1
|
Cai Y, Xu H, Deng K, Yang H, Zhao B, Zhang C, Li S, Wei Z, Wang Z, Wang F, Zhang Y. A novel nuclear receptor NR1D1 suppresses HSD17B12 transcription to regulate granulosa cell apoptosis and autophagy via the AMPK pathway in sheep. Int J Biol Macromol 2025; 306:141271. [PMID: 39986531 DOI: 10.1016/j.ijbiomac.2025.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Dominant follicular development and atresia are governed by the proliferation of granulosa cells (GCs), a process influenced by the delicate balance between apoptosis and autophagy. Oxidative stress, a pivotal catalyst of GCs apoptosis, modulates gene expression through epigenetic mechanisms, including chromatin remodeling. Nevertheless, the regulatory mechanisms underpinning GCs functionality in relation to prolificacy remain inadequately elucidated. In this study, we discovered that the chromatin accessibility of nuclear receptor subfamily 1 group D member 1 (NR1D1) was markedly enhanced in dominant follicular GCs from low-prolificacy sheep, as evidenced by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq), which correlated with elevated NR1D1 transcript levels. Remarkably, NR1D1 emerged as a novel regulator of follicular development, exhibiting heightened expression in dominant follicles. The overexpression of NR1D1 induced cell cycle arrest, autophagy activation, and mitochondrial dysfunction via the AMPK pathway, while its knockdown fostered GCs survival and functionality. Furthermore, NR1D1 inhibits the transcription of HSD17B12, thereby contributing to oxidative stress (ROS)-induced apoptosis, as demonstrated by CUT&Tag-qPCR and dual luciferase assays. The downregulation of HSD17B12 partially alleviated the effects of NR1D1 knockdown on GCs functionality. These findings indicate that NR1D1 orchestrates GCs proliferation and apoptosis through the suppression of HSD17B12 and the activation of the AMPK pathway, establishing NR1D1 as a novel transcription factor implicated in follicular development and ovarian function, with significant implications for prolificacy.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Xu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingru Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chong Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanglai Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongyou Wei
- Taicang Agricultural and rural science & Technology Service Center, and Enterprise Graduate workstation, Taicang 215400, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Hsu YC, Kuo CY, Chien MN, Jhuang JY, Huang SY, Chang SC, Cheng SP. Overexpression of NR1D1 Portends Disease Recurrence in Thyroid Cancer. J Clin Endocrinol Metab 2025; 110:991-1002. [PMID: 39359072 DOI: 10.1210/clinem/dgae687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
CONTEXT Dysregulation of circadian rhythms has been linked to cancer susceptibility. Thyroid cancer cells demonstrate altered circadian oscillations in endogenous clock transcripts. OBJECTIVE Our previous research identified NR1D1, a component of the circadian clock, as one of the recurrence-associated genes in papillary thyroid cancer. The objective of this study was to investigate the expression pattern of NR1D1 in thyroid cancer and explore its prognostic and translational implications. METHODS We assessed NR1D1 expression using immunohistochemical analysis and examined its correlation with clinicopathological parameters. In vitro and in vivo experiments were performed to elucidate the oncogenic roles of NR1D1 and potential mechanisms. RESULTS Nuclear NR1D1 expression was present in thyroid follicular epithelial-derived cancers, whereas normal thyroid tissue and benign nodular goiter showed no detectable NR1D1 immunoreactivity. Patients with high expression of NR1D1 had more advanced disease stages, extrathyroidal extension, lymphovascular invasion, and shorter recurrence-free survival compared to those with low levels of NR1D1. Through gain- and loss-of-function studies, we demonstrated that NR1D1 modulation affected the growth of organoids, resistance to anoikis, and the invasive and migratory capacity of thyroid cancer cells. The invasion-promoting effect of NR1D1 was regulated by the β-catenin/ZEB1 axis. Moreover, the overexpression of NR1D1 accelerated xenograft growth and lung metastasis in vivo. CONCLUSION NR1D1 is overexpressed in malignant thyroid tumors and has prognostic significance. Our findings suggest therapeutic potential in targeting NR1D1 for thyroid cancer.
Collapse
MESH Headings
- Humans
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/diagnosis
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Female
- Animals
- Male
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Mice
- Middle Aged
- Prognosis
- Gene Expression Regulation, Neoplastic
- Adult
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Cell Line, Tumor
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City 252005, Taiwan
| | - Ming-Nan Chien
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City 252005, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Jie-Yang Jhuang
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City 252005, Taiwan
- Department of Pathology, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Shih-Yuan Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City 252005, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252005, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
3
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Zhang J, Chen Y, Gong X, Yang Y, Gu Y, Huang L, Fu J, Zhao M, Huang Y, Li L, Liu W, Wan Y, He X, Ma Z, Zhao W, Zhang M, Tang T, Wang Y, Thiery JP, Zheng X, Chen L. GATA factor TRPS1, a new DNA repair protein, cooperates with reversible PARylation to promote chemoresistance in patients with breast cancer. J Biol Chem 2024; 300:107780. [PMID: 39276941 PMCID: PMC11490888 DOI: 10.1016/j.jbc.2024.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Resistance to DNA-damaging agents is a major unsolved challenge for breast cancer patients undergoing chemotherapy. Here, we show that elevated expression of transcriptional repressor GATA binding 1 (TRPS1) is associated with lower drug sensitivity, reduced response rate, and poor prognosis in chemotherapy-treated breast cancer patients. Mechanistically, elevated TRPS1 expression promotes hyperactivity of DNA damage repair (DDR) in breast cancer cells. We provide evidence that TRPS1 dynamically localizes to DNA breaks in a Ku70-and Ku80-dependent manner and that TRPS1 is a new member of the DDR protein family. We also discover that the dynamics of TRPS1 assembly at DNA breaks is regulated by its reversible PARylation in the DDR, and that mutations of the PARylation sites on TRPS1 lead to increased sensitivity to chemotherapeutic drugs. Taken together, our findings provide new mechanistic insights into the DDR and chemoresistance in breast cancer patients and identify TRPS1 as a critical DDR protein. TRPS1 may also be considered as a target to improve chemo-sensitization strategies and, consequently, clinical outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yatao Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Gong
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China; Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Yongfeng Yang
- State Key Lab of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yun Gu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Ling Huang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianfeng Fu
- State Key Lab of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Menglu Zhao
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yehong Huang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lulu Li
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenzhuo Liu
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yajie Wan
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xilin He
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhifang Ma
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China; Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Weiyong Zhao
- Department of Radiation Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tao Tang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuzhi Wang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China; Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
6
|
Wufuer R, Liu K, Feng J, Wang M, Hu S, Chen F, Lin S, Zhang Y. Distinct mechanisms by which Nrf1 and Nrf2 as drug targets contribute to the anticancer efficacy of cisplatin on hepatoma cells. Free Radic Biol Med 2024; 213:488-511. [PMID: 38278308 DOI: 10.1016/j.freeradbiomed.2024.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Cisplatin (cis-Dichlorodiamineplatinum[II], CDDP) is generally accepted as a platinum-based alkylating agent type of the DNA-damaging anticancer drug, which is widely administrated in clinical treatment of many solid tumors. The pharmacological effect of CDDP is mainly achieved by replacing the chloride ion (Cl-) in its structure with H2O to form active substances with the strong electrophilic properties and then react with any nucleophilic molecules, primarily leading to genomic DNA damage and subsequent cell death. In this process, those target genes driven by the consensus electrophilic and/or antioxidant response elements (EpREs/AREs) in their promoter regions are also activated or repressed by CDDP. Thereby, we here examined the expression profiling of such genes regulated by two principal antioxidant transcription factors Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) in diverse cellular signaling responses to this intervention. The results demonstrated distinct cellular metabolisms, molecular pathways and signaling response mechanisms by which Nrf1 and Nrf2 as the drug targets differentially contribute to the anticancer efficacy of CDDP on hepatoma cells and xenograft tumor mice. Interestingly, the role of Nrf1, rather than Nrf2, is required for the anticancer effect of CDDP, to suppress malignant behavior of HepG2 cells by differentially monitoring multi-hierarchical signaling to gene regulatory networks. To our surprise, it was found there exists a closer relationship of Nrf1α than Nrf2 with DNA repair, but the hyperactive Nrf2 in Nrf1α-∕- cells manifests a strong correlation with its resistance to CDDP, albeit their mechanistic details remain elusive.
