1
|
Chia ZJ, Kumarapperuma H, Zhang R, Little PJ, Kamato D. Smad transcription factors as mediators of 7 transmembrane G protein-coupled receptor signalling. Acta Pharmacol Sin 2025; 46:795-804. [PMID: 39506064 PMCID: PMC11950520 DOI: 10.1038/s41401-024-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs. The classic GPCR signalling cascade is further expanded to conditional adoption of the Smad transcription factor under the stimulation of Akt, demonstrating the unique involvement of the Smad transcription factor in GPCR signalling pathways in disease environments. In this review, we provide a summary of the signalling pathways of the Smad transcription factors as an important downstream mediator of GPCRs, presenting exciting opportunities for discovering new therapeutic targets for diseases.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hirushi Kumarapperuma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ruizhi Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
2
|
Luo P, Hong H, Zhang B, Li J, Zhang S, Yue C, Cao J, Wang J, Dai Y, Liao Q, Xu P, Yang B, Liu X, Lin X, Yu Y, Feng XH. ERBB4 selectively amplifies TGF-β pro-metastatic responses. Cell Rep 2025; 44:115210. [PMID: 39854208 DOI: 10.1016/j.celrep.2024.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response. ERBB4 directly phosphorylates Tyr162 in the linker region of SMAD4, which enables SMAD4 to achieve a higher DNA-binding ability and potentiates TGF-β-induced gene transcription associated with epithelial-to-mesenchymal transition (EMT), cell migration, and invasion without affecting the genes involved in growth inhibition. These selective effects facilitate lung cancer metastasis in mouse models. This discovery sheds light on the previously unrecognized role of SMAD4 as a substrate of ERBB4 and highlights the selective involvement of the ERBB4-SMAD4 regulatory axis in tumor metastasis.
Collapse
Affiliation(s)
- Peihong Luo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanyu Hong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoling Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuyi Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chaomin Yue
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuhan Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qingqing Liao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yi Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
3
|
Qin G, Shao X, Liu X, Xu J, Wang X, Wang W, Gao L, Liang Y, Xie L, Su D, Yang H, Zhou W, Fang X. A signaling molecule from intratumor bacteria promotes trastuzumab resistance in breast cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2421710122. [PMID: 39786928 PMCID: PMC11745319 DOI: 10.1073/pnas.2421710122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
Emerging evidence indicates that intratumor bacteria exist as an active and specific tumor component in many tumor types beyond digestive and respiratory tumors. However, the biological impact and responsible molecules of such local bacteria-tumor direct interaction on cancer therapeutic response remain poorly understood. Trastuzumab is among the most commonly used drugs targeting the receptor tyrosine-protein kinase erbB-2 (ErbB2) in breast cancer, but its resistance is inevitable, severely limiting its clinical effectiveness. Here, we demonstrate that the quorum-sensing signaling molecule N-(3-oxo-dodecanoyl) homoserine lactone (3oc), a chemical compound released by Pseudomonas aeruginosa (P. aeruginosa), one tumor-resident bacteria with a relative high abundance in breast cancer, promotes breast cancer cell resistance to trastuzumab. Mechanically, 3oc directly leads to spontaneous dimerization of the transforming growth factor β (TGF-β) type II serine/threonine kinase receptor on the cell membrane in a ligand-independent manner. The 3oc-induced TGF-β signaling subsequently triggers ErbB2 phosphorylation and its downstream target activation, overcoming the inhibition effect of trastuzumab on ErbB2. With specific real-time qPCR, fluorescence in situ hybridization imaging, and liquid chromatography ionization tandem mass spectrometry analyses of clinical samples, we confirmed that P. aeruginosa and its signaling molecule 3oc exist in breast cancer tissues and there is a clinical correlation between P. aeruginosa colonization and trastuzumab resistance. This work expands the biological functions of intratumor bacteria in cancer treatment responsiveness and provides a unique perspective for overcoming trastuzumab resistance.
Collapse
Affiliation(s)
- Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute of Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing100084, China
| | - Xiying Shao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiachao Xu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Wenxi Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
| | - Lu Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Lina Xie
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Dan Su
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Hongwei Yang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Wei Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
4
|
Błaszczak E, Miziak P, Odrzywolski A, Baran M, Gumbarewicz E, Stepulak A. Triple-Negative Breast Cancer Progression and Drug Resistance in the Context of Epithelial-Mesenchymal Transition. Cancers (Basel) 2025; 17:228. [PMID: 39858010 PMCID: PMC11764116 DOI: 10.3390/cancers17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its distinct clinical and molecular characteristics. Patients with TNBC face a high recurrence rate, an increased risk of metastasis, and lower overall survival compared to other breast cancer subtypes. Despite advancements in targeted therapies, traditional chemotherapy (primarily using platinum compounds and taxanes) continues to be the standard treatment for TNBC, often with limited long-term efficacy. TNBC tumors are heterogeneous, displaying a diverse mutation profile and considerable chromosomal instability, which complicates therapeutic interventions. The development of chemoresistance in TNBC is frequently associated with the process of epithelial-mesenchymal transition (EMT), during which epithelial tumor cells acquire a mesenchymal-like phenotype. This shift enhances metastatic potential, while simultaneously reducing the effectiveness of standard chemotherapeutics. It has also been suggested that EMT plays a central role in the development of cancer stem cells. Hence, there is growing interest in exploring small-molecule inhibitors that target the EMT process as a future strategy for overcoming resistance and improving outcomes for patients with TNBC. This review focuses on the progression and drug resistance of TNBC with an emphasis on the role of EMT in these processes. We present TNBC-specific and EMT-related molecular features, key EMT protein markers, and various signaling pathways involved. We also discuss other important mechanisms and factors related to chemoresistance in TNBC within the context of EMT, highlighting treatment advancements to improve patients' outcomes.
Collapse
Affiliation(s)
- Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | | | | | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Pang J, Huang X, Gao Y, Guan X, Xiong L, Li L, Yin N, Dai M, Han T, Yi W. Multiomics analysis reveals the involvement of NET1 in tumour immune regulation and malignant progression. Sci Rep 2025; 15:56. [PMID: 39747410 PMCID: PMC11695589 DOI: 10.1038/s41598-024-83714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Neuroepithelial cell transforming gene 1 (NET1) is a member of the Ras homologue family member A (RhoA) subfamily of guanine nucleotide exchange factors and a key protein involved in the activation of Rho guanosine triphosphatases, which act as regulators of cell proliferation, cytoskeletal organization, and cell movement and are crucial for cancer spread. Research has shown that NET1 can regulate the malignant biological functions of tumour cells, such as growth, invasion, and metastasis, and it is closely related to the progression of pancreatic cancer, gastric cancer, and liver cancer. However, the comprehensive role and mechanistic function of NET1 in other types of cancer remain largely unexplored. A deeper understanding of the role of NET1 may provide new insights into the molecular mechanisms of cancer progression and metastasis. This study aims to fill this knowledge gap and provide a more comprehensive understanding of the role of NET1 in cancer biology. The Cancer Genome Atlas and Genotype-Tissue Expression databases were utilized to analyse the differential expression of NET1 in normal and cancer tissues. The prognostic value of NET1 in cancer was evaluated through log-rank tests and Cox regression models. Further analysis was conducted to assess the relationships between NET1 expression and clinical features, as well as its diagnostic value. We investigated potential factors contributing to genetic alterations in NET1 to elucidate the role of NET1 in cancer progression. We also explored the relationships between NET1 and genes associated with epigenetic modifications, oncogenes, and tumour characteristics, such as RNA stemness scores (RNAss), DNA stemness scores (DNAss), the tumour mutation burden (TMB), and microsatellite instability (MSI). Additionally, we analysed the associations between NET1 expression and immune cell infiltration, immunoregulatory genes, and sensitivity to therapeutic drugs. We conducted gene set enrichment analysis to further investigate the signalling pathways that might be affected by changes in NET1. The prognostic value of NET1 in triple-negative breast cancer (TNBC) was further validated using real-world and Gene Expression Omnibus (GEO) data. Finally, through both in vivo and in vitro experiments, we confirmed that the overexpression of NET1 contributed to the malignant progression of TNBC cells, and we explored the potential mechanism by which NET1 regulates malignant biological behaviour through cellular experiments. Our study revealed a higher expression level of NET1 in 18 types of tumour tissues than in their corresponding normal tissues. Specifically, we observed high expression of NET1 in LIHC, LUSC, PAAD, and BRCA tumour tissues, which was associated with a poor prognosis. In terms of gene alterations, "amplification", "mutation", and "deep deletion" were identified as the main types of changes occurring in NET1. Among these, "amplification" was predominantly observed in LIHC, LUSC, PAAD, and BRCA. Furthermore, a significant positive correlation was found between copy number variations and the NET1 expression level in various tumours, including LIHC, LUSC, PAAD, and BRCA. We also discovered that NET1 expression was positively correlated with the expression of genes related to epigenetic modification in almost all types of cancer and was related to the expression levels of numerous oncogenes. In certain tumours, a significant positive correlation was noted between the expression of NET1 and TMB, MSI, DNAss, and RNAss. Intriguingly, in most tumours, NET1 expression was strongly negatively correlated with the levels of infiltrating natural killer cells and M1 macrophages. Moreover, NET1 expression was significantly positively correlated with the expression of immune genes in nearly all types of cancer. An analysis of single-cell data revealed that NET1 was expressed primarily in malignant tumour cells in most tumours, with little to no expression in immune cells. Additionally, the expression level of NET1 was associated with sensitivity to various therapeutic drugs. Data from GEO and real-world studies indicated high expression of NET1 in TNBC tissues, which was correlated with a poor prognosis. Cellular experiments indicated that NET1 could regulate the proliferation, invasion, cell cycle, and apoptosis of TNBC cells. Furthermore, NET1 may mediate the malignant proliferation of tumour cells through the AKT signalling pathway. NET1 can serve as a potential prognostic marker for LIHC, LUSC, PAAD, and BRCA tumours. Real-world data further suggest that NET1 can also serve as a prognostic indicator for TNBC. High expression of NET1 may contribute to the malignant proliferation of TNBC cells, potentially through the AKT signalling pathway. Moreover, NET1 may contribute to the formation of an immunosuppressive microenvironment that can promote tumour progression. Therefore, targeting NET1 may represents a promising approach for inhibiting tumour progression.
