1
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
2
|
Jacob DR, Guiblet WM, Mamayusupova H, Shtumpf M, Ciuta I, Ruje L, Gretton S, Bikova M, Correa C, Dellow E, Agrawal SP, Shafiei N, Drobysevskaja A, Armstrong CM, Lam JDG, Vainshtein Y, Clarkson CT, Thorn GJ, Sohn K, Pradeepa MM, Chandrasekharan S, Brooke GN, Klenova E, Zhurkin VB, Teif VB. Nucleosome reorganisation in breast cancer tissues. Clin Epigenetics 2024; 16:50. [PMID: 38561804 PMCID: PMC10986098 DOI: 10.1186/s13148-024-01656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.
Collapse
Affiliation(s)
- Divya R Jacob
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Wilfried M Guiblet
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hulkar Mamayusupova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Mariya Shtumpf
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Luminita Ruje
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Svetlana Gretton
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- School of Engineering, Arts, Science and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Milena Bikova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Clark Correa
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Emily Dellow
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Shivam P Agrawal
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Navid Shafiei
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | | | - Chris M Armstrong
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan D G Lam
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Yevhen Vainshtein
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Christopher T Clarkson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- University College London, Gower St, Bloomsbury, London, WC1E 6BT, UK
| | - Graeme J Thorn
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kai Sohn
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Madapura M Pradeepa
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Sankaran Chandrasekharan
- Colchester General Hospital, East Suffolk and North Essex NHS Foundation Trust, Turner Road, Colchester, CO4 5JL, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Elena Klenova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Victor B Zhurkin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
3
|
Joosten SE, Gregoricchio S, Stelloo S, Yapıcı E, Huang CCF, Collier MD, Morova T, Altintas B, Kim Y, Canisius S, Korkmaz G, Lack N, Vermeulen M, Linn SC, Zwart W. Breast cancer risk SNPs converge on estrogen receptor binding sites commonly shared between breast tumors to locally alter estrogen signalling output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564691. [PMID: 37961147 PMCID: PMC10634999 DOI: 10.1101/2023.10.30.564691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Estrogen Receptor alpha (ERα) is the main driver and prime drug target in luminal breast. ERα chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ERα chromatin action, along with its biological implications. Here, we use a large set of ERα ChIP-seq data from 70 ERα+ breast cancers to explore inter-patient heterogeneity in ERα DNA binding, to reveal a striking inter-tumor heterogeneity of ERα action. Interestingly, commonly-shared ERα sites showed the highest estrogen-driven enhancer activity and were most-engaged in long-range chromatin interactions. In addition, the most-commonly shared ERα-occupied enhancers were enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ERα and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we could confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ERα-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ERα landscape, with the most-common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.
Collapse
|
4
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Yao K, Schaafsma E, Zhang B, Cheng C. Tumor cell intrinsic and extrinsic features predict prognosis in estrogen receptor positive breast cancer. PLoS Comput Biol 2022; 18:e1009495. [PMID: 35263321 PMCID: PMC8936467 DOI: 10.1371/journal.pcbi.1009495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/21/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
Although estrogen-receptor-positive (ER+) breast cancer is generally associated with favorable prognosis, clinical outcome varies substantially among patients. Genomic assays have been developed and applied to predict patient prognosis for personalized treatment. We hypothesize that the recurrence risk of ER+ breast cancer patients is determined by both genomic mutations intrinsic to tumor cells and extrinsic immunological features in the tumor microenvironment. Based on the Cancer Genome Atlas (TCGA) breast cancer data, we identified the 72 most common genomic aberrations (including gene mutations and indels) in ER+ breast cancer and defined sample-specific scores that systematically characterized the deregulated pathways intrinsic to tumor cells. To further consider tumor cell extrinsic features, we calculated immune infiltration scores for six major immune cell types. Many individual intrinsic features are predictive of patient prognosis in ER+ breast cancer, and some of them achieved comparable accuracy with the Oncotype DX assay. In addition, statistical learning models that integrated these features predicts the recurrence risk of patients with significantly better performance than the Oncotype DX assay (our optimized random forest model AUC = 0.841, Oncotype DX model AUC = 0.792, p = 0.04). As a proof-of-concept, our study indicates the great potential of genomic and immunological features in prognostic prediction for improving breast cancer precision medicine. The framework introduced in this work can be readily applied to other cancers.
Collapse
Affiliation(s)
- Kevin Yao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Evelien Schaafsma
- Department of Molecular and Systems Biology, Dartmouth College, Lebanon, New Hampshire, United States of America
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire, United States of America
| | - Baoyi Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Institute for Clinical and Transcriptional Research, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhao Y, Aziz AUR, Zhang H, Zhang Z, Li N, Liu B. A systematic review on active sites and functions of PIM-1 protein. Hum Cell 2022; 35:427-440. [PMID: 35000143 DOI: 10.1007/s13577-021-00656-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The Proviral Integration of Molony murine leukemia virus (PIM)-1 protein contributes to the solid cancers and hematologic malignancies, cell growth, proliferation, differentiation, migration, and other life activities. Many studies have related these functions to its molecular structure, subcellular localization and expression level. However, recognition of specific active sites and their effects on the activity of this constitutively active kinase is still a challenge. Based on the close relationship between its molecular structure and functional activity, this review covers the specific residues involved in the binding of ATP and different substrates in its catalytic domain. This review then elaborates on the relevant changes in protein conformation and cell functions after PIM-1 binds to different substrates. Therefore, this intensive study can improve the understanding of PIM-1-regulated signaling pathways by facilitating the discovery of its potential phosphorylation substrates.
Collapse
Affiliation(s)
- Youyi Zhao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
7
|
Cairns J, Ingle JN, Kalari KR, Goetz MP, Weinshilboum RM, Gao H, Li H, Bari MG, Wang L. Anastrozole Regulates Fatty Acid Synthase in Breast Cancer. Mol Cancer Ther 2022; 21:206-216. [PMID: 34667110 PMCID: PMC8742770 DOI: 10.1158/1535-7163.mct-21-0509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Our previous matched case-control study of postmenopausal women with resected early-stage breast cancer revealed that only anastrozole, but not exemestane or letrozole, showed a significant association between the 6-month estrogen concentrations and risk of breast cancer. Anastrozole, but not exemestane or letrozole, is a ligand for estrogen receptor α. The mechanisms of endocrine resistance are heterogenous and with the new mechanism of anastrozole, we have found that treatment of anastrozole maintains fatty acid synthase (FASN) protein level by limiting the ubiquitin-mediated FASN degradation, leading to increased breast cancer cell growth. Mechanistically, anastrozole decreases the guided entry of tail-anchored proteins factor 4 (GET4) expression, resulting in decreased BCL2-associated athanogene cochaperone 6 (BAG6) complex activity, which in turn, prevents RNF126-mediated degradation of FASN. Increased FASN protein level can induce a negative feedback loop mediated by the MAPK pathway. High levels of FASN are associated with poor outcome only in patients with anastrozole-treated breast cancer, but not in patients treated with exemestane or letrozole. Repressing FASN causes regression of breast cancer cell growth. The anastrozole-FASN signaling pathway is eminently targetable in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N. Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R. Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P. Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mehrab Ghanat Bari
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA,Corresponding author: Liewei Wang, Gonda 19-460, 200 1 Street SW, Rochester MN USA 55905. Phone: +1 507 284-5264; Fax: +1 507-284-4455;
| |
Collapse
|
8
|
Indukuri R, Damdimopoulos A, Williams C. An Optimized ChIP-Seq Protocol to Determine Chromatin Binding of Estrogen Receptor Beta. Methods Mol Biol 2022; 2418:203-221. [PMID: 35119668 DOI: 10.1007/978-1-0716-1920-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Estrogen regulates transcription through two nuclear receptors, ERα and ERβ, in a tissue and cellular-dependent manner. Both the receptors bind estrogen and activate transcription through direct or indirect interactions with DNA. Revealing their interactions with the chromatin is key to understanding their transcriptional activities and their biological functions. Chromatin-immunoprecipitation followed by sequencing (ChIP-Seq) is a powerful technique to map protein-DNA interactions at precise genomic locations. The genome-wide binding of ERα has been extensively studied. Similar studies of ERβ, however, have been more difficult, in part due to a lack of endogenous expression in cell lines and lack of specific antibodies. In this chapter, we provide an optimized stepwise ChIP protocol for a well-validated ERβ antibody, which is applicable for ChIP-Seq analysis of cell lines with exogenous expression of ERβ.
