1
|
Shu F, Yu J, Liu Y, Wang F, Gou G, Wen M, Luo C, Lu X, Hu Y, Du Q, Xu J, Xie R. Mast cells: key players in digestive system tumors and their interactions with immune cells. Cell Death Discov 2025; 11:8. [PMID: 39814702 PMCID: PMC11735678 DOI: 10.1038/s41420-024-02258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Mast cells (MCs) are critical components of both innate and adaptive immune processes. They play a significant role in protecting human health and in the pathophysiology of various illnesses, including allergies, cardiovascular diseases and autoimmune diseases. Recent studies in tumor-related research have demonstrated that mast cells exert a substantial influence on tumor cell behavior and the tumor microenvironment, exhibiting both pro- and anti-tumor effects. Specifically, mast cells not only secrete mediators related to pro-tumor function such as trypsin-like enzymes, chymotrypsin, vascular endothelial cell growth factor and histamine, but also mediators related to anti-tumor progression such as cystatin C and IL-17F. This dual role of mast cells renders them an under-recognized but very promising target for tumor immunotherapy. Digestive system tumors, characterized by high morbidity and associated mortality rates globally, are increasingly recognized as a significant healthcare burden. This paper examines the influence of mast cell-derived mediators on the development of tumors in the digestive system. It also explores the prognostic significance of mast cells in patients with various gastrointestinal cancers at different stages of the disease. Additionally, the article investigates the interactions between mast cells and immune cells, as well as the potential relationships among intratumoral bacteria, immune cells, and mast cell within digestive system microenvironment. The aim is to propose new strategies for the immunotherapy of digestive system tumors by targeting mast cells.
Collapse
Affiliation(s)
- Feihong Shu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Yu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Youjia Liu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Wang
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoyou Gou
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Min Wen
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Chen Luo
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianmin Lu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanxia Hu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jingyu Xu
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Xie
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
2
|
Chen M, Tang X, Liang Y, Ding T, He M, Wang D, Wang R. CENPF as a Potential Biomarker Associated with the Immune Microenvironment of Renal Cancer. Technol Cancer Res Treat 2025; 24:15330338251330791. [PMID: 40165474 PMCID: PMC11960158 DOI: 10.1177/15330338251330791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
IntroductionRenal cancer, particularly Kidney Renal Clear Cell Carcinoma (KIRC), remains a major clinical challenge due to its aggressive nature and poor prognosis. Identifying reliable biomarkers for tumor progression and survival is critical for improving patient outcomes. This study aimed to investigate the role of Centromere Protein F (CENPF) as a potential prognostic biomarker for renal cancer.MethodData from the TCGA database, including Kidney Chromophobe (KICH), Kidney Renal Papillary Cell Carcinoma (KIRP), and KIRC, were analyzed to identify differentially expressed genes. Molecular Complex Detection (MCODE) was used to identify significant gene modules among upregulated genes, and univariate Cox regression analyses assessed the prognostic value of hub genes. Retrospective qPCR was conducted on tissue and plasma samples from KIRC patients to validate findings. Single-cell sequencing data from the GSE159115 dataset were analyzed, and the CIBERSORT algorithm was applied to evaluate the composition of tumor immune infiltrating cells (TIICs).ResultsCENPF was identified as a hub gene significantly upregulated in renal cancer subtypes, with overexpression linked to worse survival outcomes in KIRC patients. Retrospective qPCR confirmed high CENPF expression was associated with poorer prognosis. Single-cell sequencing revealed that CENPF is predominantly expressed in T-cell clusters. TIIC analysis showed a negative correlation between CENPF and resting mast cells, but positive correlations with follicular helper T-cells and memory-activated CD4T-cells. Prognostic analysis indicated that high follicular helper T-cell expression predicted poorer survival, while high plasma cell expression correlated with better outcomes.ConclusionCENPF plays a critical role in tumor progression and the modulation of the tumor immune microenvironment in KIRC. These findings suggest that CENPF could serve as a valuable prognostic biomarker and potential target for therapeutic intervention in renal cancer.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/genetics
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Kidney Neoplasms/mortality
- Prognosis
- Gene Expression Regulation, Neoplastic
- Chromosomal Proteins, Non-Histone/genetics
- Female
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/mortality
- Gene Expression Profiling
- Male
- Computational Biology/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Retrospective Studies
- Databases, Genetic
- Single-Cell Analysis
- Middle Aged
- Microfilament Proteins
Collapse
Affiliation(s)
- Meilin Chen
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxin Tang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - YanPing Liang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tangdang Ding
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meifang He
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruizhi Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wagner M, Nishikawa H, Koyasu S. Reinventing type 2 immunity in cancer. Nature 2025; 637:296-303. [PMID: 39780006 DOI: 10.1038/s41586-024-08194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis. Emerging evidence challenges this perspective, painting a more nuanced picture in which type 2 immunity might protect against or even actively suppress tumour growth and progression. In this Review, we explore discoveries that highlight the potential of type 2 immunity in reshaping the landscape of cancer immunotherapies.
Collapse
Affiliation(s)
- Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network-PORT Polish Center for Technology Development, Wrocław, Poland.
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| |
Collapse
|
4
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
5
|
Wang XL, He X, Gao T, Zhou X, Cruz-Monserrate Z, Tsung A, Ma J, Cai C. MG53 suppresses tumor growth via transcriptional inhibition of KIF11 in pancreatic cancer. Transl Oncol 2024; 50:102118. [PMID: 39265509 PMCID: PMC11416540 DOI: 10.1016/j.tranon.2024.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a formidable challenge in oncology due to its limited treatment options and poor long-term survival rates. Our previous work identified MG53, a member of the tripartite motif family protein (TRIM72), as a key player in tissue repair with potential applications in regenerative medicine. Despite the focus on MG53's cytosolic functions, its nuclear role in suppressing pancreatic cancer remains unknown. Through orthotopic and subcutaneous transplantation studies in mice, we observed enhanced tumor growth in MG53-deficient mice compared to wild-type counterparts. The overexpression of KIF11, a motor protein crucial for cell mitosis regulation, has been linked to the aggressive proliferation of pancreatic cancer cells. Confocal imaging confirmed MG53's presence in the nucleus of human pancreatic cancer cells, while functional assays demonstrated its impact on KIF11 expression and subsequent cell proliferation. Mechanistically, we revealed MG53's transcriptional control over KIF11, leading to cell cycle arrest. Our findings position MG53 as a promising tumor suppressor in PDAC, offering a novel avenue for therapeutic intervention by regulating KIF11 expression.