Collapse
Affiliation(s)
- Jian Pang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, People's Republic of China
| | - Xiaoyan Huang
- Department of Breast Surgery, Fudan University Affiliated Cancer Hospital, Shanghai, People's Republic of China
| | - Ya Gao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, People's Republic of China
| | - Lejia Xiong
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Lun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, People's Republic of China
| | - Nana Yin
- Department of Operating Room, Changde First People's Hospital, Changde, People's Republic of China
| | - Mei Dai
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China
| | - Tong Han
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China.
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China.
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, People's Republic of China.
| |
Collapse
|
6
|
Zhong H, Zhou Z, Wang H, Wang R, Shen K, Huang R, Wang Z. The Biological Roles and Clinical Applications of the PI3K/AKT Pathway in Targeted Therapy Resistance in HER2-Positive Breast Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:13376. [PMID: 39769140 PMCID: PMC11677710 DOI: 10.3390/ijms252413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Epidermal growth factor receptor 2-positive breast cancer (HER2+ BC) is a highly invasive and malignant type of tumor. Due to its resistance to HER2-targeted therapy, HER2+ BC has a poor prognosis and a tendency for metastasis. Understanding the mechanisms underlying this resistance and developing effective treatments for HER2+ BC are major research challenges. The phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway, which is frequently altered in cancers, plays a critical role in cellular proliferation and drug resistance. This signaling pathway activates various downstream pathways and exhibits complex interactions with other signaling networks. Given the significance of the PI3K/AKT pathway in HER2+ BC, several targeted drugs are currently in development. Multiple drugs have entered clinical trials or gained market approval, bringing new hope for HER2+ BC therapy. However, new drugs and therapies raise concerns related to safety, regulation, and ethics. Populations of different races and disease statuses exhibit varying responses to treatments. Therefore, in this review, we summarize current knowledge on the alteration and biological roles of the PI3K/AKT pathway, as well as its clinical applications and perspectives, providing new insights for advancing targeted therapies in HER2+ BC.
Collapse
Affiliation(s)
| | | | | | | | | | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.Z.); (Z.Z.); (H.W.); (R.W.); (K.S.)
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.Z.); (Z.Z.); (H.W.); (R.W.); (K.S.)
| |
Collapse
|
7
|
Li B, Zheng L, Yang J, Qu L. Targeting oncogene-induced cellular plasticity for tumor therapy. ADVANCED BIOTECHNOLOGY 2024; 2:24. [PMID: 39883338 PMCID: PMC11740864 DOI: 10.1007/s44307-024-00030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 01/31/2025]
Abstract
Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities. In this review, we summarize the latest models elucidating the biology of oncogenes that concurrently promote cell proliferation while inhibiting metastasis. We suggest that the complexity of oncogene-induced cellular plasticity, involving the participation of multiple signaling pathways and mechanisms, necessitates a multifaceted approach, prompting a shift towards precision targeting strategies that can effectively target oncogenes without exacerbating metastatic potential.
Collapse
Affiliation(s)
- Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
8
|
Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22:594. [PMID: 38926762 PMCID: PMC11201862 DOI: 10.1186/s12967-024-05411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-β signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-β signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-β plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.
Collapse
Affiliation(s)
- Anna O Giarratana
- Northwell Health - Peconic Bay Medical Center, 1 Heroes Way, Riverhead, NY, 11901, USA.
| | | | - Mary M Salvatore
- Department of Radiology, Columbia University, New York, NY, 11032, USA
| | | |
Collapse
|
9
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
10
|
Shi Q, Huang F, Wang Y, Liu H, Deng H, Chen YG. HER2 phosphorylation induced by TGF-β promotes mammary morphogenesis and breast cancer progression. J Cell Biol 2024; 223:e202307138. [PMID: 38407425 PMCID: PMC10896696 DOI: 10.1083/jcb.202307138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Transforming growth factor β (TGF-β) and HER2 signaling collaborate to promote breast cancer progression. However, their molecular interplay is largely unclear. TGF-β can activate mitogen-activated protein kinase (MAPK) and AKT, but the underlying mechanism is not fully understood. In this study, we report that TGF-β enhances HER2 activation, leading to the activation of MAPK and AKT. This process depends on the TGF-β type I receptor TβRI kinase activity. TβRI phosphorylates HER2 at Ser779, promoting Y1248 phosphorylation and HER2 activation. Mice with HER2 S779A mutation display impaired mammary morphogenesis, reduced ductal elongation, and branching. Furthermore, wild-type HER2, but not S779A mutant, promotes TGF-β-induced epithelial-mesenchymal transition, cell migration, and lung metastasis of breast cells. Increased HER2 S779 phosphorylation is observed in human breast cancers and positively correlated with the activation of HER2, MAPK, and AKT. Our findings demonstrate the crucial role of TGF-β-induced S779 phosphorylation in HER2 activation, mammary gland development, and the pro-oncogenic function of TGF-β in breast cancer progression.
Collapse
Affiliation(s)
- Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, China
| | - Huidong Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Guangzhou National Laboratory, Guangzhou, China
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Moustakas A. Crosstalk between TGF-β and EGF receptors via direct phosphorylation. J Cell Biol 2024; 223:e202403075. [PMID: 38506732 PMCID: PMC10955040 DOI: 10.1083/jcb.202403075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Aristidis Moustakas discusses work from Ye-Guang Chen and colleagues (https://doi.org/10.1083/jcb.202307138) on a new mechanism by which TGF-β modulates HER2 signaling in mammary epithelia.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Bhuva DD, Tan CW, Liu N, Whitfield HJ, Papachristos N, Lee SC, Kharbanda M, Mohamed A, Davis MJ. vissE: a versatile tool to identify and visualise higher-order molecular phenotypes from functional enrichment analysis. BMC Bioinformatics 2024; 25:64. [PMID: 38331751 PMCID: PMC10854147 DOI: 10.1186/s12859-024-05676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Functional analysis of high throughput experiments using pathway analysis is now ubiquitous. Though powerful, these methods often produce thousands of redundant results owing to knowledgebase redundancies upstream. This scale of results hinders extensive exploration by biologists and can lead to investigator biases due to previous knowledge and expectations. To address this issue, we present vissE, a flexible network-based analysis and visualisation tool that organises information into semantic categories and provides various visualisation modules to characterise them with respect to the underlying data, thus providing a comprehensive view of the biological system. We demonstrate vissE's versatility by applying it to three different technologies: bulk, single-cell and spatial transcriptomics. Applying vissE to a factor analysis of a breast cancer spatial transcriptomic data, we identified stromal phenotypes that support tumour dissemination. Its adaptability allows vissE to enhance all existing gene-set enrichment and pathway analysis workflows, empowering biologists during molecular discovery.
Collapse
Affiliation(s)
- Dharmesh D Bhuva
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Chin Wee Tan
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Fraser Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Ning Liu
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Holly J Whitfield
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas Papachristos
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Samuel C Lee
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Malvika Kharbanda
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ahmed Mohamed
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Colonial Foundation Healthy Ageing Centre, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Melissa J Davis
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Fraser Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
13
|
He Y, Goyette MA, Chapelle J, Boufaied N, Al Rahbani J, Schonewolff M, Danek EI, Muller WJ, Labbé DP, Côté JF, Lamarche-Vane N. CdGAP is a talin-binding protein and a target of TGF-β signaling that promotes HER2-positive breast cancer growth and metastasis. Cell Rep 2023; 42:112936. [PMID: 37552602 DOI: 10.1016/j.celrep.2023.112936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor β (TGF-β)-induced EMT transcriptional signature. CdGAP is positively regulated by TGF-β signaling during EMT and interacts with the adaptor talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-β-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-β and integrin/talin signaling pathways.
Collapse
Affiliation(s)
- Yi He
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Marie-Anne Goyette
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Jennifer Chapelle
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jalal Al Rahbani
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Maribel Schonewolff
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Eric I Danek
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
| | - Jean-François Côté
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
14
|
Shayeb AM, Kurzrock R, Adashek JJ, Kato S. Comprehensive Analysis of Human Epidermal Growth Factor Receptor 2 Through DNA, mRNA, and Protein in Diverse Malignancies. JCO Precis Oncol 2023; 7:e2200604. [PMID: 37437231 PMCID: PMC10581650 DOI: 10.1200/po.22.00604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2) expression (protein immunohistochemistry [IHC] or gene amplification [copy-number variation, CNV]) predicts anti-HER2 therapy responsiveness, although recently it was shown that even low HER2-expressing breast cancers benefit from trastuzumab-deruxtecan. Little is known about HER2 transcriptomic (mRNA) expression, and comparisons between genomic, mRNA, and protein HER2 assays. METHODS HER2 status was evaluated using clinical-grade IHC (protein), quantitative reverse transcription polymerase chain reaction (mRNA), and next-generation sequencing (NGS; amplifications). RESULTS Multi-institutional HER2 testing was performed on 5,305 diverse cancers including non-small-cell lung (n = 1,175), breast (n = 1,040), and colon cancers (n = 566; N = 3,926 tested for CNV; N = 1,848, mRNA; N = 2,533, IHC). Overall, 4.1% (161/3,926) had NGS HER2 amplification; 33.3% (615/1,848) had mRNA overexpression; and 9.3% (236/2,533) were IHC-positive. In 723 patients with all three tests (CNV/mRNA/IHC), various amplification/expression patterns occurred: 7.5% (54/723) had all three HER2 tests positive; 62.8% (454/723) had all three tests negative. Discrepant patterns between amplification and overexpression emerged. For instance, 20% (144/723) of patients had mRNA overexpression alone with negative CNV and IHC. A range in values for only mRNA+ cases occurred in different tumor types (eg, 16.9%, breast; 5%, hepatobiliary). There were 53 patients with various tumors from our institution who had all three assays attempted; 22 tested positive for HER2, and seven received anti-HER2 therapy: two patients achieved response: one (esophageal cancer), complete response (≥42 months); one (cholangiocarcinoma), who only had HER2 mRNA positivity (tissue was inadequate for IHC and CNV assessment), partial response (≥24 months) on HER2-based regimens. CONCLUSION We demonstrate variability of HER2 (protein and mRNA) expression and amplification using comprehensive assays (CNV, mRNA, and IHC) among diverse cancers. As HER2-targeted therapy indications expand, the relative importance of these modalities merits further evaluation.