Collapse
Affiliation(s)
- Reziyamu Wufuer
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Keli Liu
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Jing Feng
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China.
| | - Meng Wang
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Shaofan Hu
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Feilong Chen
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China.
| | - Shanshan Lin
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
7
|
Peng K, Wang M, Wang J, Wang Q, Li D, Sun X, Yang Y, Yang D. Nuclear receptor subfamily 1 group D member 1 suppresses the proliferation, migration of adventitial fibroblasts, and vascular intimal hyperplasia via mammalian target of rapamycin complex 1/β-catenin pathway. Clin Exp Hypertens 2023; 45:2178659. [PMID: 36794491 DOI: 10.1080/10641963.2023.2178659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND In-stent restenosis hardly limits the therapeutic effect of the percutaneous vascular intervention. Although the restenosis is significantly ameliorated after the application of new drug-eluting stents, the incidence of restenosis remains at a high level. OBJECTIVE Vascular adventitial fibroblasts (AFs) play an important role in intimal hyperplasia and subsequent restenosis. The current study was aimed to investigate the role of nuclear receptor subfamily 1, group D, member 1 (NR1D1) in the vascular intimal hyperplasia. METHODS AND RESULTS We observed increased expression of NR1D1 after the transduction of adenovirus carrying Nr1d1 gene (Ad-Nr1d1) in AFs. Ad-Nr1d1 transduction significantly reduced the numbers of total AFs, Ki-67-positive AFs, and the migration rate of AFs. NR1D1 overexpression decreased the expression level of β-catenin and attenuated the phosphorylation of the effectors of mammalian target of rapamycin complex 1 (mTORC1), including mammalian target of rapamycin (mTOR) and 4E binding protein 1 (4EBP1). Restoration of β-catenin by SKL2001 abolished the inhibitory effects of NR1D1 overexpression on the proliferation and migration of AFs. Surprisingly, the restoration of mTORC1 activity by insulin could also reverse the decreased expression of β-catenin, attenuated proliferation, and migration in AFs induced by NR1D1 overexpression. In vivo, we found that SR9009 (an agonist of NR1D1) ameliorated the intimal hyperplasia at days 28 after injury of carotid artery. We further observed that SR9009 attenuated the increased Ki-67-positive AFs, an essential part of vascular restenosis at days 7 after injury to the carotid artery. CONCLUSION These data suggest that NR1D1 inhibits intimal hyperplasia by suppressing the proliferation and migration of AFs in a mTORC1/β-catenin-dependent manner.
Collapse
Affiliation(s)
- Ke Peng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Mingliang Wang
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jun Wang
- Central Sterile Supply Department, General Hospital of Western Theater Command, Chengdu, China
| | - Qiang Wang
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - De Li
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiongshan Sun
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Yongjian Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Dachun Yang
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
8
|
Ka NL, Park MK, Kim SS, Jeon Y, Hwang S, Kim SM, Lim GY, Lee H, Lee MO. NR1D1 Stimulates Antitumor Immune Responses in Breast Cancer by Activating cGAS-STING Signaling. Cancer Res 2023; 83:3045-3058. [PMID: 37395684 PMCID: PMC10538367 DOI: 10.1158/0008-5472.can-23-0329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/13/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Potentiating antitumor immunity is a promising therapeutic approach for treating a variety of cancers, including breast cancer. One potential strategy to promote antitumor immunity is targeting DNA damage response. Given that the nuclear receptor NR1D1 (also known as REV-ERBα) inhibits DNA repair in breast cancer cells, we explored the role of NR1D1 in antitumor CD8+ T-cell responses. First, deletion of Nr1d1 in MMTV-PyMT transgenic mice resulted in increased tumor growth and lung metastasis. Orthotopic allograft experiments suggested that loss of Nr1d1 in tumor cells rather than in stromal cells played a prominent role in increasing tumor progression. Comprehensive transcriptome analyses revealed that biological processes including type I IFN signaling and T cell-mediated immune responses were associated with NR1D1. Indeed, the expression of type I IFNs and infiltration of CD8+ T cells and natural killer cells in tumors were suppressed in Nr1d1-/-;MMTV-PyMT mice. Mechanistically, NR1D1 promoted DNA damage-induced accumulation of cytosolic DNA fragments and activated cGAS-STING signaling, which increased the production of type I IFNs and downstream chemokines CCL5 and CXCL10. Pharmacologic activation of NR1D1 by its ligand, SR9009, enhanced type I IFN-mediated antitumor immunity accompanied by the suppression of tumor progression and lung metastasis. Taken together, these findings reveal the critical role of NR1D1 in enhancing antitumor CD8+ T-cell responses, suggesting that NR1D1 may be a good therapeutic target for breast cancer. SIGNIFICANCE NR1D1 suppresses breast cancer progression and lung metastasis by enhancing antitumor immunity via cGAS-STING pathway activation, which provides potential immunotherapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mi Kyung Park
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yoon Jeon
- Research Institute, National Cancer Center, Gyeonggi, Republic of Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sun Mi Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- Bio-MAX institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Jiang G, Song X, Xie J, Shi T, Yang Q. Polycyclic aromatic hydrocarbons (PAHs) in ambient air of Guangzhou city: Exposure levels, health effects and cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115308. [PMID: 37544068 DOI: 10.1016/j.ecoenv.2023.115308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 pose potentially serious threats to human health. In this study, the distribution characteristics of 16 priority controlled, fine PM (PM2.5)-bound PAHs in the ambient air of Guangzhou city were analysed from 2016 to 2019. Four high-molecular-weight PAHs with the highest annual average concentrations were benzo[ghi]perylene (BghiP; 0.757 ng/m3), indeno(1,2,3-cd)pyrene (IcdP; 0.627 ng/m3), benzo[b]fluoranthene (BbF, 0.519 ng/m3) and 3,4-benzopyrene (BaP; 0.426 ng/m3). Increasing concentrations of BghiP, IcdP, BbF and BaP were associated with increasing numbers of outpatient visits for respiratory diseases, indicating that exposure to these PAHs potentially causes acute respiratory injury in residents. Acute exposure of the human bronchial epithelial cell line BEAS-2B cells to BghiP, IcdP, BbF and BaP in vitro resulted in acute inflammation, DNA damage and apoptosis. Further bioinformatic analysis indicated that nuclear receptor subfamily 1 group D member 1 (NR1D1) may be a key target gene involved in mediating the toxic effects of BghiP. Collectively, our results suggest that BghiP and the other PAHs represented by it can damage the respiratory system and induce lung cancer. This study provides valuable evidence regarding the potential health risks posed by local ambient PAHs pollution.
