1
|
Borella F, Carosso M, Chiparo MP, Ferraioli D, Bertero L, Gallio N, Preti M, Cusato J, Valabrega G, Revelli A, Marozio L, Cosma S. Oncolytic Viruses in Ovarian Cancer: Where Do We Stand? A Narrative Review. Pathogens 2025; 14:140. [PMID: 40005517 PMCID: PMC11858389 DOI: 10.3390/pathogens14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Ovarian cancer (OC) remains the most lethal gynecologic malignancy with limited effective treatment options. Oncolytic viruses (OVs) have emerged as a promising therapeutic approach for cancer treatment, capable of selectively infecting and lysing cancer cells while stimulating anti-tumor immune responses. Preclinical studies have demonstrated significant tumor regression and prolonged survival in OC models using various OVs, such as herpes simplex. Early-phase clinical trials have shown a favorable safety profile, though the impact on patient survival has been modest. Current research focuses on combining OVs with other treatments like immune checkpoint inhibitors to enhance their efficacy. We provide a comprehensive overview of the current understanding and future directions for utilizing OVs in the management of OC.
Collapse
Affiliation(s)
- Fulvio Borella
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Marco Carosso
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Maria Pia Chiparo
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Domenico Ferraioli
- Department of Gynecology, Léon Bérard, Comprehensive Cancer Centre, 69008 Lyon, France;
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Niccolò Gallio
- Gynecology and Obstetrics 2U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (A.R.)
| | - Mario Preti
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy;
| | - Giorgio Valabrega
- Department of Oncology, University of Turin, Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy;
| | - Alberto Revelli
- Gynecology and Obstetrics 2U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (A.R.)
| | - Luca Marozio
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Stefano Cosma
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| |
Collapse
|
2
|
Hu X, Bian C, Zhao X, Yi T. Efficacy evaluation of multi-immunotherapy in ovarian cancer: From bench to bed. Front Immunol 2022; 13:1034903. [PMID: 36275669 PMCID: PMC9582991 DOI: 10.3389/fimmu.2022.1034903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer, one of the most common gynecological malignancies, is characterized by high mortality and poor prognosis. Cytoreductive surgery and chemotherapy remain the mainstay of ovarian cancer treatment, and most women experience recurrence after standard care therapies. There is compelling evidence that ovarian cancer is an immunogenic tumor. For example, the accumulation of tumor-infiltrating lymphocytes is associated with increased survival, while increases in immunosuppressive regulatory T cells are correlated with poor clinical outcomes. Therefore, immunotherapies targeting components of the tumor microenvironment have been gradually integrated into the existing treatment options, including immune checkpoint blockade, adoptive cell therapy, and cancer vaccines. Immunotherapies have changed guidelines for maintenance treatment and established a new paradigm in ovarian cancer treatment. Despite single immunotherapies targeting DNA repair mechanisms, immune checkpoints, and angiogenesis bringing inspiring efficacy, only a subset of patients can benefit much from it. Thus, the multi-immunotherapy investigation remains an active area for ovarian cancer treatment. The current review provides an overview of various clinically oriented forms of multi-immunotherapy and explores potentially effective combinational therapies for ovarian cancer.
Collapse
|
3
|
Cytokine Responses to Adenovirus and Adenovirus Vectors. Viruses 2022; 14:v14050888. [PMID: 35632630 PMCID: PMC9145601 DOI: 10.3390/v14050888] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The expression of cytokines and chemokines in response to adenovirus infection is tightly regulated by the innate immune system. Cytokine-mediated toxicity and cytokine storm are known clinical phenomena observed following naturally disseminated adenovirus infection in immunocompromised hosts as well as when extremely high doses of adenovirus vectors are injected intravenously. This dose-dependent, cytokine-mediated toxicity compromises the safety of adenovirus-based vectors and represents a critical problem, limiting their utility for gene therapy applications and the therapy of disseminated cancer, where intravenous injection of adenovirus vectors may provide therapeutic benefits. The mechanisms triggering severe cytokine response are not sufficiently understood, prompting efforts to further investigate this phenomenon, especially in clinically relevant settings. In this review, we summarize the current knowledge on cytokine and chemokine activation in response to adenovirus- and adenovirus-based vectors and discuss the underlying mechanisms that may trigger acute cytokine storm syndrome. First, we review profiles of cytokines and chemokines that are activated in response to adenovirus infection initiated via different routes. Second, we discuss the molecular mechanisms that lead to cytokine and chemokine transcriptional activation. We further highlight how immune cell types in different organs contribute to synthesis and systemic release of cytokines and chemokines in response to adenovirus sensing. Finally, we review host factors that can limit cytokine and chemokine expression and discuss currently available and potential future interventional approaches that allow for the mitigation of the severity of the cytokine storm syndrome. Effective cytokine-targeted interventional approaches may improve the safety of systemic adenovirus delivery and thus broaden the potential clinical utility of adenovirus-based therapeutic vectors.