Collapse
Affiliation(s)
- Xiao-Liang Wang
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xiangfei He
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tong Gao
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA
| | - Xinyu Zhou
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, and The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Allan Tsung
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Chuanxi Cai
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Lin S, Zhang H, Zhao R, Wu Z, Zhang W, Yu M, Zhang B, Ma L, Li D, Peng L, Luo W. Single-cell multiomics reveals simvastatin inhibits pan-cancer epithelial-mesenchymal transition via the MEK/ERK pathway in XBP1+ mast cells. Sci Rep 2024; 14:29545. [PMID: 39604504 PMCID: PMC11603196 DOI: 10.1038/s41598-024-80858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Distant metastasis is the leading cause of cancer-related mortality, and achieving survival benefits through advancements in systemic therapy remains challenging. Mast cells play a dual role in shaping the tumor microenvironment (TME) and influencing distant metastasis, underscoring the significant research value of targeting mast cells for systemic therapy in advanced cancer. We investigated variations in mast cell infiltration levels in primary and metastatic malignancies using immunocyte infiltration analysis. Mast cell subsets were identified from pan-cancer distant metastasis single-cell sequencing data through dimensionality reduction clustering and cell type annotation, combined with cell trajectory and communication network analyses. A prognostic model was established using WGCNA and 12 machine learning algorithms to identify potential mast cell targets. Drug sensitivity and Mendelian randomization analyses were conducted to select potential drugs targeting mast cells, and their effects on epithelial-mesenchymal transition (EMT) were validated through in vitro experiments, including wound healing, transwell, and western blot assays. Results revealed that activated mast cells show increased infiltration in metastatic tumors, correlating with poor survival duration. XBP1+ mast cells were identified as key components of the inhibitory TME, potentially involved in EMT activation. Simvastatin was identified as a potential drug, reversing EMT induced by XBP1+ mast cells in pan-cancer. Aberrant activation of MEK/ERK signaling in XBP1+ mast cells can stimulate cancer cell EMT by modulating degranulation, while Simvastatin can inhibit EMT by suppressing degranulation.
Collapse
Affiliation(s)
- Sen Lin
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huimin Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Zhao
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhulin Wu
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Weiqing Zhang
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Mengjiao Yu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bei Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanyue Ma
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danfei Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lisheng Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Weijun Luo
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China.
| |
Collapse
|
7
|
Sitte A, Goess R, Tüfekçi T, Pergolini I, Pfitzinger PL, Salvo-Romero E, Mota Reyes C, Tokalov S, Safak O, Steenfadt H, Gürcinar IH, Yurteri Ü, Goebel-Stengel M, Mazzuoli-Weber G, Stengel A, Erkan M, Friess H, Istvanffy R, Ceyhan GO, Demir E, Demir IE. Correlation of intratumoral mast cell quantity with psychosocial distress in patients with pancreatic cancer: the PancStress study. Sci Rep 2024; 14:26285. [PMID: 39487177 PMCID: PMC11530627 DOI: 10.1038/s41598-024-77010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
Mast cells are commonly found in pancreatic ductal adenocarcinoma (PDAC), yet their role in the disease remains uncertain. Although mast cells have been associated with depression in several diseases, their connection to PDAC in this context remains unclear. This study explored the correlation between mast cells and psychosocial stress in patients with PDAC. Prior to surgery, 40 patients with PDAC (n = 29 primary resected, n = 11 neoadjuvant treated) completed four questionnaires assessing stress and quality of life. Immunostaining was performed on the resected tumor tissue. Spearman analysis was employed to correlate mast cells with distress and neuropeptides serotonin and beta-endorphin serum and tissue levels. Patients with PDAC exhibited elevated levels of distress and worry. Lower number of mast cells within the tumor correlated with greater psychological burden. Among primary resected patients, mast cell count moderately correlated with joy and inversely with worries. Following neoadjuvant chemotherapy, strong inverse correlation was observed between anxiety, depression, and mast cell quantity. No correlation was found between mast cells and serotonin or beta-endorphin levels. In summary, mast cell presence inversely correlates with psychosocial stress, suggesting a link between immune cells and psychological well-being in pancreatic cancer. Targeting mast cells might offer therapeutic avenues for addressing cancer-induced depression and anxiety.
Collapse
Affiliation(s)
- Alicia Sitte
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ruediger Goess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Tutku Tüfekçi
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Ilaria Pergolini
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Paulo Leonardo Pfitzinger
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Eloísa Salvo-Romero
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium, Munich, Germany
| | - Sergey Tokalov
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Okan Safak
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Hendrik Steenfadt
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ibrahim H Gürcinar
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ümmügülsüm Yurteri
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Miriam Goebel-Stengel
- Department of Internal Medicine, Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Department of Internal Medicine, Helios Klinik Rottweil, Rottweil, Germany
| | | | - Andreas Stengel
- Department of Internal Medicine, Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Mert Erkan
- HPB-Unit, Department of General Surgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium, Munich, Germany
| | - Güralp Onur Ceyhan
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- HPB-Unit, Department of General Surgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Elke Demir
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany.
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Munich, Germany.
- Neural Influences in Cancer (NIC) International Research Consortium, Munich, Germany.
| |
Collapse
|
8
|
Wang H, Qi L, Han H, Li X, Han M, Xing L, Li L, Jiang H. Nanomedicine regulating PSC-mediated intercellular crosstalk: Mechanisms and therapeutic strategies. Acta Pharm Sin B 2024; 14:4756-4775. [PMID: 39664424 PMCID: PMC11628839 DOI: 10.1016/j.apsb.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 12/13/2024] Open
Abstract
Pancreatic fibrosis (PF) is primarily distinguished by the stimulation of pancreatic stellate cells (PSCs) and excessive extracellular matrix deposition, which is the main barrier impeding drug delivery and distribution. Recently, nanomedicine, with efficient, targeted, and controllable drug release characteristics, has demonstrated enormous advantages in the regression of pancreas fibrotic diseases. Notably, paracrine signals from parenchymal and immune cells such as pancreatic acinar cells, islet cells, pancreatic cancer cells, and immune cells can directly or indirectly modulate PSC differentiation and activation. The intercellular crosstalk between PSCs and these cells has been a critical event involved in fibrogenesis. However, the connections between PSCs and other pancreatic cells during the progression of diseases have yet to be discussed. Herein, we summarize intercellular crosstalk in the activation of PSCs and its contribution to the development of common pancreatic diseases, including pancreatitis, pancreatic cancer, and diabetes. Then, we also examine the latest treatment strategies of nanomedicine and potential targets for PSCs crosstalk in fibrosis, thereby offering innovative insights for the design of antifibrotic nanomedicine. Ultimately, the enhanced understanding of PF will facilitate the development of more precise intervention strategies and foster individually tailored therapeutic approaches for pancreatic diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xuena Li
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Mengmeng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing 210009, China
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Ma Y, Li B, Zhao X, Lu Y, Li X, Zhang J, Wang Y, Zhang J, Wang L, Meng S, Hao J. Computational modeling of mast cell tryptase family informs selective inhibitor development. iScience 2024; 27:110739. [PMID: 39280611 PMCID: PMC11396024 DOI: 10.1016/j.isci.2024.110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/13/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Mast cell tryptases, a family of serine proteases involved in inflammatory responses and cancer development, present challenges in structural characterization and inhibitor development. We employed state-of-the-art protein structure prediction algorithms to model the three-dimensional structures of tryptases α, β, δ, γ, and ε with high accuracy. Computational docking identified potential substrates and inhibitors, suggesting overlapping yet distinct activities. Tryptases β, δ, and ε were predicted to act on phenolic compounds, with β and ε additionally hydrolyzing cyanides. Tryptase δ may possess unique formyl-CoA dehydrogenase activity. Virtual screening revealed 63 compounds exhibiting strong binding to tryptase β (TPSB2), 12 exceeding the affinity of the known inhibitor. Notably, the top hit (3-chloro-4-methylbenzimidamide) displayed over 10-fold selectivity for tryptase β over other isoforms. Our integrative approach combining protein modeling, functional annotation, and molecular docking provides a framework for characterizing tryptase isoforms and developing selective inhibitors of therapeutic potential in inflammatory and cancer conditions.
