1
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
2
|
Lachance G, Robitaille K, Laaraj J, Gevariya N, Varin TV, Feldiorean A, Gaignier F, Julien IB, Xu HW, Hallal T, Pelletier JF, Bouslama S, Boufaied N, Derome N, Bergeron A, Ellis L, Piccirillo CA, Raymond F, Fradet Y, Labbé DP, Marette A, Fradet V. The gut microbiome-prostate cancer crosstalk is modulated by dietary polyunsaturated long-chain fatty acids. Nat Commun 2024; 15:3431. [PMID: 38654015 DOI: 10.1038/s41467-024-45332-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/17/2024] [Indexed: 04/25/2024] Open
Abstract
The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.
Collapse
Affiliation(s)
- Gabriel Lachance
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Centre de recherche de l'IUCPQ, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jalal Laaraj
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | | | - Andrei Feldiorean
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Fanny Gaignier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Isabelle Bourdeau Julien
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Hui Wen Xu
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Pelletier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Frédéric Raymond
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | | | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Samaržija I, Konjevoda P. Extracellular Matrix- and Integrin Adhesion Complexes-Related Genes in the Prognosis of Prostate Cancer Patients' Progression-Free Survival. Biomedicines 2023; 11:2006. [PMID: 37509645 PMCID: PMC10377098 DOI: 10.3390/biomedicines11072006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treatment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment that largely influences cell behavior. ECM components are ligands for integrin receptors which are involved in every step of tumor progression. An underlying characteristic of integrin activation and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine learning methods revealed that they are a source of biomarkers for progression-free survival of patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest potential biomarkers of prostate cancer progression.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Coulis G, Londhe AD, Sagabala RS, Shi Y, Labbé DP, Bergeron A, Sahadevan P, Nawaito SA, Sahmi F, Josse M, Vinette V, Guertin MC, Karsenty G, Tremblay ML, Tardif JC, Allen BG, Boivin B. Protein tyrosine phosphatase 1B regulates miR-208b-argonaute 2 association and thyroid hormone responsiveness in cardiac hypertrophy. Sci Signal 2022; 15:eabn6875. [PMID: 35439023 DOI: 10.1126/scisignal.abn6875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased production of reactive oxygen species plays an essential role in the pathogenesis of several diseases, including cardiac hypertrophy. In our search to identify redox-sensitive targets that contribute to redox signaling, we found that protein tyrosine phosphatase 1B (PTP1B) was reversibly oxidized and inactivated in hearts undergoing hypertrophy. Cardiomyocyte-specific deletion of PTP1B in mice (PTP1B cKO mice) caused a hypertrophic phenotype that was exacerbated by pressure overload. Furthermore, we showed that argonaute 2 (AGO2), a key component of the RNA-induced silencing complex, was a substrate of PTP1B in cardiomyocytes and in the heart. Our results revealed that phosphorylation at Tyr393 and inactivation of AGO2 in PTP1B cKO mice prevented miR-208b-mediated repression of thyroid hormone receptor-associated protein 1 (THRAP1; also known as MED13) and contributed to thyroid hormone-mediated cardiac hypertrophy. In support of this conclusion, inhibiting the synthesis of triiodothyronine (T3) with propylthiouracil rescued pressure overload-induced hypertrophy and improved myocardial contractility and systolic function in PTP1B cKO mice. Together, our data illustrate that PTP1B activity is cardioprotective and that redox signaling is linked to thyroid hormone responsiveness and microRNA-mediated gene silencing in pathological hypertrophy.
