Pütz
- Department of Neurology, Goethe University, Frankfurt, Germany.,Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Jenny Zinke
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Xiaoxiong Jia
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Kathleen Sommer
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Katharina Filipski
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Thomas M Freiman
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Karl H Plate
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Liebner
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Yvonne Reiss
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sylvaine Guérit
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany
| | - Kavi Devraj
- Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany. .,Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.
| |
Collapse
|
5
|
Avula LR, Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev 2022; 41:383-404. [PMID: 35366154 PMCID: PMC8975728 DOI: 10.1007/s10555-022-10025-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 02/03/2023]
Abstract
Cancer, especially when it has metastasized to different locations in the body, is notoriously difficult to treat. Metastatic cancer accounts for most cancer deaths and thus remains an enormous challenge. During the metastasis process, cancer cells negotiate a series of steps termed the “metastatic cascadeˮ that offer potential for developing anti-metastatic therapy strategies. Currently available conventional treatment and diagnostic methods addressing metastasis come with their own pitfalls and roadblocks. In this contribution, we comprehensively discuss the potential improvements that nanotechnology-aided approaches are able to bring, either alone or in combination with the existing conventional techniques, to the identification and treatment of metastatic disease. We tie specific nanotechnology-aided strategies to the complex biology of the different steps of the metastatic cascade in order to open up new avenues for fine-tuned targeting and development of anti-metastatic agents designed specifically to prevent or mitigate the metastatic outgrowth of cancer. We also present a viewpoint on the progress of translation of nanotechnology into cancer metastasis patient care.
Collapse
Affiliation(s)
- Leela Rani Avula
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
6
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
7
|
Aasen SN, Espedal H, Keunen O, Adamsen TCH, Bjerkvig R, Thorsen F. Current landscape and future perspectives in preclinical MR and PET imaging of brain metastasis. Neurooncol Adv 2021; 3:vdab151. [PMID: 34988446 PMCID: PMC8704384 DOI: 10.1093/noajnl/vdab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis (BM) is a major cause of cancer patient morbidity. Clinical magnetic resonance imaging (MRI) and positron emission tomography (PET) represent important resources to assess tumor progression and treatment responses. In preclinical research, anatomical MRI and to some extent functional MRI have frequently been used to assess tumor progression. In contrast, PET has only to a limited extent been used in animal BM research. A considerable culprit is that results from most preclinical studies have shown little impact on the implementation of new treatment strategies in the clinic. This emphasizes the need for the development of robust, high-quality preclinical imaging strategies with potential for clinical translation. This review focuses on advanced preclinical MRI and PET imaging methods for BM, describing their applications in the context of what has been done in the clinic. The strengths and shortcomings of each technology are presented, and recommendations for future directions in the development of the individual imaging modalities are suggested. Finally, we highlight recent developments in quantitative MRI and PET, the use of radiomics and multimodal imaging, and the need for a standardization of imaging technologies and protocols between preclinical centers.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Heidi Espedal
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olivier Keunen
- Translational Radiomics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tom Christian Holm Adamsen
- Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- 180 °N – Bergen Tracer Development Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| |
Collapse
|
8
|
Abstract
Melanoma is an aggressive form of skin cancer with a very high mortality rate. Early diagnosis of the disease, the utilization of more potent pharmacological agents, and more effective drug delivery systems are essential to achieve an optimal treatment plan. The applications of nanotechnology to improve therapeutic efficacy and early diagnosis for melanoma treatment have received great interest among researchers and clinicians. In this review, we summarize the recent progress of utilizing various nanomaterials for theranostics of melanoma. The key importance of using nanomaterials for theranostics of melanoma is to improve efficacy and reduce side effects, ensuring safe implementation in clinical use. As opposed to conventional in vitro diagnostic methods, in vivo medical imaging technologies have the advantages of being a type of non-invasive, real-time monitoring. Several common nanoparticles, including ultrasmall superparamagnetic iron oxide nanoparticles, silica nanoparticles, and carbon-based nanoparticles, have been applied to deliver chemotherapeutic agents for the theranostics of melanoma. The application of nanomaterials for theranostics in molecular imaging (MRI, PET, US, OI, etc.) plays an important role in targeting drug delivery of melanoma, by monitoring the distribution site of the molecular imaging probe and the therapeutic drug in the body in real-time. Hence, it is worthwhile to anticipate the approval of these nanomaterials for theranostics in molecular imaging by the US Food and Drug Administration in clinical trials.
Collapse
|
9
|
Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, Cittelly DM, Erez N, Ferraro GB, Fukumura D, Gril B, Herlyn M, Holmen SL, Jain RK, Joyce JA, Lorger M, Massague J, Neman J, Sibson NR, Steeg PS, Thorsen F, Young LS, Varešlija D, Vultur A, Weis-Garcia F, Winkler F. Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Res 2020; 80:4314-4323. [PMID: 32641416 PMCID: PMC7572582 DOI: 10.1158/0008-5472.can-20-0291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | - Carey K Anders
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina
| | - Amos Bairoch
- CALIPHO group, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paula D Bos
- Department of Pathology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gino B Ferraro
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Dai Fukumura
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | | | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rakesh K Jain
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mihaela Lorger
- Brain Metastasis Research Group, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Joan Massague
- Cancer Cell Biology Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josh Neman
- Departments of Neurological Surgery, Physiology & Neuroscience, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adina Vultur
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Frances Weis-Garcia
- Antibody & Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Deán-Ben XL, Weidenfeld I, Degtyaruk O, Ntziachristos V, Stiel AC, Razansky D. Deep tissue volumetric optoacoustic tracking of individual circulating tumor cells in an intracardially perfused mouse model. Neoplasia 2020; 22:441-446. [PMID: 32653834 PMCID: PMC7355386 DOI: 10.1016/j.neo.2020.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Widespread metastasis is the major cause of death from melanoma and other types of cancer. At present, the dynamic aspects of the metastatic cascade remain enigmatic. The feasibility to track circulating melanoma cells deep within living intact organisms can greatly impact our knowledge on tumor metastasis, but existing imaging approaches lack the sensitivity, spatio-temporal resolution or penetration depth to capture flowing tumor cells over large fields of view within optically-opaque biological tissues. Vast progress with the development of optoacoustic tomography technologies has recently enabled two- and three-dimensional imaging at unprecedented frame rates in the order of hundreds of Hertz, effectively mapping up to a million image voxels within a single volumetric snapshot. Herein, we employ volumetric optoacoustic tomography for real-time visualization of passage and trapping of individual B16 melanoma cells in the whole mouse brain. Detection of individual circulating melanoma cells was facilitated by substituting blood with an artificial cerebrospinal fluid that removes the strong absorption background in the optoacoustic images. The approach can provide new opportunities for studying trafficking and accumulation of metastatic melanoma cells in different organs.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Switzerland; Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Germany.