Collapse
Affiliation(s)
- Ying Ma
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bole Li
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangqin Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yi Lu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xuesong Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jie Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lulu Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Meng
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
11
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Alashkar Alhamwe B, Ponath V, Alhamdan F, Dörsam B, Landwehr C, Linder M, Pauck K, Miethe S, Garn H, Finkernagel F, Brichkina A, Lauth M, Tiwari DK, Buchholz M, Bachurski D, Elmshäuser S, Nist A, Stiewe T, Pogge von Strandmann L, Szymański W, Beutgen V, Graumann J, Teply-Szymanski J, Keber C, Denkert C, Jacob R, Preußer C, Pogge von Strandmann E. BAG6 restricts pancreatic cancer progression by suppressing the release of IL33-presenting extracellular vesicles and the activation of mast cells. Cell Mol Immunol 2024; 21:918-931. [PMID: 38942797 PMCID: PMC11291976 DOI: 10.1038/s41423-024-01195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024] Open
Abstract
Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Fahd Alhamdan
- Department of Anesthesiology, Critical Care, and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Immunology and Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Bastian Dörsam
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Clara Landwehr
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Manuel Linder
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Kim Pauck
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Florian Finkernagel
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Bioinformatics, Philipps-University, 35043, Marburg, Germany
| | - Anna Brichkina
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
- Institute of Systems Immunology, Philipps-University, 35043, Marburg, Germany
| | - Matthias Lauth
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Dinesh Kumar Tiwari
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Andrea Nist
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
- Institute of Lung Health, Justus Liebig University, 35392, Giessen, Germany
| | - Lisa Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Witold Szymański
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Vanessa Beutgen
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Corinna Keber
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University, 35043, Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany.
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany.
| |
Collapse
|
13
|
Fu Y, Tao J, Liu T, Liu Y, Qiu J, Su D, Wang R, Luo W, Cao Z, Weng G, Zhang T, Zhao Y. Unbiasedly decoding the tumor microenvironment with single-cell multiomics analysis in pancreatic cancer. Mol Cancer 2024; 23:140. [PMID: 38982491 PMCID: PMC11232163 DOI: 10.1186/s12943-024-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
14
|
Panagi M, Mpekris F, Voutouri C, Hadjigeorgiou AG, Symeonidou C, Porfyriou E, Michael C, Stylianou A, Martin JD, Cabral H, Constantinidou A, Stylianopoulos T. Stabilizing Tumor-Resident Mast Cells Restores T-Cell Infiltration and Sensitizes Sarcomas to PD-L1 Inhibition. Clin Cancer Res 2024; 30:2582-2597. [PMID: 38578281 PMCID: PMC11145177 DOI: 10.1158/1078-0432.ccr-24-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE To explore the cellular cross-talk of tumor-resident mast cells (MC) in controlling the activity of cancer-associated fibroblasts (CAF) to overcome tumor microenvironment (TME) abnormalities, enhancing the efficacy of immune-checkpoint inhibitors in sarcoma. EXPERIMENTAL DESIGN We used a coculture system followed by further validation in mouse models of fibrosarcoma and osteosarcoma with or without administration of the MC stabilizer and antihistamine ketotifen. To evaluate the contribution of ketotifen in sensitizing tumors to therapy, we performed combination studies with doxorubicin chemotherapy and anti-PD-L1 (B7-H1, clone 10F.9G2) treatment. We investigated the ability of ketotifen to modulate the TME in human sarcomas in the context of a repurposed phase II clinical trial. RESULTS Inhibition of MC activation with ketotifen successfully suppressed CAF proliferation and stiffness of the extracellular matrix accompanied by an increase in vessel perfusion in fibrosarcoma and osteosarcoma as indicated by ultrasound shear wave elastography imaging. The improved tissue oxygenation increased the efficacy of chemoimmunotherapy, supported by enhanced T-cell infiltration and acquisition of tumor antigen-specific memory. Importantly, the effect of ketotifen in reducing tumor stiffness was further validated in sarcoma patients, highlighting its translational potential. CONCLUSIONS Our study suggests the targeting of MCs with clinically administered drugs, such as antihistamines, as a promising approach to overcome resistance to immunotherapy in sarcomas.
Collapse
Affiliation(s)
- Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas G. Hadjigeorgiou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | | | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- Basic and Translational Cancer Research Center, School of Sciences, European University of Cyprus, Nicosia, Cyprus
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Anastasia Constantinidou
- Bank of Cyprus Oncology Centre, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
15
|
Wu D, Gong T, Sun Z, Yao X, Wang D, Chen Q, Guo Q, Li X, Guo Y, Lu Y. Dual-crosslinking gelatin-hyaluronic acid methacrylate based biomimetic PDAC desmoplastic niche enhances tumor-associated macrophages recruitment and M2-like polarization. Int J Biol Macromol 2024; 269:131826. [PMID: 38679256 DOI: 10.1016/j.ijbiomac.2024.131826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is characterized by deposition of desmoplastic matrix (including collagen and hyaluronic acid). And the interactions between tumor-associated macrophages (TAMs) and tumor cells play a crucial role in progression of PDAC. Hence, the appropriate model of tumor cell-macrophage interaction within the unique PDAC TME is of significantly important. To this end, a 3D tumor niche based on dual-crosslinking gelatin methacrylate and hyaluronic acid methacrylate hydrogels was constructed to simulate the desmoplastic tumor matrix with matching compressive modulus and composition. The bionic 3D tumor niche creates an immunosuppressive microenvironment characterized by the downregulation of M1 markers and upregulation of M2 markers in TAMs. Mechanistically, RNA-seq analysis revealed that the PI3K-AKT signaling pathway might modulate the phenotypic balance and recruitment of macrophages through regulating SELE and VCAM-1. Furthermore, GO and GSEA revealed the biological process of leukocyte migration and the activation of cytokine-associated signaling were involved. Finally, the 3D tumor-macrophage niches with three different ratios were fabricated which displayed increased M2-like polarization and stemness. The utilization of the 3D tumor niche has the potential to provide a more accurate investigation of the interplay between PDAC tumor cells and macrophages within an in vivo setting.