Collapse
Affiliation(s)
- Rajitha Indukuri
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Core, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
9
|
Panja S, Rahem S, Chu CJ, Mitrofanova A. Big Data to Knowledge: Application of Machine Learning to Predictive Modeling of Therapeutic Response in Cancer. Curr Genomics 2021; 22:244-266. [PMID: 35273457 PMCID: PMC8822229 DOI: 10.2174/1389202921999201224110101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022] Open
Abstract
Background In recent years, the availability of high throughput technologies, establishment of large molecular patient data repositories, and advancement in computing power and storage have allowed elucidation of complex mechanisms implicated in therapeutic response in cancer patients. The breadth and depth of such data, alongside experimental noise and missing values, requires a sophisticated human-machine interaction that would allow effective learning from complex data and accurate forecasting of future outcomes, ideally embedded in the core of machine learning design. Objective In this review, we will discuss machine learning techniques utilized for modeling of treatment response in cancer, including Random Forests, support vector machines, neural networks, and linear and logistic regression. We will overview their mathematical foundations and discuss their limitations and alternative approaches in light of their application to therapeutic response modeling in cancer. Conclusion We hypothesize that the increase in the number of patient profiles and potential temporal monitoring of patient data will define even more complex techniques, such as deep learning and causal analysis, as central players in therapeutic response modeling.
Collapse
Affiliation(s)
| | | | | | - Antonina Mitrofanova
- Address correspondence to this author at the Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107, USA; E-mail:
| |
Collapse
|
10
|
Piyawajanusorn C, Nguyen LC, Ghislat G, Ballester PJ. A gentle introduction to understanding preclinical data for cancer pharmaco-omic modeling. Brief Bioinform 2021; 22:6343527. [PMID: 34368843 DOI: 10.1093/bib/bbab312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A central goal of precision oncology is to administer an optimal drug treatment to each cancer patient. A common preclinical approach to tackle this problem has been to characterize the tumors of patients at the molecular and drug response levels, and employ the resulting datasets for predictive in silico modeling (mostly using machine learning). Understanding how and why the different variants of these datasets are generated is an important component of this process. This review focuses on providing such introduction aimed at scientists with little previous exposure to this research area.
Collapse
Affiliation(s)
- Chayanit Piyawajanusorn
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Linh C Nguyen
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France.,Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ghita Ghislat
- U1104, CNRS UMR7280, Centre d'Immunologie de Marseille-Luminy, Inserm, Marseille, France
| | - Pedro J Ballester
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France
| |
Collapse
|
11
|
Chen MK, Zhou JH, Wang P, Ye YL, Liu Y, Zhou JW, Chen ZJ, Yang JK, Liao DY, Liang ZJ, Xie X, Zhou QZ, Xue KY, Guo WB, Xia M, Bao JM, Yang C, Duan HF, Wang HY, Huang ZP, Qin ZK, Liu CD. BMI1 activates P-glycoprotein via transcription repression of miR-3682-3p and enhances chemoresistance of bladder cancer cell. Aging (Albany NY) 2021; 13:18310-18330. [PMID: 34270461 PMCID: PMC8351696 DOI: 10.18632/aging.203277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Chemoresistance is the most significant reason for the failure of cancer treatment following radical cystectomy. The response rate to the first-line chemotherapy of cisplatin and gemcitabine does not exceed 50%. In our previous research, elevated BMI1 (B-cell specific Moloney murine leukemia virus integration region 1) expression in bladder cancer conferred poor survival and was associated with chemoresistance. Herein, via analysis of The Cancer Genome Atlas database and validation of clinical samples, BMI1 was elevated in patients with bladder cancer resistant to cisplatin and gemcitabine, which conferred tumor relapse and progression. Consistently, BMI1 was markedly increased in the established cisplatin- and gemcitabine-resistant T24 cells (T24/DDP&GEM). Functionally, BMI1 overexpression dramatically promoted drug efflux, enhanced viability and decreased apoptosis of bladder cancer cells upon treatment with cisplatin or gemcitabine, whereas BMI1 downregulation reversed this effect. Mechanically, upon interaction with p53, BMI1 was recruited on the promoter of miR-3682-3p gene concomitant with an increase in the mono-ubiquitination of histone H2A lysine 119, leading to transcription repression of miR-3682-3p gene followed by derepression of ABCB1 (ATP binding cassette subfamily B member 1) gene. Moreover, suppression of P-glycoprotein by miR-3682-3p mimics or its inhibitor XR-9576, could significantly reverse chemoresistance of T24/DDP&GEM cells. These results provided a novel insight into a portion of the mechanism underlying BMI1-mediated chemoresistance in bladder cancer.
Collapse
Affiliation(s)
- Ming-Kun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jun-Hao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Peng Wang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yun-Lin Ye
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yang Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jia-Wei Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zi-Jian Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jian-Kun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - De-Ying Liao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zhi-Jian Liang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xiao Xie
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qi-Zhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kang-Yi Xue
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Wen-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ji-Ming Bao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hai-Feng Duan
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hong-Yi Wang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zhi-Peng Huang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zi-Ke Qin
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Cun-Dong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
12
|
Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell 2021; 184:2487-2502.e13. [PMID: 33857424 DOI: 10.1016/j.cell.2021.03.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/29/2020] [Accepted: 03/12/2021] [Indexed: 01/27/2023]
Abstract
Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.
Collapse
|
13
|
Dirks RAM, Thomas PC, Wu H, Jones RC, Stunnenberg HG, Marks H. A plug and play microfluidic platform for standardized sensitive low-input chromatin immunoprecipitation. Genome Res 2021; 31:919-933. [PMID: 33707229 PMCID: PMC8092002 DOI: 10.1101/gr.260745.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Epigenetic profiling by chromatin immunoprecipitation followed by sequencing (ChIP-seq) has become a powerful tool for genome-wide identification of regulatory elements, for defining transcriptional regulatory networks, and for screening for biomarkers. However, the ChIP-seq protocol for low-input samples is laborious and time-consuming and suffers from experimental variation, resulting in poor reproducibility and low throughput. Although prototypic microfluidic ChIP-seq platforms have been developed, these are poorly transferable as they require sophisticated custom-made equipment and in-depth microfluidic and ChIP expertise, while lacking parallelization. To enable standardized, automated ChIP-seq profiling of low-input samples, we constructed microfluidic PDMS-based plates capable of performing 24 sensitive ChIP reactions within 30 min of hands-on time and 4.5 h of machine-running time. These disposable plates can be conveniently loaded into a widely available controller for pneumatics and thermocycling. In light of the plug and play (PnP) ChIP plates and workflow, we named our procedure PnP-ChIP-seq. We show high-quality ChIP-seq on hundreds to a few thousand of cells for all six post-translational histone modifications that are included in the International Human Epigenome Consortium set of reference epigenomes. PnP-ChIP-seq robustly detects epigenetic differences on promoters and enhancers between naive and more primed mouse embryonic stem cells (mESCs). Furthermore, we used our platform to generate epigenetic profiles of rare subpopulations of mESCs that resemble the two-cell stage of embryonic development. PnP-ChIP-seq allows nonexpert laboratories worldwide to conveniently run robust, standardized ChIP-seq, whereas its high throughput, consistency, and sensitivity pave the way toward large-scale profiling of precious sample types such as rare subpopulations of cells or biopsies.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), 6525GA Nijmegen, the Netherlands
| | - Peter C Thomas
- Fluidigm Corporation, South San Francisco, California 94080, USA
| | - Haoyu Wu
- Department of Molecular Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), 6525GA Nijmegen, the Netherlands
| | - Robert C Jones
- Fluidigm Corporation, South San Francisco, California 94080, USA
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), 6525GA Nijmegen, the Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), 6525GA Nijmegen, the Netherlands
| |
Collapse
|
14
|
Varešlija D, Ward E, Purcell SP, Cosgrove NS, Cocchiglia S, O'Halloran PJ, Charmsaz S, Bane FT, Brett FM, Farrell M, Cryan J, Beausang A, Hudson L, Turnbul AK, Dixon JM, Hill ADK, Priedigkeit N, Oesterreich S, Lee AV, Sims AH, Redmond AM, Carroll JS, Young LS. Comparative analysis of the AIB1 interactome in breast cancer reveals MTA2 as a repressive partner which silences E-Cadherin to promote EMT and associates with a pro-metastatic phenotype. Oncogene 2021; 40:1318-1331. [PMID: 33420368 PMCID: PMC7892341 DOI: 10.1038/s41388-020-01606-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Steroid regulated cancer cells use nuclear receptors and associated regulatory proteins to orchestrate transcriptional networks to drive disease progression. In primary breast cancer, the coactivator AIB1 promotes estrogen receptor (ER) transcriptional activity to enhance cell proliferation. The function of the coactivator in ER+ metastasis however is not established. Here we describe AIB1 as a survival factor, regulator of pro-metastatic transcriptional pathways and a promising actionable target. Genomic alterations and functional expression of AIB1 associated with reduced disease-free survival in patients and enhanced metastatic capacity in novel CDX and PDX ex-vivo models of ER+ metastatic disease. Comparative analysis of the AIB1 interactome with complementary RNAseq characterized AIB1 as a transcriptional repressor. Specifically, we report that AIB1 interacts with MTA2 to form a repressive complex, inhibiting CDH1 (encoding E-cadherin) to promote EMT and drive progression. We further report that pharmacological and genetic inhibition of AIB1 demonstrates significant anti-proliferative activity in patient-derived models establishing AIB1 as a viable strategy to target endocrine resistant metastasis. This work defines a novel role for AIB1 in the regulation of EMT through transcriptional repression in advanced cancer cells with a considerable implication for prognosis and therapeutic interventions.