Collapse
|
4
|
Nestić D, Božinović K, Drašković I, Kovačević A, van den Bosch J, Knežević J, Custers J, Ambriović-Ristov A, Majhen D. Human Adenovirus Type 26 Induced IL-6 Gene Expression in an αvβ3 Integrin- and NF-κB-Dependent Manner. Viruses 2022; 14:v14040672. [PMID: 35458402 PMCID: PMC9028149 DOI: 10.3390/v14040672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
The low seroprevalent human adenovirus type 26 (HAdV26)-based vaccine vector was the first adenovirus-based vector to receive marketing authorization from European Commission. HAdV26-based vaccine vectors induce durable humoral and cellular immune responses and, as such, represent a highly valuable tool for fighting infectious diseases. Despite well-described immunogenicity in vivo, the basic biology of HAdV26 still needs some refinement. The aim of this study was to determine the pro-inflammatory cytokine profile of epithelial cells infected with HAdV26 and then investigate the underlying molecular mechanism. The expression of studied genes and proteins was assessed by quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Confocal microscopy was used to visualize HAdV26 cell uptake. We found that HAdV26 infection in human epithelial cells triggers the expression of pro-inflammatory cytokines and chemokines, namely IL-6, IL-8, IL-1β, and TNF-α, with the most pronounced difference shown for IL-6. We investigated the underlying molecular mechanism and observed that HAdV26-induced IL-6 gene expression is αvβ3 integrin dependent and NF-κB mediated. Our findings provide new data regarding pro-inflammatory cytokine and chemokine expression in HAdV26-infected epithelial cells, as well as details concerning HAdV26-induced host signaling pathways. Information obtained within this research increases our current knowledge of HAdV26 basic biology and, as such, can contribute to further development of HAdV26-based vaccine vectors.
Collapse
Affiliation(s)
- Davor Nestić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.D.); (A.K.); (J.v.d.B.); (A.A.-R.)
| | - Ksenija Božinović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.D.); (A.K.); (J.v.d.B.); (A.A.-R.)
| | - Isabela Drašković
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.D.); (A.K.); (J.v.d.B.); (A.A.-R.)
| | - Alen Kovačević
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.D.); (A.K.); (J.v.d.B.); (A.A.-R.)
| | - Jolien van den Bosch
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.D.); (A.K.); (J.v.d.B.); (A.A.-R.)
| | - Jelena Knežević
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Faculty for Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| | - Jerome Custers
- Janssen Vaccines and Preventions BV, 2333 CA Leiden, The Netherlands;
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.D.); (A.K.); (J.v.d.B.); (A.A.-R.)
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.D.); (A.K.); (J.v.d.B.); (A.A.-R.)
- Correspondence:
| |
Collapse
|
5
|
Hoare JI, Osmani B, O'Sullivan EA, Browne A, Campbell N, Metcalf S, Nicolini F, Saxena J, Martin SA, Lockley M. Carvedilol targets β-arrestins to rewire innate immunity and improve oncolytic adenoviral therapy. Commun Biol 2022; 5:106. [PMID: 35115660 PMCID: PMC8813932 DOI: 10.1038/s42003-022-03041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses are being tested in clinical trials, including in women with ovarian cancer. We use a drug-repurposing approach to identify existing drugs that enhance the activity of oncolytic adenoviruses. This reveals that carvedilol, a β-arrestin-biased β-blocker, synergises with both wild-type adenovirus and the E1A-CR2-deleted oncolytic adenovirus, dl922-947. Synergy is not due to β-adrenergic blockade but is dependent on β-arrestins and is reversed by β-arrestin CRISPR gene editing. Co-treatment with dl922-947 and carvedilol causes increased viral DNA replication, greater viral protein expression and higher titres of infectious viral particles. Carvedilol also enhances viral efficacy in orthotopic, intraperitoneal murine models, achieving more rapid tumour clearance than virus alone. Increased anti-cancer activity is associated with an intratumoural inflammatory cell infiltrate and systemic cytokine release. In summary, carvedilol augments the activity of oncolytic adenoviruses via β-arrestins to re-wire cytokine networks and innate immunity and could therefore improve oncolytic viruses for cancer patient treatment.