Collapse
Affiliation(s)
- Gérald Coulis
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.,Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Avinash D Londhe
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - R Sudheer Sagabala
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Yanfen Shi
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - David P Labbé
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Department of Surgery, Division of Urology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alexandre Bergeron
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Pramod Sahadevan
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Sherin A Nawaito
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Pharmacology and Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fatiha Sahmi
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Marie Josse
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Valérie Vinette
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Gérard Karsenty
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Pharmacology and Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benoit Boivin
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.,Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
5
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
6
|
Wang Q, Pan Y, Zhao L, Qi F, Liu J. Protein tyrosine phosphatase 1B(PTP1B) promotes melanoma cells progression through Src activation. Bioengineered 2021; 12:8396-8406. [PMID: 34606417 PMCID: PMC8806946 DOI: 10.1080/21655979.2021.1988376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have demonstrated that protein tyrosine phosphatase 1B (PTP1B) can promote tumor progression in breast cancer, colon cancer and prostate cancer. Additionally, PTP1B also acts as a tumor suppressor in esophageal cancer and lymphoma. These findings suggest that PTP1B functions as a double-faceted molecule in tumors. However, the role of PTP1B in malignant melanoma (MM) is still unknown. PTP1B expression in normal and melanoma tissues was evaluated by GEO analysis and immunohistochemistry. The effects of PTP1B on cell migration and invasion were evaluated in melanoma cells with up – and downregulated PTP1B expression. In this study, we initially demonstrated that the expression of PTP1B in malignant melanoma tissue is significantly higher than its expression in benign nevus tissue and indicated poor survival of malignant melanoma patients. In vitro studies have demonstrated that inhibition of PTP1B suppresses and overexpression of PTP1B promotes migration and invasion of melanoma cells. Moreover, we found that PTP1B could interact with Src via coimmunoprecipitation and dephosphorylation of the Src at Tyr530 site. Collectively, our study revealed that PTP1B can promote melanoma cell metastasis by interacting with Src and provides a theoretical basis for future applications of PTP1B inhibitors in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Yuyan Pan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Liping Zhao
- Department of Plastic Surgery, the First Affiliated Hospital of Ustc, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
7
|
Supplementation of polyunsaturated fatty acids (PUFAs) and aerobic exercise improve functioning, morphology, and redox balance in prostate obese rats. Sci Rep 2021; 11:6282. [PMID: 33737530 PMCID: PMC7973565 DOI: 10.1038/s41598-021-85337-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
The high-fat diet (HFD) stimulates an increase in lipids and can be prejudicial for harmful to prostatic morphogenesis. Polyunsaturated fatty acid (PUFAs) have anti-inflammatory and antioxidant action in some types of cancer. The combination of aerobic physical exercise and PUFA can be more effective and reduce the risk of death. The study evaluates the effects of aerobic physical exercise associated with omega-3 (fish and chia oils), on the ventral prostate of Wistar rats those fed with HFD. Here, we report that HFD modified the final body weight and the weight gain, decreased the expression of the androgen receptor and increased prostatic inflammation via TNF-α produced damage prostatic like intraepithelial neoplasia. The supplementation with fish oil decreases final body weight, reduced BCL-2 and inflammation compared to chia oil; aerobic physical exercise associated with fish oil reduced lipids circulant and prostatic, increased proteins pro-apoptotic expression and reduced IL-6 (p < 0.0001) and TNF-α potentiating the CAT (p = 0.03) and SOD-1 (p = 0.001) expression. Additionally, the chia oil increased the NRF-2 (p < 0.0001) and GSS (p = 0.4) genes. PUFAs reduced the damage caused by excessive high-fat diet in the prostate so that there is greater effectiveness in omega-3 intake, it is necessary to associate with aerobic physical exercise.
Collapse
|
8
|
Shu Y, Yao S, Cai S, Li J, He L, Zou J, Zhang Q, Fan H, Zhou L, Yu S. miR-34c inhibits proliferation of glioma by targeting PTP1B. Acta Biochim Biophys Sin (Shanghai) 2021; 53:325-332. [PMID: 33501502 DOI: 10.1093/abbs/gmaa178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 11/13/2022] Open
Abstract
Glioma is one of the most pervasive and invasive primary malignancies in the central nervous system. Due to its abnormal proliferation, glioma remains hard to cure at present. Protein tyrosine phosphatase 1B (PTP1B) has been proved to be involved in the process of proliferation in many malignancies. However, whether PTP1B is involved in the proliferation of glioma and how it acts are still unclear. In this study, the PTP1B expressions in glioma tissues and cells were determined by quantitative real-time PCR and western blot analysis. The effects of PTP1B on the proliferation characteristics of glioma were explored using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation assay, and tumor xenografts in mice. We found that the protein and mRNA levels of PTP1B in glioma tissues were significantly higher than those in paired nontumor tissues. MTT and clone formation assays showed that PTP1B is closely related to human glioma cell proliferation. In addition, TargetScan revealed that miR-34c regulates PTP1B. Mechanistically, we proved that miR-34c negatively regulates PTP1B and then participates in the regulation of glioma cell proliferation in vivo. Collectively, these results suggested that miR-34c inhibits the proliferation of human glioma cells by targeting PTP1B, which will provide a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Yue Shu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| | - Shengtao Yao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi 563000, China