Collapse
Affiliation(s)
- Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Elspeth Ward
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siobhan P Purcell
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nicola S Cosgrove
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinéad Cocchiglia
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Sara Charmsaz
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fiona T Bane
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Francesca M Brett
- Department of Neuropathology, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Michael Farrell
- Department of Neuropathology, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Lance Hudson
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arran K Turnbul
- Breast Cancer Now Research Laboratories, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Breast Cancer Now Research Laboratories, Edinburgh, EH4 2XU, UK
| | - Arnold D K Hill
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nolan Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew H Sims
- Applied Bioinformatics of Cancer Group, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Aisling M Redmond
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
15
|
Li L, Ugalde AP, Scheele CLGJ, Dieter SM, Nagel R, Ma J, Pataskar A, Korkmaz G, Elkon R, Chien MP, You L, Su PR, Bleijerveld OB, Altelaar M, Momchev L, Manber Z, Han R, van Breugel PC, Lopes R, ten Dijke P, van Rheenen J, Agami R. A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis. Genome Biol 2021; 22:54. [PMID: 33514403 PMCID: PMC7845134 DOI: 10.1186/s13059-021-02272-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Frequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions. RESULTS We first apply genome-wide ChIP profiling of YAP to systematically identify enhancers that are bound by YAP/TEAD4. Next, we implement a genetic approach to uncover functions of YAP/TEAD4-associated enhancers, demonstrate its robustness, and use it to reveal a network of enhancers required for YAP-mediated proliferation. We focus on EnhancerTRAM2, as its target gene TRAM2 shows the strongest expression-correlation with YAP activity in nearly all tumor types. Interestingly, TRAM2 phenocopies the YAP-induced cell proliferation, migration, and invasion phenotypes and correlates with poor patient survival. Mechanistically, we identify FSTL-1 as a major direct client of TRAM2 that is involved in these phenotypes. Thus, TRAM2 is a key novel mediator of YAP-induced oncogenic proliferation and cellular invasiveness. CONCLUSIONS YAP is a transcription co-factor that binds to thousands of enhancer loci and stimulates tumor aggressiveness. Using unbiased functional approaches, we dissect YAP enhancer network and characterize TRAM2 as a novel mediator of cellular proliferation, migration, and invasion. Our findings elucidate how YAP induces cancer aggressiveness and may assist diagnosis of cancer metastasis.
Collapse
Affiliation(s)
- Li Li
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Alejandro P. Ugalde
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Colinda L. G. J. Scheele
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sebastian M. Dieter
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jin Ma
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Gozde Korkmaz
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Li You
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pin-Rui Su
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Onno B. Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvt Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Lyubomir Momchev
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Zohar Manber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruiqi Han
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Pieter C. van Breugel
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Rui Lopes
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Peter ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Estrogen Receptor on the move: Cistromic plasticity and its implications in breast cancer. Mol Aspects Med 2020; 78:100939. [PMID: 33358533 DOI: 10.1016/j.mam.2020.100939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Estrogen Receptor (ERα) is a hormone-driven transcription factor, critically involved in driving tumor cell proliferation in the vast majority of breast cancers (BCas). ERα binds the genome at cis-regulatory elements, dictating the expression of a large spectrum of responsive genes in 3D genomic space. While initial reports described a rather static ERα chromatin binding repertoire, we now know that ERα DNA interactions are highly versatile, altered in breast tumor development and progression, and deviate between tumors from patients with differential outcome. Multiple cellular signaling cascades are known to impinge on ERα genomic function, changing its cistrome to retarget the receptor to other regions of the genome and reprogram its impact on breast cell biology. This review describes the current state-of-the-art on which factors manipulate the ERα cistrome and how this alters the response to both endogenous and exogenous hormonal stimuli, ultimately impacting BCa cell progression and response to commonly used therapeutic interventions. Novel insights in ERα cistrome dynamics may pave the way for better patient diagnostics and the development of novel therapeutic interventions, ultimately improving cancer care and patient outcome.
Collapse
|
17
|
Cioni B, Zaalberg A, van Beijnum JR, Melis MHM, van Burgsteden J, Muraro MJ, Hooijberg E, Peters D, Hofland I, Lubeck Y, de Jong J, Sanders J, Vivié J, van der Poel HG, de Boer JP, Griffioen AW, Zwart W, Bergman AM. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat Commun 2020; 11:4498. [PMID: 32908142 PMCID: PMC7481219 DOI: 10.1038/s41467-020-18313-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The androgen receptor (AR) is the master regulator of prostate cancer (PCa) development, and inhibition of AR signalling is the most effective PCa treatment. AR is expressed in PCa cells and also in the PCa-associated stroma, including infiltrating macrophages. Macrophages have a decisive function in PCa initiation and progression, but the role of AR in macrophages remains largely unexplored. Here, we show that AR signalling in the macrophage-like THP-1 cell line supports PCa cell line migration and invasion in culture via increased Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) signalling and expression of its downstream cytokines. Moreover, AR signalling in THP-1 and monocyte-derived macrophages upregulates IL-10 and markers of tissue residency. In conclusion, our data suggest that AR signalling in macrophages may support PCa invasiveness, and blocking this process may constitute one mechanism of anti-androgen therapy. Anti-androgen therapy inhibits prostate cancer (PC) progression, and is thought to act directly on cancer cells. Here the authors show that androgen receptor is expressed on normal and PC-associated macrophages, and its stimulation alters macrophage secretome to promote migration of cultured PC cell lines.
Collapse
Affiliation(s)
- Bianca Cioni
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Anniek Zaalberg
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Judy R van Beijnum
- Angiogenesis laboratory, Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Monique H M Melis
- Molecular Genetics, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | | - Mauro J Muraro
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Erik Hooijberg
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Yoni Lubeck
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Joyce Sanders
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Judith Vivié
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Henk G van der Poel
- Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis laboratory, Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands. .,, Oncode Institute, The Netherlands.
| | - Andries M Bergman
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Paço A, de Bessa Garcia SA, Freitas R. Methylation in HOX Clusters and Its Applications in Cancer Therapy. Cells 2020; 9:cells9071613. [PMID: 32635388 PMCID: PMC7408435 DOI: 10.3390/cells9071613] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
HOX genes are commonly known for their role in embryonic development, defining the positional identity of most structures along the anterior–posterior axis. In postembryonic life, HOX gene aberrant expression can affect several processes involved in tumorigenesis such as proliferation, apoptosis, migration and invasion. Epigenetic modifications are implicated in gene expression deregulation, and it is accepted that methylation events affecting HOX gene expression play crucial roles in tumorigenesis. In fact, specific methylation profiles in the HOX gene sequence or in HOX-associated histones are recognized as potential biomarkers in several cancers, helping in the prediction of disease outcomes and adding information for decisions regarding the patient’s treatment. The methylation of some HOX genes can be associated with chemotherapy resistance, and its identification may suggest the use of other treatment options. The use of epigenetic drugs affecting generalized or specific DNA methylation profiles, an approach that now deserves much attention, seems likely to be a promising weapon in cancer therapy in the near future. In this review, we summarize these topics, focusing particularly on how the regulation of epigenetic processes may be used in cancer therapy.
Collapse
Affiliation(s)
- Ana Paço
- Centre Bio: Bioindustries, Biorefineries and Bioproducts, BLC3 Association—Technology and Innovation Campus, 3405-169 Oliveira do Hospital, Portugal;
| | | | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
19
|
Flach KD, Periyasamy M, Jadhav A, Dorjsuren D, Siefert JC, Hickey TE, Opdam M, Patel H, Canisius S, Wilson DM, Donaldson Collier M, Prekovic S, Nieuwland M, Kluin RJC, Zakharov AV, Wesseling J, Wessels LFA, Linn SC, Tilley WD, Simeonov A, Ali S, Zwart W. Endonuclease FEN1 Coregulates ERα Activity and Provides a Novel Drug Interface in Tamoxifen-Resistant Breast Cancer. Cancer Res 2020; 80:1914-1926. [PMID: 32193286 DOI: 10.1158/0008-5472.can-19-2207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
Abstract
Estrogen receptor α (ERα) is a key transcriptional regulator in the majority of breast cancers. ERα-positive patients are frequently treated with tamoxifen, but resistance is common. In this study, we refined a previously identified 111-gene outcome prediction-classifier, revealing FEN1 as the strongest determining factor in ERα-positive patient prognostication. FEN1 levels were predictive of outcome in tamoxifen-treated patients, and FEN1 played a causal role in ERα-driven cell growth. FEN1 impacted the transcriptional activity of ERα by facilitating coactivator recruitment to the ERα transcriptional complex. FEN1 blockade induced proteasome-mediated degradation of activated ERα, resulting in loss of ERα-driven gene expression and eradicated tumor cell proliferation. Finally, a high-throughput 465,195 compound screen identified a novel FEN1 inhibitor, which effectively blocked ERα function and inhibited proliferation of tamoxifen-resistant cell lines as well as ex vivo-cultured ERα-positive breast tumors. Collectively, these results provide therapeutic proof of principle for FEN1 blockade in tamoxifen-resistant breast cancer. SIGNIFICANCE: These findings show that pharmacologic inhibition of FEN1, which is predictive of outcome in tamoxifen-treated patients, effectively blocks ERα function and inhibits proliferation of tamoxifen-resistant tumor cells.