Collapse
Affiliation(s)
- Guanqing Jiang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Xu Song
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Jiaying Xie
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Tongxing Shi
- Guangzhou Center for Disease Control and Prevention, No. 1 Qide Road, Baiyun District, Guangzhou 510440, PR China
| | - Qiaoyuan Yang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
10
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
11
|
Tierno D, Grassi G, Zanconati F, Bortul M, Scaggiante B. An Overview of Circulating Cell-Free Nucleic Acids in Diagnosis and Prognosis of Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:1799. [PMID: 36675313 PMCID: PMC9864244 DOI: 10.3390/ijms24021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer due to its molecular heterogeneity and poor clinical outcomes. Analysis of circulating cell-free tumor nucleic acids (ctNAs) can improve our understanding of TNBC and provide efficient and non-invasive clinical biomarkers that may be representative of tumor heterogeneity. In this review, we summarize the potential of ctNAs to aid TNBC diagnosis and prognosis. For example, tumor fraction of circulating cell-free DNA (TFx) may be useful for molecular prognosis of TNBC: high TFx levels after neoadjuvant chemotherapy have been associated with shorter progression-free survival and relapse-free survival. Mutations and copy number variations of TP53 and PIK3CA/AKT genes in plasma may be important markers of TNBC onset, progression, metastasis, and for clinical follow-up. In contrast, the expression profile of circulating cell-free tumor non-coding RNAs (ctncRNAs) can be predictive of molecular subtypes of breast cancer and thus aid in the identification of TBNC. Finally, dysregulation of some circulating cell-free tumor miRNAs (miR17, miR19a, miR19b, miR25, miR93, miR105, miR199a) may have a predictive value for chemotherapy resistance. In conclusion, a growing number of efforts are highlighting the potential of ctNAs for future clinical applications in the diagnosis, prognosis, and follow-up of TNBC.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
| | - Marina Bortul
- Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
12
|
Yoon JY, Kim JY, Kim HJ, Ka NL, Lee SH, Lee MO. LncRNA Ctcflos modulates glucocorticoid receptor-mediated induction of hepatic phosphoenolpyruvate carboxykinase in mice. Life Sci 2022; 312:121254. [PMID: 36470542 DOI: 10.1016/j.lfs.2022.121254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Jae-Yeun Yoon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Heon Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Bio-MAX institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Pu S, Wang Q, Liu Q, Zhao H, Zhou Z, Wu Q. Nr1d1 Mediated Cell Senescence in Mouse Heart-Derived Sca-1+CD31− Cells. Int J Mol Sci 2022; 23:ijms232012455. [PMID: 36293311 PMCID: PMC9603916 DOI: 10.3390/ijms232012455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Aim: Sca-1+CD31− cells are resident cardiac progenitor cells, found in many mammalian tissues including the heart, and able to differentiate into cardiomyocytes in vitro and in vivo. Our previous work indicated that heart-derived Sca-1+CD31− cells increased the Nr1d1 mRNA level of Nr1d1 with aging. However, how Nr1d1 affects the senescence of Sca-1+CD31− cells. Methods: Overexpression and knockdown of Nr1d1 in Sca-1+CD31− cells and mouse cardiac myocyte (MCM) cell lines were performed by lentiviral transduction. The effects of Nr1d1 abundance on cell differentiation, proliferation, apoptosis, cell cycle, and transcriptomics were evaluated. Moreover, binding of Nr1d1 to the promoter region of Nr4a3 and Serpina3 was examined by a luciferase reporter assay. Results and Conclusions: Upregulation Nr1d1 in young Sca-1+CD31− cells inhibited cell proliferation and promoted apoptosis. However, depletion of Nr1d1 in aged Sca-1+CD31− cells promoted cell proliferation and inhibited apoptosis. Furthermore, Nr1d1 was negatively associated with cell proliferation, promoting apoptosis and senescence-associated beta-galactosidase production in MCMs. Our findings show that Nr1d1 stimulates Serpina3 expression through its interaction with Nr4a3. Nr1d1 may therefore act as a potent anti-aging receptor that can be a therapeutic target for aging-related diseases.
Collapse
Affiliation(s)
- Shiming Pu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qian Wang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qin Liu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hongxia Zhao
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Correspondence: (Z.Z.); (Q.W.)
| | - Qiong Wu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Correspondence: (Z.Z.); (Q.W.)
| |
Collapse
|
14
|
Zhang K, Wu Q, Liu W, Wang Y, Zhao L, Chen J, Liu H, Liu S, Li J, Zhang W, Zhan Q. FAM135B sustains the reservoir of Tip60-ATM assembly to promote DNA damage response. Clin Transl Med 2022; 12:e945. [PMID: 35979619 PMCID: PMC9386324 DOI: 10.1002/ctm2.945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recently, the mechanism by which cells adapt to intrinsic and extrinsic stresses has received considerable attention. Tat-interactive protein 60-kDa/ataxia-telangiectasia-mutated (TIP60/ATM) axis-mediated DNA damage response (DDR) is vital for maintaining genomic integrity. METHODS Protein levels were detected by western blot, protein colocalisation was examined by immunofluorescence (IF) and protein interactions were measured by co-immunoprecipitation, proximity ligation assay and GST pull-down assays. Flow cytometry, comet assay and IF assays were used to explore the biological functions of sequence similarity 135 family member B (FAM135B) in DDR. Xenograft tumour, FAM135B transgenic mouse models and immunohistochemistry were utilised to confirm in vitro observations. RESULTS We identified a novel DDR regulator FAM135B which could protect cancer cells from genotoxic stress in vitro and in vivo. The overexpression of FAM135B promoted the removal of γH2AX and 53BP1 foci, whereas the elimination of FAM135B attenuated these effects. Consistently, our findings revealed that FAM135B could promote homologous recombination and non-homologous end-joining repairs. Further study demonstrated that FAM135B physically bound to the chromodomain of TIP60 and improved its histone acetyltransferase activity. Moreover, FAM135B enhanced the interactions between TIP60 and ATM under resting conditions. Intriguingly, the protein levels of FAM135B dramatically decreased following DNA damage stress but gradually increased during the DNA repair period. Thus, we proposed a potential DDR mechanism where FAM135B sustains a reservoir of pre-existing TIP60-ATM assemblies under resting conditions. Once cancer cells suffer DNA damage, FAM135B is released from TIP60, and the functioning pre-assembled TIP60-ATM complex participates in DDR. CONCLUSIONS We characterised FAM135B as a novel DDR regulator and further elucidated the role of the TIP60-ATM axis in response to DNA damage, which suggests that targeting FAM135B in combination with radiation therapy or chemotherapy could be a potentially effective approach for cancer treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Wenzhong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Lianmei Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Haoyu Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Siqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Department of OncologyCancer InstitutePeking University Shenzhen HospitalShenzhen Peking University‐Hong Kong University of Science and Technology (PKU‐HKUST) Medical CenterShenzhenChina
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Department of OncologyCancer InstitutePeking University Shenzhen HospitalShenzhen Peking University‐Hong Kong University of Science and Technology (PKU‐HKUST) Medical CenterShenzhenChina
- Peking University International Cancer InstituteBeijingChina
| |
Collapse
|
15
|
Hunter AL, Adamson AD, Poolman TM, Grudzien M, Loudon ASI, Ray DW, Bechtold DA. HaloChIP-seq for Antibody-Independent Mapping of Mouse Transcription Factor Cistromes in vivo. Bio Protoc 2022; 12:e4460. [PMID: 35937930 PMCID: PMC9303821 DOI: 10.21769/bioprotoc.4460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) maps, on a genome-wide scale, transcription factor binding sites, and the distribution of other chromatin-associated proteins and their modifications. As such, it provides valuable insights into mechanisms of gene regulation. However, successful ChIP experiments are dependent on the availability of a high-quality antibody against the target of interest. Using antibodies with poor sensitivity and specificity can yield misleading results. This can be partly circumvented by using epitope-tagged systems ( e.g. , HA, Myc, His), but these approaches are still antibody-dependent. HaloTag ® is a modified dehalogenase enzyme, which covalently binds synthetic ligands. This system can be used for imaging and purification of HaloTag ® fusion proteins, and has been used for ChIP in vitro . Here, we present a protocol for using the HaloTag ® system for ChIP in vivo , to map, with sensitivity and specificity, the cistrome of a dynamic mouse transcription factor expressed at its endogenous locus. Graphical abstract.