| | - Ina Weidenfeld
- Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Germany
| | - Oleksiy Degtyaruk
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Switzerland; Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Germany
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Switzerland; Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Germany
| |
Collapse
|
11
|
Kucharczyk K, Rybka JD, Hilgendorff M, Krupinski M, Slachcinski M, Mackiewicz A, Giersig M, Dams-Kozlowska H. Composite spheres made of bioengineered spider silk and iron oxide nanoparticles for theranostics applications. PLoS One 2019; 14:e0219790. [PMID: 31306458 PMCID: PMC6629150 DOI: 10.1371/journal.pone.0219790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Bioengineered spider silk is a biomaterial that has exquisite mechanical properties, biocompatibility, and biodegradability. Iron oxide nanoparticles can be applied for the detection and analysis of biomolecules, target drug delivery, as MRI contrast agents and as therapeutic agents for hyperthermia-based cancer treatments. In this study, we investigated three bioengineered silks, MS1, MS2 and EMS2, and their potential to form a composite material with magnetic iron oxide nanoparticles (IONPs). The presence of IONPs did not impede the self-assembly properties of MS1, MS2, and EMS2 silks, and spheres formed. The EMS2 spheres had the highest content of IONPs, and the presence of magnetite IONPs in these carriers was confirmed by several methods such as SEM, EDXS, SQUID, MIP-OES and zeta potential measurement. The interaction of EMS2 and IONPs did not modify the superparamagnetic properties of the IONPs, but it influenced the secondary structure of the spheres. The composite particles exhibited a more than two-fold higher loading efficiency for doxorubicin than the plain EMS2 spheres. For both the EMS2 and EMS2/IONP spheres, the drug revealed a pH-dependent release profile with advantageous kinetics for carriers made of the composite material. The composite spheres can be potentially applied for a combined cancer treatment via hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Kamil Kucharczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | | | | | - Michal Krupinski
- The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Mariusz Slachcinski
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
- Institute of Experimental Physics at Freie Universität, Berlin, Germany
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
12
|
Hajhouji F, Ganau M, Helene C, Romano A, Gubian A, Proust F, Chibbaro S. Rare encounters: Primary pineal malignant melanoma with lepto-meningeal spread. Case report and literature review on management challenges and outcomes. J Clin Neurosci 2019; 65:161-165. [DOI: 10.1016/j.jocn.2019.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
|
13
|
Oleshkevich E, Morancho A, Saha A, Galenkamp KMO, Grayston A, Crich SG, Alberti D, Protti N, Comella JX, Teixidor F, Rosell A, Viñas C. Combining magnetic nanoparticles and icosahedral boron clusters in biocompatible inorganic nanohybrids for cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101986. [PMID: 31059794 DOI: 10.1016/j.nano.2019.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
The potential biomedical applications of the MNPs nanohybrids coated with m-carboranylphosphinate (1-MNPs) as a theranostic biomaterial for cancer therapy were tested. The cellular uptake and toxicity profile of 1-MNPs from culture media by human brain endothelial cells (hCMEC/D3) and glioblastoma multiform A172 cell line were demonstrated. Prior to testing 1-MNPs' in vitro toxicity, studies of colloidal stability of the 1-MNPs' suspension in different culture media and temperatures were carried out. TEM images and chemical titration confirmed that 1-MNPs penetrate into cells. Additionally, to explore 1-MNPs' potential use in Boron Neutron Capture Therapy (BNCT) for treating cancer locally, the presence of the m-carboranyl coordinated with the MNPs core after uptake was proven by XPS and EELS. Importantly, thermal neutrons irradiation in BNCT reduced by 2.5 the number of cultured glioblastoma cells after 1-MNP treatment, and the systemic administration of 1-MNPs in mice was well tolerated with no major signs of toxicity.
Collapse
Affiliation(s)
- Elena Oleshkevich
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona. Barcelona
| | - Arpita Saha
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Koen M O Galenkamp
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain; Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona. Barcelona
| | | | - Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino. Torino, Italy
| | | | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain; Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona. Barcelona.
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain.
| |
Collapse
|
14
|
Sundstrøm T, Prestegarden L, Azuaje F, Aasen SN, Røsland GV, Varughese JK, Bahador M, Bernatz S, Braun Y, Harter PN, Skaftnesmo KO, Ingham ES, Mahakian LM, Tam S, Tepper CG, Petersen K, Ferrara KW, Tronstad KJ, Lund-Johansen M, Beschorner R, Bjerkvig R, Thorsen F. Inhibition of mitochondrial respiration prevents BRAF-mutant melanoma brain metastasis. Acta Neuropathol Commun 2019; 7:55. [PMID: 30971321 PMCID: PMC6456988 DOI: 10.1186/s40478-019-0712-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 01/12/2023] Open
Abstract
Melanoma patients carry a high risk of developing brain metastases, and improvements in survival are still measured in weeks or months. Durable disease control within the brain is impeded by poor drug penetration across the blood-brain barrier, as well as intrinsic and acquired drug resistance. Augmented mitochondrial respiration is a key resistance mechanism in BRAF-mutant melanomas but, as we show in this study, this dependence on mitochondrial respiration may also be exploited therapeutically. We first used high-throughput pharmacogenomic profiling to identify potentially repurposable compounds against BRAF-mutant melanoma brain metastases. One of the compounds identified was β-sitosterol, a well-tolerated and brain-penetrable phytosterol. Here we show that β-sitosterol attenuates melanoma cell growth in vitro and also inhibits brain metastasis formation in vivo. Functional analyses indicated that the therapeutic potential of β-sitosterol was linked to mitochondrial interference. Mechanistically, β-sitosterol effectively reduced mitochondrial respiratory capacity, mediated by an inhibition of mitochondrial complex I. The net result of this action was increased oxidative stress that led to apoptosis. This effect was only seen in tumor cells, and not in normal cells. Large-scale analyses of human melanoma brain metastases indicated a significant role of mitochondrial complex I compared to brain metastases from other cancers. Finally, we observed completely abrogated BRAF inhibitor resistance when vemurafenib was combined with either β-sitosterol or a functional knockdown of mitochondrial complex I. In conclusion, based on its favorable tolerability, excellent brain bioavailability, and capacity to inhibit mitochondrial respiration, β-sitosterol represents a promising adjuvant to BRAF inhibitor therapy in patients with, or at risk for, melanoma brain metastases.
Collapse
|
15
|
Cheng VWT, Soto MS, Khrapitchev AA, Perez-Balderas F, Zakaria R, Jenkinson MD, Middleton MR, Sibson NR. VCAM-1-targeted MRI Enables Detection of Brain Micrometastases from Different Primary Tumors. Clin Cancer Res 2019; 25:533-543. [PMID: 30389659 DOI: 10.1158/1078-0432.ccr-18-1889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/06/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE A major issue for the effective treatment of brain metastasis is the late stage of diagnosis with existing clinical tools. The aim of this study was to evaluate the potential of vascular cell adhesion molecule 1 (VCAM-1)-targeted MRI for early detection of brain micrometastases in mouse models across multiple primary tumor types.Experimental Design: Xenograft models of brain micrometastasis for human breast carcinoma (MDA231Br-GFP), lung adenocarcinoma (SEBTA-001), and melanoma (H1_DL2) were established via intracardiac injection in mice. Animals (n = 5-6/group) were injected intravenously with VCAM-1-targeted microparticles of iron oxide (VCAM-MPIO) and, subsequently, underwent T 2*-weighted MRI. Control groups of naïve mice injected with VCAM-MPIO and tumor-bearing mice injected with nontargeting IgG-MPIO were included. RESULTS All models showed disseminated micrometastases in the brain, together with endothelial VCAM-1 upregulation across the time course. T 2*-weighted MRI of all tumor-bearing mice injected with VCAM-MPIO showed significantly more signal hypointensities (P < 0.001; two-sided) than control cohorts, despite a lack of blood-brain barrier (BBB) impairment. Specific MPIO binding to VCAM-1-positive tumor-associated vessels was confirmed histologically. VCAM-1 expression was demonstrated in human brain metastasis samples, across all three primary tumor types. CONCLUSIONS VCAM-1-targeted MRI enables the detection of brain micrometastases from the three primary tumor types known to cause the majority of clinical cases. These findings represent an important step forward in the development of a broadly applicable and clinically relevant imaging technique for early diagnosis of brain metastasis, with significant implications for improved patient survival.