Collapse
Affiliation(s)
- Akram Mesleh Shayeb
- Department of Hematology/Oncology, University of California San Diego, San Diego, CA
| | - Razelle Kurzrock
- Medical College of Wisconsin Cancer Center and Genomic Sciences and Precision Medicine Center, Milwaukee, WI
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Paris, France
| | - Jacob J. Adashek
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD
| | - Shumei Kato
- Department of Hematology/Oncology, University of California San Diego, San Diego, CA
| |
Collapse
|
15
|
Hao XS, Feng PP, Zhang YY, Wang FZ, Wang GL, Fei HR. Scutebarbatine A induces ROS-mediated DNA damage and apoptosis in breast cancer cells by modulating MAPK and EGFR/Akt signaling pathway. Chem Biol Interact 2023; 378:110487. [PMID: 37072049 DOI: 10.1016/j.cbi.2023.110487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Scutebarbatine A (SBT-A), a diterpenoid alkaloid, has exerted cytotoxicity on hepatocellular carcinoma cells in our previous works. Here, the antitumor activity of SBT-A in breast cancer cells and the underlying mechanism were explored. The anti-proliferative effect of SBT-A was measured by trypan blue staining, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and colony formation assay. DNA double-strand breaks (DSBs) were evaluated by observing the nuclear focus formation of γ-H2AX. Cell cycle distribution was assessed by flow cytometry. Apoptosis was determined by a TUNEL assay. Intracellular reactive oxygen species (ROS) generation and superoxide production were measured with 2', 7'-dichlorofluorescein diacetate (DCFH-DA) and dihydroethidium (DHE) staining, respectively. The results indicated that SBT-A showed a dose-dependent cytotoxic effect against breast cancer cells while revealing less toxicity toward MCF-10A breast epithelial cells. Moreover, SBT-A remarkably induced DNA damage, cell cycle arrest and apoptosis in both MDA-MB-231 and MCF-7 cells. SBT-A treatment increased the levels of ROS and cytosolic superoxide production. Pretreatment with N-acetyl cysteine (NAC), a ROS scavenger, was sufficient to block viability reduction, DNA damage, apoptosis and endoplasmic reticulum (ER) stress caused by SBT-A. By exposure to SBT-A, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK) was upregulated, while the phosphorylation of extracellular signal-regulated kinase (ERK) was downregulated. In addition, SBT-A inhibited the EGFR signaling pathway by decreasing EGFR expression and phosphorylation of Akt and p70S6K. As mentioned above, SBT-A has a potent inhibitory effect on breast cancer cells through induction of DNA damage, apoptosis and ER stress via ROS generation and modulation of MAPK and EGFR/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao-Shan Hao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Pan-Pan Feng
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Yun-Yun Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Feng-Ze Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Gui-Ling Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Hong-Rong Fei
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China.
| |
Collapse
|
16
|
Zhou H, He Y, Huang Y, Li R, Zhang H, Xia X, Xiong H. Comprehensive analysis of prognostic value, immune implication and biological function of CPNE1 in clear cell renal cell carcinoma. Front Cell Dev Biol 2023; 11:1157269. [PMID: 37077419 PMCID: PMC10106647 DOI: 10.3389/fcell.2023.1157269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Elevated expression of Copine-1 (CPNE1) has been proved in various cancers; however, the underlying mechanisms by which it affects clear cell renal cell carcinoma (ccRCC) are unclear.Methods: In this study, we applied multiple bioinformatic databases to analyze the expression and clinical significance of CPNE1 in ccRCC. Co-expression analysis and functional enrichment analysis were investigated by LinkedOmics, cBioPortal and Metascape. The relationships between CPNE1 and tumor immunology were explored using ESTIMATE and CIBERSORT method. In vitro experiments, CCK-8, wound healing, transwell assays and western blotting were conducted to investigate the effects of gain- or loss-of-function of CPNE1 in ccRCC cells.Results: The expression of CPNE1 was notably elevated in ccRCC tissues and cells, and significantly correlated with grade, invasion range, stage and distant metastasis. Kaplan–Meier and Cox regression analysis displayed that CPNE1 expression was an independent prognostic factor for ccRCC patients. Functional enrichment analysis revealed that CPNE1 and its co-expressed genes mainly regulated cancer-related and immune-related pathways. Immune correlation analysis showed that CPNE1 expression was significantly related to immune and estimate scores. CPNE1 expression was positively related to higher infiltrations of immune cells, such as CD8+ T cells, plasma cells and regulatory T cells, exhibited lower infiltrations of neutrophils. Meanwhile, elevated expression of CPNE1 was characterized by high immune infiltration levels, increased expression levels of CD8+ T cell exhaustion markers (CTLA4, PDCD1 and LAG3) and worse response to immunotherapy. In vitro functional studies demonstrated that CPNE1 promoted proliferation, migration and invasion of ccRCC cells through EGFR/STAT3 pathway.Conclusion: CPNE1 is a reliable clinical predictor for the prognosis of ccRCC and promotes proliferation and migration by activating EGFR/STAT3 signaling. Moreover, CPNE1 significantly correlates with immune infiltration in ccRCC.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Xia
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Huihua Xiong,
| |
Collapse
|
17
|
Fuentes-Fayos AC, G-García ME, Pérez-Gómez JM, Montero-Hidalgo AJ, Martín-Colom J, Doval-Rosa C, Blanco-Acevedo C, Torres E, Toledano-Delgado Á, Sánchez-Sánchez R, Peralbo-Santaella E, Ortega-Salas RM, Jiménez-Vacas JM, Tena-Sempere M, López M, Castaño JP, Gahete MD, Solivera J, Luque RM. Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidence. EBioMedicine 2023; 90:104484. [PMID: 36907105 PMCID: PMC10024193 DOI: 10.1016/j.ebiom.2023.104484] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFβ-pathways). Interestingly, an enrichment analysis uncovered a TGFβ-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| | - Miguel E G-García
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Julia Martín-Colom
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Carlos Doval-Rosa
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Encarnación Torres
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Álvaro Toledano-Delgado
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Esther Peralbo-Santaella
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Flow Cytometry Unit, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004, Cordoba, Spain
| | - Rosa M Ortega-Salas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Manuel Tena-Sempere
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Miguel López
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain; NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Juan Solivera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| |
Collapse
|
18
|
Liu W, Wang Y, Zhang Y, Yu T, Ge J. Analysis of Breast Cancer Biomarker HER2 Based on Single Stranded DNA Aptamer and Enzyme Signal Amplification. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
19
|
Liu Y, Ouyang W, Huang H, Tan Y, Zhang Z, Yu Y, Yao H. Identification of a tumor immune-inflammation signature predicting prognosis and immune status in breast cancer. Front Oncol 2023; 12:960579. [PMID: 36713514 PMCID: PMC9881411 DOI: 10.3389/fonc.2022.960579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/24/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Breast cancer has become the malignancy with the highest mortality rate in female patients worldwide. The limited efficacy of immunotherapy as a breast cancer treatment has fueled the development of research on the tumor immune microenvironment. METHODS In this study, data on breast cancer patients were collected from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohorts. Differential gene expression analysis, univariate Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis were performed to select overall survival (OS)-related, tumor tissue highly expressed, and immune- and inflammation-related genes. A tumor immune-inflammation signature (TIIS) consisting of 18 genes was finally screened out in the LASSO Cox regression model. Model performance was assessed by time-dependent receiver operating characteristic (ROC) curves. In addition, the CIBERSORT algorithm and abundant expression of immune checkpoints were utilized to clarify the correlation between the risk signature and immune landscape in breast cancer. Furthermore, the association of IL27 with the immune signature was analyzed in pan-cancer and the effect of IL27 on the migration of breast cancer cells was investigated since the regression coefficient of IL27 was the highest. RESULTS A TIIS based on 18 genes was constructed via LASSO Cox regression analysis. In the TCGA-BRCA training cohort, 10-year AUC reached 0.89, and prediction performance of this signature was also validated in the METABRIC set. The high-risk group was significantly correlated with less infiltration of tumor-killing immune cells and the lower expression level of the immune checkpoint. Furthermore, we recommended some small-molecule drugs as novel targeted drugs for new breast cancer types. Finally, the relationship between IL27, a significant prognostic immune and inflammation cytokine, and immune status was analyzed in pan-cancer. Expression of IL27 was significantly correlated with immune regulatory gene expression and immune cell infiltration in pan-cancer. Furthermore, IL27 treatment improved breast cancer cell migration. CONCLUSION The TIIS represents a promising prognostic tool for estimating OS in patients with breast cancer and is correlated with immune status.
Collapse
Affiliation(s)
- Yajing Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Huang
- School of Medicine, Guilin Medical College, Guilin, China
| | - Yujie Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zebang Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
21
|
Li H, Xue S, Zhang X, Li F, Bei S, Feng L. CircRNA PVT1 modulated cell migration and invasion through Epithelial-Mesenchymal Transition (EMT) mediation in gastric cancer through miR-423-5p/Smad3 pathway. Regen Ther 2022; 21:25-33. [PMID: 35663842 PMCID: PMC9133701 DOI: 10.1016/j.reth.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) progression is related with gene regulations. Objectives This study explored underlying regulatory axis of circRNA PVT1 (circPVT1) in GC. Methods GC cell lines were detected for circPVT1 expression with the normal mucous epithelial cell GES-1 as control. After regulation of circPVT1, miR-423-5p and SMAD3 expression through transfection, CCK8 evaluated the cell viability, Transwell measured the migratory and invasive capability of cells. Luciferase verified the paired bindings between miR-423-5p and CircPVT1 or SMAD3. The functions of CircPVT1/miR-423-5p/SMAD3 were evaluated using RT-PCR, CCK8, Transwell assays. Western blot analyzed EMT-related proteins and phosphorylation of Smad3 in GC cells. Immunofluorescence method was used to evaluate the EMT-related proteins as well. Results CircPVT1 displayed higher expression in GC cells and knockdown led to decrease in cell growth, invasion and migration. CircPVT1 was targeted by miR-423-5p as a ceRNA of SMAD3. miR-423-5p upregulation suppressed both cicRNA PVT1 and SMAD3 in GC cells. Decrease in SMAD3 expression suppressed CircPVT1 by releasing miR-423-5p in cells, inhibiting cell growth, invasion and migration and suppressing the EMT process. Conclusion CircPVT1 modulated cell growth, invasion and migration through EMT mediation in gastric cancer through miR-423-5p/Smad3 pathway.