| | - Shuang Cai
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| | - Jia Li
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| | - Li He
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| | - Jia Zou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| | - Qiang Zhang
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi 563000, China
| | - Hongjie Fan
- Department of Microbiology, Zunyi Medical University, Zunyi 563000, China
| | - Liang Zhou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| | - Shouyang Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
9
|
Gevariya N, Lachance G, Robitaille K, Joly Beauparlant C, Beaudoin L, Fournier É, Fradet Y, Droit A, Julien P, Marette A, Bergeron A, Fradet V. Omega-3 Eicosapentaenoic Acid Reduces Prostate Tumor Vascularity. Mol Cancer Res 2020; 19:516-527. [PMID: 33262291 DOI: 10.1158/1541-7786.mcr-20-0316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/31/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
The impact of omega (ω)-3 fatty acids on prostate cancer is controversial in epidemiological studies but experimental studies suggest a protective effect. However, little is known about the mechanism of action. Here, we studied the effects of purified fatty acid molecules on prostate tumor progression using the TRAMP-C2 syngeneic immunocompetent mouse model. Compared with ω-6 or ω-9-supplemented animals, we observed that late-stage prostate tumor growth was reduced with a monoacylglyceride (MAG)-conjugated form of eicosapentaenoic acid (EPA) supplementation, whereas docosahexanenoic acid (DHA) caused an early reduction. MAG-EPA significantly decreased tumor blood vessel diameter (P < 0.001). RNA sequencing analysis revealed that MAG-EPA downregulated angiogenesis- and vascular-related pathways in tumors. We also observed this tissue vascular phenotype in a clinical trial testing MAG-EPA versus a high oleic sunflower oil placebo. Using anti-CD31 IHC, we observed that MAG-EPA reduced blood vessel diameter in prostate tumor tissue (P = 0.03) but not in normal adjacent tissue. Finally, testing autocrine and paracrine effects in an avascular tumor spheroid growth assay, both exogenous MAG-EPA and endogenous ω3 reduced VEGF secretion and in vitro endothelial cell tube formation and blocked tumor spheroid growth, suggesting that ω3 molecules can directly hinder prostate cancer cell growth. Altogether, our results suggest that fatty acids regulate prostate cancer growth and that a tumor-specific microenvironment is required for the anti-vascular effect of MAG-EPA in patients with prostate cancer. IMPLICATIONS: Increasing the amount of ingested EPA omega-3 subtype for patients with prostate cancer might help to reduce prostate tumor progression by reducing tumor vascularization.
Collapse
Affiliation(s)
- Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Québec, Canada
| | - Gabriel Lachance
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Québec, Canada.,Centre de recherche de l'IUCPQ, Québec, Québec, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Québec, Canada
| | - Charles Joly Beauparlant
- Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Laboratoire de bio-informatique and Centre de Génomique du Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Lisanne Beaudoin
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Québec, Canada
| | - Éric Fournier
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Québec, Canada.,Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Laboratoire de bio-informatique and Centre de Génomique du Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Québec, Canada
| | - Arnaud Droit
- Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Laboratoire de bio-informatique and Centre de Génomique du Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Pierre Julien
- Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Centre de recherche en endocrinologie, métabolisme et inflammation de l'Université Laval, Québec, Québec, Canada
| | - André Marette
- Centre de recherche de l'IUCPQ, Québec, Québec, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Québec, Canada
| | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada. .,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Québec, Canada.,Centre nutrition, santé et société (NUTRISS) et Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, Québec, Canada
| |
Collapse
|
10
|
Labbé DP, Zadra G, Yang M, Reyes JM, Lin CY, Cacciatore S, Ebot EM, Creech AL, Giunchi F, Fiorentino M, Elfandy H, Syamala S, Karoly ED, Alshalalfa M, Erho N, Ross A, Schaeffer EM, Gibb EA, Takhar M, Den RB, Lehrer J, Karnes RJ, Freedland SJ, Davicioni E, Spratt DE, Ellis L, Jaffe JD, DʼAmico AV, Kantoff PW, Bradner JE, Mucci LA, Chavarro JE, Loda M, Brown M. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat Commun 2019; 10:4358. [PMID: 31554818 PMCID: PMC6761092 DOI: 10.1038/s41467-019-12298-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic metabolic alterations associated with increased consumption of saturated fat and obesity are linked with increased risk of prostate cancer progression and mortality, but the molecular underpinnings of this association are poorly understood. Here, we demonstrate in a murine prostate cancer model, that high-fat diet (HFD) enhances the MYC transcriptional program through metabolic alterations that favour histone H4K20 hypomethylation at the promoter regions of MYC regulated genes, leading to increased cellular proliferation and tumour burden. Saturated fat intake (SFI) is also associated with an enhanced MYC transcriptional signature in prostate cancer patients. The SFI-induced MYC signature independently predicts prostate cancer progression and death. Finally, switching from a high-fat to a low-fat diet, attenuates the MYC transcriptional program in mice. Our findings suggest that in primary prostate cancer, dietary SFI contributes to tumour progression by mimicking MYC over expression, setting the stage for therapeutic approaches involving changes to the diet.