Collapse
Affiliation(s)
- Vinton W T Cheng
- Department of Oncology, Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Manuel Sarmiento Soto
- Department of Oncology, Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry and Molecular Biology, University of Seville, Seville, Spain
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Alexandre A Khrapitchev
- Department of Oncology, Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Francisco Perez-Balderas
- Department of Oncology, Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Department of Oncology, Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Li X, Wei Z, Lv H, Wu L, Cui Y, Yao H, Li J, Zhang H, Yang B, Jiang J. Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites. Int J Nanomedicine 2019; 14:573-589. [PMID: 30666115 PMCID: PMC6336032 DOI: 10.2147/ijn.s184920] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Developing new methods to deliver cells to the injured tissue is a critical factor in translating cell therapeutics research into clinical use; therefore, there is a need for improved cell homing capabilities. Materials and methods In this study, we demonstrated the effects of labeling rat bone marrow-derived mesenchymal stem cells (MSCs) with fabricated polydopamine (PDA)-capped Fe3O4 (Fe3O4@PDA) superparticles employing preassembled Fe3O4 nanoparticles as the cores. Results We found that the Fe3O4@PDA composite superparticles exhibited no adverse effects on MSC characteristics. Moreover, iron oxide nanoparticles increased the number of MSCs in the S-phase, their proliferation index and migration ability, and their secretion of vascular endothelial growth factor relative to unlabeled MSCs. Interestingly, nanoparticles not only promoted the expression of C-X-C chemokine receptor 4 but also increased the expression of the migration-related proteins c-Met and C-C motif chemokine receptor 1, which has not been reported previously. Furthermore, the MSC-loaded nanoparticles exhibited improved homing and anti-inflammatory abilities in the absence of external magnetic fields in vivo. Conclusion These results indicated that iron oxide nanoparticles rendered MSCs more favorable for use in injury treatment with no negative effects on MSC properties, suggesting their potential clinical efficacy.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Zhenhong Wei
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Huiying Lv
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Liya Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Yingnan Cui
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Hua Yao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Jing Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| |
Collapse
|
17
|
Johannessen TC, Hasan-Olive MM, Zhu H, Denisova O, Grudic A, Latif MA, Saed H, Varughese JK, Røsland GV, Yang N, Sundstrøm T, Nordal A, Tronstad KJ, Wang J, Lund-Johansen M, Simonsen A, Janji B, Westermarck J, Bjerkvig R, Prestegarden L. Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. Int J Cancer 2018; 144:1735-1745. [PMID: 30289977 DOI: 10.1002/ijc.31912] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis with an overall survival of 14-15 months after surgery, radiation and chemotherapy using temozolomide (TMZ). A major problem is that the tumors acquire resistance to therapy. In an effort to improve the therapeutic efficacy of TMZ, we performed a genome-wide RNA interference (RNAi) synthetic lethality screen to establish a functional gene signature for TMZ sensitivity in human GBM cells. We then queried the Connectivity Map database to search for drugs that would induce corresponding changes in gene expression. By this approach we identified several potential pharmacological sensitizers to TMZ, where the most potent drug was the established antipsychotic agent Thioridazine, which significantly improved TMZ sensitivity while not demonstrating any significant toxicity alone. Mechanistically, we show that the specific chemosensitizing effect of Thioridazine is mediated by impairing autophagy, thereby preventing adaptive metabolic alterations associated with TMZ resistance. Moreover, we demonstrate that Thioridazine inhibits late-stage autophagy by impairing fusion between autophagosomes and lysosomes. Finally, Thioridazine in combination with TMZ significantly inhibits brain tumor growth in vivo, demonstrating the potential clinical benefits of compounds targeting the autophagy-lysosome pathway. Our study emphasizes the feasibility of exploiting drug repurposing for the design of novel therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Tor-Christian Johannessen
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Md Mahdi Hasan-Olive
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Huaiyang Zhu
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Shandong Chest Hospital, Jinan, China
| | - Oxana Denisova
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Amra Grudic
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Md Abdul Latif
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Halala Saed
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jobin K Varughese
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Ning Yang
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Terje Sundstrøm
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Anne Nordal
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | | | - Jian Wang
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Morten Lund-Johansen
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bassam Janji
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Lars Prestegarden
- Kristian Gerhard Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Dermatology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Species-dependent extracranial manifestations of a brain seeking breast cancer cell line. PLoS One 2018; 13:e0208340. [PMID: 30532191 PMCID: PMC6287854 DOI: 10.1371/journal.pone.0208340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Metastatic brain tumors pose a severe problem in the treatment of patients with breast carcinoma. Preclinical models have been shown to play an important role in unraveling the underlying mechanisms behind the metastatic process and evaluation of new therapeutic approaches. As the size of the rat brain allows improved in vivo imaging, we attempted to establish a rat model for breast cancer brain metastasis that allows follow-up by 7 tesla (7T) preclinical Magnetic Resonance Imaging (MRI). PROCEDURES Green fluorescent protein-transduced (eGFP) MDA-MB-231br breast cancer cells were labeled with micron-sized particles of iron oxide (MPIOs) and intracardially injected in the left ventricle of female nude rats and mice. 7T preclinical MRI was performed to show the initial distribution of MPIO-labeled cancer cells and to visualize metastasis in the brain. Occurrence of potential metastasis outside the brain was evaluated by 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET)/computed tomography (CT) and potential bone lesions were assessed using [18F]sodium fluoride ([18F]NaF) PET/CT. RESULTS The first signs of brain metastasis development were visible as hyperintensities on T2-weighted (T2w) MR images acquired 3 weeks after intracardiac injection in rats and mice. Early formation of unexpected bone metastasis in rats was clinically observed and assessed using PET/CT. Almost no bone metastasis development was observed in mice after PET/CT evaluation. CONCLUSIONS Our results suggest that the metastatic propensity of the MDA-MB-231br/eGFP cancer cell line outside the brain is species-dependent. Because of early and abundant formation of bone metastasis with the MDA-MB-231br/eGFP cancer cell line, this rat model is currently not suitable for investigating brain metastasis as a single disease model nor for evaluation of novel brain metastasis treatment strategies.
Collapse
|
19
|
Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One 2018; 13:e0204276. [PMID: 30260987 PMCID: PMC6160036 DOI: 10.1371/journal.pone.0204276] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of biological particles released by cells. They represent an attractive source of potential biomarkers for early detection of diseases such as cancer. However, it is critical that sufficient amounts of EVs can be isolated and purified in a robust and reproducible manner. Several isolation methods that seem to produce distinct populations of vesicles exist, making data comparability difficult. While some methods induce cellular stress that may affect both the quantity and function of the EVs produced, others involve expensive reagents or equipment unavailable for many laboratories. Thus, there is a need for a standardized, feasible and cost-effective method for isolation of EVs from cell culture supernatants. Here we present the most common obstacles in the production and isolation of small EVs, and we suggest a combination of relatively simple strategies to avoid these. Three distinct cell lines were used (human oral squamous cell carcinoma (PE/CA-PJ49/E10)), pancreatic adenocarcinoma (BxPC3), and a human melanoma brain metastasis (H3). The addition of 1% exosome-depleted FBS to Advanced culture media enabled for reduced presence of contaminating bovine EVs while still ensuring an acceptable cell proliferation and low cellular stress. Cells were gradually adapted to these new media. Furthermore, using the Integra CELLine AD1000 culture flask we increased the number of cells and thereby EVs in 3D-culture. A combination of ultrafiltration with different molecular weight cut-offs and size-exclusion chromatography was further used for the isolation of a heterogeneous population of small EVs with low protein contamination. The EVs were characterized by nanoparticle tracking analysis, immunoaffinity capture, flow cytometry, Western blot and transmission electron microscopy. We successfully isolated a significant amount of small EVs compatible with exosomes from three distinct cell lines in order to demonstrate reproducibility with cell lines of different origin. The EVs were characterized as CD9 positive with a size between 60–140 nm. We conclude that this new combination of methods is a robust and improved strategy for the isolation of EVs, and in particular small EVs compatible with exosomes, from cell culture media without the use of specialized equipment such as an ultracentrifuge.