Collapse
Affiliation(s)
- Koen D Flach
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, the Netherlands.,Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Ajit Jadhav
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Dorjbal Dorjsuren
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Joseph C Siefert
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia
| | - Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hetal Patel
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sander Canisius
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David M Wilson
- Laboratory of Molecular Gerontology, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland
| | - Maria Donaldson Collier
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Stefan Prekovic
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, the Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Oncode Institute, the Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
20
|
Yan Z, Wang Q, Sun X, Ban B, Lu Z, Dang Y, Xie L, Zhang L, Li Y, Zhu W, Guo X. OSbrca: A Web Server for Breast Cancer Prognostic Biomarker Investigation With Massive Data From Tens of Cohorts. Front Oncol 2019; 9:1349. [PMID: 31921624 PMCID: PMC6932997 DOI: 10.3389/fonc.2019.01349] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Potential prognostic mRNA biomarkers are exploited to assist in the clinical management and treatment of breast cancer, which is the first life-threatening tumor in women worldwide. However, it is technically challenging for untrained researchers to process high dimensional profiling data to screen and validate the potential prognostic values of genes of interests in multiple cohorts. Our aim is to develop an easy-to-use web server to facilitate the screening, developing, and evaluating of prognostic biomarkers in breast cancers. Herein, we collected more than 7,400 cases of breast cancer with gene expression profiles and clinical follow-up information from The Cancer Genome Atlas and Gene Expression Omnibus data, and built an Online consensus Survival analysis web server for Breast Cancers, abbreviated OSbrca, to generate the Kaplan–Meier survival plot with a hazard ratio and log rank P-value for given genes in an interactive way. To examine the performance of OSbrca, the prognostic potency of 128 previously published biomarkers of breast cancer was reassessed in OSbrca. In conclusion, it is highly valuable for biologists and clinicians to perform the preliminary assessment and validation of novel or putative prognostic biomarkers for breast cancers. OSbrca could be accessed at http://bioinfo.henu.edu.cn/BRCA/BRCAList.jsp.
Collapse
Affiliation(s)
- Zhongyi Yan
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Qiang Wang
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Xiaoxiao Sun
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Bingbing Ban
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Zhendong Lu
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Yifang Dang
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Longxiang Xie
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Lu Zhang
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Yongqiang Li
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA, United States
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| |
Collapse
|
21
|
Korkmaz G, Manber Z, Lopes R, Prekovic S, Schuurman K, Kim Y, Teunissen H, Flach K, Wit ED, Galli GG, Zwart W, Elkon R, Agami R. A CRISPR-Cas9 screen identifies essential CTCF anchor sites for estrogen receptor-driven breast cancer cell proliferation. Nucleic Acids Res 2019; 47:9557-9572. [PMID: 31372638 PMCID: PMC6765117 DOI: 10.1093/nar/gkz675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023] Open
Abstract
Estrogen receptor α (ERα) is an enhancer activating transcription factor, a key driver of breast cancer and a main target for cancer therapy. ERα-mediated gene regulation requires proper chromatin-conformation to facilitate interactions between ERα-bound enhancers and their target promoters. A major determinant of chromatin structure is the CCCTC-binding factor (CTCF), that dimerizes and together with cohesin stabilizes chromatin loops and forms the boundaries of topologically associated domains. However, whether CTCF-binding elements (CBEs) are essential for ERα-driven cell proliferation is unknown. To address this question in a global manner, we implemented a CRISPR-based functional genetic screen targeting CBEs located in the vicinity of ERα-bound enhancers. We identified four functional CBEs and demonstrated the role of one of them in inducing chromatin conformation changes in favor of activation of PREX1, a key ERα target gene in breast cancer. Indeed, high PREX1 expression is a bona-fide marker of ERα-dependency in cell lines, and is associated with good outcome after anti-hormonal treatment. Altogether, our data show that distinct CTCF-mediated chromatin structures are required for ERα- driven breast cancer cell proliferation.
Collapse
Affiliation(s)
- Gozde Korkmaz
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Zohar Manber
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rui Lopes
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Yongsoo Kim
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Koen Flach
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Giorgio G Galli
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
| | - Ran Elkon
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Erasmus MC, Rotterdam University, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
22
|
Cornelissen LM, Henneman L, Drenth AP, Schut E, de Bruijn R, Klarenbeek S, Zwart W, Jonkers J. Exogenous ERα Expression in the Mammary Epithelium Decreases Over Time and Does Not Contribute to p53-Deficient Mammary Tumor Formation in Mice. J Mammary Gland Biol Neoplasia 2019; 24:305-321. [PMID: 31729597 DOI: 10.1007/s10911-019-09437-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 12/09/2022] Open
Abstract
Approximately 75% of all breast cancers express the nuclear hormone receptor estrogen receptor α (ERα). However, the majority of mammary tumors from genetically engineered mouse models (GEMMs) are ERα-negative. To model ERα-positive breast cancer in mice, we exogenously introduced expression of mouse and human ERα in an existing GEMM of p53-deficient breast cancer. After initial ERα expression during mammary gland development, expression was reduced or lost in adult glands and p53-deficient mammary tumors. Chromatin immunoprecipitation (ChIP)-sequencing analysis of primary mouse mammary epithelial cells (MMECs) derived from these models, in which expression of the ERα constructs was induced in vitro, confirmed interaction of ERα with the DNA. In human breast and endometrial cancer, and also in healthy breast tissue, DNA binding of ERα is facilitated by the pioneer factor FOXA1. Surprisingly, the ERα binding sites identified in primary MMECs, but also in mouse mammary gland and uterus, showed an high enrichment of ERE motifs, but were devoid of Forkhead motifs. Furthermore, exogenous introduction of FOXA1 and GATA3 in ERα-expressing MMECs was not sufficient to promote ERα-responsiveness of these cells. Together, this suggests that species-specific differences in pioneer factor usage between mouse and human are dictated by the DNA sequence, resulting in ERα-dependencies in mice that are not FOXA1 driven. These species-specific differences in ERα-biology may limit the utility of mice for in vivo modeling of ERα-positive breast cancer.
Collapse
Affiliation(s)
- Lisette M Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Mouse Clinic for Cancer and Aging - Transgenic facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenisis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Potential of epigenetic events in human thyroid cancer. Cancer Genet 2019; 239:13-21. [PMID: 31472323 DOI: 10.1016/j.cancergen.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Thyroid cancer remains the highest prevailing endocrine malignancy, and its incidence rate has progressively increased in the previous years. Above 95% of thyroid tumor are follicular cells types of carcinoma in which are considered invasive type of tumor. The pathogenesis and molecular mechanism of thyroid tumors are yet remains elucidated, in spite of activating RET, RAS and BRAF carcinogenesis have been well introduced. Nemours molecular alterations have been defined and have revealed promise for their diagnostic, prognostic and therapeutic capacity but still need further confirmation. Among different types of mechanisms, the current article reviews the importance of epigenetic modifications in thyroid cancer. Increasing data from previous reports demonstrate that acquired epigenetic abnormalities together with genetic changes plays an important role in alteration of gene expression patterns. Aberrant DNA methylation has been well known in the CpG regions and profile of microRNAs (mi-RNAs) expression also involved in cancer development. In addition, the gene expression through epigenetic control contribution to thyroid cancer is analyzed and it is semi considered in the clinic. However the epigenetic of the thyroid cancer is yet remains in its early stages, and it carries encouraging potential thyroid cancer detections in its early stages, assessment of prognosis and targeted cancer treatment.
Collapse
|
24
|
Coons LA, Burkholder AB, Hewitt SC, McDonnell DP, Korach KS. Decoding the Inversion Symmetry Underlying Transcription Factor DNA-Binding Specificity and Functionality in the Genome. iScience 2019; 15:552-591. [PMID: 31152742 PMCID: PMC6542189 DOI: 10.1016/j.isci.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding why a transcription factor (TF) binds to a specific DNA element in the genome and whether that binding event affects transcriptional output remains a great challenge. In this study, we demonstrate that TF binding in the genome follows inversion symmetry (IS). In addition, the specific DNA elements where TFs bind in the genome are determined by internal IS within the DNA element. These DNA-binding rules quantitatively define how TFs select the appropriate regulatory targets from a large number of similar DNA elements in the genome to elicit specific transcriptional and cellular responses. Importantly, we also demonstrate that these DNA-binding rules extend to DNA elements that do not support transcriptional activity. That is, the DNA-binding rules are obeyed, but the retention time of the TF at these non-functional DNA elements is not long enough to initiate and/or maintain transcription. We further demonstrate that IS is universal within the genome. Thus, IS is the DNA code that TFs use to interact with the genome and dictates (in conjunction with known DNA sequence constraints) which of those interactions are functionally active.