Collapse
Affiliation(s)
- Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Zhongxiang Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Xihao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Qiyang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Xiaohong Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China.
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China.
| |
Collapse
|
16
|
Spadafora V, Pryce BR, Oles A, Talbert EE, Romeo M, Vaena S, Berto S, Ostrowski MC, Wang DJ, Guttridge DC. Optimization of a mouse model of pancreatic cancer to simulate the human phenotypes of metastasis and cachexia. BMC Cancer 2024; 24:414. [PMID: 38570770 PMCID: PMC10993462 DOI: 10.1186/s12885-024-12104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) presents with a high mortality rate. Two important features of PDAC contribute to this poor outcome. The first is metastasis which occurs in ~ 80% of PDAC patients. The second is cachexia, which compromises treatment tolerance for patients and reduces their quality of life. Although various mouse models of PDAC exist, recapitulating both metastatic and cachectic features have been challenging. METHODS Here, we optimize an orthotopic mouse model of PDAC by altering several conditions, including the subcloning of parental murine PDAC cells, implantation site, number of transplanted cells, and age of recipient mice. We perform spatial profiling to compare primary and metastatic immune microenvironments and RNA sequencing to gain insight into the mechanisms of muscle wasting in PDAC-induced cachexia, comparing non-metastatic to metastatic conditions. RESULTS These modifications extend the time course of the disease and concurrently increase the rate of metastasis to approximately 70%. Furthermore, reliable cachexia endpoints are achieved in both PDAC mice with and without metastases, which is reminiscent of patients. We also find that cachectic muscles from PDAC mice with metastasis exhibit a similar transcriptional profile to muscles derived from mice and patients without metastasis. CONCLUSION Together, this model is likely to be advantageous in both advancing our understanding of the mechanism of PDAC cachexia, as well as in the evaluation of novel therapeutics.
Collapse
Affiliation(s)
- Victoria Spadafora
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Benjamin R Pryce
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Alexander Oles
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Erin E Talbert
- Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University of Iowa, Iowa, 52242, USA
| | - Martin Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Stefano Berto
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michael C Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David J Wang
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, 416, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
17
|
Ligan C, Ma XH, Zhao SL, Zhao W. The regulatory role and mechanism of mast cells in tumor microenvironment. Am J Cancer Res 2024; 14:1-15. [PMID: 38323271 PMCID: PMC10839313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.
Collapse
Affiliation(s)
- Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Xin-Hua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Shu-Li Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
18
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C, Zhuang J. Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother 2023; 167:115622. [PMID: 37783155 DOI: 10.1016/j.biopha.2023.115622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.
Collapse
Affiliation(s)
- Dandan Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Mengrui Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
20
|
Xu Y, Li W, Lin S, Liu B, Wu P, Li L. Fibroblast diversity and plasticity in the tumor microenvironment: roles in immunity and relevant therapies. Cell Commun Signal 2023; 21:234. [PMID: 37723510 PMCID: PMC10506315 DOI: 10.1186/s12964-023-01204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 09/20/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), enriched in the tumor stroma, have received increasing attention because of their multifaceted effects on tumorigenesis, development, metastasis, and treatment resistance in malignancies. CAFs contributed to suppressive microenvironment via different mechanisms, while CAFs also exerted some antitumor effects. Therefore, CAFs have been considered promising therapeutic targets for their remarkable roles in malignant tumors. However, patients with malignancies failed to benefit from current CAFs-targeted drugs in many clinical trials, which suggests that further in-depth investigation into CAFs is necessary. Here, we summarize and outline the heterogeneity and plasticity of CAFs mainly by exploring their origin and activation, highlighting the regulation of CAFs in the tumor microenvironment during tumor evolution, as well as the critical roles performed by CAFs in tumor immunity. In addition, we summarize the current immunotherapies targeting CAFs, and conclude with a brief overview of some prospects for the future of CAFs research in the end. Video Abstract.
Collapse
Affiliation(s)
- Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Guo J, Wang S, Gao Q. An integrated overview of the immunosuppression features in the tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1258538. [PMID: 37771596 PMCID: PMC10523014 DOI: 10.3389/fimmu.2023.1258538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. It is characterized by a complex and immunosuppressive tumor microenvironment (TME), which is primarily composed of tumor cells, stromal cells, immune cells, and acellular components. The cross-interactions and -regulations among various cell types in the TME have been recognized to profoundly shape the immunosuppression features that meaningfully affect PDAC biology and treatment outcomes. In this review, we first summarize five cellular composition modules by integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then we discuss an integrated overview of the cross-module regulations as a determinant of the immunosuppressive TME in PDAC. We also briefly highlight TME-targeted strategies that potentially improve PDAC therapy.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Sulsenti R, Jachetti E. Frenemies in the Microenvironment: Harnessing Mast Cells for Cancer Immunotherapy. Pharmaceutics 2023; 15:1692. [PMID: 37376140 DOI: 10.3390/pharmaceutics15061692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor development, progression, and resistance to therapies are influenced by the interactions between tumor cells and the surrounding microenvironment, comprising fibroblasts, immune cells, and extracellular matrix proteins. In this context, mast cells (MCs) have recently emerged as important players. Yet, their role is still controversial, as MCs can exert pro- or anti-tumor functions in different tumor types depending on their location within or around the tumor mass and their interaction with other components of the tumor microenvironment. In this review, we describe the main aspects of MC biology and the different contribution of MCs in promoting or inhibiting cancer growth. We then discuss possible therapeutic strategies aimed at targeting MCs for cancer immunotherapy, which include: (1) targeting c-Kit signaling; (2) stabilizing MC degranulation; (3) triggering activating/inhibiting receptors; (4) modulating MC recruitment; (5) harnessing MC mediators; (6) adoptive transferring of MCs. Such strategies should aim to either restrain or sustain MC activity according to specific contexts. Further investigation would allow us to better dissect the multifaceted roles of MCs in cancer and tailor novel approaches for an "MC-guided" personalized medicine to be used in combination with conventional anti-cancer therapies.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
24
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
25
|
Palma AM, Bushnell GG, Wicha MS, Gogna R. Tumor microenvironment interactions with cancer stem cells in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:343-372. [PMID: 37268400 PMCID: PMC11218813 DOI: 10.1016/bs.acr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer in the United States. Additionally, the low survival rate makes PDAC the third-leading cause of cancer-related mortality in the United States, and it is projected that by 2030, it will become the second-leading cause of cancer mortality. Several biological factors contribute to PDAC aggressiveness, and their understanding will narrow the gap from biology to clinical care of PDAC, leading to earlier diagnoses and the development of better treatment options. In this review, we describe the origins of PDAC highlighting the role of cancer stem cells (CSC). CSC, also known as tumor initiating cells, which exhibit a unique metabolism that allows them to maintain a highly plastic, quiescent, immune- and therapy-evasive state. However, CSCs can exit quiescence during proliferation and differentiation, with the capacity to form tumors while constituting a small population in tumor tissues. Tumorigenesis depends on the interactions between CSCs and other cellular and non-cellular components in the microenvironment. These interactions are fundamental to support CSC stemness and are maintained throughout tumor development and metastasis. PDAC is characterized by a massive desmoplastic reaction, which result from the deposition of high amounts of extracellular matrix components by stromal cells. Here we review how this generates a favorable environment for tumor growth by protecting tumor cells from immune responses and chemotherapy and inducing tumor cell proliferation and migration, leading to metastasis formation ultimately leading to death. We emphasize the interactions between CSCs and the tumor microenvironment leading to metastasis formation and posit that better understanding and targeting of these interactions will improve patient outcomes.