Collapse
Affiliation(s)
- David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Urology, Department of Surgery, McGill University and Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Meng Yang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaime M Reyes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stefano Cacciatore
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amanda L Creech
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Francesca Giunchi
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, IT, Italy
| | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, IT, Italy
| | - Habiba Elfandy
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sudeepa Syamala
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Ashley Ross
- James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | | | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Center for Integrated Research on Cancer and Lifestyle, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Surgery Section, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | | | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jacob D Jaffe
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Anthony V DʼAmico
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
- Department of Pathology and Laboratory Medicine, Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY, USA.
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
11
|
Narita S, Nara T, Sato H, Koizumi A, Huang M, Inoue T, Habuchi T. Research Evidence on High-Fat Diet-Induced Prostate Cancer Development and Progression. J Clin Med 2019; 8:jcm8050597. [PMID: 31052319 PMCID: PMC6572108 DOI: 10.3390/jcm8050597] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Although recent evidence has suggested that a high-fat diet (HFD) plays an important role in prostate carcinogenesis, the underlying mechanisms have largely remained unknown. This review thus summarizes previous preclinical studies that have used prostate cancer cells and animal models to assess the impact of dietary fat on prostate cancer development and progression. Large variations in the previous studies were found during the selection of preclinical models and types of dietary intervention. Subcutaneous human prostate cancer cell xenografts, such as LNCaP, LAPC-4, and PC-3 and genetic engineered mouse models, such as TRAMP and Pten knockout, were frequently used. The dietary interventions had not been standardized, and distinct variations in the phenotype were observed in different studies using distinct HFD components. The use of different dietary components in the research models is reported to influence the effect of diet-induced metabolic disorders. The proposed underlying mechanisms for HFD-induced prostate cancer were divided into (1) growth factor signaling, (2) lipid metabolism, (3) inflammation, (4) hormonal modulation, and others. A number of preclinical studies proposed that dietary fat and/or obesity enhanced prostate cancer development and progression. However, the relationship still remains controversial, and care should be taken when interpreting the results in a human context. Future studies using more sophisticated preclinical models are imperative in order to explore deeper understanding regarding the impact of dietary fat on the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Shintaro Narita
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Taketoshi Nara
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Hiromi Sato
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Atsushi Koizumi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Mingguo Huang
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Takamitsu Inoue
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| |
Collapse
|
12
|
Goncalves MD, Hopkins BD, Cantley LC. Dietary Fat and Sugar in Promoting Cancer Development and Progression. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The uncontrolled cellular growth that characterizes tumor formation requires a constant delivery of nutrients. Since the 1970s, researchers have wondered if the supply of nutrients from the diet could impact tumor development. Numerous studies have assessed the impact of dietary components, specifically sugar and fat, to increased cancer risk. For the most part, data from these trials have been inconclusive; however, this does not indicate that dietary factors do not contribute to cancer progression. Rather, the dietary contribution may be dependent on tumor, patient, and context, making it difficult to detect in the setting of large trials. In this review, we combine data from prospective cohort trials with mechanistic studies in mice to argue that fat and sugar can play a role in tumorigenesis and disease progression. We find that certain tumors may respond directly to dietary sugar (colorectal and endometrial cancers) and fat (prostate cancer) or indirectly to the obese state (breast cancer).