Collapse
|
20
|
Zeiner PS, Zinke J, Kowalewski DJ, Bernatz S, Tichy J, Ronellenfitsch MW, Thorsen F, Berger A, Forster MT, Muller A, Steinbach JP, Beschorner R, Wischhusen J, Kvasnicka HM, Plate KH, Stefanović S, Weide B, Mittelbronn M, Harter PN. CD74 regulates complexity of tumor cell HLA class II peptidome in brain metastasis and is a positive prognostic marker for patient survival. Acta Neuropathol Commun 2018; 6:18. [PMID: 29490700 PMCID: PMC5831742 DOI: 10.1186/s40478-018-0521-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 12/30/2022] Open
Abstract
Despite multidisciplinary local and systemic therapeutic approaches, the prognosis for most patients with brain metastases is still dismal. The role of adaptive and innate anti-tumor response including the Human Leukocyte Antigen (HLA) machinery of antigen presentation is still unclear. We present data on the HLA class II-chaperone molecule CD74 in brain metastases and its impact on the HLA peptidome complexity.We analyzed CD74 and HLA class II expression on tumor cells in a subset of 236 human brain metastases, primary tumors and peripheral metastases of different entities in association with clinical data including overall survival. Additionally, we assessed whole DNA methylome profiles including CD74 promoter methylation and differential methylation in 21 brain metastases. We analyzed the effects of a siRNA mediated CD74 knockdown on HLA-expression and HLA peptidome composition in a brain metastatic melanoma cell line.We observed that CD74 expression on tumor cells is a strong positive prognostic marker in brain metastasis patients and positively associated with tumor-infiltrating T-lymphocytes (TILs). Whole DNA methylome analysis suggested that CD74 tumor cell expression might be regulated epigenetically via CD74 promoter methylation. CD74high and TILhigh tumors displayed a differential DNA methylation pattern with highest enrichment scores for antigen processing and presentation. Furthermore, CD74 knockdown in vitro lead to a reduction of HLA class II peptidome complexity, while HLA class I peptidome remained unaffected.In summary, our results demonstrate that a functional HLA class II processing machinery in brain metastatic tumor cells, reflected by a high expression of CD74 and a complex tumor cell HLA peptidome, seems to be crucial for better patient prognosis.
Collapse
Affiliation(s)
- P S Zeiner
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - J Zinke
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
| | - D J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | - S Bernatz
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
| | - J Tichy
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - M W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - F Thorsen
- Department of Biomedicine, The Kristian Gerhard Jebsen Brain Tumour Research Center and The Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - A Berger
- Institute for Virology, Goethe-University, Frankfurt am Main, Germany
| | - M T Forster
- Department of Neurosurgery, Goethe-University, Frankfurt am Main, Germany
| | - A Muller
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - J P Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
| | - R Beschorner
- Department of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - J Wischhusen
- Department of Gynecology, University of Wuerzburg, Wuerzburg, Germany
| | - H M Kvasnicka
- Goethe-University, Dr. Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - K H Plate
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
| | - S Stefanović
- Department of Immunology, Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - B Weide
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - M Mittelbronn
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
- Luxembourg Centre of Neuropathology (LCNP), 3555, Dudelange, Luxembourg
- Laboratoire National de Santé, Department of Pathology, 3555, Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4361, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526, Luxembourg, Luxembourg
| | - P N Harter
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany.
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany.
| |
Collapse
|
21
|
Mu X, Zhang F, Kong C, Zhang H, Zhang W, Ge R, Liu Y, Jiang J. EGFR-targeted delivery of DOX-loaded Fe 3O 4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. Int J Nanomedicine 2017; 12:2899-2911. [PMID: 28435266 PMCID: PMC5391832 DOI: 10.2147/ijn.s131418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multifunctional nanocomposites that have multiple therapeutic functions together with real-time imaging capabilities have attracted intensive concerns in the diagnosis and treatment of cancer. This study developed epidermal growth factor receptor (EGFR) antibody-directed polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs) for magnetic resonance imaging and antitumor chemo-photothermal therapy. The synthesized Fe3O4@PDA-PEG-EGFR-DOX NPs revealed high storage capacity for doxorubicin (DOX) and high photothermal conversion efficiency. The cell viability assay of Fe3O4@PDA-PEG-EGFR NPs indicated that Fe3O4@ PDA-PEG-EGFR NPs had no cell cytotoxicity. However, Fe3O4@PDA-PEG-EGFR-DOX NPs could significantly decrease cell viability (~5% of remaining cell viability) because of both photothermal ablation and near-infrared light-triggered DOX release. Meanwhile, the EGFR-targeted Fe3O4@PDA-PEG-EGFR-DOX NPs significantly inhibited the growth of tumors, showing a prominent in vivo synergistic antitumor effect. This study demonstrated the potential of using Fe3O4@PDA NPs for combined cancer chemo-photothermal therapy with increased efficacy.
Collapse
Affiliation(s)
- Xupeng Mu
- Department of Central Laboratory, China-Japan Union Hospital
| | - Fuqiang Zhang
- Department of Central Laboratory, China-Japan Union Hospital
| | - Chenfei Kong
- Department of Central Laboratory, China-Japan Union Hospital
| | - Hongmei Zhang
- Department of Central Laboratory, China-Japan Union Hospital
| | - Wenjing Zhang
- Department of Central Laboratory, China-Japan Union Hospital
| | - Rui Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jinlan Jiang
- Department of Central Laboratory, China-Japan Union Hospital
| |
Collapse
|
22
|
Zhu H, Leiss L, Yang N, Rygh CB, Mitra SS, Cheshier SH, Weissman IL, Huang B, Miletic H, Bjerkvig R, Enger PØ, Li X, Wang J. Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget 2017; 8:12145-12157. [PMID: 28076333 PMCID: PMC5355332 DOI: 10.18632/oncotarget.14553] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/26/2016] [Indexed: 02/04/2023] Open
Abstract
Surgical resection is a standard component of treatment in the clinical management of patients with glioblastoma multiforme (GBM). However, experimental therapies are rarely investigated in the context of tumor debulking in preclinical models. Here, a surgical debulking GBM xenograft model was developed in nude rats, and was used in combination with CD47 blocking immunotherapy, a novel treatment strategy that triggers phagocytosis of tumor cells by macrophages in diverse cancer types including GBM. Orthotopic patient-derived xenograft tumors expressing CD47 were resected at 4 weeks after implantation and immediately thereafter treated with anti-CD47 or control antibodies injected into the cavity. Debulking prolonged survival (median survival, 68.5 vs 42.5 days, debulking and non-debulking survival times, respectively; n = 6 animals/group; P = 0.0005). Survival was further improved in animals that underwent combination treatment with anti-CD47 mAbs (median survival, 81.5 days vs 69 days, debulking + anti-CD47 vs debulking + control IgG, respectively; P = 0.0007). Immunohistochemistical staining of tumor sections revealed an increase in recruitment of cells positive for CD68, a marker for macrophages/immune cell types, to the surgical site (50% vs 10%, debulking vs non-debulking, respectively). Finally, analysis of tumor protein lysates on antibody microarrays demonstrated an increase in pro-inflammatory cytokines, such as CXCL10, and a decrease in angiogenic proteins in debulking + anti-CD47 vs non-debulking + IgG tumors. The results indicated that surgical resection combined with anti-CD47 blocking immunotherapy promoted an inflammatory response and prolonged survival in animals, and is therefore an attractive strategy for clinical translation.