Collapse
Affiliation(s)
| | - Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.
| | - Rajan Gogna
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
26
|
Palma AM, Vudatha V, Peixoto ML, Madan E. Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions. Adv Cancer Res 2023; 159:203-249. [PMID: 37268397 DOI: 10.1016/bs.acr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging disease usually diagnosed at advanced or metastasized stage. By this year end, there are an expected increase in 62,210 new cases and 49,830 deaths in the United States, with 90% corresponding to PDAC subtype alone. Despite advances in cancer therapy, one of the major challenges combating PDAC remains tumor heterogeneity between PDAC patients and within the primary and metastatic lesions of the same patient. This review describes the PDAC subtypes based on the genomic, transcriptional, epigenetic, and metabolic signatures observed among patients and within individual tumors. Recent studies in tumor biology suggest PDAC heterogeneity as a major driver of disease progression under conditions of stress including hypoxia and nutrient deprivation, leading to metabolic reprogramming. We therefore advance our understanding in identifying the underlying mechanisms that interfere with the crosstalk between the extracellular matrix components and tumor cells that define the mechanics of tumor growth and metastasis. The bilateral interaction between the heterogeneous tumor microenvironment and PDAC cells serves as another important contributor that characterizes the tumor-promoting or tumor-suppressing phenotypes providing an opportunity for an effective treatment regime. Furthermore, we highlight the dynamic reciprocating interplay between the stromal and immune cells that impact immune surveillance or immune evasion response and contribute towards a complex process of tumorigenesis. In summary, the review encapsulates the existing knowledge of the currently applied treatments for PDAC with emphasis on tumor heterogeneity, manifesting at multiple levels, impacting disease progression and therapy resistance under stress.
Collapse
Affiliation(s)
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | | | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
27
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
28
|
Zhang C, Fei Y, Wang H, Hu S, Liu C, Hu R, Du Q. CAFs orchestrates tumor immune microenvironment—A new target in cancer therapy? Front Pharmacol 2023; 14:1113378. [PMID: 37007004 PMCID: PMC10064291 DOI: 10.3389/fphar.2023.1113378] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Cancer immunotherapy has opened a new landscape in cancer treatment, however, the poor specificity and resistance of most targeted therapeutics have limited their therapeutic efficacy. In recent years, the role of CAFs in immune regulation has been increasingly noted as more evidence has been uncovered regarding the link between cancer-associated fibroblasts (CAFs) and the evolutionary process of tumor progression. CAFs interact with immune cells to shape the tumor immune microenvironment (TIME) that favors malignant tumor progression, a crosstalk process that leads to the failure of cancer immunotherapies. In this review, we outline recent advances in the immunosuppressive function of CAFs, highlight the mechanisms of CAFs-immune cell interactions, and discuss current CAF-targeted therapeutic strategies for future study.
Collapse
Affiliation(s)
- Chunxue Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuxiang Fei
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sheng Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| |
Collapse
|
29
|
Velasco RM, García AG, Sánchez PJ, Sellart IM, Sánchez-Arévalo Lobo VJ. Tumour microenvironment and heterotypic interactions in pancreatic cancer. J Physiol Biochem 2023; 79:179-192. [PMID: 35102531 DOI: 10.1007/s13105-022-00875-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a disease with a survival rate of 9%; this is due to its chemoresistance and the large tumour stroma that occupies most of the tumour mass. It is composed of a large number of cells of the immune system, such as Treg cells, tumour-associated macrophages (TAMs), myeloid suppressor cells (MDCs) and tumour-associated neutrophiles (TANs) that generate an immunosuppressive environment by the release of inflammatory cytokines. Moreover, cancer-associated fibroblast (CAFs) provide a protective coverage that would difficult the access of chemotherapy to the tumour. According to this, new therapies that could remodel this heterogeneous tumour microenvironment, such as adoptive T cell therapies (ACT), immune checkpoint inhibitors (ICI), and CD40 agonists, should be developed for targeting PDA. This review organizes the different cell populations found in the tumour stroma involved in tumour progression in addition to the different therapies that are being studied to counteract the tumour.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Ana García García
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Inmaculada Montanuy Sellart
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain.
| |
Collapse
|
30
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
31
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
32
|
Pita-Grisanti V, Dubay K, Lahooti A, Badi N, Ueltschi O, Gumpper-Fedus K, Hsueh HY, Lahooti I, Chavez-Tomar M, Terhorst S, Knoblaugh SE, Cao L, Huang W, Coss CC, Mace TA, Choueiry F, Hinton A, Mitchell JM, Schmandt R, Grinsfelder MO, Basen-Engquist K, Cruz-Monserrate Z. Physical Activity Delays Obesity-Associated Pancreatic Ductal Adenocarcinoma in Mice and Decreases Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.521203. [PMID: 36711764 PMCID: PMC9881853 DOI: 10.1101/2023.01.03.521203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity might prevent obesity-associated PDAC. Here, we examined whether decreasing obesity by increased physical activity (PA) and/or dietary changes would decrease inflammation in humans and prevent PDAC in mice. METHODS Circulating inflammatory-associated cytokines of overweight and obese subjects before and after a PA intervention were compared. PDAC pre-clinical models were exposed to PA and/or dietary interventions after obesity-associated cancer initiation. Body composition, tumor progression, growth, fibrosis, inflammation, and transcriptomic changes in the adipose tissue were evaluated. RESULTS PA decreased the levels of systemic inflammatory cytokines in overweight and obese subjects. PDAC mice on a diet-induced obesity (DIO) and PA intervention, had delayed weight gain, decreased systemic inflammation, lower grade pancreatic intraepithelial neoplasia lesions, reduced PDAC incidence, and increased anti-inflammatory signals in the adipose tissue compared to controls. PA had additional cancer prevention benefits when combined with a non-obesogenic diet after DIO. However, weight loss through PA alone or combined with a dietary intervention did not prevent tumor growth in an orthotopic PDAC model. Adipose-specific targeting of interleukin (IL)-15, an anti-inflammatory cytokine induced by PA in the adipose tissue, slowed PDAC growth. CONCLUSIONS PA alone or combined with diet-induced weight loss delayed the progression of PDAC and reduced systemic and adipose inflammatory signals. Therefore, obesity management via dietary interventions and/or PA, or modulating weight loss related pathways could prevent obesity-associated PDAC in high-risk obese individuals.