Collapse
Affiliation(s)
- Ann Louise Hunter
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Antony D. Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Toryn M. Poolman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Magdalena Grudzien
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Andrew S. I. Loudon
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - David W. Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - David A. Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
16
|
Sahar NE, Qadir J, Riaz SK, Bagabir SA, Muneer Z, Sheikh AK, Waqar SH, Pellicano R, Fagoonee S, Haque S, Malik MF. Dysregulated expression of suppressor loop of circadian rhythm genes in colorectal cancer pathogenesis. Minerva Med 2022; 113:497-505. [PMID: 35856182 DOI: 10.23736/s0026-4806.22.07981-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a heterogeneous disease and activation of WNT and TGFβ mediated oncogenic pathways is frequently observed in this pathology. However, to date, limited reports have been published addressing the association of circadian clock with CRC pathogenesis and stratification. The current study aims at assessing the expression of important circadian markers, PER2, PER3 and NR1D1, in independent CRC cohorts and their associations with CRC-related pathways. METHODS Gene expression analysis was performed using available GEO (GSE39582) and TCGA datasets. Quantitative real time polymerase chain reaction was used to quantify the expression levels of PER2, PER3 and NRID1 in FFPE (formalin fixed paraffin embedded) CRC tissue samples. Furthermore, enrichment of circadian markers in WNT and TGFβ pathways-activated tumors was assessed. RESULTS Statistically significant downregulation of PER3 was found in tumor versus control samples in GEO (P<0.0001) and TCGA colon and rectal adenocarcinoma datasets (P<0.05). Analysis of GEO dataset revealed a statistically significant upregulation of PER2 (P<0.01), and NR1D1 in colon adenocarcinoma, which was confirmed by qRT-PCR in CRC tumor samples versus controls in FFPE validation cohort. Higher expression of NR1D1 was associated with poor prognosis in colon adenocarcinoma. Contrastingly, PER3 was significantly downregulated in tumors (P<0.001) compared to controls and was associated with high-grade CRC tumors versus low-grade tumors. Tumors with WNT pathway activation had significantly low PER3 and slightly upregulated PER2 (<0.0001) expression. Interestingly, differential expression of PER3 and NR1D1 was significantly correlated with TGFβ1-expressing tumors (P<0.0001). Moreover, MYC- amplified tumors exhibited decreased PER3 levels. CONCLUSIONS Thus, low PER3 expression in CRC and poor survival of patients with NR1D1-high tumors reveal that genes in the suppressor loop of circadian rhythm are dysregulated in CRC, hence pointing out to the importance of dissecting the circadian pathway in cancer.
Collapse
Affiliation(s)
- Namood-E Sahar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Javeria Qadir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syeda K Riaz
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sali A Bagabir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Zahid Muneer
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Shahzad H Waqar
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Rinaldo Pellicano
- Department of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Unit of Research and Scientific Studies, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Muhammad F Malik
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan -
| |
Collapse
|
17
|
Ka NL, Lim GY, Kim SS, Hwang S, Han J, Lee YH, Lee MO. Type I IFN stimulates IFI16-mediated aromatase expression in adipocytes that promotes E 2-dependent growth of ER-positive breast cancer. Cell Mol Life Sci 2022; 79:306. [PMID: 35593921 PMCID: PMC9122892 DOI: 10.1007/s00018-022-04333-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Although type I interferons (IFNs) play multifaceted roles during tumorigenesis and cancer treatment, the interplay between type I IFNs and estrogen signaling in breast cancer (BC) microenvironment is not well understood. Here, we report a novel function of type I IFNs in inducing aromatase expression in adipose tissues surrounding BC, which potentiates the E2-dependent growth of estrogen receptor (ER)-positive BC. First, we found that expression levels of type I IFNs correlate negatively with clinical outcome but positively with tumor grade in patients with ER-positive BC. Levels of type I IFNs were elevated in cocultured media of immune cells and BC cells, which increased aromatase expression and E2 production in Simpson-Golabi-Behmel syndrome preadipocytes. The type I IFN-induced aromatase expression was dependent on IFN-γ-inducible protein 16 (IFI16), which is encoded by an interferon-stimulated gene. At the molecular level, type I IFNs led to recruitment of HIF1α-IFI16-PRMT2 complex to the hypoxia-response element located in the aromatase PI.3/PII promoter. Next, we generated an adipocyte-specific Ifi204, which is a mouse ortholog of human IFI16, knockout mouse (Ifi204-AKO). IFNβ induced E2 production in the preadipocytes isolated from the control mice, but such E2 production was far lower in the Ifi204-AKO preadipocytes. Importantly, the growth of orthotopically inoculated E0771 ER-positive mammary tumors was reduced significantly in the Ifi204-AKO mice. Taken together, our findings provide novel insights into the crosstalk between type I IFNs and estrogen signaling in the progression of ER-positive BC.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Juhyeong Han
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Yun-Hee Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
18
|
Lee G, Kim YY, Jang H, Han JS, Nahmgoong H, Park YJ, Han SM, Cho C, Lim S, Noh JR, Oh WK, Lee CH, Kim S, Kim JB. SREBP1c-PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab 2022; 34:702-718.e5. [PMID: 35417665 DOI: 10.1016/j.cmet.2022.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/28/2021] [Accepted: 03/23/2022] [Indexed: 01/10/2023]
Abstract
Emerging evidence indicates that the accretion of senescent cells is linked to metabolic disorders. However, the underlying mechanisms and metabolic consequences of cellular senescence in obesity remain obscure. In this study, we found that obese adipocytes are senescence-susceptible cells accompanied with genome instability. Additionally, we discovered that SREBP1c may play a key role in genome stability and senescence in adipocytes by modulating DNA-damage responses. Unexpectedly, SREBP1c interacted with PARP1 and potentiated PARP1 activity during DNA repair, independent of its canonical lipogenic function. The genetic depletion of SREBP1c accelerated adipocyte senescence, leading to immune cell recruitment into obese adipose tissue. These deleterious effects provoked unhealthy adipose tissue remodeling and insulin resistance in obesity. In contrast, the elimination of senescent adipocytes alleviated adipose tissue inflammation and improved insulin resistance. These findings revealed distinctive roles of SREBP1c-PARP1 axis in the regulation of adipocyte senescence and will help decipher the metabolic significance of senescence in obesity.
Collapse
Affiliation(s)
- Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hagoon Jang
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hahn Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yoon Jeong Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Changyun Cho
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea
| | - Sangsoo Lim
- Bioinformatics Institute, Seoul National University, Seoul 08826, South Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea; Bioinformatics Institute, Seoul National University, Seoul 08826, South Korea; Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
19
|
The Expression of PPAR Pathway-Related Genes Can Better Predict the Prognosis of Patients with Colon Adenocarcinoma. PPAR Res 2022; 2022:1285083. [PMID: 35481240 PMCID: PMC9038426 DOI: 10.1155/2022/1285083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/03/2022] Open
Abstract
The postoperative survival time and quality of life of patients with colon adenocarcinoma (COAD) varies widely. In order to make accurate decisions after surgery, clinicians need to distinguish patients with different prognostic trends. However, we still lack effective methods to predict the prognosis of COAD patients. Accumulated evidences indicated that the inhibition of peroxisome proliferator-activated receptors (PPARs) and a portion of their target genes were associated with the development of COAD. Our study found that the expression of several PPAR pathway-related genes were linked to the prognosis of COAD patients. Therefore, we developed a scoring system (named PPAR-Riskscore) that can predict patients' outcomes. PPAR-Riskscore was constructed by univariate Cox regression based on the expression of 4 genes (NR1D1, ILK, TNFRSF1A, and REN) in tumor tissues. Compared to typical TNM grading systems, PPAR-Riskscore has better predictive accuracy and sensitivity. The reliability of the system was tested on six external validation datasets. Furthermore, PPAR-Riskscore was able to evaluate the immune cell infiltration and chemotherapy sensitivity of each tumor sample. We also combined PPAR-Riskscore and clinical features to create a nomogram with greater clinical utility. The nomogram can help clinicians make precise treatment decisions regarding the possible long-term survival of patients after surgery.