Collapse
Affiliation(s)
- Laurel A Coons
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| |
Collapse
|
25
|
Chi W, Huang S, Xiu B, Zhang Q, Shao Z, Wu J, Chi Y. High expression of Linc00959 predicts poor prognosis in breast cancer. Cancer Cell Int 2019; 19:39. [PMID: 30828265 PMCID: PMC6381736 DOI: 10.1186/s12935-019-0748-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Accumulating studies have focused on the oncogenic roles of the newly identified lncRNAs in human cancers. The aim of this study was to examine the expression pattern of Linc00959 in BC and to evaluate its biological role and clinical significance in prediction of prognosis. Methods Expression of Linc00959 was detected in 290 BC tissues by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). We analyzed the relationship between Linc00959 expression and clinic pathological features of BC patients. The correlation was calculated by SPSS software. Results Our results revealed that Linc00959 expression was correlated with ER status (p = 0.005), PR status (p = 0.036), Ki67 (p = 0.025) and HER2 status (p = 0.009). The Kaplan–Meier survival curves indicated that the overall survival (OS) (p = 0.022) and relapse-free survival (RFS) (p = 0.002) were significantly poor in high Linc00959 expression BC patients (p = 0.023). Furthermore, the survival analysis by Cox regression showed that Linc00959 served as an independent prognostic marker in breast cancer (p = 0.004). Conclusion Our studies indicate that Linc00959 is significantly associated with poor prognosis and may represent a new marker of prognosis in breast cancer. Electronic supplementary material The online version of this article (10.1186/s12935-019-0748-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiru Chi
- 1Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng Huang
- 1Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,The 2nd Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Bingqiu Xiu
- 1Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Zhang
- 1Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiming Shao
- 1Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiong Wu
- 1Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Shanghai, China
| | - Yayun Chi
- 1Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Singh AA, Schuurman K, Nevedomskaya E, Stelloo S, Linder S, Droog M, Kim Y, Sanders J, van der Poel H, Bergman AM, Wessels LF, Zwart W. Optimized ChIP-seq method facilitates transcription factor profiling in human tumors. Life Sci Alliance 2018; 2:e201800115. [PMID: 30620009 PMCID: PMC6311467 DOI: 10.26508/lsa.201800115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023] Open
Abstract
This study presents an optimized ChIP-seq protocol to enhance transcription factor profiling in human tumours, enabling the analysis of highly challenging samples, including core needle biopsies. Chromatin immunoprecipitation (ChIP)-seq analyses of transcription factors in clinical specimens are challenging due to the technical limitations and low quantities of starting material, often resulting in low enrichments and poor signal-to-noise ratio. Here, we present an optimized protocol for transcription factor ChIP-seq analyses in human tissue, yielding an ∼100% success rate for all transcription factors analyzed. As proof of concept and to illustrate general applicability of the approach, human tissue from the breast, prostate, and endometrial cancers were analyzed. In addition to standard formaldehyde fixation, disuccinimidyl glutarate was included in the procedure, greatly increasing data quality. To illustrate the sensitivity of the optimized protocol, we provide high-quality ChIP-seq data for three independent factors (AR, FOXA1, and H3K27ac) from a single core needle prostate cancer biopsy specimen. In summary, double-cross-linking strongly improved transcription factor ChIP-seq quality on human tumor samples, further facilitating and enhancing translational research on limited amounts of tissue.
Collapse
Affiliation(s)
- Abhishek A Singh
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karianne Schuurman
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ekaterina Nevedomskaya
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Suzan Stelloo
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Simon Linder
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marjolein Droog
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yongsoo Kim
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk van der Poel
- Department of Urology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk Fa Wessels
- Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Wilbert Zwart
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
27
|
Yang S, Lee JY, Hur H, Oh JH, Kim MH. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells. BMB Rep 2018; 51:450-455. [PMID: 29804556 PMCID: PMC6177504 DOI: 10.5483/bmbrep.2018.51.9.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.
Collapse
Affiliation(s)
- Seoyeon Yang
- Department of Anatomy, Embryology Laboratory, and 2Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho Hur
- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang 10444, Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
28
|
Integrative epigenetic taxonomy of primary prostate cancer. Nat Commun 2018; 9:4900. [PMID: 30464211 PMCID: PMC6249266 DOI: 10.1038/s41467-018-07270-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
The Androgen Receptor (AR) is the key-driving transcription factor in prostate cancer, tightly controlled by epigenetic regulation. To date, most epigenetic profiling has been performed in cell lines or limited tissue samples. Here, to comprehensively study the epigenetic landscape, we perform RNA-seq with ChIP-seq for AR and histone modification marks (H3K27ac, H3K4me3, H3K27me3) in 100 primary prostate carcinomas. Integrative molecular subtyping of the five data streams revealed three major subtypes of which two were clearly TMPRSS2-ERG dictated. Importantly, we identify a third subtype with low chromatin binding and activity of AR, but with high activity of FGF and WNT signaling. While positive for neuroendocrine-hallmark genes, these tumors were copy number-neutral with low mutational burden, significantly depleted for genes characteristic of poor-outcome associated luminal B-subtype. We present a unique resource on transcriptional and epigenetic control in prostate cancer, revealing tight control of gene regulation differentially dictated by AR over three subtypes. The Androgen Receptor (AR) is the main driver of prostate cancer and functions in conjunction with chromatin modifications. Here, the authors comprehensively profile 100 primary prostate carcinomas by sequencing RNA transcripts in combination with ChIP-sequencing for AR and the active histone marks H3K27ac, H3K4me3 and repressive mark H3K27me3.
Collapse
|
29
|
Bleach R, McIlroy M. The Divergent Function of Androgen Receptor in Breast Cancer; Analysis of Steroid Mediators and Tumor Intracrinology. Front Endocrinol (Lausanne) 2018; 9:594. [PMID: 30416486 PMCID: PMC6213369 DOI: 10.3389/fendo.2018.00594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Androgen receptor (AR) is the most widely expressed steroid receptor protein in normal breast tissue and is detectable in approximately 90% of primary breast cancers and 75% of metastatic lesions. However, the role of AR in breast cancer development and progression is mired in controversy with evidence suggesting it can either inhibit or promote breast tumorigenesis. Studies have shown it to antagonize estrogen receptor alpha (ERα) DNA binding, thereby preventing pro-proliferative gene transcription; whilst others have demonstrated AR to take on the mantle of a pseudo ERα particularly in the setting of triple negative breast cancer. Evidence for a potentiating role of AR in the development of endocrine resistant breast cancer has also been mounting with reports associating high AR expression with poor response to endocrine treatment. The resurgence of interest into the function of AR in breast cancer has resulted in various emergent clinical trials evaluating anti-AR therapy and selective androgen receptor modulators in the treatment of advanced breast cancer. Trials have reported varied response rates dependent upon subtype with overall clinical benefit rates of ~19-29% for anti-androgen monotherapy, suggesting that with enhanced patient stratification AR could prove efficacious as a breast cancer therapy. Androgens and AR have been reported to facilitate tumor stemness in some cancers; a process which may be mediated through genomic or non-genomic actions of the AR, with the latter mechanism being relatively unexplored in breast cancer. Steroidogenic ligands of the AR are produced in females by the gonads and as sex-steroid precursors secreted from the adrenal glands. These androgens provide an abundant reservoir from which all estrogens are subsequently synthesized and their levels are undiminished in the event of standard hormonal therapeutic intervention in breast cancer. Steroid levels are known to be altered by lifestyle factors such as diet and exercise; understanding their potential role in dictating the function of AR in breast cancer development could therefore have wide-ranging effects in prevention and treatment of this disease. This review will outline the endogenous biochemical drivers of both genomic and non-genomic AR activation and how these may be modulated by current hormonal therapies.
Collapse
Affiliation(s)
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
30
|
Prevention of Breast Cancer by Natural Phytochemicals: Focusing on Molecular Targets and Combinational Strategy. Mol Nutr Food Res 2018; 62:e1800392. [DOI: 10.1002/mnfr.201800392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/12/2018] [Indexed: 12/11/2022]
|
31
|
Guo J, Jin D, Wu Y, Yang L, Du J, Gong K, Chen W, Dai J, Miao S, Xi S. The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells. EBioMedicine 2018; 35:204-221. [PMID: 30146342 PMCID: PMC6419862 DOI: 10.1016/j.ebiom.2018.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance has become the leading cause
of mortality in non-small cell lung cancer (NSCLC). miRNA dysregulation
significantly contributes to tumor progression. In this study, we found that
miR-495 was significantly downregulated in lung cancer tissue specimens. This
study aimed to elucidate the functions, direct target genes, and molecular
mechanisms of miR-495 in lung cancer. miR-495 downregulated its substrate UBE2C
through direct interaction with UBE2C 3′- untranslated region. UBE2C is a
proto-oncogene activated in lung cancer; however, its role in chemotherapeutic
resistance is unclear. Herein, UBE2C expression levels were higher in
DDP-resistant NSCLC cells; this was associated with the proliferation, invasion,
and DDP resistance in induced cisplatin-resistant NSCLC cells. Furthermore,
epithelial–mesenchymal transitions (EMT) contributed to DDP resistance.