Collapse
Affiliation(s)
- Valentina Pita-Grisanti
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH
| | - Kelly Dubay
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Ali Lahooti
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Niharika Badi
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Olivia Ueltschi
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Kristyn Gumpper-Fedus
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Hsiang-Yin Hsueh
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
- The Ohio State University Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH
| | - Ila Lahooti
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Myrriah Chavez-Tomar
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Samantha Terhorst
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Sue E. Knoblaugh
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
| | - Lei Cao
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Wei Huang
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Thomas A. Mace
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Fouad Choueiry
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH
| | - Jennifer M Mitchell
- Department of Veterinary Medicine and Surgery, UT MD Anderson Cancer Center, Houston, TX
| | - Rosemarie Schmandt
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center, Houston, TX
| | - Michaela Onstad Grinsfelder
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center, Houston, TX
| | - Karen Basen-Engquist
- Department of Behavioral Science, Center for Energy Balance, The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center, Houston, TX
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| |
Collapse
|
33
|
Mast cells inhibit colorectal cancer development by inducing ER stress through secreting Cystatin C. Oncogene 2023; 42:209-223. [PMID: 36402931 DOI: 10.1038/s41388-022-02543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022]
Abstract
Mast cells (MCs) are abundantly distributed in the human intestinal mucosa and submucosa. However, their roles and mechanisms in the development of colorectal cancer (CRC) are still unclear. In the present research, we found that the infiltration density of MCs in CRC tissues was positively correlated with improved patients' prognoses. Moreover, MCs suppressed the growth and induced the apoptosis of CRC cells in vitro and in vivo but had no effect on normal colonic epithelial cells. The present study revealed that MCs specifically induced endoplasmic reticulum stress (ERS) and activated the unfolded protein response (UPR) in CRC cells but not in normal cells, which led to the suppression of CRC development in vivo. Furthermore, we found that the secreted Cystatin C protein was the key factor for the MC-induced ERS in CRC cells. This work is of significance for uncovering the antitumor function of MCs in CRC progression and identifying the potential of CRC to respond to MC-targeted immunotherapy.
Collapse
|
34
|
Drouillard D, Craig BT, Dwinell MB. Physiology of chemokines in the cancer microenvironment. Am J Physiol Cell Physiol 2023; 324:C167-C182. [PMID: 36317799 PMCID: PMC9829481 DOI: 10.1152/ajpcell.00151.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Chemokines are chemotactic cytokines whose canonical functions govern movement of receptor-expressing cells along chemical gradients. Chemokines are a physiological system that is finely tuned by ligand and receptor expression, ligand or receptor oligomerization, redundancy, expression of atypical receptors, and non-GPCR binding partners that cumulatively influence discrete pharmacological signaling responses and cellular functions. In cancer, chemokines play paradoxical roles in both the directed emigration of metastatic, receptor-expressing cancer cells out of the tumor as well as immigration of tumor-infiltrating immune cells that culminate in a tumor-unique immune microenvironment. In the age of precision oncology, strategies to effectively harness the power of immunotherapy requires consideration of chemokine gradients within the unique spatial topography and temporal influences with heterogeneous tumors. In this article, we review current literature on the diversity of chemokine ligands and their cellular receptors that detect and process chemotactic gradients and illustrate how differences between ligand recognition and receptor activation influence the signaling machinery that drives cellular movement into and out of the tumor microenvironment. Facets of chemokine physiology across discrete cancer immune phenotypes are contrasted to existing chemokine-centered therapies in cancer.
Collapse
Affiliation(s)
- Donovan Drouillard
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian T Craig
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
35
|
Ma C, Luo H. A more novel and robust gene signature predicts outcome in patients with esophageal squamous cell carcinoma. Clin Res Hepatol Gastroenterol 2022; 46:102033. [PMID: 36265781 DOI: 10.1016/j.clinre.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a life-threatening thoracic tumor with a poor prognosis. The tumor microenvironment (TME) mainly comprises tumor cells and tumor-infiltrating immune cells mixed with stromal components. The latest research has displayed that tumor immune cell infiltration (ICI) is closely connected with the ESCC patients' clinical prognosis. This study was designed to construct a gene signature based on the ICI of ESCC to predict prognosis. METHODS Based on the selection criteria we set, the eligible ESCC cases from the GSE53625 and TCGA-ESCA datasets were chosen for the training cohort and the validation cohort, respectively. Unsupervised clustering detailed grouped ESCC cases of the training cohort based on the ICI profile. We determined the differential expression genes (DEGs) between the ICI clusters, and, subsequently, we adopted the univariate Cox analysis to recognize DEGs with prognostic potential. These screened DEGs underwent a Lasso regression, which then generated a gene signature. The harvested signature's predictive ability was further examined by the Kaplan-Meier analysis, Cox analysis, ROC, IAUC, and IBS. More importantly, we listed similar studies in the most recent year and compared theirs with ours. We performed the functional annotation, immune relevant signature correlation analysis, and immune infiltrating analysis to thoroughly understand the functional mechanism of the signature and the immune cells' roles in the gene signature's predicting capacity. RESULTS A sixteen-gene signature (ARSD, BCAT1, BIK, CLDN11, DLEU7-AS1, GGH, IGFBP2, LINC01037, LINC01446, LINC01497, M1AP, PCSK2, PCSK5, PPP2R2A, TIGD7, and TMSB4X) was generated from the Lasso model. We then confirmed the signature as having solid and stable prognostic capacity by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GSEA uncovered the specifically mechanism of action related to the gene signature. Two immune relevant signatures, including GZMA and LAG3 were identified associating with our signature. The immune-infiltrating analysis identified crucial roles of resting mast cells, which potentially support the sixteen-gene signature's prognosis ability. CONCLUSIONS We discovered a robust sixteen-gene signature that can accurately predict ESCC prognosis. The immune relevant signatures, GZMA and LAG3, and resting mast cells infiltrating were closely linked to the sixteen-gene signature's ability.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
36
|
Luong T, Golivi Y, Nagaraju GP, El-Rayes BF. Fibroblast heterogeneity in pancreatic ductal adenocarcinoma: Perspectives in immunotherapy. Cytokine Growth Factor Rev 2022; 68:107-115. [PMID: 36096869 DOI: 10.1016/j.cytogfr.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023]
Abstract
Cancer-associated fibroblasts (CAFs), the key component in pancreatic tumor microenvironment (TME), originate from many sources and are naturally heterogeneous in phenotype and function. Numerous studies have identified their crucial role in promoting tumorigenesis through many routes including fostering cancer proliferation, angiogenesis, invasion, and metastasis. Conversely, research also indicates that subsets of CAFs express anti-tumor activity. These dual effects reflect the complexity of CAF heterogeneity and their interactions with other cells and factors in pancreatic TME. A critical component in this environment is infiltrated immune cells and immune mediators, which can communicate with CAFs. The crosstalk occurs via the production of various cytokines, chemokines, and other mediators and shapes the immunological state in TME. Comprehensive studies of the crosstalk between CAFs and tumor immune environment, particularly internal mechanisms interlinking CAFs and immune effectors, may provide new approaches for pancreatic ductal adenocarcinoma (PDAC) treatments. In this review, we explore the characteristics of CAFs, describe the interplay among CAFs, infiltrated immune cells, other mediators, and provide an overview of recent CAF-target therapies, their limitations, and potential research directions in CAF in the context of PDAC.