Collapse
Affiliation(s)
- Huaiyang Zhu
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Oncology, Shandong Chest Hospital, Jinan, China
| | - Lina Leiss
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neuro Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Cecilie B. Rygh
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Siddhartha S. Mitra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, USA
| | - Samuel H. Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Stanford University, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, USA
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Per Ø. Enger
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Jian Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
23
|
Wang J, Li L, Liu S, Zhao Y, Wang L, Du G. FOXC1 promotes melanoma by activating MST1R/PI3K/AKT. Oncotarget 2016; 7:84375-84387. [PMID: 27533251 PMCID: PMC5356666 DOI: 10.18632/oncotarget.11224] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022] Open
Abstract
FOXC1 is a member of Forkhead box family transcription factors. We showed that FOXC1 level was increased in melanoma cells and tissues and correlated with hypomethylation of the FOXC1 gene. Overexpression of FOXC1 promoted proliferation, migration, invasion, colony formation and growth in 3D Matrigel of melanoma cells. FOXC1 increased MST1R and activated the PI3K/AKT pathway. Also, FOXC1 expression was associated with disease progression and poor prognosis of melanoma. We suggest that FOXC1 is a potential prognostic biomarker for treating melanoma and predicting outcome of patients.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Department of Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica 90404, CA, USA
| | - Li Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Ying Zhao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Lin Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Cohen JV, Tawbi H, Margolin KA, Amravadi R, Bosenberg M, Brastianos PK, Chiang VL, de Groot J, Glitza IC, Herlyn M, Holmen SL, Jilaveanu LB, Lassman A, Moschos S, Postow MA, Thomas R, Tsiouris JA, Wen P, White RM, Turnham T, Davies MA, Kluger HM. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2016; 29:627-642. [PMID: 27615400 DOI: 10.1111/pcmr.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
Melanoma central nervous system metastases are increasing, and the challenges presented by this patient population remain complex. In December 2015, the Melanoma Research Foundation and the Wistar Institute hosted the First Summit on Melanoma Central Nervous System (CNS) Metastases in Philadelphia, Pennsylvania. Here, we provide a review of the current status of the field of melanoma brain metastasis research; identify key challenges and opportunities for improving the outcomes in patients with melanoma brain metastases; and set a framework to optimize future research in this critical area.
Collapse
Affiliation(s)
- Justine V Cohen
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Hussain Tawbi
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim A Margolin
- Department of Medical Oncology & Therapeutics Research, City of Hope Cancer Center, Duarte, CA, USA
| | - Ravi Amravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - John de Groot
- Division of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Isabella C Glitza
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenhard Herlyn
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | - Andrew Lassman
- Department of Neurology & Herbert Irving Comprehensive, Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Stergios Moschos
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Postow
- Department of Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Reena Thomas
- Division of Neuro-Oncology, Department of Neurology, Stanford University, Stanford, CA, USA
| | - John A Tsiouris
- Department of Radiology, New York-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| | - Patrick Wen
- Department of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard M White
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | | | - Michael A Davies
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
25
|
Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ. Cellular Imaging With MRI. Top Magn Reson Imaging 2016; 25:177-186. [PMID: 27748707 DOI: 10.1097/rmr.0000000000000101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.
Collapse
Affiliation(s)
- Ashley V Makela
- *Imaging Research Laboratories, Robarts Research Institute †Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Kircher DA, Silvis MR, Cho JH, Holmen SL. Melanoma Brain Metastasis: Mechanisms, Models, and Medicine. Int J Mol Sci 2016; 17:E1468. [PMID: 27598148 PMCID: PMC5037746 DOI: 10.3390/ijms17091468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/02/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022] Open
Abstract
The development of brain metastases in patients with advanced stage melanoma is common, but the molecular mechanisms responsible for their development are poorly understood. Melanoma brain metastases cause significant morbidity and mortality and confer a poor prognosis; traditional therapies including whole brain radiation, stereotactic radiotherapy, or chemotherapy yield only modest increases in overall survival (OS) for these patients. While recently approved therapies have significantly improved OS in melanoma patients, only a small number of studies have investigated their efficacy in patients with brain metastases. Preliminary data suggest that some responses have been observed in intracranial lesions, which has sparked new clinical trials designed to evaluate the efficacy in melanoma patients with brain metastases. Simultaneously, recent advances in our understanding of the mechanisms of melanoma cell dissemination to the brain have revealed novel and potentially therapeutic targets. In this review, we provide an overview of newly discovered mechanisms of melanoma spread to the brain, discuss preclinical models that are being used to further our understanding of this deadly disease and provide an update of the current clinical trials for melanoma patients with brain metastases.
Collapse
Affiliation(s)
- David A Kircher
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| | - Mark R Silvis
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| | - Joseph H Cho
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| | - Sheri L Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
27
|
De Souza R, Spence T, Huang H, Allen C. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. J Control Release 2015; 219:313-330. [PMID: 26409122 DOI: 10.1016/j.jconrel.2015.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.
Collapse
Affiliation(s)
- Raquel De Souza
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Tara Spence
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Huang Huang
- DLVR Therapeutics, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
28
|
Aasen SN, Pospisilova A, Eichler TW, Panek J, Hruby M, Stepanek P, Spriet E, Jirak D, Skaftnesmo KO, Thorsen F. A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines. Int J Mol Sci 2015; 16:21658-80. [PMID: 26370983 PMCID: PMC4613273 DOI: 10.3390/ijms160921658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 02/04/2023] Open
Abstract
To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T1 relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- NorLux Neuro-Oncology Laboratory, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Aneta Pospisilova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic.
| | - Tilo Wolf Eichler
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway.
| | - Jiri Panek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic.
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic.
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic.
| | - Endy Spriet
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic.
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, 120 00 Prague, Czech Republic.
| | - Kai Ove Skaftnesmo
- NorLux Neuro-Oncology Laboratory, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frits Thorsen
- NorLux Neuro-Oncology Laboratory, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
29
|
Peng M, Li H, Luo Z, Kong J, Wan Y, Zheng L, Zhang Q, Niu H, Vermorken A, Van de Ven W, Chen C, Zhang X, Li F, Guo L, Cui Y. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. NANOSCALE 2015; 7:11155-11162. [PMID: 26062012 DOI: 10.1039/c5nr01382h] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dextran-coated superparamagnetic iron oxide nanoparticles (DSPIONs) have gained considerable interest, because of their biocompatibility and biosafety in clinics. Doxorubicin (Dox), a widely used chemotherapeutic drug, always has limited applications in clinical therapy due to its serious side effects of dose-limiting irreversible cardiotoxicity and myelo suppression. Herein, DSPIONs were synthesized and developed as magnetic carriers for doxorubicin. The Dox-DSPION conjugates were evaluated in the in vitro test of Dox release, which showed pH-dependence with the highest release percentage of 50.3% at pH 5.0 and the lowest release percentage of 11.8% in a physiological environment. The cytotoxicity of DSPIONs and Dox-DSPIONs evaluated by the MTT assay indicated that DSPIONs had no cytotoxicity and the conjugates had significantly reduced the toxicity (IC50 = 1.36 μg mL(-1)) compared to free Dox (IC50 = 0.533 μg mL(-1)). Furthermore, confocal microscopic data of cell uptake suggest that less cytotoxicity of Dox-DSPIONs may be attributed to the cellular internalization of the conjugates and sustainable release of Dox from the formulation in the cytoplasm. More importantly, the results from the rabbit VX2 liver tumor model test under an external magnetic field showed that the conjugates had approximately twice the anti-tumor activity and two and a half times the animal survival rate, respectively, compared to free Dox. Collectively, our data have demonstrated that Dox-DSPIONs have less toxicity with better antitumor effectiveness in in vitro and in vivo applications, suggesting that the conjugates have potential to be developed into chemo-therapeutic formulations.