Collapse
|
20
|
Lacambra MD, Antonescu CR, Chit C, Chiu WK, Demicco EG, Ferguson PC, Swanson D, To KF, Zhang L, Dickson BC. Expanding the spectrum of mesenchymal neoplasms with NR1D1‐rearrangement. Genes Chromosomes Cancer 2022; 61:420-426. [DOI: 10.1002/gcc.23032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Maribel D. Lacambra
- Department of Anatomic and Cellular Pathology Prince of UK Hospital, The Chinese University of Hong Kong
| | - Cristina R. Antonescu
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York United States
| | - Chow Chit
- Department of Anatomic and Cellular Pathology Prince of UK Hospital, The Chinese University of Hong Kong
| | - Wang Kei Chiu
- Department of Orthopedics and Traumatology Prince of UK Hospital, The Chinese University of Hong Kong
| | - Elizabeth G. Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Health System; Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| | - Peter C. Ferguson
- Department of Surgery, Mount Sinai Health System; Division of Orthopaedics, Department of Surgery University of Toronto Toronto Ontario Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Health System; Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| | - Ka Fai To
- Department of Anatomic and Cellular Pathology Prince of UK Hospital, The Chinese University of Hong Kong
| | - Lei Zhang
- Department of Anatomic and Cellular Pathology Prince of UK Hospital, The Chinese University of Hong Kong
| | - Brendan C. Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Health System; Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| |
Collapse
|
21
|
Goodenow D, Greer AJ, Cone SJ, Gaddameedhi S. Circadian effects on UV-induced damage and mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108413. [PMID: 35690416 PMCID: PMC9188652 DOI: 10.1016/j.mrrev.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Skin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis. The emerging field of circadian biology intersects strongly with the physiological systems of the mammalian body and introduces a unique opportunity for analyzing mechanisms of homeostatic disruption. The circadian clock refers to the approximate 24-hour cycle, in which protein levels of specific clock-controlled genes (CCGs) fluctuate based on the time of day. Though these CCGs are tissue specific, the skin has been observed to have a robust circadian clock that plays a role in its response to UVR exposure. This in-depth review will detail the mechanisms of the circadian clock and its role in cellular homeostasis. Next, the skin's response to UVR exposure and its induction of DNA damage and mutations will be covered - with an additional focus placed on how the circadian clock influences this response through nucleotide excision repair. Lastly, this review will discuss current models for studying UVR-induced skin lesions and perturbations of the circadian clock, as well as the impact of these factors on human health.
Collapse
Affiliation(s)
- Donna Goodenow
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Adam J Greer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Sean J Cone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
22
|
Ka NL, Lim GY, Hwang S, Kim SS, Lee MO. IFI16 inhibits DNA repair that potentiates type-I interferon-induced antitumor effects in triple negative breast cancer. Cell Rep 2021; 37:110138. [PMID: 34936865 DOI: 10.1016/j.celrep.2021.110138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/12/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Tumor DNA-damage response (DDR) has an important role in driving type-I interferon (IFN)-mediated host antitumor immunity, but it is not clear how tumor DNA damage is interconnected with the immune response. Here, we report the role of IFN-γ-inducible protein 16 (IFI16) in DNA repair, which amplifies the stimulator of IFN genes (STING)-type-I IFN signaling, particularly in triple-negative breast cancer (TNBC). IFI16 is rapidly induced and accumulated to the histone-evicted DNA at double-stranded breakage (DSB) sites, where it inhibits recruitment of DDR factors. Subsequently, IFI16 increases the release of DNA fragments to the cytoplasm and induces STING-mediated type-I IFN production. Synergistic cytotoxic and immunomodulatory effects of doxorubicin and type-I IFNs are decreased upon IFI16 depletion in vivo. Furthermore, IFI16 expression correlates with improved clinical outcome in patients with TNBC treated with chemotherapy. Together, our findings suggest that type-I IFNs and IFI16 could offer potential therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea; Bio-MAX institute, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
23
|
Collier KA, Asad S, Tallman D, Jenison J, Rajkovic A, Mardis ER, Parsons HA, Tolaney SM, Winer EP, Lin NU, Ha G, Adalsteinsson VA, Stover DG. Association of 17q22 Amplicon Via Cell-Free DNA With Platinum Chemotherapy Response in Metastatic Triple-Negative Breast Cancer. JCO Precis Oncol 2021; 5:PO.21.00104. [PMID: 34849445 PMCID: PMC8624042 DOI: 10.1200/po.21.00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/11/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To determine whether specific somatic copy-number alterations detectable in circulating tumor DNA (ctDNA) from patients with metastatic triple-negative breast cancer (mTNBC) are associated with sensitivity to platinum chemotherapy. MATERIALS AND METHODS In this secondary analysis of a large cohort of patients with mTNBC whose ctDNA underwent ultralow-pass whole-genome sequencing, tumor fraction and somatic copy-number alterations were derived with the ichorCNA algorithm. Seventy-two patients were identified who had received a platinum-based chemotherapy regimen in the metastatic setting. Gene-level copy-number analyses were performed with GISTIC2.0. Cytobands were associated with progression-free survival (PFS) to platinum chemotherapy using Cox proportional hazards models. The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium data sets were interrogated for frequency of significant cytobands in primary triple-negative breast cancer (pTNBC) tumors. RESULTS Among 71 evaluable patients, 17q21 and 17q22 amplifications were most strongly associated with improved PFS with platinum chemotherapy. There were no significant differences in clinicopathologic features or (neo)adjuvant chemotherapy among patients with 17q22 amplification. Patients with 17q22 amplification (n = 17) had longer median PFS with platinum (7.0 v 3.8 months; log-rank P = .015) than patients without 17q22 amplification (n = 54), an effect that remained significant in multivariable analyses (PFS hazard ratio 0.37; 95% CI, 0.16 to 0.84; P = .02). Among 39 patients who received the nonplatinum chemotherapy agent capecitabine, there was no association between 17q22 amplification and capecitabine PFS (log-rank P = .69). In The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium, 17q22 amplification occurred in more than 20% of both pTNBC and mTNBC tumors, whereas 17q21 was more frequently amplified in mTNBC relative to pTNBC (16% v 8.1%, P = .015). CONCLUSION The 17q22 amplicon, detected by ctDNA, is associated with improved PFS with platinum chemotherapy in patients with mTNBC and warrants further investigation.
Collapse
Affiliation(s)
- Katharine A. Collier
- Division of Medical Oncology, The Ohio State University College of Medicine, Columbus, OH
| | - Sarah Asad
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - David Tallman
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Janet Jenison
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrei Rajkovic
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Elaine R. Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Heather A. Parsons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Eric P. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Gavin Ha
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Daniel G. Stover
- Division of Medical Oncology, The Ohio State University College of Medicine, Columbus, OH
- Ohio State University Comprehensive Cancer Center, Columbus, OH
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH
| |
Collapse
|
24
|
Boudhraa Z, Zaoui K, Fleury H, Cahuzac M, Gilbert S, Tchakarska G, Kendall-Dupont J, Carmona E, Provencher D, Mes-Masson AM. NR1D1 regulation by Ran GTPase via miR4472 identifies an essential vulnerability linked to aneuploidy in ovarian cancer. Oncogene 2021; 41:309-320. [PMID: 34743206 PMCID: PMC8755527 DOI: 10.1038/s41388-021-02082-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
While aneuploidy is a main enabling characteristic of cancers, it also creates specific vulnerabilities. Here we demonstrate that Ran inhibition targets epithelial ovarian cancer (EOC) survival through its characteristic aneuploidy. We show that induction of aneuploidy in rare diploid EOC cell lines or normal cells renders them highly dependent on Ran. We also establish an inverse correlation between Ran and the tumor suppressor NR1D1 and reveal the critical role of Ran/NR1D1 axis in aneuploidy-associated endogenous DNA damage repair. Mechanistically, we show that Ran, through the maturation of miR4472, destabilizes the mRNA of NR1D1 impacting several DNA repair pathways. We showed that NR1D1 interacts with both PARP1 and BRCA1 leading to the inhibition of DNA repair. Concordantly, loss of Ran was associated with NR1D1 induction, accumulation of DNA damages, and lethality of aneuploid EOC cells. Our findings suggest a synthetic lethal strategy targeting aneuploid cells based on their dependency to Ran.