Moreover, UBE2C knockdown downregulated vimentin. In contrast, E-cadherin was
upregulated. Importantly, miR-495 and UBE2C were associated with cisplatin
resistance. We attempted to evaluate their effects on cell proliferation and
cisplatin resistance. We also performed EMT, cell migration, and invasion assays
in DDP-resistant NSCLC cells overexpressing miR-495 and under-expressing UBE2C.
Furthermore, in silico assays coupled with western blotting and luciferase
assays revealed that UBE2C directly binds to the 5′-UTR of the drug-resistance
genes ABCG2 and ERCC1.
Furthermore, miR-495 downregulated ABCG2 and
ERCC1 via regulation of UBE2C. Together, the present
results indicate that the miR495-UBE2C-ABCG2/ERCC1 axis reverses DDP resistance
via downregulation of anti-drug genes and reducing EMT in DDP-resistant NSCLC
cells.
Collapse
Affiliation(s)
- Jiwei Guo
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China.
| | - Dan Jin
- Department of Pain Management, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Yan Wu
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Lijuan Yang
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Jing Du
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Kaikai Gong
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Weiwei Chen
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Juanjuan Dai
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Shuang Miao
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Sichuan Xi
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| |
Collapse
|
32
|
Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, Wessels LFA, Zwart W, Bergman AM. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol 2018; 12:1308-1323. [PMID: 29808619 PMCID: PMC6068356 DOI: 10.1002/1878-0261.12327] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts are abundantly present in the prostate tumor microenvironment (TME), including cancer‐associated fibroblasts (CAFs) which play a key role in cancer development. Androgen receptor (AR) signaling is the main driver of prostate cancer (PCa) progression, and stromal cells in the TME also express AR. High‐grade tumor and poor clinical outcome are associated with low AR expression in the TME, which suggests a protective role of AR signaling in the stroma against PCa development. However, the mechanism of this relation is not clear. In this study, we isolated AR‐expressing CAF‐like cells. Testosterone (R1881) exposure did not affect CAF‐like cell morphology, proliferation, or motility. PCa cell growth was not affected by culturing in medium from R1881‐exposed CAF‐like cells; however, migration of PCa cells was inhibited. AR chromatin immune precipitation sequencing (ChIP‐seq) was performed and motif search suggested that AR in CAF‐like cells bound the chromatin through AP‐1‐elements upon R1881 exposure, inducing enhancer‐mediated AR chromatin interactions. The vast majority of chromatin binding sites in CAF‐like cells were unique and not shared with AR sites observed in PCa cell lines or tumors. AR signaling in CAF‐like cells decreased expression of multiple cytokines; most notably CCL2 and CXCL8 and both cytokines increased migration of PCa cells. These results suggest direct paracrine regulation of PCa cell migration by CAFs through AR signaling.
Collapse
Affiliation(s)
- Bianca Cioni
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| | - Monique H M Melis
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Johan van Burgsteden
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Suzan Stelloo
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Emma Hodel
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Daniele Spinozzi
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Henk van der Poel
- Division of Urology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| |
Collapse
|
33
|
Palaniappan M, Edwards D, Creighton CJ, Medina D, Conneely OM. Reprogramming of the estrogen responsive transcriptome contributes to tamoxifen-dependent protection against tumorigenesis in the p53 null mammary epithelial cells. PLoS One 2018; 13:e0194913. [PMID: 29590203 PMCID: PMC5874056 DOI: 10.1371/journal.pone.0194913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
The tumor suppressor gene p53 is frequently mutated in human breast cancer and is a marker for poor prognosis and resistance to chemotherapy. Transplantation of p53 null mouse mammary epithelium into syngeneic wild-type mice leads to normal mammary gland development followed by spontaneous mammary tumors that recapitulate many of the phenotypic, molecular and genetic features of human breast cancer. Transient exposure of p53 null mice to the anti-estrogen, tamoxifen leads to sustained and robust protection against tumor development. However the mechanism underlying this anti-tumor activity remains poorly understood. Here we demonstrate that transient exposure to tamoxifen leads to a reduction in mammary ductal side-branching and epithelial cell proliferation after tamoxifen withdrawal. Global gene expression analysis showed that transient tamoxifen exposure leads to persistent changes in the expression of a subset of estrogen regulated gene signatures in mammary epithelial cells (MECs). Among these was the protein tyrosine phosphatase, non-receptor type 5 (Ptpn5). We show that Ptpn5 is a novel tamoxifen regulated target gene which is upregulated in MECs after transient tamoxifen exposure and displays tumor suppressor activity in human breast cancer cells. Further, PTPN5 expression is strongly associated with good clinical outcome in tamoxifen treated human breast cancer patients suggesting that PTPN5 may represent a novel biomarker of tamoxifen response in human breast cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/prevention & control
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Tumor Suppressor
- Humans
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/prevention & control
- Mice, Inbred BALB C
- Mice, Nude
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Receptors, Estrogen/metabolism
- Tamoxifen/pharmacology
- Transcriptome/drug effects
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - David Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Chad J. Creighton
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Daniel Medina
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Orla M. Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
34
|
Miano V, Ferrero G, Rosti V, Manitta E, Elhasnaoui J, Basile G, De Bortoli M. Luminal lncRNAs Regulation by ERα-Controlled Enhancers in a Ligand-Independent Manner in Breast Cancer Cells. Int J Mol Sci 2018; 19:E593. [PMID: 29462945 PMCID: PMC5855815 DOI: 10.3390/ijms19020593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor-α (ERα) is a ligand-inducible protein which mediates estrogenic hormones signaling and defines the luminal BC phenotype. Recently, we demonstrated that even in absence of ligands ERα (apoERα) binds chromatin sites where it regulates transcription of several protein-coding and lncRNA genes. Noteworthy, apoERα-regulated lncRNAs marginally overlap estrogen-induced transcripts, thus representing a new signature of luminal BC genes. By the analysis of H3K27ac enrichment in hormone-deprived MCF-7 cells, we defined a set of Super Enhancers (SEs) occupied by apoERα, including one mapped in proximity of the DSCAM-AS1 lncRNA gene. This represents a paradigm of apoERα activity since its expression is largely unaffected by estrogenic treatment, despite the fact that E2 increases ERα binding on DSCAM-AS1 promoter. We validated the enrichment of apoERα, p300, GATA3, FoxM1 and CTCF at both DSCAM-AS1 TSS and at its associated SE by ChIP-qPCR. Furthermore, by analyzing MCF-7 ChIA-PET data and by 3C assays, we confirmed long range chromatin interaction between the SE and the DSCAM-AS1 TSS. Interestingly, CTCF and p300 binding showed an enrichment in hormone-depleted medium and in the presence of ERα, elucidating the dynamics of the estrogen-independent regulation of DSCAM-AS1 expression. The analysis of this lncRNA provides a paradigm of transcriptional regulation of a luminal specific apoERα regulated lncRNA.
Collapse
Affiliation(s)
- Valentina Miano
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Giulio Ferrero
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Computer Science, University of Turin, 10149 Turin, Italy.
| | - Valentina Rosti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Eleonora Manitta
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Jamal Elhasnaoui
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Giulia Basile
- Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| |
Collapse
|
35
|
Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nat Commun 2018; 9:482. [PMID: 29396493 PMCID: PMC5797120 DOI: 10.1038/s41467-018-02856-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
Male breast cancer (MBC) is rare and poorly characterized. Like the female counterpart, most MBCs are hormonally driven, but relapse after hormonal treatment is also noted. The pan-hormonal action of steroid hormonal receptors, including estrogen receptor alpha (ERα), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) in this understudied tumor type remains wholly unexamined. This study reveals genomic cross-talk of steroid hormone receptor action and interplay in human tumors, here in the context of MBC, in relation to the female disease and patient outcome. Here we report the characterization of human breast tumors of both genders for cistromic make-up of hormonal regulation in human tumors, revealing genome-wide chromatin binding landscapes of ERα, AR, PR, GR, FOXA1, and GATA3 and enhancer-enriched histone mark H3K4me1. We integrate these data with transcriptomics to reveal gender-selective and genomic location-specific hormone receptor actions, which associate with survival in MBC patients.