Collapse
|
22
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
23
|
Shukla N, Naik A, Moryani K, Soni M, Shah J, Dave H. TGF-β at the crossroads of multiple prognosis in breast cancer, and beyond. Life Sci 2022; 310:121011. [PMID: 36179816 DOI: 10.1016/j.lfs.2022.121011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 10/25/2022]
Abstract
Transforming growth factor β (TGF-β), a pluripotent cytokine and a multifunctional growth factor has a crucial role in varied biological mechanisms like invasion, migration, epithelial-mesenchymal transition, apoptosis, wound healing, and immunosuppression. Moreover, it also has an imperative role both in normal mammary gland development as well as breast carcinogenesis. TGF-β has shown to have a paradoxical role in breast carcinogenesis, by transitioning from a growth inhibitor to a growth promoter with the disease advancement. The inter-communication and crosstalk of TGF-β with different signaling pathways has strengthened the likelihood to explore it as a comprehensive biomarker. In the last two decades, TGF-β has been studied extensively and has been found to be a promising biomarker for early detection, disease monitoring, treatment selection, and tumor progression making it beneficial for disease management. In this review, we focus on the signaling pathways and biological activities of the TGF-β family in breast cancer pathogenesis and its role as a circulatory and independent biomarker for breast cancer progression and metastasis. Moreover, this review highlights TGF-β as a drug target, and the underlying mechanisms through which it is involved in tumorigenesis that will aid in the development of varied therapies targeting the different stages of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ankit Naik
- Ahmedabad University, Ahmedabad, Gujarat 390009, India
| | - Kamlesh Moryani
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Molisha Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
24
|
Glycosphingolipids are mediators of cancer plasticity through independent signaling pathways. Cell Rep 2022; 40:111181. [PMID: 35977490 DOI: 10.1016/j.celrep.2022.111181] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The molecular repertoire promoting cancer cell plasticity is not fully elucidated. Here, we propose that glycosphingolipids (GSLs), specifically the globo and ganglio series, correlate and promote the transition between epithelial and mesenchymal cells. The epithelial character of ovarian cancer remains stable throughout disease progression, and spatial glycosphingolipidomics reveals elevated globosides in the tumor compartment compared with the ganglioside-rich stroma. CRISPR-Cas9 knockin mediated truncation of endogenous E-cadherin induces epithelial-to-mesenchymal transition (EMT) and decreases globosides. The transcriptomics analysis identifies the ganglioside-synthesizing enzyme ST8SIA1 to be consistently elevated in mesenchymal-like samples, predicting poor outcome. Subsequent deletion of ST8SIA1 induces epithelial cell features through mTORS2448 phosphorylation, whereas loss of globosides in ΔA4GALT cells, resulting in EMT, is accompanied by increased ERKY202/T204 and AKTS124. The GSL composition dynamics corroborate cancer cell plasticity, and further evidence suggests that mesenchymal cells are maintained through ganglioside-dependent, calcium-mediated mechanisms.
Collapse
|
25
|
Sun J, Li X, Chen P, Gao Y. From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. J Inflamm Res 2022; 15:4061-4085. [PMID: 35873388 PMCID: PMC9304417 DOI: 10.2147/jir.s368138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Current Therapeutic modalities provide no survival advantage to gastric cancer (GC) patients. Targeting the human epidermal growth factor receptor-2 (HER-2) is a viable therapeutic strategy against advanced HER-2 positive GC. Antibody-drug conjugates, small-molecule tyrosine kinase inhibitors (TKIs), and bispecific antibodies are emerging as novel drug forms that may abrogate the resistance to HER-2-specific drugs and monoclonal antibodies. Chimeric antigen receptor-modified T cells (CAR-T) targeting HER-2 have shown considerable therapeutic potential in GC and other solid tumors. However, due to the high heterogeneity along with the complex tumor microenvironment (TME) of GC that often leads to immune escape, the immunological treatment of GC still faces many challenges. Here, we reviewed and discussed the current progress in the research of anti-HER-2-CAR-T cell immunotherapy against GC.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaojing Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| |
Collapse
|
26
|
Chen X, Ji Y, Feng F, Liu Z, Qian L, Shen H, Lao L. C-type lectin domain-containing protein CLEC3A regulates proliferation, regeneration and maintenance of nucleus pulposus cells. Cell Mol Life Sci 2022; 79:435. [PMID: 35864364 PMCID: PMC11071857 DOI: 10.1007/s00018-022-04477-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
It is widely assumed that as connective tissue, the intervertebral disc (IVD) plays a crucial role in providing flexibility for the spinal column. The disc is comprised of three distinct tissues: the nucleus pulposus (NP), ligamentous annulus fibrous (AF) that surrounds the NP, and the hyaline cartilaginous endplates (CEP). Nucleus pulposus, composed of chondrocyte-like NP cells and its secreted gelatinous matrix, is critical for disc health and function. The NP matrix underwent dehydration accompanied by increasing fibrosis with age. The degeneration of matrix is almost impossible to repair, with the consequence of matrix stiffness and senescence of NP cells and intervertebral disc, suggesting the value of glycoproteins in extracellular matrix (ECM). Here, via database excavation and biological function screening, we investigated a C-type lectin protein, CLEC3A, which could support differentiation of chondrocytes as well as maintenance of NP cells and was essential to intervertebral disc homeostasis. Furthermore, mechanistic analysis revealed that CLEC3A could stimulate PI3K-AKT pathway to accelerate cell proliferation to further play part in NP cell regeneration.
Collapse
Affiliation(s)
- Xiuyuan Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fan Feng
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zude Liu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lie Qian
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lifeng Lao
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
27
|
Andreu I, Granero-Moya I, Chahare NR, Clein K, Molina-Jordán M, Beedle AEM, Elosegui-Artola A, Abenza JF, Rossetti L, Trepat X, Raveh B, Roca-Cusachs P. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol 2022; 24:896-905. [PMID: 35681009 PMCID: PMC7614780 DOI: 10.1038/s41556-022-00927-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than for facilitated diffusion. Owing to this differential effect, force leads to the translocation of cargoes into or out of the nucleus within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism and engineered exogenously by introducing appropriate nuclear localization signals. Our work unveils a mechanism of mechanically induced signalling, probably operating in parallel with others, with potential applicability across signalling pathways.
Collapse
Affiliation(s)
- Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universidad de Navarra, TECNUN Escuela de Ingeniería, Donostia-San Sebastián, Spain.
| | - Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Nimesh R Chahare
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Kessem Clein
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Molina-Jordán
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
| | - Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Juan F Abenza
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Tsujio G, Maruo K, Yamamoto Y, Sera T, Sugimoto A, Kasashima H, Miki Y, Yoshii M, Tamura T, Toyokawa T, Tanaka H, Muguruma K, Ohira M, Yashiro M. Significance of tumor heterogeneity of p-Smad2 and c-Met in HER2-positive gastric carcinoma with lymph node metastasis. BMC Cancer 2022; 22:598. [PMID: 35650563 PMCID: PMC9161565 DOI: 10.1186/s12885-022-09681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Tumor heterogeneity has frequently been observed in gastric cancer (GC), but the correlation between patients’ clinico-pathologic features and the tumoral heterogeneity of GC-associated molecules is unclear. We investigated the correlation between lymph node metastasis and the intra-tumoral heterogeneity of driver molecules in GC. Materials and methods We retrospectively analyzed the cases of 504 patients who underwent a gastrectomy at the Department of Gastroenterological Surgery, Osaka Metropolitan University and 389 cases drawn from The Cancer Genome Atlas (TCGA) data. We performed a clustering analysis based on eight cancer-associated molecules including HER2, c-Met, and p-Smad2 using the protein expression revealed by our immunohistochemical study of the patients’ and TCGA cases. We determined the correlations between HER2 expression and the other molecules based on the degree of lymph node metastasis. Results Immunohistochemical staining data showed that a 43 of the 504 patients with GC (8.5%) were HER2-positive. In the HER2-positive cases, the expressions of c-Met and p-Smad2 were increased in accord with the lymph-node metastatic level. The overall survival of the HER2-positive GC patients with both p-Smad2 and c-Met expression was significantly (p = 0.030) poorer than that of the patients with p-Smad2-negative and/or c-Met-negative expression. The results of the TCGA data analysis revealed that 58 of the 389 GC cases (14.9%) were ERBB2-positive. MET expression was more frequent in the N1 metastasis group than the N0 group. In the high lymph-node metastasis (N2 and N3) group, SMAD2 expression was more frequent, as was ERBB2 and MET expression. Conclusion p-Smad2 and c-Met signaling might play important roles in lymph node metastasis in HER2-positive GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09681-3.
Collapse
Affiliation(s)
- Gen Tsujio
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koji Maruo
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tomohiro Sera
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Atsushi Sugimoto
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
29
|
Molecular mechanisms of skin wound healing in non-diabetic and diabetic mice in excision and pressure experimental wounds. Cell Tissue Res 2022; 388:595-613. [PMID: 35386010 PMCID: PMC9110453 DOI: 10.1007/s00441-022-03624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Experimental models for chronic skin lesions are excision and pressure ulcer, defined as “open” and “closed” lesions, respectively, only the latter characterized by tissue hypoxia. Moreover, systemic diseases, such as diabetes mellitus, affect wound repair. Thus, models for testing new therapies should be carefully selected according to the expected targets. In this study, we present an extensive and comparative histological, immunohistochemical, and molecular characterization of these two lesions in diabetic (db/db) and non-diabetic (C57BL/6 J) mice. In db/db mice, we found significant reduction in PGP9.5-IR innervation, reduction of capillary network, and reduced expression of NGF receptors. We found an increase in VEGF receptor Kdr expression, and the PI3K-Akt signaling pathway at the core of the altered molecular network. Db/db mice with pressure ulcers showed an impairment in the molecular regulation of hypoxia-related genes (Hif1a, Flt1, and Kdr), while extracellular matrix encoding genes (Itgb3, Timp1, Fn1, Col4a1) were upregulated by hyperglycemia and lesions. Overall, the molecular analysis suggests that db/db mice have a longer inflammatory phase of the wound repair process, delaying the progression toward the proliferation and remodeling phases.