Collapse
Affiliation(s)
- Zied Boudhraa
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada
| | - Kossay Zaoui
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada
| | - Hubert Fleury
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada
| | - Maxime Cahuzac
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada
| | - Sophie Gilbert
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada
| | - Guergana Tchakarska
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada
| | - Jennifer Kendall-Dupont
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada
| | - Euridice Carmona
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal (ICM), Montreal, QC, Canada.,Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada. .,Institut du cancer de Montréal (ICM), Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
25
|
Gao L, Wang Y, Liu Z, Sun Y, Cai P, Jing Q. Identification of a small molecule SR9009 that activates NRF2 to counteract cellular senescence. Aging Cell 2021; 20:e13483. [PMID: 34587364 PMCID: PMC8520720 DOI: 10.1111/acel.13483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a striking characteristic of senescence. Accumulation of SASP factors causes a pro-inflammatory response linked to chronic disease. Suppressing senescence and SASP represents a strategy to prevent or control senescence-associated diseases. Here, we identified a small molecule SR9009 as a potent SASP suppressor in therapy-induced senescence (TIS) and oncogene-induced senescence (OIS). The mechanism studies revealed that SR9009 inhibits the SASP and full DNA damage response (DDR) activation through the activation of the NRF2 pathway, thereby decreasing the ROS level by regulating the expression of antioxidant enzymes. We further identified that SR9009 effectively prevents cellular senescence and suppresses the SASP in the livers of both radiation-induced and oncogene-induced senescence mouse models, leading to alleviation of immune cell infiltration. Taken together, our findings suggested that SR9009 prevents cellular senescence via the NRF2 pathway in vitro and in vivo, and activation of NRF2 may be a novel therapeutic strategy for preventing cellular senescence.
Collapse
Affiliation(s)
- Li‐Bin Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
| | - Ya‐Hong Wang
- Key Laboratory of Urban Environment and Health Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- Xiamen Key Laboratory of Physical Environment Xiamen China
| | - Zhi‐Hua Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
| | - Peng Cai
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
- Key Laboratory of Urban Environment and Health Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- Xiamen Key Laboratory of Physical Environment Xiamen China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
| |
Collapse
|
26
|
Wang H, Fu Y. NR1D1 suppressed the growth of ovarian cancer by abrogating the JAK/STAT3 signaling pathway. BMC Cancer 2021; 21:871. [PMID: 34330232 PMCID: PMC8323274 DOI: 10.1186/s12885-021-08597-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nuclear receptor subfamily 1 group D member 1 (NR1D1), a nuclear receptor associated with a variety of physiological processes, has a low level in ovarian cancer tissues compared with adjacent normal tissues. However, its role in ovarian cancer remains unclear. Methods The level of NR1D1 in ovarian cancer cells was determined by quantitative real-time PCR. Its role in ovarian cancer was explored through gain-of-function and lose-of-function. Cell growth was evaluated by CCK8 assay, immunofluorescence and flow cytometry. Western blot was conducted to assess the activation of JAK/STAT3 signaling pathway. A xenograft model of ovarian cancer was established to explore the role of NR1D1 in vivo. Results Up-regulation of NR1D1 repressed the ovarian cancer cell proliferation and induced cell cycle arrest and apoptosis, while silencing NR1D1 promoted their proliferation and G1/S transition. In addition, the JAK/STAT3 signaling pathway, an intracellular signal transduction closely associated with cancer progression, was inhibited by NR1D1. Consistently, xenografts with NR1D1 over-expression grew more slowly in vivo than the controls. Furthermore, NR1D1 up-regulated the expression of suppressor of cytokine signaling 3 (SOCS3), an inhibitor of the JAK/STAT3 signaling pathway. Whereas, SOCS3 silencing abolished the function of NR1D1 over-expression on ovarian cancer growth and JAK/STAT3 signaling pathway. Conclusions NR1D1 up-regulated the expression of SOCS3, resulting in suppression of the JAK/STAT3 signaling pathway, thus retarding the growth of ovarian cancer cells. This study highlights a profound role of NR1D1 in the treatment of ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08597-8.
Collapse
Affiliation(s)
- Huailin Wang
- Department of Gynecology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Yan Fu
- Department of Gynecology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China.
| |
Collapse
|
27
|
Liu L, Liu H, Zuo Z, Zhang AA, Li Z, Meng T, Wu W, Hua Y, Mao G. Synthesis of planar chiral isoquinolinone-fused ferrocenes through palladium-catalyzed C-H functionalization reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Chen B, Lai J, Dai D, Chen R, Liao N, Gao G, Tang H. PARPBP is a prognostic marker and confers anthracycline resistance to breast cancer. Ther Adv Med Oncol 2020; 12:1758835920974212. [PMID: 33281951 PMCID: PMC7692344 DOI: 10.1177/1758835920974212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND PARPBP (PARP1 binding protein) is an important suppressor of homologous recombination during DNA repair, but the expression and function of PARPBP in breast cancer remain unclear. METHODS PARPBP expression was analyzed in breast cancer patient samples and public datasets for its correlation with clinical outcome. The function of PARPBP in breast cancer cell proliferation and anthracycline treatment response were studied both in vitro and in vivo. RESULTS PARPBP was upregulated significantly at both mRNA and protein levels in breast cancer tissues compared with normal breast tissues. PARPBP high expression group had poorer overall survival (OS) than the PARPBP low expression group. Knockdown of PARPBP suppressed breast cancer cell proliferation and colony formation while overexpression of PARPBP did the opposite. We found that transcription factor forkhead box M1 (FOXM1) could activate PARPBP expression by directly binding to the promoter of PARPBP. In addition, high expression of PARPBP related with anthracycline resistance in breast cancer. Depletion of PARPBP increased breast cancer cell apoptosis and DNA damage caused by epirubicin. Moreover, tumor xenograft experiments further demonstrated that PARPBP was involved in breast cancer anthracycline resistance. CONCLUSION Taken together, our results highlight that PARPBP is a prognostic marker and confers anthracycline resistance on breast cancer.
Collapse
Affiliation(s)
- Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Jianguo Lai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Danian Dai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Rong Chen
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
29
|
Circadian Dysregulation of the TGFβ/SMAD4 Pathway Modulates Metastatic Properties and Cell Fate Decisions in Pancreatic Cancer Cells. iScience 2020; 23:101551. [PMID: 33083720 PMCID: PMC7522758 DOI: 10.1016/j.isci.2020.101551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Impairment of circadian rhythms impacts carcinogenesis. SMAD4, a clock-controlled gene and central component of the TGFβ canonical pathway, is frequently mutated in pancreatic ductal adenocarcinoma (PDA), leading to decreased survival. Here, we used an in vitro PDA model of SMAD4-positive and SMAD4-negative cells to investigate the interplay between circadian rhythms, the TGFβ canonical signaling pathway, and its impact on tumor malignancy. Our data show that TGFβ1, SMAD3, SMAD4, and SMAD7 oscillate in a circadian fashion in SMAD4-positive PDA cells, whereas altering the clock impairs the mRNA dynamics of these genes. Furthermore, the expression of the clock genes DEC1, DEC2, and CRY1 varied depending on SMAD4 status. TGFβ pathway activation resulted in an altered clock, cell-cycle arrest, accelerated apoptosis rate, enhanced invasiveness, and chemosensitivity. Our data suggest that the impact of TGFβ on the clock is SMAD4-dependent, and S MAD3, SMAD4, DEC1, and CRY1 involved in this cross-talk affect PDA patient survival.
Collapse
|
30
|
Dakup PP, Porter KI, Gajula RP, Goel PN, Cheng Z, Gaddameedhi S. The circadian clock protects against ionizing radiation-induced cardiotoxicity. FASEB J 2020; 34:3347-3358. [PMID: 31919902 DOI: 10.1096/fj.201901850rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/21/2023]
Abstract
Radiation therapy (RT) is commonly used to treat solid tumors of the breast, lung, and esophagus; however, the heart is an unintentional target of ionizing radiation (IR). IR exposure to the heart results in chronic toxicities including heart failure. We hypothesize that the circadian system plays regulatory roles in minimizing the IR-induced cardiotoxicity. We treated mice in control (Day Shift), environmentally disrupted (Rotating Shift), and genetically disrupted (Per 1/2 mutant) circadian conditions with 18 Gy of IR to the heart. Compared to control mice, circadian clock disruption significantly exacerbated post-IR systolic dysfunction (by ultrasound echocardiography) and increased fibrosis in mice. At the cellular level, Bmal1 protein bound to Atm, Brca1, and Brca2 promoter regions and its expression level was inversely correlated with the DNA damage levels based on the state of the clock. Further studies with circadian synchronized cardiomyocytes revealed that Bmal1 depletion increased the IR-induced DNA damage and apoptosis. Collectively, these findings suggest that the circadian clock protects from IR-induced toxicity and potentially impacts RT treatment outcome in cancer patients through IR-induced DNA damage responses.