Collapse
Affiliation(s)
- Joseph I Hoare
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bleona Osmani
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Emily A O'Sullivan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ashley Browne
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicola Campbell
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Stephen Metcalf
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Francesco Nicolini
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jayeta Saxena
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sarah A Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michelle Lockley
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Gynaecological Oncology, Cancer Services, University College London Hospital, London, UK.
| |
Collapse
|
6
|
Shiri A, Sarvari J, Firoozi Ghahestani S, Gholijani N, Tamaddon AM, Rastegari M, Moattari A, Hosseini SY. The Inflammatory and Fibrotic Patterns of Hepatic Stellate Cells Following Coagulation Factors (VII or X)-Shielded Adenovirus Infection. Curr Microbiol 2021; 78:718-726. [PMID: 33410956 DOI: 10.1007/s00284-020-02297-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
The role of coagulation factors on the inflammatory effect of adenovirus (Ad) is an unresolved question that was considered herein. Adenovirus-36(Ad36) and adenovector-5-GFP(Ad5-GFP) were prepared; then, they were loaded with VII or FX factors. The size/charge parameters and transduction efficiency were evaluated using fluorescent microscopy and Zetasizer, respectively. The Ad36-coagulation factor complexes were added on the stellate cells, LX-2. Thereafter, the expression levels of inflammatory and fibrotic genes including PKR, IL-1β, TNF-α, TIMP-1, collagen, and TGF-β were measured by qPCR and ELISA assays. The loading of FVII or FX factors not only increased the size/charge of Ad5-GFP but also enhanced the transduction rate up to 60% and 75%, respectively, compared to the controls (45%). The PKR expression analysis showed an upregulation following treatment with all Ad36 forms (P = 0.0152). The IL-1β and TNF-α cytokines analyses demonstrated that the Ad36-FVII complex elicited the highest inflammatory response (P = 0.05). Similarly, the fibrosis-related expression analysis revealed a more inductive role of FVII when loaded on Ad36, compared to the FX factor. The findings suggested that adenovirus elicited the innate inflammatory and activation state in the hepatic stellate cell. In addition, adenovirus shielded by FVII exhibited more innate inflammation as well as activation of the stellate cells than the FX-loaded virus.
Collapse
Affiliation(s)
- Alireza Shiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,GastroenteroHepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Firoozi Ghahestani
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Gholijani
- Autoimmunity Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahroo Rastegari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Pooladanda V, Thatikonda S, Sunnapu O, Tiwary S, Vemula PK, Talluri MVNK, Godugu C. iRGD conjugated nimbolide liposomes protect against endotoxin induced acute respiratory distress syndrome. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102351. [PMID: 33418136 PMCID: PMC7833751 DOI: 10.1016/j.nano.2020.102351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a deadly respiratory illness associated with refractory hypoxemia and pulmonary edema. The recent pandemic outbreak of COVID-19 is associated with severe pneumonia and inflammatory cytokine storm in the lungs. The anti-inflammatory phytomedicine nimbolide (NIM) may not be feasible for clinical translation due to poor pharmacokinetic properties and lack of suitable delivery systems. To overcome these barriers, we have developed nimbolide liposomes conjugated with iRGD peptide (iRGD-NIMLip) for targeting lung inflammation. It was observed that iRGD-NIMLip treatment significantly inhibited oxidative stress and cytokine storm compared to nimbolide free-drug (f-NIM), nimbolide liposomes (NIMLip), and exhibited superior activity compared to dexamethasone (DEX). iRGD-NIMLip abrogated the LPS induced p65 NF-κB, Akt, MAPK, Integrin β3 and β5, STAT3, and DNMT1 expression. Collectively, our results demonstrate that iRGD-NIMLip could be a promising novel drug delivery system to target severe pathological consequences observed in ARDS and COVID-19 associated cytokine storm.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Omprakash Sunnapu
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, Karnataka, India
| | - Shristy Tiwary
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, Karnataka, India
| | - M V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer. Cancer Gene Ther 2020; 28:375-389. [PMID: 32951021 DOI: 10.1038/s41417-020-00227-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
Ovarian cancer is the leading cause of death among women with gynecological cancer, with an overall 5-year survival rate below 50% due to a lack of specific symptoms, late stage at time of diagnosis and a high rate of recurrence after standard therapy. A better understanding of heterogeneity, genetic mutations, biological behavior and immunosuppression in the tumor microenvironment have allowed the development of more effective therapies based on anti-angiogenic treatments, PARP and immune checkpoint inhibitors, adoptive cell therapies and oncolytic vectors. Oncolytic adenoviruses are commonly used platforms in cancer gene therapy that selectively replicate in tumor cells and at the same time are able to stimulate the immune system. In addition, they can be genetically modified to enhance their potency and overcome physical and immunological barriers. In this review we highlight the challenges of adenovirus-based oncolytic therapies targeting ovarian cancer and outline recent advances to improve their potential in combination with immunotherapies.