Collapse
|
30
|
Heterogeneity of Synchronous Lung Metastasis Calls for Risk Stratification and Prognostic Classification: Evidence from a Population-Based Database. Cancers (Basel) 2022; 14:cancers14071608. [PMID: 35406378 PMCID: PMC8996888 DOI: 10.3390/cancers14071608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022] Open
Abstract
The epidemiology and associated potential heterogeneity of synchronous lung metastasis (sLM) have not been reported at a population-based level. Cancer patients with valid information about sLM status in the Surveillance, Epidemiology, and End Results database were enrolled. The prevalence of sLM, with a 95% confidential interval, and median survival of sLM, with interquartile range, were calculated and compared by Chi-square analyses and log-rank tests by primary cancer type and clinicopathological factors. Furthermore, the risk factors of sLM development were identified by multivariate logistic regression. Among 1,672,265 enrolled cases, 3.3% cases were identified with sLM, with a median survival of 7 months. Heterogeneity in prevalence and prognosis in sLM was observed among different primary cancers, with the highest prevalence in main bronchus cancer and best survival in testis cancer. Higher prevalence and poorer prognosis were observed in the older population, male population, African American, patients with lower socioeconomic status, and cases with advanced T stage, N stage, or more malignant pathological characteristics. Race, age, T stage, N stage, metastasis to other sites, insurance status and marital status were associated with sLM development (p < 0.001). The current study highlights the heterogeneity of the prevalence and prognosis in patients with sLM.
Collapse
|
31
|
Cx43 overexpression is involved in the hyper-proliferation effect of trichloroethylene on human embryonic stem cells. Toxicology 2022; 465:153065. [PMID: 34896440 DOI: 10.1016/j.tox.2021.153065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Trichloroethylene (TCE) is a major environmental contaminant. Maternal exposure of TCE is linked to developmental defects, but the mechanisms remain to be elucidated. Along with a strategy of 3Rs principle, human embryonic stem cells (hESCs) are regarded as most promising in vitro models for developmental toxicity studies. TCE interfered with hESCs differentiation, but no report was available for TCE effects on hESCs proliferation. Here, we aimed to explore the toxic effects and mechanisms of TCE on hESCs proliferation. Treatment with TCE, did not affect the pluripotency genes expression. However, TCE enhanced hESCs proliferation, manifested by increased cell number, PCNA expression and EdU incorporation. Moreover, TCE exposure upregulated the protein expression levels of Cx43 and cyclin-dependent kinases. Knockdown of Cx43 attenuated the TCE-induced cell hyper-proliferation and CDK2 upregulation. Furthermore, TCE increased Akt phosphorylation, and the inhibition of Akt blocked the TCE-induced Cx43 overexpression and cell proliferation. In conclusion, TCE exposure resulted in upregulation of Cx43 via Akt phosphorylation, consequently stimulated CDK2 expression, contributing to hyper-proliferation in hESCs. Our study brings to light that TCE stimulated the proliferation of hESCs via Cx43, providing a new research avenue for the causes of TCE-induced developmental toxicity.
Collapse
|
32
|
Huang Y, Liu S, Shan M, Hagenaars SC, Mesker WE, Cohen D, Wang L, Zheng Z, Devilee P, Tollenaar RAEM, Li Z, Song Y, Zhang L, Li D, Ten Dijke P. RNF12 is regulated by AKT phosphorylation and promotes TGF-β driven breast cancer metastasis. Cell Death Dis 2022; 13:44. [PMID: 35013159 PMCID: PMC8748510 DOI: 10.1038/s41419-021-04493-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-β (TGF-β) acts as a pro-metastatic factor in advanced breast cancer. RNF12, an E3 ubiquitin ligase, stimulates TGF-β signaling by binding to the inhibitory SMAD7 and inducing its proteasomal degradation. How RNF12 activity is regulated and its exact role in cancer is incompletely understood. Here we report that RNF12 was overexpressed in invasive breast cancers and its high expression correlated with poor prognosis. RNF12 promoted breast cancer cell migration, invasion, and experimental metastasis in zebrafish and murine xenograft models. RNF12 levels were positively associated with the phosphorylated AKT/protein kinase B (PKB) levels, and both displayed significant higher levels in the basal-like subtype compared with the levels in luminal-like subtype of breast cancer cells. Mechanistically, AKT-mediated phosphorylation induced the nuclear localization of RNF12, maintained its stability, and accelerated the degradation of SMAD7 mediated by RNF12. Furthermore, we demonstrated that RNF12 and AKT cooperated functionally in breast cancer cell migration. Notably, RNF12 expression strongly correlated with both phosphorylated AKT and phosphorylated SMAD2 levels in breast cancer tissues. Thus, our results uncovered RNF12 as an important determinant in the crosstalk between the TGF-β and AKT signaling pathways during breast cancer progression.
Collapse
Affiliation(s)
- Yongsheng Huang
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sijia Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mengjie Shan
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sophie C Hagenaars
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lin Wang
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Zheng
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Zhangfu Li
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Long Zhang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands. .,Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Dan Li
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Decker JT, Ma JA, Shea LD, Jeruss JS. Implications of TGFβ Signaling and CDK Inhibition for the Treatment of Breast Cancer. Cancers (Basel) 2021; 13:5343. [PMID: 34771508 PMCID: PMC8582459 DOI: 10.3390/cancers13215343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
TGFβ signaling enacts tumor-suppressive functions in normal cells through promotion of several cell regulatory actions including cell-cycle control and apoptosis. Canonical TGFβ signaling proceeds through phosphorylation of the transcription factor, SMAD3, at the C-terminus of the protein. During oncogenic progression, this tumor suppressant phosphorylation of SMAD3 can be inhibited. Overexpression of cyclins D and E, and subsequent hyperactivation of cyclin-dependent kinases 2/4 (CDKs), are often observed in breast cancer, and have been associated with poor prognosis. The noncanonical phosphorylation of SMAD3 by CDKs 2 and 4 leads to the inhibition of tumor-suppressive function of SMAD3. As a result, CDK overactivation drives oncogenic progression, and can be targeted to improve clinical outcomes. This review focuses on breast cancer, and highlights advances in the understanding of CDK-mediated noncanonical SMAD3 phosphorylation. Specifically, the role of aberrant TGFβ signaling in oncogenic progression and treatment response will be examined to illustrate the potential for therapeutic discovery in the context of cyclins/CDKs and SMAD3.
Collapse
Affiliation(s)
- Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5932, USA
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5932, USA
| |
Collapse
|
34
|
Wang J, Xu Z, Wang Z, Du G, Lun L. TGF-beta signaling in cancer radiotherapy. Cytokine 2021; 148:155709. [PMID: 34597918 DOI: 10.1016/j.cyto.2021.155709] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Transforming growth factor beta (TGF-β) plays key roles in regulating cellular proliferation and maintaining tissue homeostasis. TGF-β exerts tumor-suppressive effects in the early stages of carcinogenesis, but it also plays tumor-promoting roles in established tumors. Additionally, it plays a critical role in cancer radiotherapy. TGF-β expression or activation increases in irradiated tissues, and studies have shown that TGF-β plays dual roles in cancer radiosensitivity and is involved in ionizing radiation-induced fibrosis in different tumor microenvironments (TMEs). Furthermore, TGF-β promotes radioresistance by inducing the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and cancer-associated fibroblasts (CAFs), suppresses the immune system and facilitates cancer resistance. In particular, the links between TGF-β and the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) axis play a critical role in cancer therapeutic resistance. Growing evidence has shown that TGF-β acts as a radiation protection agent, leading to heightened interest in using TGF-β as a therapeutic target. The future of anti-TGF-β signaling therapy for numerous diseases appears bright, and the outlook for the use of TGF-β inhibitors in cancer radiotherapy as TME-targeting agents is promising.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China
| | - Zhonghang Xu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Zhe Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China
| | - Guoqiang Du
- Department of Otolaryngology Head and Neck Surgery, Qingdao Municipal Hospital (Group), Qingdao 266071, Shandong, China.
| | - Limin Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China.
| |
Collapse
|
35
|
Mazumder A, Shiao S, Haricharan S. HER2 Activation and Endocrine Treatment Resistance in HER2-negative Breast Cancer. Endocrinology 2021; 162:6329618. [PMID: 34320193 PMCID: PMC8379900 DOI: 10.1210/endocr/bqab153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/19/2022]
Abstract
The lethality of estrogen receptor alpha positive (ER+) breast cancer, which is often considered to have better prognosis than other subtypes, is defined by resistance to the standard of care endocrine treatment. Relapse and metastasis are inevitable in almost every patient whose cancer is resistant to endocrine treatment. Therefore, understanding the underlying causes of treatment resistance remains an important biological and clinical focus of research in this area. Growth factor receptor pathway activation, specifically HER2 activation, has been identified as 1 mechanism of endocrine treatment resistance across a range of experimental model systems. However, clinical trials conducted to test whether targeting HER2 benefits patients with endocrine treatment-resistant ER+ breast cancer have consistently and disappointingly shown mixed results. One reason for the failure of these clinical trials could be the complexity of crosstalk between ER, HER2, and other growth factor receptors and the fluidity of HER2 activation in these cells, which makes it challenging to identify stratifiers for this targeted intervention. In the absence of stratifiers that can be assayed at diagnosis to allow prospective tailoring of HER2 inhibition to the right patients, clinical trials will continue to disappoint. To understand stratifiers, it is important that the field invests in key understudied areas of research including characterization of the tumor secretome and receptor activation in response to endocrine treatment, and mapping the ER-HER2 growth factor network in the normal and developing mammary gland. Understanding these mechanisms further is critical to improving outcomes for the hard-to-treat endocrine treatment-resistant ER+ breast cancer cohort.