Collapse
Affiliation(s)
- Panshak P Dakup
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Kenneth I Porter
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Rajendra P Gajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Peeyush N Goel
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Shobhan Gaddameedhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| |
Collapse
|
31
|
Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res 2019; 47:8502-8520. [PMID: 31616951 PMCID: PMC6895267 DOI: 10.1093/nar/gkz545] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/25/2023] Open
Abstract
Microrchidia family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling enzyme with an emerging role in DNA damage response (DDR), but the underlying mechanism remains largely unknown. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1), a key chromatin-associated enzyme responsible for the synthesis of poly(ADP-ribose) (PAR) polymers in mammalian cells, interacts with and PARylates MORC2 at two residues within its conserved CW-type zinc finger domain. Following DNA damage, PARP1 recruits MORC2 to DNA damage sites and catalyzes MORC2 PARylation, which stimulates its ATPase and chromatin remodeling activities. Mutation of PARylation residues in MORC2 results in reduced cell survival after DNA damage. MORC2, in turn, stabilizes PARP1 through enhancing acetyltransferase NAT10-mediated acetylation of PARP1 at lysine 949, which blocks its ubiquitination at the same residue and subsequent degradation by E3 ubiquitin ligase CHFR. Consequently, depletion of MORC2 or expression of an acetylation-defective PARP1 mutant impairs DNA damage-induced PAR production and PAR-dependent recruitment of DNA repair proteins to DNA lesions, leading to enhanced sensitivity to genotoxic stress. Collectively, these findings uncover a previously unrecognized mechanistic link between MORC2 and PARP1 in the regulation of cellular response to DNA damage.
Collapse
Affiliation(s)
- Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
32
|
Na H, Han J, Ka NL, Lee MH, Choi YL, Shin YK, Lee MO. High expression of NR1D1 is associated with good prognosis in triple-negative breast cancer patients treated with chemotherapy. Breast Cancer Res 2019; 21:127. [PMID: 31779659 PMCID: PMC6883674 DOI: 10.1186/s13058-019-1197-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Nuclear receptor subfamily 1, group D, member 1 (NR1D1) is a ligand-regulated nuclear receptor and transcriptional factor. Although recent studies have implicated NR1D1 as a regulator of DNA repair and proliferation in breast cancers, its potential as a therapeutic target for breast cancer has not been assessed in terms of clinical outcomes. Thus, this study aims to analyze NR1D1 expression in breast cancer patients and to evaluate its potential prognostic value. Methods NR1D1 expression was analyzed by immunohistochemistry using an anti-NR1D1 antibody in 694 breast cancer samples. Survival analyses were performed using the Kaplan–Meier method with the log-rank test to investigate the association of NR1D1 expression with clinical outcome. Results One hundred thirty-nine of these samples exhibited high NR1D1 expression, mostly in the nucleus of breast cancer cells. NR1D1 expression correlated significantly with histological grade and estrogen receptor status. Overall survival (OS) and disease-free survival (DFS) did not correlate significantly with NR1D1 expression in breast cancer patients regardless of whether they had received chemotherapy. Subgroup analysis performed according to molecular subtype of breast cancer showed a significant influence of high NR1D1 expression on OS (P = 0.002) and DFS (P = 0.007) in patients with triple-negative breast cancer (TNBC) treated with chemotherapy. Conclusions High NR1D1 expression level had a favorable impact on OS and DFS in patients with TNBC treated with chemotherapy. NR1D1 should be investigated further as a possible prognostic marker in TNBC patients receiving chemotherapeutic treatment and as a target in the development of chemotherapeutic approaches to treating TNBC.
Collapse
Affiliation(s)
- Hyelin Na
- College of Pharmacy, Bio-MAX, and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinil Han
- Gencurix, Inc, Seoul, 08394, Republic of Korea
| | - Na-Lee Ka
- College of Pharmacy, Bio-MAX, and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ho Lee
- College of Pharmacy, Bio-MAX, and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Kee Shin
- College of Pharmacy, Bio-MAX, and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Mi-Ock Lee
- College of Pharmacy, Bio-MAX, and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Wu Y, Tao B, Zhang T, Fan Y, Mao R. Pan-Cancer Analysis Reveals Disrupted Circadian Clock Associates With T Cell Exhaustion. Front Immunol 2019; 10:2451. [PMID: 31708917 PMCID: PMC6821711 DOI: 10.3389/fimmu.2019.02451] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Although dysfunctional circadian clock has emerged as a hallmark of cancer, fundamental gaps remain in our understanding of the underlying mechanisms involved. Here, we systematically analyze the core genes of the circadian clock (CLOCK, ARNTL, ARNTL2, NPAS2, NR1D1, NR1D2, CRY1, CRY2, RORA, RORB, RORC, PER1, PER2, and PER3) across a broad range of cancers. To our surprise, core negative regulators (PER1, PER2, PER3, CRY1, and CRY2) are consistently downregulated, while core positive regulators show minimal alterations, indicating disrupted circadian clock in cancers. Such downregulation originates from copy number variations where heterozygous deletion predominates. The disrupted circadian clock is significantly associated with patient outcome. Further pathway enrichment analysis suggests that the circadian clock widely impacts 45 pathways such as the Ras signaling pathway and T cell receptor signaling pathway. By using state-of-the-art immune cell deconvolution and pathway quantification, we demonstrate that abnormal circadian clock contributes to T cell exhaustion and global upregulation of immune inhibitory molecules such as PD-L1 and CTLA-4. In summary, the rhythm of the circadian clock is disrupted in cancers. Abnormal circadian clock linked with immune evasion may serve as a potential hallmark of cancer.
Collapse
Affiliation(s)
- Yingcheng Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, China
| | - Baorui Tao
- Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, China.,Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Tianyang Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Yihui Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, China.,Department of Immunology, School of Medicine, Nantong University, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| |
Collapse
|
34
|
Meng YY, Si XJ, Song YY, Zhou HM, Xu F. Palladium-catalyzed decarbonylative annulation of phthalimides with arynes: direct construction of phenanthridinones. Chem Commun (Camb) 2019; 55:9507-9510. [DOI: 10.1039/c9cc04868e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel palladium-catalyzed decarbonylative annulation between phthalimides and arynes was well-established, affording phenanthridinone derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Yan-Yu Meng
- Department of College of Science
- Henan Agricultural University
- Zhengzhou 450002
- P. R. China
| | - Xiao-Ju Si
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Yuan-Yuan Song
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Hui-Min Zhou
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Fen Xu
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| |
Collapse
|
35
|
Wang X, Wang N, Wei X, Yu H, Wang Z. REV-ERBα reduction is associated with clinicopathological features and prognosis in human gastric cancer. Oncol Lett 2018; 16:1499-1506. [PMID: 30008829 PMCID: PMC6036475 DOI: 10.3892/ol.2018.8809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer is a serious threat to human health. Nuclear receptor subfamily 1 group D member 1 (REV-ERBα) is a member of the nuclear hormone receptor family that regulates lipid metabolism, inflammatory responses and circadian rhythms. However, the role of REV-ERBα in the pathogenesis of human gastric cancer is unclear. The present study employed gastric cancer tissues from 74 patients and determined the association between REV-ERBα expression with clinicopathological variables and prognosis. Furthermore, the association between REV-ERBα and apoptosis in undifferentiated and moderately differentiated human gastric cancer cells was determined. It was identified that REV-ERBα expression was decreased in gastric cancer, which was positively associated with poor differentiation (P=0.009), T stage (P=0.001), Tumor-Node-Metastasis (TMN) stage (P=0.001) and lymph node metastasis (P=0.007). In the survival analysis, the 3- and 5-year survival times of patients were significantly associated with REV-ERBα expression (P=0.009 and P=0.002, respectively). Low REV-ERBα expression was associated with poor prognosis (P<0.05). Concurrently, cleaved caspase-3 expression was downregulated, whereas expression levels of Bcl-2 and the Bcl-2/Bax ratio were upregulated in gastric cancer tissues compared with normal tissues. REV-ERBα activator GSK4112 caused apoptosis in SGC-7901 and BGC-823 cell lines. REV-ERBα levels were decreased in human gastric cancer, which was associated with poor differentiation, TMN stages and poor prognosis. REV-ERBα is a potential biomarker for tumor development and prognosis, and a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Nana Wang
- Laboratory of Pathophysiology, School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiang Wei
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Haoyuan Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhengguang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
36
|
Jang J, Chung S, Choi Y, Lim HY, Son Y, Chun SK, Son GH, Kim K, Suh YG, Jung JW. The cryptochrome inhibitor KS15 enhances E-box-mediated transcription by disrupting the feedback action of a circadian transcription-repressor complex. Life Sci 2018; 200:49-55. [PMID: 29534992 DOI: 10.1016/j.lfs.2018.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 11/25/2022]
Abstract
AIMS We have previously identified a chemical scaffold possessing 2-ethoxypropanoic acid (designated as KS15) that directly binds to the C-terminal region of cryptochromes (CRYs: CRY1 and CRY2) and enhances E-box-mediated transcription. However, it is still unclear how KS15 impairs the feedback actions of the CRYs and which chemical moieties are functionally important for its actions. MAIN METHODS The E-box-mediated transcriptional activities were mainly used to examine the effects of KS15 and its derivatives. Co-immunoprecipitation assays accompanied by immunoblotting were employed to monitor protein-protein associations. We also examined the effects of KS15 and selected derivatives on circadian molecular rhythms in cultured cells. KEY FINDINGS The present study shows that KS15 inhibits the interaction between CRYs and Brain-Muscle-Arnt-Like protein 1 (BMAL1), thereby impairing the feedback actions of CRYs on E-box-dependent transcription by CLOCK:BMAL1 heterodimer, an indispensable transcriptional regulator of the mammalian circadian clock. Subsequent structure-activity relationship analyses using a well-designed panel of derivatives identified the structural requirements for the effects of KS15 on CRY-evoked regulation of E-box-mediated transcription. We found that KS15 and several derivatives significantly reduce the amplitude and delayed the phase of molecular circadian rhythms in fibroblast cultures. SIGNIFICANCE Taken together, our results provide valuable information on the molecular mode-of-action as well as the chemical components of the CRYs inhibitor that pharmacologically impact on the transcriptional activity of the CLOCK:BMAL1 heterodimer.