Collapse
|
36
|
Severson TM, Nevedomskaya E, Peeters J, Kuilman T, Krijgsman O, van Rossum A, Droog M, Kim Y, Koornstra R, Beumer I, Glas AM, Peeper D, Wesseling J, Simon IM, Wessels L, Linn SC, Zwart W. Neoadjuvant tamoxifen synchronizes ERα binding and gene expression profiles related to outcome and proliferation. Oncotarget 2017; 7:33901-18. [PMID: 27129152 PMCID: PMC5085127 DOI: 10.18632/oncotarget.8983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022] Open
Abstract
Estrogen receptor alpha (ERα)-positive breast cancers are frequently treated with tamoxifen, but resistance is common. It remains elusive how tamoxifen resistance occurs and predictive biomarkers for treatment outcome are needed. Because most biomarker discovery studies are performed using pre-treatment surgical resections, the effects of tamoxifen therapy directly on the tumor cell in vivo remain unexamined. In this study, we assessed DNA copy number, gene expression profiles and ERα/chromatin binding landscapes on breast tumor specimens, both before and after neoadjuvant tamoxifen treatment. We observed neoadjuvant tamoxifen treatment synchronized ERα/chromatin interactions and downstream gene expression, indicating that hormonal therapy reduces inter-tumor molecular variability. ERα-synchronized sites are associated with dynamic FOXA1 action at these sites, which is under control of growth factor signaling. Genes associated with tamoxifen-synchronized sites are capable of differentiating patients for tamoxifen benefit. Due to the direct effects of therapeutics on ERα behavior and transcriptional output, our study highlights the added value of biomarker discovery studies after neoadjuvant drug exposure.
Collapse
Affiliation(s)
- Tesa M Severson
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | | | - Thomas Kuilman
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Annelot van Rossum
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Marjolein Droog
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Yongsoo Kim
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Rutger Koornstra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, GA, The Netherlands
| | | | | | - Daniel Peeper
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | | | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.,Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.,Department of Pathology, University Medical Center Utrecht, CX, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| |
Collapse
|
37
|
Prior AM, Yu X, Park EJ, Kondratyuk TP, Lin Y, Pezzuto JM, Sun D. Structure-activity relationships and docking studies of synthetic 2-arylindole derivatives determined with aromatase and quinone reductase 1. Bioorg Med Chem Lett 2017; 27:5393-5399. [PMID: 29153737 PMCID: PMC5705205 DOI: 10.1016/j.bmcl.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC50 = 1.61 μM; 21, IC50 = 3.05 μM; and 27, IC50 = 3.34 μM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC50) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR = 8.34, CD = 2.75 μM), while 7 showed the most potent CD value of 1.12 μM. A dual acting compound 24 showed aromatase inhibition (IC50 = 9.00 μM) as well as QR1 induction (CD = 5.76 μM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3'-nitrogen coordinating with the heme group.
Collapse
Affiliation(s)
- Allan M Prior
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| | - Xufen Yu
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| | - Eun-Jung Park
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Tamara P Kondratyuk
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| | - Yan Lin
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| | - John M Pezzuto
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA.
| |
Collapse
|
38
|
Coons LA, Hewitt SC, Burkholder AB, McDonnell DP, Korach KS. DNA Sequence Constraints Define Functionally Active Steroid Nuclear Receptor Binding Sites in Chromatin. Endocrinology 2017; 158:3212-3234. [PMID: 28977594 PMCID: PMC5659708 DOI: 10.1210/en.2017-00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
Gene regulatory programs are encoded in the sequence of the DNA. Since the completion of the Human Genome Project, millions of gene regulatory elements have been identified in the human genome. Understanding how each of those sites functionally contributes to gene regulation, however, remains a challenge for nearly every field of biology. Transcription factors influence cell function by interpreting information contained within cis-regulatory elements in chromatin. Whereas chromatin immunoprecipitation-sequencing has been used to identify and map transcription factor-DNA interactions, it has been difficult to assign functionality to the binding sites identified. Thus, in this study, we probed the transcriptional activity, DNA-binding competence, and functional activity of select nuclear receptor mutants in cellular and animal model systems and used this information to define the sequence constraints of functional steroid nuclear receptor cis-regulatory elements. Analysis of the architecture within sNR chromatin interacting sites revealed that only a small fraction of all sNR chromatin-interacting events is associated with transcriptional output and that this functionality is restricted to elements that vary from the consensus palindromic elements by one or two nucleotides. These findings define the transcriptional grammar necessary to predict functionality from regulatory sequences, with a multitude of future implications.
Collapse
Affiliation(s)
- Laurel A Coons
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
39
|
Ferrero G, Miano V, Beccuti M, Balbo G, De Bortoli M, Cordero F. Dissecting the genomic activity of a transcriptional regulator by the integrative analysis of omics data. Sci Rep 2017; 7:8564. [PMID: 28819152 PMCID: PMC5561104 DOI: 10.1038/s41598-017-08754-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
In the study of genomic regulation, strategies to integrate the data produced by Next Generation Sequencing (NGS)-based technologies in a meaningful ensemble are eagerly awaited and must continuously evolve. Here, we describe an integrative strategy for the analysis of data generated by chromatin immunoprecipitation followed by NGS which combines algorithms for data overlap, normalization and epigenetic state analysis. The performance of our strategy is illustrated by presenting the analysis of data relative to the transcriptional regulator Estrogen Receptor alpha (ERα) in MCF-7 breast cancer cells and of Glucocorticoid Receptor (GR) in A549 lung cancer cells. We went through the definition of reference cistromes for different experimental contexts, the integration of data relative to co-regulators and the overlay of chromatin states as defined by epigenetic marks in MCF-7 cells. With our strategy, we identified novel features of estrogen-independent ERα activity, including FoxM1 interaction, eRNAs transcription and a peculiar ontology of connected genes.
Collapse
Affiliation(s)
- Giulio Ferrero
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy.,Dept. of Computer Science, University of Turin, 10149, Turin, Italy.,Dept. of Biological and Clinical Sciences, University of Turin, 10043, Orbassano, Turin, Italy
| | - Valentina Miano
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy.,Dept. of Biological and Clinical Sciences, University of Turin, 10043, Orbassano, Turin, Italy
| | - Marco Beccuti
- Dept. of Computer Science, University of Turin, 10149, Turin, Italy
| | - Gianfranco Balbo
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy.,Dept. of Computer Science, University of Turin, 10149, Turin, Italy
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy. .,Dept. of Biological and Clinical Sciences, University of Turin, 10043, Orbassano, Turin, Italy.
| | - Francesca Cordero
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy.,Dept. of Computer Science, University of Turin, 10149, Turin, Italy
| |
Collapse
|
40
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
41
|
Severson TM, Zwart W. A review of estrogen receptor/androgen receptor genomics in male breast cancer. Endocr Relat Cancer 2017; 24:R27-R34. [PMID: 28062545 DOI: 10.1530/erc-16-0225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
Male breast cancer is a rare disease, of which little is known. In contrast to female breast cancer, the very vast majority of all cases are positive for estrogen receptor alpha (ERα), implicating the function of this steroid hormone receptor in tumor development and progression. Consequently, adjuvant treatment of male breast cancer revolves around inhibition of ERα. In addition, the androgen receptor (AR) gradually receives more attention as a relevant novel target in breast cancer treatment. Importantly, the rationale of treatment decision making is strongly based on parallels with female breast cancer. Yet, prognostic indicators are not necessarily the same in breast cancer between both genders, complicating translatability of knowledge developed in female breast cancer toward male patients. Even though ERα and AR are expressed both in female and male disease, are the genomic functions of both steroid hormone receptors conserved between genders? Recent studies have reported on mutational and epigenetic similarities and differences between male and female breast cancer, further suggesting that some features are strongly conserved between the two diseases, whereas others are not. This review critically discusses the recent developments in the study of male breast cancer in relation to ERα and AR action and highlights the potential future studies to further elucidate the genomic regulation of this rare disease.
Collapse
Affiliation(s)
- Tesa M Severson
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesisthe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Goubert D, Beckman WF, Verschure PJ, Rots MG. Epigenetic editing: towards realization of the curable genome concept. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5cc0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Estrogen receptor α wields treatment-specific enhancers between morphologically similar endometrial tumors. Proc Natl Acad Sci U S A 2017; 114:E1316-E1325. [PMID: 28167798 DOI: 10.1073/pnas.1615233114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The DNA-binding sites of estrogen receptor α (ERα) show great plasticity under the control of hormones and endocrine therapy. Tamoxifen is a widely applied therapy in breast cancer that affects ERα interactions with coregulators and shifts the DNA-binding signature of ERα upon prolonged exposure in breast cancer. Although tamoxifen inhibits the progression of breast cancer, it increases the risk of endometrial cancer in postmenopausal women. We therefore asked whether the DNA-binding signature of ERα differs between endometrial tumors that arise in the presence or absence of tamoxifen, indicating divergent enhancer activity for tumors that develop in different endocrine milieus. Using ChIP sequencing (ChIP-seq), we compared the ERα profiles of 10 endometrial tumors from tamoxifen users with those of six endometrial tumors from nonusers and integrated these results with the transcriptomic data of 47 endometrial tumors from tamoxifen users and 64 endometrial tumors from nonusers. The ERα-binding sites in tamoxifen-associated endometrial tumors differed from those in the tumors from nonusers and had distinct underlying DNA sequences and divergent enhancer activity as marked by histone 3 containing the acetylated lysine 27 (H3K27ac). Because tamoxifen acts as an agonist in the postmenopausal endometrium, similar to estrogen in the breast, we compared ERα sites in tamoxifen-associated endometrial cancers with publicly available ERα ChIP-seq data in breast tumors and found a striking resemblance in the ERα patterns of the two tissue types. Our study highlights the divergence between endometrial tumors that arise in different hormonal conditions and shows that ERα enhancer use in human cancer differs in the presence of nonphysiological endocrine stimuli.