Collapse
Affiliation(s)
- Aloran Mazumder
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stephen Shiao
- Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Svasti Haricharan
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence: Svasti Haricharan, PhD, Sanford Burnham Prebys, 10901 N Torrey Pines Rd, La Jolla, CA, USA.
| |
Collapse
|
36
|
Yuan W, Wei F, Ouyang H, Ren X, Hang J, Mo X, Liu Z. CMTM3 suppresses chordoma progress through EGFR/STAT3 regulated EMT and TP53 signaling pathway. Cancer Cell Int 2021; 21:510. [PMID: 34560882 PMCID: PMC8461898 DOI: 10.1186/s12935-021-02159-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Chordomas are rare, slow-growing and locally aggressive bone sarcomas. At present, chordomas are difficult to manage due to their high recurrence rate, metastasis tendency and poor prognosis. The underlying mechanisms of chordoma tumorigenesis and progression urgently need to be explored to find the effective therapeutic targets. Our previous data demonstrates that EGFR plays important roles in chordoma development and CKLF-like MARVEL transmembrane domain containing (CMTM)3 suppresses gastric cancer metastasis by inhibiting the EGFR/STAT3/EMT signaling pathway. However, the roles and mechanism of CMTM3 in chordomas remain unknown. METHODS Primary chordoma tissues and the paired adjacent non-tumor tissues were collected to examine the expression of CMTM3 by western blot. The expression of CMTM3 in chordoma cell lines was tested by Real-time PCR and western blot. CCK-8 and colony forming unit assay were performed to delineate the roles of CMTM3 in cell proliferation. Wound healing and Transwell assays were performed to assess cell migration and invasion abilities. A xenograft model in NSG mice was used to elucidate the function of CMTM3 in vivo. Signaling pathways were analyzed by western blot and IHC. RNA-seq was performed to further explore the mechanism regulated by CMTM3 in chordoma cells. RESULTS CMTM3 expression was downregulated in chordoma tissues compared with paired normal tissues. CMTM3 suppressed proliferation, migration and invasion of chordoma cells in vitro and inhibited tumor growth in vivo. CMTM3 accelerated EGFR degradation, suppressed EGFR/STAT3/EMT signaling pathway, upregulated TP53 expression and enriched the TP53 signaling pathway in chordoma cells. CONCLUSIONS CMTM3 inhibited tumorigenesis and development of chordomas through activating the TP53 signaling pathway and suppressing the EGFR/STAT3 signaling pathway, which suppressed EMT progression. CMTM3 might be a potential therapeutic target for chordomas.
Collapse
Affiliation(s)
- Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Hanqiang Ouyang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xiaoqing Ren
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing, China. .,Peking University Third Hospital, Key Laboratory of Assisted Reproduction, Ministry of Education, 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.
| | - Xiaoning Mo
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Beijing Key Laboratory of Spinal Disease, Beijing, China. .,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
37
|
Deng H, Min E, Baeyens N, Coon BG, Hu R, Zhuang ZW, Chen M, Huang B, Afolabi T, Zarkada G, Acheampong A, McEntee K, Eichmann A, Liu F, Su B, Simons M, Schwartz MA. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proc Natl Acad Sci U S A 2021; 118:e2105339118. [PMID: 34504019 PMCID: PMC8449390 DOI: 10.1073/pnas.2105339118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Endothelial cell (EC) sensing of wall fluid shear stress (FSS) from blood flow governs vessel remodeling to maintain FSS at a specific magnitude or set point in healthy vessels. Low FSS triggers inward remodeling to restore normal FSS but the regulatory mechanisms are unknown. In this paper, we describe the signaling network that governs inward artery remodeling. FSS induces Smad2/3 phosphorylation through the type I transforming growth factor (TGF)-β family receptor Alk5 and the transmembrane protein Neuropilin-1, which together increase sensitivity to circulating bone morphogenetic protein (BMP)-9. Smad2/3 nuclear translocation and target gene expression but not phosphorylation are maximal at low FSS and suppressed at physiological high shear. Reducing flow by carotid ligation in rodents increases Smad2/3 nuclear localization, while the resultant inward remodeling is blocked by the EC-specific deletion of Alk5. The flow-activated MEKK3/Klf2 pathway mediates the suppression of Smad2/3 nuclear translocation at high FSS, mainly through the cyclin-dependent kinase (CDK)-2-dependent phosphosphorylation of the Smad linker region. Thus, low FSS activates Smad2/3, while higher FSS blocks nuclear translocation to induce inward artery remodeling, specifically at low FSS. These results are likely relevant to inward remodeling in atherosclerotic vessels, in which Smad2/3 is activated through TGF-β signaling.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
| | - Elizabeth Min
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511
| | - Nicolas Baeyens
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511;
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT 06511
- Laboratoire de Physiologie et Pharmacologie, Faculty of Medicine, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Brian G Coon
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
| | - Rui Hu
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
- Department of Physiology, Yale School of Medicine, New Haven, CT 06511
| | - Minghao Chen
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
| | - Billy Huang
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
| | - Titilayo Afolabi
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
| | - Georgia Zarkada
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
| | - Angela Acheampong
- Laboratoire de Physiologie et Pharmacologie, Faculty of Medicine, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Kathleen McEntee
- Laboratoire de Physiologie et Pharmacologie, Faculty of Medicine, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT 06511
- Department of Physiology, Yale School of Medicine, New Haven, CT 06511
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8554
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8554
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8554
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8554
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
- Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Michael Simons
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT 06511
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511;
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT 06511
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| |
Collapse
|
38
|
Narayanankutty A. Phytochemicals as PI3K/ Akt/ mTOR Inhibitors and Their Role in Breast Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 15:188-199. [PMID: 32914720 DOI: 10.2174/1574892815666200910164641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the predominant form of cancer in women; various cellular pathways are involved in the initiation and progression of breast cancer. Among the various types of breast cancer that differ in their growth factor receptor status, PI3K/Akt signaling is a common pathway where all these converge. Thus, the PI3K signaling is of great interest as a target for breast cancer prevention; however, it is less explored. OBJECTIVE The present review is aimed to provide a concise outline of the role of PI3K/Akt/mTOR pathway in breast carcinogenesis and its progression events, including metastasis, drug resistance and stemness. The review emphasizes the role of natural and synthetic inhibitors of PI3K/Akt/m- TOR pathway in breast cancer prevention. METHODS The data were obtained from PubMed/Medline databases, Scopus and Google patent literature. RESULTS PI3K/Akt/mTOR signaling plays an important role in human breast carcinogenesis; it acts on the initiation and progression events associated with it. Numerous molecules have been isolated and identified as promising drug candidates by targeting the signaling pathway. Results from clinical studies confirm their application in the treatment of human breast cancer alone and in combination with classical chemotherapeutics as well as monoclonal antibodies. CONCLUSION PI3K/mTOR signaling blockers have evolved as promising anticancer agents by interfering breast cancer development and progression at various stages. Natural products and bioactive components are emerging as novel inhibitors of PI3K signaling and more research in this area may yield numerous drug candidates.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| |
Collapse
|
39
|
Szalontai K, Gémes N, Furák J, Varga T, Neuperger P, Balog JÁ, Puskás LG, Szebeni GJ. Chronic Obstructive Pulmonary Disease: Epidemiology, Biomarkers, and Paving the Way to Lung Cancer. J Clin Med 2021; 10:jcm10132889. [PMID: 34209651 PMCID: PMC8268950 DOI: 10.3390/jcm10132889] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the frequently fatal pathology of the respiratory tract, accounts for half a billion cases globally. COPD manifests via chronic inflammatory response to irritants, frequently to tobacco smoke. The progression of COPD from early onset to advanced disease leads to the loss of the alveolar wall, pulmonary hypertension, and fibrosis of the respiratory epithelium. Here, we focus on the epidemiology, progression, and biomarkers of COPD with a particular connection to lung cancer. Dissecting the cellular and molecular players in the progression of the disease, we aim to shed light on the role of smoking, which is responsible for the disease, or at least for the more severe symptoms and worse patient outcomes. We summarize the inflammatory conditions, as well as the role of EMT and fibroblasts in establishing a cancer-prone microenvironment, i.e., the soil for ‘COPD-derived’ lung cancer. We highlight that the major health problem of COPD can be alleviated via smoking cessation, early diagnosis, and abandonment of the usage of biomass fuels on a global basis.