Collapse
Affiliation(s)
- Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Yuvasri Golivi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
37
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
38
|
Thiery J. Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:598-629. [PMID: 36338519 PMCID: PMC9630350 DOI: 10.37349/etat.2022.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous players that shape the tumor microenvironment and influence tumor progression, metastasis formation, and response to conventional therapies. During the past years, some CAFs subsets have also been involved in the modulation of immune cell functions, affecting the efficacy of both innate and adaptive anti-tumor immune responses. Consequently, the implication of these stromal cells in the response to immunotherapeutic strategies raised major concerns. In this review, current knowledge of CAFs origins and heterogeneity in the tumor stroma, as well as their effects on several immune cell populations that explain their immunosuppressive capabilities are summarized. The current development of therapeutic strategies for targeting this population and their implication in the field of cancer immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM, UMR 1186, 94800 Villejuif, France
- Gustave Roussy Cancer Campus, 94805 Villejuif, France
- University Paris Saclay, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
39
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 2022; 189:114504. [PMID: 35998825 DOI: 10.1016/j.addr.2022.114504] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.
Collapse
Affiliation(s)
- Rahul Rimal
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Section: Engineered Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:988295. [PMID: 36046791 PMCID: PMC9421293 DOI: 10.3389/fendo.2022.988295] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
It is notorious that cancer cells alter their metabolism to adjust to harsh environments of hypoxia and nutritional starvation. Metabolic reprogramming most often occurs in the tumor microenvironment (TME). TME is defined as the cellular environment in which the tumor resides. This includes surrounding blood vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix (ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells within TME can regulate tumor progression through metabolic reprogramming. As the most significant proportion of cells among all the stromal cells that constitute TME, cancer-associated fibroblasts (CAFs) are closely associated with tumorigenesis and progression. Multitudinous studies have shown that CAFs participate in and promote tumor metabolic reprogramming and exert regulatory effects via the dysregulation of metabolic pathways. Previous studies have demonstrated that curbing the substance exchange between CAFs and tumor cells can dramatically restrain tumor growth. Emerging studies suggest that CAFs within the TME have emerged as important determinants of metabolic reprogramming. Metabolic reprogramming also occurs in the metabolic pattern of immune cells. In the meanwhile, immune cell phenotype and functions are metabolically regulated. Notably, immune cell functions influenced by metabolic programs may ultimately lead to alterations in tumor immunity. Despite the fact that multiple previous researches have been devoted to studying the interplays between different cells in the tumor microenvironment, the complicated relationship between CAFs and immune cells and implications of metabolic reprogramming remains unknown and requires further investigation. In this review, we discuss our current comprehension of metabolic reprogramming of CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and crosstalk between them that induces immune responses, and we also highlight their contributions to tumorigenesis and progression. Furthermore, we underscore potential therapeutic opportunities arising from metabolism dysregulation and metabolic crosstalk, focusing on strategies targeting CAFs and immune cell metabolic crosstalk in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Lei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiwei Hong
- School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of General surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
41
|
Glabman RA, Choyke PL, Sato N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14163906. [PMID: 36010899 PMCID: PMC9405783 DOI: 10.3390/cancers14163906] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are found in the tumor microenvironment and exhibit several protumorigenic functions. Preclinical studies suggest that CAFs can be reduced, eliminated, or reprogrammed; however, clinical translation has not yet occurred. A better understanding of these cells and their functions will undoubtedly improve cancer treatments. In this review, we summarize current research, highlight major challenges, and discuss future opportunities for improving our knowledge of CAF biology and targeting. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous group of activated fibroblasts and a major component of the tumor stroma. CAFs may be derived from fibroblasts, epithelial cells, endothelial cells, cancer stem cells, adipocytes, pericytes, or stellate cells. These complex origins may underlie their functional diversity, which includes pro-tumorigenic roles in extracellular matrix remodeling, the suppression of anti-tumor immunity, and resistance to cancer therapy. Several methods for targeting CAFs to inhibit tumor progression and enhance anti-tumor immunity have recently been reported. While preclinical studies have shown promise, to date they have been unsuccessful in human clinical trials against melanoma, breast cancer, pancreas cancer, and colorectal cancers. This review summarizes recent and major advances in CAF-targeting therapies, including DNA-based vaccines, anti-CAF CAR-T cells, and modifying and reprogramming CAF functions. The challenges in developing effective anti-CAF treatment are highlighted, which include CAF heterogeneity and plasticity, the lack of specific target markers for CAFs, the limitations in animal models recapitulating the human cancer microenvironment, and the undesirable off-target and systemic side effects. Overcoming these challenges and expanding our understanding of the basic biology of CAFs is necessary for making progress towards safe and effective therapeutic strategies against cancers in human patients.
Collapse
Affiliation(s)
- Raisa A. Glabman
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-240-858-3079
| |
Collapse
|
42
|
Zafari N, Khosravi F, Rezaee Z, Esfandyari S, Bahiraei M, Bahramy A, Ferns GA, Avan A. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J Clin Lab Anal 2022; 36:e24585. [PMID: 35808903 PMCID: PMC9396196 DOI: 10.1002/jcla.24585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) with a high prevalence is recognized as the fourth most common cause of cancer-related death globally. Over the past decade, there has been growing interest in the network of tumor cells, stromal cells, immune cells, blood vessel cells, and fibroblasts that comprise the tumor microenvironment (TME) to identify new therapeutic interventions. METHODS Databases, such as Google Scholar, PubMed, and Scopus, were searched to provide an overview of the recent research progress related to targeting the TME as a novel therapeutic approach. RESULTS Tumor microenvironment as a result of the cross talk between these cells may result in either advantages or disadvantages in tumor development and metastasis, affecting the signals and responses from the surrounding cells. Whilst chemotherapy has led to an improvement in CRC patients' survival, the metastatic aspect of the disease remains difficult to avoid. CONCLUSIONS The present review emphasizes the structure and function of the TME, alterations in the TME, its role in the incidence and progression of CRC, the effects on tumor development and metastasis, and also the potential of its alterations as therapeutic targets. It should be noted that providing novel studies in this field of research might help us to achieve practical therapeutic strategies based on their interaction.