Collapse
Affiliation(s)
- Jaebong Jang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Republic of Korea
| | - Youjeong Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Young Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yeongeon Son
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Kook Chun
- Department of Brain and Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea; Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea; Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, Cha University, Pochen, Republic of Korea.
| | - Jong-Wha Jung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
37
|
Ruan L, Chen J, Ruan L, Yang T, Wang P. MicroRNA-186 suppresses lung cancer progression by targeting SIRT6. Cancer Biomark 2018; 21:415-423. [PMID: 29125477 DOI: 10.3233/cbm-170650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Libo Ruan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, China
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Yunnan, China
- Medical School of Kunming University of Science and Technology, Yunnan, China
| | - Jun Chen
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Yunnan, China
| | - Litao Ruan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Yunnan, China
| | - Tianrui Yang
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Yunnan, China
| | - Ping Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, China
- Medical School of Kunming University of Science and Technology, Yunnan, China
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Yunnan, China
| |
Collapse
|
38
|
Abstract
Maintaining the genetic integrity is a key process in cell viability and is enabled by a wide network of repair pathways. When this system is defective, it generates genomic instability and results in an accumulation of chromosomal aberrations and mutations that may be responsible for various clinical phenotypes, including susceptibility to develop cancer. Indeed, these defects can promote not only the initiation of cancer, but also allow the tumor cells to rapidly acquire mutations during their evolution. Several genes are involved in these damage repair systems and particular polymorphisms are predictive of the onset of cancer, the best described of them being BRCA. In addition to its impact on carcinogenesis, the DNA damage repair system is now considered as a therapeutic target of choice for cancer treatment, as monotherapy or in combination with other cytotoxic therapies, such as chemotherapies or radiotherapy. PARP inhibitors are nowadays the best known, but other agents are emerging in the field of clinical research. The enthusiasm in this area is coupled with promising results and a successful collaboration between clinicians and biologists would allow to optimize treatment plans in order to take full advantage of the DNA repair system modulation.
Collapse
|
39
|
Ka NL, Na TY, Lee MO. NR1D1 enhances oxidative DNA damage by inhibiting PARP1 activity. Mol Cell Endocrinol 2017; 454:87-92. [PMID: 28599788 DOI: 10.1016/j.mce.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 11/18/2022]
Abstract
Cancer cells exhibit an elevated intracellular level of reactive oxygen species (ROS) because of their accelerated metabolism, mitochondrial dysfunction, and antioxidant deficit. The oxidative stress in cancer cells may provide clinical benefits, which can be associated with a better response to anticancer therapies. Therefore, identifying the regulatory pathway of oxidative stress in cancer cells is important in the development of therapeutic targets that enhance sensitivity to ROS-generating anticancer therapies. Here, we report that nuclear receptor subfamily 1, group D, member 1 (NR1D1; Rev-erbα) inhibited DNA repair of ROS-induced DNA damage in breast cancer cells. NR1D1 interacted with poly(ADP-ribose) polymerase 1 (PARP1) and subsequently inhibited catalytic activity of PARP1. NR1D1 enhanced accumulation of DNA damage, which increased sensitivity of breast cancer cells to oxidative stress. Our findings suggest that NR1D1 could be a therapeutic target for breast cancer treatment, especially in those patients treated with ROS-inducing chemotherapeutic agents.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy and Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Tae-Young Na
- College of Pharmacy and Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Mi-Ock Lee
- College of Pharmacy and Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
40
|
Cagnetta A, Soncini D, Orecchioni S, Talarico G, Minetto P, Guolo F, Retali V, Colombo N, Carminati E, Clavio M, Miglino M, Bergamaschi M, Nahimana A, Duchosal M, Todoerti K, Neri A, Passalacqua M, Bruzzone S, Nencioni A, Bertolini F, Gobbi M, Lemoli RM, Cea M. Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents. Haematologica 2017; 103:80-90. [PMID: 29025907 PMCID: PMC5777193 DOI: 10.3324/haematol.2017.176248] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022] Open
Abstract
Genomic instability plays a pathological role in various malignancies, including acute myeloid leukemia (AML), and thus represents a potential therapeutic target. Recent studies demonstrate that SIRT6, a NAD+-dependent nuclear deacetylase, functions as genome-guardian by preserving DNA integrity in different tumor cells. Here, we demonstrate that also CD34+ blasts from AML patients show ongoing DNA damage and SIRT6 overexpression. Indeed, we identified a poor-prognostic subset of patients, with widespread instability, which relies on SIRT6 to compensate for DNA-replication stress. As a result, SIRT6 depletion compromises the ability of leukemia cells to repair DNA double-strand breaks that, in turn, increases their sensitivity to daunorubicin and Ara-C, both in vitro and in vivo In contrast, low SIRT6 levels observed in normal CD34+ hematopoietic progenitors explain their weaker sensitivity to genotoxic stress. Intriguingly, we have identified DNA-PKcs and CtIP deacetylation as crucial for SIRT6-mediated DNA repair. Together, our data suggest that inactivation of SIRT6 in leukemia cells leads to disruption of DNA-repair mechanisms, genomic instability and aggressive AML. This synthetic lethal approach, enhancing DNA damage while concomitantly blocking repair responses, provides the rationale for the clinical evaluation of SIRT6 modulators in the treatment of leukemia.
Collapse
Affiliation(s)
- Antonia Cagnetta
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Debora Soncini
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | | | | | - Paola Minetto
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Fabio Guolo
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Veronica Retali
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Nicoletta Colombo
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Enrico Carminati
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Marino Clavio
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Micaela Bergamaschi
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Switzerland
| | - Michel Duchosal
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Switzerland
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Italy and
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Italy and
| | - Alessio Nencioni
- Hematology Unit, Policlinico San Martino, Genova, Italy.,Department of Internal Medicine, University of Genova, Italy
| | | | - Marco Gobbi
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Roberto M Lemoli
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy .,Hematology Unit, Policlinico San Martino, Genova, Italy
| |
Collapse
|