Collapse
|
44
|
Dirks RAM, Stunnenberg HG, Marks H. Genome-wide epigenomic profiling for biomarker discovery. Clin Epigenetics 2016; 8:122. [PMID: 27895806 PMCID: PMC5117701 DOI: 10.1186/s13148-016-0284-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022] Open
Abstract
A myriad of diseases is caused or characterized by alteration of epigenetic patterns, including changes in DNA methylation, post-translational histone modifications, or chromatin structure. These changes of the epigenome represent a highly interesting layer of information for disease stratification and for personalized medicine. Traditionally, epigenomic profiling required large amounts of cells, which are rarely available with clinical samples. Also, the cellular heterogeneity complicates analysis when profiling clinical samples for unbiased genome-wide biomarker discovery. Recent years saw great progress in miniaturization of genome-wide epigenomic profiling, enabling large-scale epigenetic biomarker screens for disease diagnosis, prognosis, and stratification on patient-derived samples. All main genome-wide profiling technologies have now been scaled down and/or are compatible with single-cell readout, including: (i) Bisulfite sequencing to determine DNA methylation at base-pair resolution, (ii) ChIP-Seq to identify protein binding sites on the genome, (iii) DNaseI-Seq/ATAC-Seq to profile open chromatin, and (iv) 4C-Seq and HiC-Seq to determine the spatial organization of chromosomes. In this review we provide an overview of current genome-wide epigenomic profiling technologies and main technological advances that allowed miniaturization of these assays down to single-cell level. For each of these technologies we evaluate their application for future biomarker discovery. We will focus on (i) compatibility of these technologies with methods used for clinical sample preservation, including methods used by biobanks that store large numbers of patient samples, and (ii) automation of these technologies for robust sample preparation and increased throughput.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| |
Collapse
|
45
|
Liu X, Beith J, Low SK, Boddy AV. The path to implementation of personalized medicine of aromatase inhibitors in patients with breast cancer. Pharmacogenomics 2016; 17:1861-1864. [PMID: 27790931 DOI: 10.2217/pgs-2016-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Xiaoman Liu
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Jane Beith
- Chris O'Brien Lifehouse Centre, Sydney, NSW 2006, Australia
| | - Siew-Kee Low
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Alan V Boddy
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Stelloo S, Nevedomskaya E, van der Poel HG, de Jong J, van Leenders GJLH, Jenster G, Wessels LFA, Bergman AM, Zwart W. Androgen receptor profiling predicts prostate cancer outcome. EMBO Mol Med 2016; 7:1450-64. [PMID: 26412853 PMCID: PMC4644377 DOI: 10.15252/emmm.201505424] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is the second most prevalent malignancy in men. Biomarkers for outcome prediction are urgently needed, so that high-risk patients could be monitored more closely postoperatively. To identify prognostic markers and to determine causal players in prostate cancer progression, we assessed changes in chromatin state during tumor development and progression. Based on this, we assessed genomewide androgen receptor/chromatin binding and identified a distinct androgen receptor/chromatin binding profile between primary prostate cancers and tumors with an acquired resistance to therapy. These differential androgen receptor/chromatin interactions dictated expression of a distinct gene signature with strong prognostic potential. Further refinement of the signature provided us with a concise list of nine genes that hallmark prostate cancer outcome in multiple independent validation series. In this report, we identified a novel gene expression signature for prostate cancer outcome through generation of multilevel genomic data on chromatin accessibility and transcriptional regulation and integration with publically available transcriptomic and clinical datastreams. By combining existing technologies, we propose a novel pipeline for biomarker discovery that is easily implementable in other fields of oncology.
Collapse
Affiliation(s)
- Suzan Stelloo
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Division of Urology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Droog M, Mensink M, Zwart W. The Estrogen Receptor α-Cistrome Beyond Breast Cancer. Mol Endocrinol 2016; 30:1046-1058. [PMID: 27489947 DOI: 10.1210/me.2016-1062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although many tissues express estrogen receptor (ER)α, most studies focus on breast cancer where ERα occupies just a small fraction of its total repertoire of potential DNA-binding sites, based on sequence. This raises the question: Can ERα occupy these other potential binding sites in a different context? Ligands, splice variants, posttranslational modifications, and acquired mutations of ERα affect its conformation, which may alter chromatin interactions. To date, literature describes the DNA-binding sites of ERα (the ERα cistrome) in breast, endometrium, liver, and bone, in which the receptor mainly binds to enhancers. Chromosomal boundaries provide distinct areas for dynamic gene regulation between tissues, where the usage of enhancers deviates. Interactions of ERα with enhancers and its transcriptional complex depend on the proteome, which differs per cell type. This review discusses the biological variables that influence ERα cistromics, using reports from human specimens, cell lines, and mouse tissues, to assess whether ERα genomics in breast cancer can be translated to other tissue types.
Collapse
Affiliation(s)
- Marjolein Droog
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Mark Mensink
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
48
|
LRG1 mRNA expression in breast cancer associates with PIK3CA genotype and with aromatase inhibitor therapy outcome. Mol Oncol 2016; 10:1363-73. [PMID: 27491861 DOI: 10.1016/j.molonc.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND PIK3CA is the most frequent somatic mutated oncogene in estrogen receptor (ER) positive breast cancer. We previously observed an association between PIK3CA genotype and aromatase inhibitors (AI) treatment outcome. This study now evaluates whether expression of mRNAs and miRs are linked to PIK3CA genotype and are independently related to AI therapy response in order to define potential expressed biomarkers for treatment outcome. MATERIALS AND METHODS The miR and mRNA expression levels were evaluated for their relationship with the PIK3CA genotype in two breast tumor datasets, i.e. 286 luminal cancers from the TCGA consortium and our set of 84 ER positive primary tumors of metastatic breast cancer patients who received first line AI. BRB Array tools class comparison was performed to define miRs and mRNAs whose expression associate with PIK3CA exon 9 and 20 status. Spearman correlations established miR-mRNA pairs and mRNAs with related expression. Next, a third dataset of 25 breast cancer patients receiving neo-adjuvant letrozole was evaluated, to compare expression levels of identified miRs and mRNAs in biopsies before and after treatment. Finally, to identify potential biomarkers miR and mRNA levels were related with overall survival (OS) and progression free survival (PFS) after first-line AI therapy. RESULTS Expression of 3 miRs (miR-449a, miR-205-5p, miR-301a-3p) and 9 mRNAs (CCNO, FAM81B, LRG1, NEK10, PLCL1, PGR, SERPINA3, SORBS2, VTCN1) was related to the PIK3CA status in both datasets. All except miR-301a-3p had an increased expression in tumors with PIK3CA mutations. Validation in a publicly available dataset showed that LRG1, PGR, and SERPINA3 levels were decreased after neo-adjuvant AI-treatment. Six miR-mRNA pairs correlated significantly and stepdown analysis of all 12 factors revealed 3 mRNAs (PLCL1, LRG1, FAM81B) related to PFS. Further analyses showed LRG1 and PLCL1 expression to be unrelated with luminal subtype and to associate with OS and with PFS, the latter independent from traditional predictive factors. CONCLUSION We showed in two datasets of ER positive and luminal breast tumors that the expression of 3 miRs and 9 mRNAs associate with the PIK3CA status. Expression of LRG1 is independent of luminal (A or B) subtype, decreased after neo-adjuvant AI-treatment, and is proposed as potential biomarker for AI therapy outcome.
Collapse
|
49
|
Brooks MD, Burness ML, Wicha MS. Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell 2016; 17:260-71. [PMID: 26340526 DOI: 10.1016/j.stem.2015.08.014] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cellular heterogeneity represents one of the greatest challenges in cancer therapeutics. In many malignancies, this heterogeneity is generated during tumor evolution through a combination of genetic alterations and epigenetic events that recapitulate normal developmental processes including stem cell self-renewal and differentiation. Many, if not most, tumors display similar hierarchal organization, at the apex of which are "stem-like cells" that drive tumor growth, mediate metastasis, and contribute to treatment resistance. Using breast cancer as a model, we discuss how an improved understanding of tumor cellular heterogeneity and plasticity may lead to development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Michael D Brooks
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monika L Burness
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
50
|
De Marchi T, Foekens JA, Umar A, Martens JWM. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov Today 2016; 21:1181-8. [PMID: 27233379 DOI: 10.1016/j.drudis.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer represents the majority (∼70%) of all breast malignancies. In this subgroup of breast cancers, endocrine therapies are effective both in the adjuvant and recurrent settings, although resistance remains a major issue. Several high-throughput approaches have been used to elucidate mechanisms of resistance and to derive potential predictive markers or alternative therapies. In this review, we cover the state-of-the-art of endocrine-resistance biomarker discovery with regard to the latest technological developments, and discuss current opportunities and restrictions for their implementation into a clinical setting.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|