Collapse
Affiliation(s)
- Narges Zafari
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fatemeh Khosravi
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Zahra Rezaee
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sahar Esfandyari
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohamad Bahiraei
- Department of Radiology, Besat HospitalHamedan University of Medical SciencesHamedanIran
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Gordon A. Ferns
- Brighton & Sussex Medical SchoolDivision of Medical EducationSussexUK
| | - Amir Avan
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Basic Medical Sciences InstituteMashhad University of Medical SciencesMashhadIran
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
43
|
Mun JY, Leem SH, Lee JH, Kim HS. Dual Relationship Between Stromal Cells and Immune Cells in the Tumor Microenvironment. Front Immunol 2022; 13:864739. [PMID: 35464435 PMCID: PMC9019709 DOI: 10.3389/fimmu.2022.864739] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical role in tumorigenesis and is comprised of different components, including tumor cells, stromal cells, and immune cells. Among them, the relationship between each mediator involved in the construction of the TME can be understood by focusing on the secreting or expressing factors from each cells. Therefore, understanding the various interactions between each cellular component of the TME is necessary for precise therapeutic approaches. In carcinoma, stromal cells are well known to influence extracellular matrix (ECM) formation and tumor progression through multiple mediators. Immune cells respond to tumor cells by causing cytotoxicity or inflammatory responses. However, they are involved in tumor escape through immunoregulatory mechanisms. In general, anti-cancer therapy has mainly been focused on cancer cells themselves or the interactions between cancer cells and specific cell components. However, cancer cells directly or indirectly influence other TME partners, and members such as stromal cells and immune cells also participate in TME organization through their mutual communication. In this review, we summarized the relationship between stromal cells and immune cells in the TME and discussed the positive and negative relationships from the point of view of tumor development for use in research applications and therapeutic strategies.
Collapse
Affiliation(s)
- Jeong-Yeon Mun
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju, South Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| |
Collapse
|
44
|
Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022; 13:850093. [PMID: 35493517 PMCID: PMC9046560 DOI: 10.3389/fimmu.2022.850093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation involves interactions between various immune cells, inflammatory cells, chemokines and cytokines in pancreatic cancer. Cancer cells as well as surrounding stromal and inflammatory cells establish an inflammatory tumor microenvironment (TME). Inflammation is closely associated with immunity. Meanwhile, immune cells are involved in both inflammation and immune response. Tumor-promoting inflammation and tumor-suppressive immunity are two main characteristics of the tumor microenvironment in pancreatic cancer. Yet, the mechanism of inflammation and immune response in pancreatic cancer development is still unclear due to the dual role of some cytokines and the complicated crosstalk between tumor and stromal components in TME. In this review, we outline the principal cytokines and stromal cells in the pancreatic TME that are involved in the tumor-promoting and immunosuppressive effects of inflammation, and discuss the interaction between inflammation and stromal components in pancreatic cancer progression. Moreover, the clinical approaches based on targeting TME in pancreatic cancer are also summarized. Defining the mechanisms of interplay between inflammation and stromal components will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022; 8:527-555. [PMID: 35331673 DOI: 10.1016/j.trecan.2022.03.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
The view of cancer as a tumor cell-centric disease is now replaced by our understanding of the interconnection and dependency of tumor stroma. Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), are involved in anticancer therapeutic resistance. As we unearth more solid evidence on the link between CAFs and tumor progression, we gain insight into the role of CAFs in establishing resistance to cancer therapies. Herein, we review the origin, heterogeneity, and function of CAFs, with a focus on how CAF subsets can be used as biomarkers and can contribute to therapeutic resistance in cancer. We also depict current breakthroughs in targeting CAFs to overcome anticancer therapeutic resistance and discuss emerging CAF-targeting modalities.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
46
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
47
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
48
|
Kim K, Gaddam S, Liu Q. Pathogenesis, Epidemiology, and Prognosis of Pancreatic Adenocarcinomas. HEPATO-PANCREATO-BILIARY MALIGNANCIES 2022:461-481. [DOI: 10.1007/978-3-030-41683-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Hrabák P, Kalousová M, Krechler T, Zima T. Pancreatic stellate cells - rising stars in pancreatic pathologies. Physiol Res 2021. [DOI: 10.33549//physiolres.934783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pluripotent pancreatic stellate cells (PSCs) receive growing interest in past decades. Two types of PSCs are recognized –vitamin A accumulating quiescent PSCs and activated PSCs- the main producents of extracellular matrix in pancreatic tissue. PSCs plays important role in pathogenesis of pancreatic fibrosis in pancreatic cancer and chronic pancreatitis. PSCs are intensively studied as potential therapeutical target because of their important role in developing desmoplastic stroma in pancreatic cancer. There also exists evidence that PSC are involved in other pathologies like type-2 diabetes mellitus. This article brings brief characteristics of PSCs and recent advances in research of these cells.
Collapse
Affiliation(s)
| | - M Kalousová
- 2Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | | | | |
Collapse
|
50
|
Noto CN, Hoft SG, DiPaolo RJ. Mast Cells as Important Regulators in Autoimmunity and Cancer Development. Front Cell Dev Biol 2021; 9:752350. [PMID: 34712668 PMCID: PMC8546116 DOI: 10.3389/fcell.2021.752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Mast cells are an essential part of the immune system and are best known as important modulators of allergic and anaphylactic immune responses. Upon activation, mast cells release a multitude of inflammatory mediators with various effector functions that can be both protective and damage-inducing. Mast cells can have an anti-inflammatory or pro-inflammatory immunological effect and play important roles in regulating autoimmune diseases including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Importantly, chronic inflammation and autoimmunity are linked to the development of specific cancers including pancreatic cancer, prostate cancer, colorectal cancer, and gastric cancer. Inflammatory mediators released from activated mast cells regulate immune responses and promote vascular permeability and the recruitment of immune cells to the site of inflammation. Mast cells are present in increased numbers in tissues affected by autoimmune diseases as well as in tumor microenvironments where they co-localize with T regulatory cells and T effector cells. Mast cells can regulate immune responses by expressing immune checkpoint molecules on their surface, releasing anti-inflammatory cytokines, and promoting vascularization of solid tumor sites. As a result of these immune modulating activities, mast cells have disease-modifying roles in specific autoimmune diseases and cancers. Therefore, determining how to regulate the activities of mast cells in different inflammatory and tumor microenvironments may be critical to discovering potential therapeutic targets to treat autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|