Collapse
Affiliation(s)
- Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Sundstrøm T, Espedal H, Harter PN, Fasmer KE, Skaftnesmo KO, Horn S, Hodneland E, Mittelbronn M, Weide B, Beschorner R, Bender B, Rygh CB, Lund-Johansen M, Bjerkvig R, Thorsen F. Melanoma brain metastasis is independent of lactate dehydrogenase A expression. Neuro Oncol 2015; 17:1374-85. [PMID: 25791837 DOI: 10.1093/neuonc/nov040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 02/18/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The key metabolic enzyme lactate dehydrogenase A (LDHA) is overexpressed in many cancers, and several preclinical studies have shown encouraging results of targeted inhibition. However, the mechanistic importance of LDHA in melanoma is largely unknown and hitherto unexplored in brain metastasis. METHODS We investigated the spatial, temporal, and functional features of LDHA expression in melanoma brain metastasis across multiple in vitro assays, in a robust and predictive animal model employing MRI and PET imaging, and in a unique cohort of 80 operated patients. We further assessed the genomic and proteomic landscapes of LDHA in different cancers, particularly melanomas. RESULTS LDHA expression was especially strong in early and small brain metastases in vivo and related to intratumoral hypoxia in late and large brain metastases in vivo and in patients. However, LDHA expression in human brain metastases was not associated with the number of tumors, BRAF(V600E) status, or survival. Moreover, LDHA depletion by small hairpin RNA interference did not affect cell proliferation or 3D tumorsphere growth in vitro or brain metastasis formation or survival in vivo. Integrated analyses of the genomic and proteomic landscapes of LDHA indicated that LDHA is present but not imperative for tumor progression within the CNS, or predictive of survival in melanoma patients. CONCLUSIONS In a large patient cohort and in a robust animal model, we show that although LDHA expression varies biphasically during melanoma brain metastasis formation, tumor progression and survival seem to be functionally independent of LDHA.
Collapse
Affiliation(s)
- Terje Sundstrøm
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Heidi Espedal
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Patrick N Harter
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Kristine Eldevik Fasmer
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Kai Ove Skaftnesmo
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Sindre Horn
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Erlend Hodneland
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Michel Mittelbronn
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Benjamin Weide
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Rudi Beschorner
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Benjamin Bender
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Cecilie Brekke Rygh
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Morten Lund-Johansen
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway (T.S., H.E., K.O.S., S.H., E.H., C.B.R., R.Bj., F.T.); Department of Clinical Medicine, University of Bergen, Bergen, Norway (T.S., M.L.-J.); Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway (T.S., M.L.-J.); Edinger-Institute (Neurological Institute), Goethe-University Medical School, Frankfurt am Main, Germany (P.N.H., M.M.); Center for Nuclear Medicine/PET, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway (K.E.F.); Department of Dermatology, University Medical Center, Tübingen, Germany (B.W.); Department of Immunology, University of Tübingen, Tübingen, Germany (B.W.); Department of Neuropathology, Institute for Pathology and Neuropathology, University of Tübingen, Tübingen, Germany (R.Be.); Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany (B.B.); NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg (R.Bj.)
| |
Collapse
|
32
|
Marzese DM, Liu M, Huynh JL, Hirose H, Donovan NC, Huynh KT, Kiyohara E, Chong K, Cheng D, Tanaka R, Morton DL, Barkhoudarian G, Kelly DF, Hoon DS. Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pigment Cell Melanoma Res 2015; 28:82-93. [PMID: 25169209 PMCID: PMC4309554 DOI: 10.1111/pcmr.12307] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Abstract
Melanoma brain metastasis (MBM) is frequent and has a very poor prognosis with no current predictive factors or therapeutic molecular targets. Our study unravels the molecular alterations of cell-surface glycoprotein CD44 variants during melanoma progression to MBM. High expression of CD44 splicing variant 6 (CD44v6) in primary melanoma (PRM) and regional lymph node metastases from AJCC Stage IIIC patients significantly predicts MBM development. The expression of CD44v6 also enhances the migration of MBM cells by hyaluronic acid and hepatocyte growth factor exposure. Additionally, CD44v6-positive MBM migration is reduced by blocking with a CD44v6-specific monoclonal antibody or knocking down CD44v6 by siRNA. ESRP1 and ESRP2 splicing factors correlate with CD44v6 expression in PRM, and ESRP1 knockdown significantly decreases CD44v6 expression. However, an epigenetic silencing of ESRP1 is observed in metastatic melanoma, specifically in MBM. In advanced melanomas, CD44v6 expression correlates with PTBP1 and U2AF2 splicing factors, and PTBP1 knockdown significantly decreases CD44v6 expression. Overall, these findings open a new avenue for understanding the high affinity of melanoma to progress to MBM, suggesting CD44v6 as a potential MBM-specific factor with theranostic utility for stratifying patients.
Collapse
Affiliation(s)
- Diego M. Marzese
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Michelle Liu
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Jamie L. Huynh
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Hajime Hirose
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Nicholas C. Donovan
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Kelly T. Huynh
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Eiji Kiyohara
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Kelly Chong
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - David Cheng
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Ryo Tanaka
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Donald L. Morton
- Division of Surgical Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Garni Barkhoudarian
- Brain Tumor Center & Pituitary Disorders Program, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Daniel F. Kelly
- Brain Tumor Center & Pituitary Disorders Program, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Dave S.B. Hoon
- Dept of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, CA 90404, USA
| |
Collapse
|
33
|
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, Rodriguez-Justo M, Miles K, Ellis P, Groves A, Punwani S, Ng T. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. BJR Case Rep 2014. [DOI: 10.1259/bjrcr.20140065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, Rodriguez-Justo M, Miles K, Ellis P, Groves A, Punwani S, Ng T. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br J Radiol 2014; 87:20140065. [PMID: 24597512 PMCID: PMC4075563 DOI: 10.1259/bjr.20140065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/03/2014] [Indexed: 01/10/2023] Open
Abstract
Tumour heterogeneity has, in recent times, come to play a vital role in how we understand and treat cancers; however, the clinical translation of this has lagged behind advances in research. Although significant advancements in oncological management have been made, personalized care remains an elusive goal. Inter- and intratumour heterogeneity, particularly in the clinical setting, has been difficult to quantify and therefore to treat. The histological quantification of heterogeneity of tumours can be a logistical and clinical challenge. The ability to examine not just the whole tumour but also all the molecular variations of metastatic disease in a patient is obviously difficult with current histological techniques. Advances in imaging techniques and novel applications, alongside our understanding of tumour heterogeneity, have opened up a plethora of non-invasive biomarker potential to examine tumours, their heterogeneity and the clinical translation. This review will focus on how various imaging methods that allow for quantification of metastatic tumour heterogeneity, along with the potential of developing imaging, integrated with other in vitro diagnostic approaches such as genomics and exosome analyses, have the potential role as a non-invasive biomarker for guiding the treatment algorithm.