Collapse
Affiliation(s)
- Marcus D. Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Benjamin D. Hopkins
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
| | - Lewis C. Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
| |
Collapse
|
13
|
Nunes-Xavier CE, Mingo J, López JI, Pulido R. The role of protein tyrosine phosphatases in prostate cancer biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:102-113. [PMID: 30401533 DOI: 10.1016/j.bbamcr.2018.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most frequent malignancy in the male population of Western countries. Although earlier detection and more active surveillance have improved survival, it is still a challenge how to treat advanced cases. Since androgen receptor (AR) and AR-related signaling pathways are fundamental in the growth of normal and neoplastic prostate cells, targeting androgen synthesis or AR activity constitutes the basis of the current hormonal therapies in PCa. However, resistance to these treatments develops, both by AR-dependent and -independent mechanisms. Thus, alternative therapeutic approaches should be developed to target more efficiently advanced disease. Protein tyrosine phosphatases (PTPs) are direct regulators of the protein- and residue-specific phosphotyrosine (pTyr) content of cells, and dysregulation of the cellular Tyr phosphorylation/dephosphorylation balance is a major driving event in cancer, including PCa. Here, we review the current knowledge on the role of classical PTPs in the growth, differentiation, and survival of epithelial prostate cells, and their potential as important players and therapeutic targets for modulation in PCa.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital Radiumhospitalet, N-0310 Oslo, Norway; Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), 48903 Barakaldo, Bizkaia, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
14
|
Hayashi T, Fujita K, Nojima S, Hayashi Y, Nakano K, Ishizuya Y, Wang C, Yamamoto Y, Kinouchi T, Matsuzaki K, Jingushi K, Kato T, Kawashima A, Nagahara A, Ujike T, Uemura M, Pena MDCR, Gordetsky JB, Morii E, Tsujikawa K, Netto GJ, Nonomura N. High-Fat Diet-Induced Inflammation Accelerates Prostate Cancer Growth via IL6 Signaling. Clin Cancer Res 2018; 24:4309-4318. [PMID: 29776955 DOI: 10.1158/1078-0432.ccr-18-0106] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023]
Abstract
Purpose: High-fat diet (HFD) could induce prostate cancer progression. The aim of this study is to identify mechanisms of HFD-induced prostate cancer progression, focusing on inflammation.Experimental Design: We administered HFD and celecoxib to autochthonous immunocompetent Pb-Cre+;Pten(fl/fl) model mice for prostate cancer. Tumor growth was evaluated by tumor weight and Ki67 stain, and local immune cells were assessed by flow cytometry at 22 weeks of age. Cytokines which correlated with tumor growth were identified, and the changes of tumor growth and local immune cells after inhibition of the cytokine signals were evaluated in the mice. IHC analyses using prostatectomy specimens of obese patients were performed.Results: HFD accelerated tumor growth and increased the myeloid-derived suppressor cells (MDSCs) fraction and M2/M1 macrophage ratio in the model mice. Celecoxib-suppressed tumor growth, and decreased both local MDSCs and M2/M1 macrophage ratio in HFD-fed mice. HFD-induced tumor growth was associated with IL6 secreted by prostatic macrophages, as were phosphorylated STAT3 (pSTAT3)-positive tumor cells. Anti-IL6 receptor antibody administration suppressed tumor growth, and decreased local MDSCs and pSTAT3-positive cell fractions in HFD-fed mice. The tumor-infiltrating CD11b-positive cell count was significantly higher in prostatectomy specimens of obese than those of nonobese patients with prostate cancer.Conclusions: HFD increased MDSCs and accelerated prostate cancer tumor growth via IL6/pSTAT3 signaling in the mice. This mechanism could exist in obese patients with prostate cancer. IL6-mediated inflammation could be a therapeutic target for prostate cancer. Clin Cancer Res; 24(17); 4309-18. ©2018 AACR.
Collapse
Affiliation(s)
- Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kosuke Nakano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yu Ishizuya
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Cong Wang
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiyuki Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshiro Kinouchi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyosuke Matsuzaki
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kentaro Jingushi
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan.,Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Nagahara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Ujike
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutake Tsujikawa
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - George J Netto
- Department of Pathology, UAB School of Medicine, Birmingham, Alabama
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
15
|
Le Sommer S, Morrice N, Pesaresi M, Thompson D, Vickers MA, Murray GI, Mody N, Neel BG, Bence KK, Wilson HM, Delibegović M. Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia. Cancer Res 2018; 78:75-87. [PMID: 29122767 PMCID: PMC5756472 DOI: 10.1158/0008-5472.can-17-0946] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/29/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023]
Abstract
Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B-/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia.Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR.