Collapse
Affiliation(s)
- Klára Szalontai
- Csongrád County Hospital of Chest Diseases, Alkotmány u. 36., H6772 Deszk, Hungary;
| | - Nikolett Gémes
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - József Furák
- Department of Surgery, University of Szeged, Semmelweis u. 8., H6725 Szeged, Hungary;
| | - Tünde Varga
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- Avicor Ltd. Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
- CS-Smartlab Devices Ltd., Ady E. u. 14., H7761 Kozármisleny, Hungary
- Correspondence:
| |
Collapse
|
40
|
Zhao X, Li H, Lyu S, Zhai J, Ji Z, Zhang Z, Zhang X, Liu Z, Wang H, Xu J, Fan H, Kou J, Li L, Lang R, He Q. Single-cell transcriptomics reveals heterogeneous progression and EGFR activation in pancreatic adenosquamous carcinoma. Int J Biol Sci 2021; 17:2590-2605. [PMID: 34326696 PMCID: PMC8315026 DOI: 10.7150/ijbs.58886] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic adenosquamous carcinoma (PASC) — a rare pathological pancreatic cancer (PC) type — has a poor prognosis due to high malignancy. To examine the heterogeneity of PASC, we performed single-cell RNA sequencing (scRNA-seq) profiling with sample tissues from a healthy donor pancreas, an intraductal papillary mucinous neoplasm, and a patient with PASC. Of 9,887 individual cells, ten cell subpopulations were identified, including myeloid, immune, ductal, fibroblast, acinar, stellate, endothelial, and cancer cells. Cancer cells were divided into five clusters. Notably, cluster 1 exhibited stem-like phenotypes expressing UBE2C, ASPM, and TOP2A. We found that S100A2 is a potential biomarker for cancer cells. LGALS1, NPM1, RACK1, and PERP were upregulated from ductal to cancer cells. Furthermore, the copy number variations in ductal and cancer cells were greater than in the reference cells. The expression of EREG, FCGR2A, CCL4L2, and CTSC increased in myeloid cells from the normal pancreas to PASC. The gene sets expressed by cancer-associated fibroblasts were enriched in the immunosuppressive pathways. We demonstrate that EGFR-associated ligand-receptor pairs are activated in ductal-stromal cell communications. Hence, this study revealed the heterogeneous variations of ductal and stromal cells, defined cancer-associated signaling pathways, and deciphered intercellular interactions following PASC progression.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Han Li
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shaocheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Jialei Zhai
- Department of Pathology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhigang Zhang
- School of Information Management and Statistics, Hubei University of Economics, Wuhan 430205, Hubei, China
| | - Xinxue Zhang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Zhe Liu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Huaguang Wang
- Department of Pharmacology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Junming Xu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Hua Fan
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Jiantao Kou
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Lixin Li
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| |
Collapse
|
41
|
Magadum A, Singh N, Kurian AA, Sharkar MTK, Sultana N, Chepurko E, Kaur K, Żak MM, Hadas Y, Lebeche D, Sahoo S, Hajjar R, Zangi L. Therapeutic Delivery of Pip4k2c-Modified mRNA Attenuates Cardiac Hypertrophy and Fibrosis in the Failing Heart. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004661. [PMID: 34026458 PMCID: PMC8132051 DOI: 10.1002/advs.202004661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Heart failure (HF) remains a major cause of morbidity and mortality worldwide. One of the risk factors for HF is cardiac hypertrophy (CH), which is frequently accompanied by cardiac fibrosis (CF). CH and CF are controlled by master regulators mTORC1 and TGF-β, respectively. Type-2-phosphatidylinositol-5-phosphate-4-kinase-gamma (Pip4k2c) is a known mTORC1 regulator. It is shown that Pip4k2c is significantly downregulated in the hearts of CH and HF patients as compared to non-injured hearts. The role of Pip4k2c in the heart during development and disease is unknown. It is shown that deleting Pip4k2c does not affect normal embryonic cardiac development; however, three weeks after TAC, adult Pip4k2c-/- mice has higher rates of CH, CF, and sudden death than wild-type mice. In a gain-of-function study using a TAC mouse model, Pip4k2c is transiently upregulated using a modified mRNA (modRNA) gene delivery platform, which significantly improve heart function, reverse CH and CF, and lead to increased survival. Mechanistically, it is shown that Pip4k2c inhibits TGFβ1 via its N-terminal motif, Pip5k1α, phospho-AKT 1/2/3, and phospho-Smad3. In sum, loss-and-gain-of-function studies in a TAC mouse model are used to identify Pip4k2c as a potential therapeutic target for CF, CH, and HF, for which modRNA is a highly translatable gene therapy approach.
Collapse
Affiliation(s)
- Ajit Magadum
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Neha Singh
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Ann Anu Kurian
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Nishat Sultana
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Elena Chepurko
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Keerat Kaur
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Magdalena M. Żak
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yoav Hadas
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Djamel Lebeche
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Susmita Sahoo
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Roger Hajjar
- Phospholamban FoundationAmsterdamThe Netherlands
| | - Lior Zangi
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|
42
|
Fourati N, Trigui R, Charfeddine S, Dhouib F, Kridis WB, Abid L, Khanfir A, Mnejja W, Daoud J. [Concomitant radiotherapy and trastuzumab: Rational and clinical implications]. Bull Cancer 2021; 108:501-512. [PMID: 33745737 DOI: 10.1016/j.bulcan.2020.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
The HER2 receptor (Human Epidermal Growth Receptor 2) is a transmembrane receptor with tyrosine kinase activity that is over-expressed in 25-30 % of breast carcinomas. Its activation is associated with an exaggeration of cell proliferation with an increase in repair capacity resulting in increased radioresistance. On cardiac tissues, HER2 receptor activation plays a cardio-protective role. Trastuzumab, the first anti-HER2 drug used to treat patients with breast cancer overexpressing HER2 receptor , inhibits the cascade of reactions resulting in the proliferation of tumor cells, thus restoring cellular radiosensitivity. However, the combination of Trastuzumab with radiation therapy also removes HER2 receptor cardio-protective role on myocardial cells which increases the risk of cardiotoxicity. Thus, the concomitant association of these two modalities has long been a subject of controversy. Recent advances in radiation therapy technology and early detection of cardiac injury may limit the cardiotoxicity of this combination. Through this review, we developed the biological basis and the benefit-risk of concomitant combination of radiotherapy and Trastuzumab in adjuvant treatment of breast cancers overexpressing HER2 and we discuss the modalities of its optimization.
Collapse
Affiliation(s)
- Nejla Fourati
- Université de Sfax, CHU d'Habib-Bourguiba, faculté de médecine, service de radiothérapie carcinologique, Sfax, Tunisie.
| | - Rim Trigui
- Université de Sfax, CHU d'Habib-Bourguiba, faculté de médecine, service de radiothérapie carcinologique, Sfax, Tunisie
| | - Selma Charfeddine
- Université de Sfax, CHU d'Hedi-Chaker, faculté de médecine, service de cardiologie, Sfax, Tunisie
| | - Fatma Dhouib
- Université de Sfax, CHU d'Habib-Bourguiba, faculté de médecine, service de radiothérapie carcinologique, Sfax, Tunisie
| | - Wala Ben Kridis
- Université de Sfax, CHU d'Habib-Bourguiba, faculté de médecine, service d'oncologie médicale, Sfax, Tunisie
| | - Leila Abid
- Université de Sfax, CHU d'Hedi-Chaker, faculté de médecine, service de cardiologie, Sfax, Tunisie
| | - Afef Khanfir
- Université de Sfax, CHU d'Habib-Bourguiba, faculté de médecine, service d'oncologie médicale, Sfax, Tunisie
| | - Wafa Mnejja
- Université de Sfax, CHU d'Habib-Bourguiba, faculté de médecine, service de radiothérapie carcinologique, Sfax, Tunisie
| | - Jamel Daoud
- Université de Sfax, CHU d'Habib-Bourguiba, faculté de médecine, service de radiothérapie carcinologique, Sfax, Tunisie
| |
Collapse
|
43
|
Qiu J, Zheng Q, Meng X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response. Front Oncol 2021; 11:628359. [PMID: 33718202 PMCID: PMC7947364 DOI: 10.3389/fonc.2021.628359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Female breast cancer is a complex, multifactorial disease. Studies have shown that hyperglycemia is one of the most important contributing factors to increasing the risk of breast cancer that also has a major impact on the efficacy of chemotherapy. At the cellular level, hyperglycemia can promote the proliferation, invasion, and migration of breast cancer cells and can also induce anti-apoptotic responses to enhance the chemoresistance of tumors via abnormal glucose metabolism. In this article, we focus on the latest progress in defining the mechanisms of chemotherapy resistance in hyperglycemic patients including the abnormal behaviors of cancer cells in the hyperglycemic microenvironment and the impact of abnormal glucose metabolism on key signaling pathways. To better understand the advantages and challenges of breast cancer treatments, we explore the causes of drug resistance in hyperglycemic patients that may help to better inform the development of effective treatments.
Collapse
Affiliation(s)
- Jie Qiu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
44
|
Zhou Q, Jin P, Liu J, Li S, Liu W, Xi S. Arsenic-induced HER2 promotes proliferation, migration and angiogenesis of bladder epithelial cells via activation of multiple signaling pathways in vitro and in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141962. [PMID: 32890875 DOI: 10.1016/j.scitotenv.2020.141962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) is a known human carcinogen with a hitherto unknown mechanism of action. Dimethylarsinic acid (DMAV) is a methylated metabolite of arsenicals found in most mammals, and long-term exposure to DMAV can lead to bladder cancer in rats. Human epidermal growth factor receptor 2 (HER2) is an oncogenic factor that is overexpressed in bladder cancer, but its role in the initiation and progression of As-induced bladder cancer has not been elucidated. We found that HER2 was up-regulated in human uroepithelial cells treated with arsenite as well as in the bladder tissues of DMAV-exposed rats. HER2 overexpression correlated to increased cell proliferation, epithelial-to-mesenchymal transition (EMT), migration and angiogenesis in vitro. The anti-HER2 monoclonal antibody trastuzumab significantly decreased serum vascular endothelial-derived growth factor (VEGF) levels and that of proliferation-related proteins in the bladder tissues of DMAV-exposed rats. Furthermore, inhibition of HER2, as well as that of the MAPK, AKT and STAT3 pathways, attenuated arsenite-induced proliferation, migration and angiogenesis of human uroepithelial cells, and increased apoptosis rates in vitro. These findings indicate that HER2 mediates the oncogenic effects of As on bladder epithelial cells by activating the MAPK, PI3K/AKT and Src/STAT3 signaling pathways, and is therefore a promising biomarker.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| | - Peiyu Jin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| | - Jieyu Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| | - Sihao Li
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| | - Weijue Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
45
|
Oxidative Stress-Induced circHBEGF Promotes Extracellular Matrix Production via Regulating miR-646/EGFR in Human Trabecular Meshwork Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4692034. [PMID: 33335643 PMCID: PMC7722639 DOI: 10.1155/2020/4692034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023]
Abstract
Primary open-angle glaucoma (POAG), a leading cause of irreversible vision loss, presents with increased prevalence and a higher degree of clinical severity in the world. Growing evidence has shown that ncRNAs are involved in the fibrotic process, which is thought to be the proegumenal cause of POAG. Here, we screened out a differentially expressed circRNA (named circHBEGF) in human trabecular meshwork cells (HTMCs) under oxidative stress, which is spliced from pre-HBEGF. circHBEGF promotes the expression of extracellular matrix (ECM) genes (fibronectin and collagen I). Further studies revealed that circHBEGF could competitively bind to miR-646 as a miRNA sponge to regulate EGFR expression in HTMCs. Importantly, HBEGF can also activate EGF signaling pathways, through which can transcriptionally activate ECM genes in HTMCs. In summary, this study investigates the functions and molecular mechanisms of oxidative stress-induced circHBEGF in the regulation of ECM production in HTMCs through the miR646/EGFR pathway. These findings further elucidate the pathogenic mechanism and may identify novel targets for the molecular therapy of POAG.