Collapse
Affiliation(s)
- R Chowdhury
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
In vitro treatment of melanoma brain metastasis by simultaneously targeting the MAPK and PI3K signaling pathways. Int J Mol Sci 2014; 15:8773-94. [PMID: 24840574 PMCID: PMC4057758 DOI: 10.3390/ijms15058773] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 01/13/2023] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer, with a high propensity to metastasize to the brain. More than 60% of melanomas have the BRAFV600E mutation, which activates the mitogen-activated protein kinase (MAPK) pathway [1]. In addition, increased PI3K (phosphoinositide 3-kinase) pathway activity has been demonstrated, through the loss of activity of the tumor suppressor gene, PTEN [2]. Here, we treated two melanoma brain metastasis cell lines, H1_DL2, harboring a BRAFV600E mutation and PTEN loss, and H3, harboring WT (wild-type) BRAF and PTEN loss, with the MAPK (BRAF) inhibitor vemurafenib and the PI3K pathway associated mTOR inhibitor temsirolimus. Combined use of the drugs inhibited tumor cell growth and proliferation in vitro in H1_DL2 cells, compared to single drug treatment. Treatment was less effective in the H3 cells. Furthermore, a strong inhibitory effect on the viability of H1_DL2 cells, when grown as 3D multicellular spheroids, was seen. The treatment inhibited the expression of pERK1/2 and reduced the expression of pAKT and p-mTOR in H1_DL2 cells, confirming that the MAPK and PI3K pathways were inhibited after drug treatment. Microarray experiments followed by principal component analysis (PCA) mapping showed distinct gene clustering after treatment, and cell cycle checkpoint regulators were affected. Global gene analysis indicated that functions related to cell survival and invasion were influenced by combined treatment. In conclusion, we demonstrate for the first time that combined therapy with vemurafenib and temsirolimus is effective on melanoma brain metastasis cells in vitro. The presented results highlight the potential of combined treatment to overcome treatment resistance that may develop after vemurafenib treatment of melanomas.
Collapse
|
36
|
Hamilton AM, Mallett C, Foster PJ. High-resolution MRI and nanoparticles: the future of brain imaging. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT: Cellular MRI uses superparamagnetic iron oxide nanoparticles to label cells (in vitro or in vivo) for detection in magnetic resonance images. The infiltration of inflammatory macrophages can be visualized in brain diseases, such as multiple sclerosis, stroke and Alzheimer‘s disease, and correlates with disease severity and responses to treatments. Mesenchymal stromal cells, neural stem cells and immune cells used as cell therapies in CNS diseases can be tracked in vivo over time to determine their migration and dispersion. Tracking labeled cancer cells provides information about metastasis and proliferative status in preclinical tumor models. Ongoing technical improvements come from the development of new particles, the use of fluorine-based contrast agents and the refinement of high-field MRI for cell tracking.
Collapse
Affiliation(s)
- Amanda M Hamilton
- Imaging Research Laboratories, Robarts Research Institute, London, ON, N6A 5K8, Canada
| | - Christiane Mallett
- Imaging Research Laboratories, Robarts Research Institute, London, ON, N6A 5K8, Canada
| | - Paula J Foster
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
37
|
Serres S, Martin CJ, Sarmiento Soto M, Bristow C, O'Brien ER, Connell JJ, Khrapitchev AA, Sibson NR. Structural and functional effects of metastases in rat brain determined by multimodal MRI. Int J Cancer 2014; 134:885-96. [PMID: 23913394 DOI: 10.1002/ijc.28406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/10/2013] [Accepted: 07/18/2013] [Indexed: 01/04/2023]
Abstract
Metastasis to the brain results in significant impairment of brain function and poor patient survival. Currently, magnetic resonance imaging (MRI) is under-utilised in monitoring brain metastases and their effects on brain function. Here, we sought to establish a model of focal brain metastasis in the rat that enables serial multimodal structural and functional MRI studies, and to assess the sensitivity of these approaches to metastatic growth. Female Berlin-Druckrey-IX rats were injected intracerebrally with metastatic ENU1564 cells in the ventroposterior medial nucleus (VPM) of the thalamus, a relay node of the whisker-to-barrel cortex pathway. Animals underwent multimodal structural and vascular MRI, as well as functional MRI of the cortical blood oxygenation level dependent (BOLD) responses to whisker pad stimulation. T2 , diffusion, magnetisation transfer and perfusion weighted MRI enabled differentiation between a central area of more advanced metastatic growth and penumbral regions of co-optive perivascular micrometastatic growth, with magnetisation transfer MRI being the most sensitive to micrometastatic growth. Areas of cortical BOLD activation in response to whisker pad stimulation were significantly reduced in the hemisphere containing metastases in the VPM. The reduction in BOLD response correlated with metastatic burden in the thalamus, and was sensitive to the presence of smaller metastases than currently detectable clinically. Our findings suggest that multimodal MRI provides greater sensitivity to tumour heterogeneity and micrometastatic growth than single modality contrast-enhanced MRI. Understanding the relationships between these MRI parameters and the underlying pathology may greatly enhance the utility of MRI in diagnosis, staging and monitoring of brain metastasis.
Collapse
Affiliation(s)
- Sébastien Serres
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lukas RV, Lesniak MS, Salgia R. Brain metastases in non-small-cell lung cancer: better outcomes through current therapies and utilization of molecularly targeted approaches. CNS Oncol 2014; 3:61-75. [PMID: 25054901 PMCID: PMC6128200 DOI: 10.2217/cns.13.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) patients experience a high incidence of brain metastases, de novo and recurrent. We review the mechanisms of brain metastases and promising NSCLC molecular markers to delineate potential future therapeutic targets. Discussed are the current and previously utilized roles of surgery, radiation (both therapeutic and prophylactic), and systemic therapies in the treatment of NSCLC brain metastases. Future directions for treatment of NSCLC brain metastases will conclude our review.
Collapse
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, University of Chicago, Chicago, IL, USA.
| | | | | |
Collapse
|
39
|
Serres S, O'Brien ER, Sibson NR. Imaging angiogenesis, inflammation, and metastasis in the tumor microenvironment with magnetic resonance imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:263-83. [PMID: 24272363 DOI: 10.1007/978-1-4614-5915-6_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the development of new imaging techniques, the potential for probing the molecular, cellular, and structural components of the tumor microenvironment in situ has increased dramatically. A multitude of imaging modalities have been successfully employed to probe different aspects of the tumor microenvironment, including expression of molecules, cell motion, cellularity, vessel permeability, vascular perfusion, metabolic and physiological changes, apoptosis, and inflammation. This chapter focuses on the most recent advances in magnetic resonance imaging methods, which offer a number of advantages over other methodologies, including high spatial resolution and the use of nonionizing radiation, as well as the use of such methods in the context of primary and secondary brain tumors. It also highlights how they can be used to assess the molecular and cellular changes in the tumor microenvironment in response to therapy.