Collapse
Affiliation(s)
| | - Nicola Morrice
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Martina Pesaresi
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Dawn Thompson
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Mark A Vickers
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Graeme I Murray
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York University, New York, New York
| | - Kendra K Bence
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, United Kingdom.
| | | |
Collapse
|
16
|
Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev 2017; 31:1939-1957. [PMID: 29066500 PMCID: PMC5710140 DOI: 10.1101/gad.304261.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Zhang et al. identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. They validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. Disruption of the balanced modulation of reversible tyrosine phosphorylation has been implicated in the etiology of various human cancers, including breast cancer. Protein Tyrosine Phosphatase N23 (PTPN23) resides in chromosomal region 3p21.3, which is hemizygously or homozygously lost in some breast cancer patients. In a loss-of-function PTPome screen, our laboratory identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. Now, our TCGA (The Cancer Genome Atlas) database analyses illustrate a correlation between low PTPN23 expression and poor survival in breast cancers of various subtypes. Therefore, we investigated the tumor-suppressive function of PTPN23 in an orthotopic transplantation mouse model. Suppression of PTPN23 in Comma 1Dβ cells induced breast tumors within 56 wk. In PTPN23-depleted tumors, we detected hyperphosphorylation of the autophosphorylation site tyrosine in the SRC family kinase (SFK) FYN as well as Tyr142 in β-catenin. We validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. We demonstrated that tumor outgrowth from PTPN23-deficient BT474 cells was suppressed in a xenograft model in vivo upon treatment with AZD0530, an SFK inhibitor. Furthermore, double knockout of FYN and PTPN23 via CRISPR/CAS9 also attenuated tumor outgrowth from PTPN23 knockout Cal51 cells. Overall, this mechanistic analysis of the tumor-suppressive function of PTPN23 in breast cancer supports the identification of FYN as a therapeutic target for breast tumors with heterozygous or homozygous loss of PTPN23.
Collapse
Affiliation(s)
- Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John Erby Wilkinson
- Unit for Laboratory Animal Medicine, Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
17
|
Sarmento-Cabral A, L-López F, Gahete MD, Castaño JP, Luque RM. Metformin Reduces Prostate Tumor Growth, in a Diet-Dependent Manner, by Modulating Multiple Signaling Pathways. Mol Cancer Res 2017; 15:862-874. [PMID: 28385910 DOI: 10.1158/1541-7786.mcr-16-0493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 12/28/2016] [Accepted: 03/30/2017] [Indexed: 11/16/2022]
Abstract
Prostate-cancer is strongly influenced by obesity, wherein metformin could represent a promising treatment; however, the endocrine metabolic/cellular/molecular mechanisms underlying these associations and effects are still unclear. To determine the beneficial antitumoral effects of metformin on prostate cancer progression/aggressiveness and the relative contribution of high-fat diet (HFD; independently of obesity), we used HFD-fed immunosuppressed mice inoculated with PC3 cells (which exhibited partial resistance to diet-induced obesity) compared with low-fat diet (LFD)-fed control mice. Moreover, gene expression analysis was performed on cancer-associated genes in the xenografted tumors, and the antitumorigenic role of metformin on tumoral (PC3/22Rv1/LNCaP) and normal (RWPE1) prostate cells was evaluated. The results demonstrate that HFD is associated with enhanced prostate cancer growth irrespective of body weight gain and endocrine metabolic dysregulations and that metformin can reduce prostate cancer growth under LFD but more prominently under HFD, acting through the modulation of several tumoral-associated processes (e.g., cell cycle, apoptosis, and/or necrosis). Moreover, the actions observed in vivo could be mediated by the modulation of the local expression of GH/IGF1 axis components. Finally, it was demonstrated that metformin had disparate effects on proliferation, migration, and prostate-specific antigen secretion from different cell lines. Altogether, these data reveal that metformin inhibits prostate cancer growth under LFD and, specially, under HFD conditions through multiple metabolic/tumoral signaling pathways.Implications: The current study linking dietary influence on metformin-regulated signaling pathways and antitumoral response provides new and critical insight on environment-host interactions in cancer and therapy. Mol Cancer Res; 15(7); 862-74. ©2017 AACR.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Madrid, Spain.,ceiA3, Córdoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Madrid, Spain.,ceiA3, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Madrid, Spain.,ceiA3, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Madrid, Spain.,ceiA3, Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Madrid, Spain.,ceiA3, Córdoba, Spain
| |
Collapse
|