Collapse
|
46
|
Kumar R, Kuligina E, Sokolenko A, Siddiqui Q, Gardi N, Gupta S, Varma AK, Hasan SK. Genetic ablation of pregnancy zone protein promotes breast cancer progression by activating TGF-β/SMAD signaling. Breast Cancer Res Treat 2020; 185:317-330. [PMID: 33057846 DOI: 10.1007/s10549-020-05958-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Pregnancy zone protein (PZP) is best known as protease inhibitor and its concentration in human blood plasma increases dramatically during pregnancy. Recent investigation revealed a role of PZP inactivating germ-line mutation in breast cancer predisposition, and therefore we designed a study to evaluate functional involvement of this protein in tumor pathogenesis. METHODS PZP knockout cells were generated utilizing the CRISPR-Cas9 approach in MCF7 and T47D (breast cancer) cell lines, and colony formation, cell proliferation, and migration assays carried out. TGF-β and SMAD expression studies were performed using qRT-PCR and Western blot. PZP expression in tumor vs normal tissue was compared using meta-analyses of data records of breast cancer patients (n = 1211) included in the TCGA consortium registry as well as in independent cohorts of hormone receptor-positive (n = 118) and triple-negative breast cancer (TNBC) patients (n = 116). RESULTS We demonstrated that genetic ablation of PZP efficiently inhibits tamoxifen-induced apoptosis and enhances cell proliferation, migration, and colony-forming capacity. We found a significant increase in survival fraction of CRISPR/Cas9-mediated PZP knockout clones compared to wild-type counterpart after tamoxifen treatment (p < 0.05). The PZP knockout significantly promoted breast cancer cell migration (p < 0.01) in vitro. We observed high expression of TGF-β2 ligand, TGF-β- receptor 2, and upregulation of phosphorylated regulatory-SMADs (pSMAD2 and pSMAD3) activating the pro-survival function of TGF-β/SMAD signaling in PZP knockout clones. Meta-analyses of data records of breast cancer patients indicated that low PZP expression is associated with poor overall survival at 6 years (51.7% vs 62.9% in low vs high expressers, respectively; p = 0.026). We also observed a significantly lower PZP mRNA expression in TNBC as compared with hormone receptor-positive tumors (p = 0.019). CONCLUSION Taken together, our results suggest that genetic ablation of PZP results in tumor progression and low expression of PZP is associated with poor survival of breast cancer patients.
Collapse
Affiliation(s)
- Rohit Kumar
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India
| | - Ekaterina Kuligina
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Anna Sokolenko
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Quadir Siddiqui
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India
| | - Nilesh Gardi
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, 400012, Maharashtra, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, 400012, Maharashtra, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
| | - Ashok K Varma
- Varma Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| | - Syed K Hasan
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India.
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
47
|
Decker JT, Kandagatla P, Wan L, Bernstein R, Ma JA, Shea LD, Jeruss JS. Cyclin E overexpression confers resistance to trastuzumab through noncanonical phosphorylation of SMAD3 in HER2+ breast cancer. Cancer Biol Ther 2020; 21:994-1004. [PMID: 33054513 DOI: 10.1080/15384047.2020.1818518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The efficacy of trastuzumab, a treatment for HER2+ breast cancer, can be limited by the development of resistance. Cyclin E (CCNE) overexpression has been implicated in trastuzumab resistance. We sought to uncover a potential mechanism for this trastuzumab resistance and focused on a model of CCNE overexpressing HER2+ breast cancer and noncanonical phosphorylation of the TGF-β signaling protein, SMAD3. Network analysis of transcriptional activity in a HER2+, CCNE overexpressing, trastuzumab-resistant cell line (BT474R2) identified decreased SMAD3 activity was associated with treatment resistance. Immunoblotting showed SMAD3 expression was significantly downregulated in BT474R2 cells (p < .01), and noncanonical phosphorylation of SMAD3 was increased in these CCNE-overexpressing cells. Also, in response to CDK2 inhibition, expression patterns linked to restored canonical SMAD3 signaling, including decreased cMyc and increased cyclin-dependent inhibitor, p15, were identified. The BT474R2 cell line was modified through overexpression of SMAD3 (BT474R2-SMAD3), a mutant construct resistant to CCNE-mediated noncanonical phosphorylation of SMAD3 (BT474R2-5M), and a control (BT474R2-Blank). In vitro studies examining the response to trastuzumab showed increased sensitivity to treatment for BT474R2-5M cells. These findings were then validated in NSG mice inoculated with BT474R2-5M cells or BT474R2 control cells. After treatment with trastuzumab, the NSG mice inoculated with BT474R2-5M cells developed significantly lower tumor volumes (p < .001), when compared to mice inoculated with BT474R2 cells. Taken together, these results indicate that for patients with HER2+ breast cancer, a mechanism of CCNE-mediated trastuzumab resistance, regulated through noncanonical SMAD3 phosphorylation, could be treated with CDK2 inhibition to help enhance the efficacy of trastuzumab therapy.
Collapse
Affiliation(s)
- Joseph T Decker
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Pridvi Kandagatla
- Department of Surgery, Henry Ford Health System , Detroit, MI, USA.,Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Lei Wan
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Regan Bernstein
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Jeffrey A Ma
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA.,Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
48
|
Kariri YA, Aleskandarany MA, Joseph C, Kurozumi S, Mohammed OJ, Toss MS, Green AR, Rakha EA. Molecular Complexity of Lymphovascular Invasion: The Role of Cell Migration in Breast Cancer as a Prototype. Pathobiology 2020; 87:218-231. [PMID: 32645698 DOI: 10.1159/000508337] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lymphovascular invasion (LVI) is associated with poor outcome in breast cancer (BC); however, its underlying mechanisms remain ill-defined. LVI in BC develops through complex molecular pathways involving not only the interplay with the surrounding microenvironment along with endothelial cells lining the lymphovascular spaces but also changes in the malignant epithelial cells with the acquisition of more invasive and migration abilities. In this review, we focus on the key features that enable tumour cell detachment from the primary niche, their migration and interaction with the surrounding microenvironment as well as the crosstalk with the vascular endothelial cells, which eventually lead to intravasation of tumour cells and LVI. Intravascular tumour cell survival and migration, their distant site extravasation, stromal invasion and growth are part of the metastatic cascade. Cancer cell migration commences with loss of tumour cells' cohesion initiating the invasion and migration processes which are usually accompanied by the accumulation of specific cellular and molecular changes that enable tumour cells to overcome the blockades of the extracellular matrix, spread into surrounding tissues and interact with stromal cells and immune cells. Thereafter, tumour cells migrate further via interacting with lymphovascular endothelial cells to penetrate the vessel wall leading ultimately to intravasation of cancer cells. Exploring the potential factors influencing cell migration in LVI can help in understanding the underlying mechanisms of LVI to identify targeted therapy in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Faculty of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom,
| |
Collapse
|
49
|
Borecka P, Ciaputa R, Janus I, Piotrowska A, Ratajczak-Wielgomas K, Kmiecik A, Podhorska-Okolów M, Dzięgiel P, Nowak M. Expression of Podoplanin in Mammary Cancers in Female Dogs. In Vivo 2020; 34:213-223. [PMID: 31882481 DOI: 10.21873/invivo.11763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIM Mammary neoplasms are very common tumours in female dogs. Cancer-associated fibroblasts (CAFs) play an important role in the oncogenesis process. One of the useful proteins used in the diagnostics of CAFs cells is podoplanin (PDPN). The aim of our study was to assess the expression of PDPN in mammary cancer in female dogs. MATERIALS AND METHODS Our study cohort included 61 cancers and 21 adenomas of the mammary tumour in bitches. Expression of podoplanin, Ki-67 and HER2 was determined using the Immunohistochemical (IHC) method. PDPN expression at the mRNA level was determined using real-time PCR. RESULTS Expression of PDPN in CAFs was observed in 22.9% of cases of mammary cancers in bitches, with no PDPN expression in adenomas. A positive correlation was found between the expression of PDPN in CAFs and the grade of histological malignancy and expression of Ki-67. CONCLUSION PDPN plays a significant role during the process of carcinogenesis of mammary tumours in female dogs.
Collapse
Affiliation(s)
- Paulina Borecka
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Rafal Ciaputa
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Izabela Janus
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | | | - Alicja Kmiecik
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Marcin Nowak
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
50
|
Zhou J, Li S, Gao J, Hu Y, Chen S, Luo X, Zhang H, Luo Z, Huang J. Epothilone B Facilitates Peripheral Nerve Regeneration by Promoting Autophagy and Migration in Schwann Cells. Front Cell Neurosci 2020; 14:143. [PMID: 32528253 PMCID: PMC7264101 DOI: 10.3389/fncel.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
The search for drugs that can facilitate axonal regeneration and elongation following peripheral nerve injury has been an area of increasing interest in recent years. Epothilone B (EpoB) is an FDA-approved antineoplastic agent, which shows the capacity to induce α-tubulin polymerization and to improve the stability of microtubules. Recently, it has been increasingly recognized that EpoB has a regenerative effect in the central nervous system. However, the information currently available regarding the potential therapeutic effect of EpoB on peripheral nerve regeneration is limited. Here, we used a rat sciatic crush injury model system to determine that EpoB strikingly improved axonal regeneration and recovery of function. Also, EpoB (1 nM) did not result in significant apoptosis in Schwann cells (SCs) and showed little effect on their viability either. Interestingly, EpoB (1 nM) significantly enhanced migration in SCs, which was inhibited by autophagy inhibitors 3-methyladenine (3-MA). Since PI3K/Akt signaling has been implicated in regulating autophagy, we further examined the involvement of PI3K/Akt in the process of EpoB-induced SC migration. We found that EpoB (1 nM) significantly inhibited phosphorylation of PI3K and Akt in SCs. Further studies showed that both EpoB-enhanced migration and autophagy were increased/inhibited by inhibition/activation of PI3K/Akt signaling with LY294002 or IGF-1. In conclusion, EpoB can promote axonal regeneration following peripheral nerve injury by enhancing the migration of SCs, with this activity being controlled by PI3K/Akt signaling-mediated autophagy in SCs. This underscores the potential therapeutic value of EpoB in enhancing regeneration and functional recovery in cases of peripheral nerve injury.
Collapse
Affiliation(s)
- Jianhua Zhou
- Department of Spine Surgery, The People’s Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Shengyou Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianbo Gao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yawei Hu
- Department of Spine Surgery, The People’s Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Shaochu Chen
- Department of Spine Surgery, The People’s Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Xinle Luo
- Department of Spine Surgery, The People’s Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Hao Zhang
- Department of Spine Surgery, The People’s Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|