Collapse
Affiliation(s)
- Sébastien Serres
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK,
| | | | | |
Collapse
|
40
|
Thorsen F, Fite B, Mahakian LM, Seo JW, Qin S, Harrison V, Johnson S, Ingham E, Caskey C, Sundstrøm T, Meade TJ, Harter PN, Skaftnesmo KO, Ferrara KW. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases. J Control Release 2013; 172:812-22. [PMID: 24161382 DOI: 10.1016/j.jconrel.2013.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022]
Abstract
Our goal was to develop strategies to quantify the accumulation of model therapeutics in small brain metastases using multimodal imaging, in order to enhance the potential for successful treatment. Human melanoma cells were injected into the left cardiac ventricle of immunodeficient mice. Bioluminescent, MR and PET imaging were applied to evaluate the limits of detection and potential for contrast agent extravasation in small brain metastases. A pharmacokinetic model was applied to estimate vascular permeability. Bioluminescent imaging after injecting d-luciferin (molecular weight (MW) 320 D) suggested that tumor cell extravasation had already occurred at week 1, which was confirmed by histology. 7T T1w MRI at week 4 was able to detect non-leaky 100 μm sized lesions and leaky tumors with diameters down to 200 μm after contrast injection at week 5. PET imaging showed that (18)F-FLT (MW 244 Da) accumulated in the brain at week 4. Gadolinium-based MRI tracers (MW 559 Da and 2.066 kDa) extravasated after 5 weeks (tumor diameter 600 μm), and the lower MW agent cleared more rapidly from the tumor (mean apparent permeabilities 2.27 × 10(-5)cm/s versus 1.12 × 10(-5)cm/s). PET imaging further demonstrated tumor permeability to (64)Cu-BSA (MW 65.55 kDa) at week 6 (tumor diameter 700 μm). In conclusion, high field T1w MRI without contrast may improve the detection limit of small brain metastases, allowing for earlier diagnosis of patients, although the smallest lesions detected with T1w MRI were permeable only to d-luciferin and the amphipathic small molecule (18)F-FLT. Different-sized MR and PET contrast agents demonstrated the gradual increase in leakiness of the blood tumor barrier during metastatic progression, which could guide clinicians in choosing tailored treatment strategies.
Collapse
Affiliation(s)
- Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Qin S, Fite BZ, Gagnon MKJ, Seo JW, Curry FR, Thorsen F, Ferrara KW. A physiological perspective on the use of imaging to assess the in vivo delivery of therapeutics. Ann Biomed Eng 2013; 42:280-98. [PMID: 24018607 DOI: 10.1007/s10439-013-0895-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022]
Abstract
Our goal is to provide a physiological perspective on the use of imaging to optimize and monitor the accumulation of nanotherapeutics within target tissues, with an emphasis on evaluating the pharmacokinetics of organic particles. Positron emission tomography (PET), magnetic resonance imaging (MRI) and ultrasound technologies, as well as methods to label nanotherapeutic constructs, have created tremendous opportunities for preclinical optimization of therapeutics and for personalized treatments in challenging disease states. Within the methodology summarized here, the accumulation of the construct is estimated directly from the image intensity. Particle extravasation is then estimated based on classical physiological measures. Specifically, the transport of nanotherapeutics is described using the concept of apparent permeability, which is defined as the net flux of solute across a blood vessel wall per unit surface area of the blood vessel and per unit solute concentration difference across the blood vessel wall. The apparent permeability to small molecule MRI constructs is accurately shown to be far larger than that estimated for proteins such as albumin or nanoconstructs such as liposomes. Further, the quantitative measurements of vascular permeability are shown to facilitate detection of the transition from a pre-malignant to a malignant cancer and to quantify the delivery enhancement resulting from interventions such as ultrasound. While PET-based estimates facilitate quantitative comparisons of many constructs, high field MRI proves useful in the visualization of model drugs within small lesions and in the evaluation of the release and intracellular trafficking of nanoparticles and cargo.
Collapse
Affiliation(s)
- Shengping Qin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA,
| | | | | | | | | | | | | |
Collapse
|
42
|
Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis 2013; 4:e783. [PMID: 23990023 PMCID: PMC3763466 DOI: 10.1038/cddis.2013.314] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/05/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023]
Abstract
Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers.
Collapse
|
43
|
Chen J, Shao R, Zhang XD, Chen C. Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics. Int J Nanomedicine 2013; 8:2677-88. [PMID: 23926430 PMCID: PMC3728269 DOI: 10.2147/ijn.s45429] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer and has very high rates of mortality. An early stage melanoma can be surgically removed, with a survival rate of 99%. However, metastasized melanoma is difficult to cure. The 5-year survival rates for patients with metastasized melanoma are still below 20%. Metastasized melanoma is currently treated by chemotherapy, targeted therapy, immunotherapy and radiotherapy. The outcome of most of the current therapies is far from optimistic. Although melanoma patients with a mutation in the oncogene v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) have an initially higher positive response rate to targeted therapy, the majority develop acquired drug resistance after 6 months of the therapy. To increase treatment efficacy, early diagnosis, more potent pharmacological agents, and more effective delivery systems are urgently needed. Nanotechnology has been extensively studied for melanoma treatment and diagnosis, to decrease drug resistance, increase therapeutic efficacy, and reduce side effects. In this review, we summarize the recent progress on the development of various nanoparticles for melanoma treatment and diagnosis. Several common nanoparticles, including liposome, polymersomes, dendrimers, carbon-based nanoparticles, and human albumin, have been used to deliver chemotherapeutic agents, and small interfering ribonucleic acids (siRNAs) against signaling molecules have also been tested for the treatment of melanoma. Indeed, several nanoparticle-delivered drugs have been approved by the US Food and Drug Administration and are currently in clinical trials. The application of nanoparticles could produce side effects, which will need to be reduced so that nanoparticle-delivered drugs can be safely applied in the clinical setting.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia.
| | | | | | | |
Collapse
|
44
|
Gaziel-Sovran A, Osman I, Hernando E. In vivo Modeling and Molecular Characterization: A Path Toward Targeted Therapy of Melanoma Brain Metastasis. Front Oncol 2013; 3:127. [PMID: 23750336 PMCID: PMC3668495 DOI: 10.3389/fonc.2013.00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/06/2013] [Indexed: 11/24/2022] Open
Abstract
Brain metastasis (B-Met) from melanoma remains mostly incurable and the main cause of death from the disease. Early stage clinical trials and case studies show some promise for targeted therapies in the treatment of melanoma B-Met. However, the progression-free survival for currently available therapies, although significantly improved, is still very short. The development of new potent agents to eradicate melanoma B-Met relies on the elucidation of the molecular mechanisms that allow melanoma cells to reach and colonize the brain. The discovery of such mechanisms depends heavily on pre-clinical models that enable the testing of candidate factors and therapeutic agents in vivo. In this review we summarize the effects of available targeted therapies on melanoma B-Met in the clinic. We provide an overview of existing pre-clinical models to study the disease and discuss specific molecules and mechanisms reported to modulate different aspects of melanoma B-Met and finally, by integrating both clinical and basic data, we summarize both opportunities and challenges currently presented to researchers in the field.
Collapse
Affiliation(s)
- Avital Gaziel-Sovran
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center , New York, NY , USA ; Department of Pathology, NYU School of Medicine , New York, NY , USA
| | | | | |
Collapse
|
45
|
Daphu I, Sundstrøm T, Horn S, Huszthy PC, Niclou SP, Sakariassen PØ, Immervoll H, Miletic H, Bjerkvig R, Thorsen F. In vivo animal models for studying brain metastasis: value and limitations. Clin Exp Metastasis 2013; 30:695-710. [DOI: 10.1007/s10585-013-9566-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/07/2013] [Indexed: 01/16/2023]
|