Collapse
|
9
|
Atasheva S, Yao J, Shayakhmetov DM. Innate immunity to adenovirus: lessons from mice. FEBS Lett 2019; 593:3461-3483. [PMID: 31769012 PMCID: PMC6928416 DOI: 10.1002/1873-3468.13696] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Adenovirus is a highly evolutionary successful pathogen, as it is widely prevalent across the animal kingdom, infecting hosts ranging from lizards and frogs to dolphins, birds, and humans. Although natural adenovirus infections in humans rarely cause severe pathology, intravenous injection of high doses of adenovirus-based vectors triggers rapid activation of the innate immune system, leading to cytokine storm syndrome, disseminated intravascular coagulation, thrombocytopenia, and hepatotoxicity, which individually or in combination may cause morbidity and mortality. Much of the information on exactly how adenovirus activates the innate immune system has been gathered from mouse experimental systems. Intravenous administration of adenovirus to mice revealed mechanistic insights into cellular and molecular components of the innate immunity that detect adenovirus particles, activate pro-inflammatory signaling pathways and cytokine production, sequester adenovirus particles from the bloodstream, and eliminate adenovirus-infected cells. Collectively, this information greatly improved our understanding of mechanisms of activation of innate immunity to adenovirus and may pave the way for designing safer adenovirus-based vectors for therapy of genetic and acquired human diseases.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Children’s Center for Transplantation and Immuno-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Hoare J, Campbell N, Carapuça E. Oncolytic virus immunotherapies in ovarian cancer: moving beyond adenoviruses. Porto Biomed J 2018; 3:e7. [PMID: 31595233 PMCID: PMC6726300 DOI: 10.1016/j.pbj.0000000000000007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the 5th most common cancer in UK women with a high relapse rate. The overall survival for ovarian cancer has remained low for decades prompting a real need for new therapies. Recurrent ovarian cancer remains confined in the peritoneal cavity in >80% of the patients, providing an opportunity for locoregional administration of novel therapeutics, including gene and viral therapy approaches. Immunotherapy is an expanding field, and includes oncolytic viruses as well as monoclonal antibodies, immune checkpoint inhibitors, and therapeutic vaccines. Oncolytic viruses cause direct cancer cell cytolysis and immunogenic cell death and subsequent release of tumor antigens that will prime for a potent tumor-specific immunity. This effect may be further enhanced when the viruses are engineered to express, or coadministered with, immunostimulatory molecules. Currently, the most commonly used and well-characterized vectors utilized for virotherapy purposes are adenoviruses. They have been shown to work synergistically with traditional chemotherapy and radiotherapy and have met with success in clinical trials. However, pre-existing immunity and poor in vivo models limit our ability to fully investigate the potential of oncolytic adenovirus as effective immunotherapies which in turn fosters the need to develop alternative viral vectors. In this review we cover recent advances in adenovirus-based oncolytic therapies targeting ovarian cancer and recent advances in mapping immune responses to oncolytic virus therapies in ovarian cancer.
Collapse
Affiliation(s)
- Joseph Hoare
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Nicola Campbell
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Elisabete Carapuça
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
11
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
12
|
Evidence for Oncolytic Virotherapy: Where Have We Got to and Where Are We Going? Viruses 2015; 7:6291-312. [PMID: 26633468 PMCID: PMC4690862 DOI: 10.3390/v7122938] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
The last few years have seen an increased interest in immunotherapy in the treatment of malignant disease. In particular, there has been significant enthusiasm for oncolytic virotherapy, with a large amount of pre-clinical data showing promise in animal models in a wide range of tumour types. How do we move forward into the clinical setting and translate something which has such potential into meaningful clinical outcomes? Here, we review how the field of oncolytic virotherapy has developed thus far and what the future may hold.
Collapse
|