1
|
Jan A, Sofi S, Jan N, Mir MA. An update on cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 2025; 21:715-735. [PMID: 39936282 PMCID: PMC11881842 DOI: 10.1080/14796694.2025.2461443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) presents a formidable global health challenge, marked by its aggressive behavior and significant treatment resistance. This subtype, devoid of estrogen, progesterone, and HER2 receptors, largely relies on breast cancer stem cells (BCSCs) for its progression, metastasis, and recurrence. BCSCs, characterized by their self-renewal capacity and resistance to conventional therapies, exploit key surface markers and critical signaling pathways like Wnt, Hedgehog, Notch, TGF-β, PI3K/AKT/mTOR and Hippo-YAP/TAZ to thrive. Their adaptability is underscored by mechanisms including drug efflux and enhanced DNA repair, contributing to poor prognosis and high recurrence rates. The tumor microenvironment (TME) further facilitates BCSC survival through complex interactions with stromal and immune cells. Emerging therapeutic strategies targeting BCSCs - ranging from immunotherapy and nanoparticle-based drug delivery systems to gene-editing technologies - aim to disrupt these resistant cells. Additionally, innovative approaches focusing on exosome-mediated signaling and metabolic reprogramming show promise in overcoming chemoresistance. By elucidating the distinct characteristics of BCSCs and their role in TNBC, researchers are paving the way for novel treatments that may effectively eradicate these resilient cells, mitigate metastasis, and ultimately improve patient outcomes. This review highlights the urgent need for targeted strategies that address the unique biology of BCSCs in the pursuit of more effective therapeutic interventions for TNBC.
Collapse
Affiliation(s)
- Asma Jan
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shazia Sofi
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Nusrat Jan
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Manzoor Ahmad Mir
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
2
|
Reinhold WC, Marangoni E, Elloumi F, Montagne R, Varma S, Wang Y, Rezai K, Morriset L, Dahmani A, El Botty R, Huguet L, Mizunuma M, Takebe N, Huguet S, Luna A, Pommier Y. Acetalax and Bisacodyl for the Treatment of Triple-Negative Breast Cancer: A Combined Molecular and Preclinical Study. CANCER RESEARCH COMMUNICATIONS 2025; 5:375-388. [PMID: 39932272 PMCID: PMC11869203 DOI: 10.1158/2767-9764.crc-24-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
SIGNIFICANCE Acetalax and bisacodyl represent a prospective novel drug mechanism-of-action type, affect mitochondrial function and affect tumor growth in vivo. Their activity may be predicted by TRPM4 but with more accuracy adding other genes in multivariate analysis for triple negative breast cancer (TNBC). Acetalax has a biphasic mean half-life of 5.8 hours.
Collapse
Affiliation(s)
- William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Remi Montagne
- CBIO-Centre for Computational Biology, Institut Curie, INSERM, Mines ParisTech, Paris, France
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- HiThru Analytics LLC, Princeton, New Jersey
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- ICF International Inc., Fairfax, Virginia
| | - Keyvan Rezai
- Institut Curie, Département de Radio-Pharmacologie, Saint-Cloud, France
| | - Ludivine Morriset
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Ahmed Dahmani
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Rania El Botty
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Léa Huguet
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Makito Mizunuma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Samuel Huguet
- Institut Curie, Département de Radio-Pharmacologie, Saint-Cloud, France
| | - Augustin Luna
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Computational Biology Branch, National Library of Medicine, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
3
|
Li JH, Hsin PY, Hsiao YC, Chen BJ, Zhuang ZY, Lee CW, Lee WJ, Vo TTT, Tseng CF, Tseng SF, Lee IT. A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer. Cancers (Basel) 2024; 16:3017. [PMID: 39272875 PMCID: PMC11394296 DOI: 10.3390/cancers16173017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Oral cancer, particularly oral squamous cell carcinoma (OSCC), is a significant global health challenge because of its high incidence and limited treatment options. Major risk factors, including tobacco use, alcohol consumption, and specific microbiota, contribute to the disease's prevalence. Recently, a compelling association between diabetes mellitus (DM) and oral cancer has been identified, with metformin, a widely used antidiabetic drug, emerging as a potential therapeutic agent across various cancers, including OSCC. This review explores both preclinical and clinical studies to understand the mechanisms by which metformin may exert its anticancer effects, such as inhibiting cancer cell proliferation, inducing apoptosis, and enhancing the efficacy of existing treatments. Preclinical studies demonstrate that metformin modulates crucial metabolic pathways, reduces inflammation, and impacts cellular proliferation, thereby potentially lowering cancer risk and improving patient outcomes. Additionally, metformin's ability to reverse epithelial-to-mesenchymal transition (EMT), regulate the LIN28/let-7 axis, and its therapeutic role in head and neck squamous cell carcinoma (HNSCC) are examined through experimental models. In clinical contexts, metformin shows promise in enhancing therapeutic outcomes and reducing recurrence rates, although challenges such as drug interactions, complex dosing regimens, and risks such as vitamin B12 deficiency remain. Future research should focus on optimizing metformin's application, investigating its synergistic effects with other therapies, and conducting rigorous clinical trials to validate its efficacy in OSCC treatment. This dual exploration underscores metformin's potential to play a transformative role in both diabetes management and cancer care, potentially revolutionizing oral cancer treatment strategies.
Collapse
Affiliation(s)
- Jui-Hsiang Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Pei-Yi Hsin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Chia Hsiao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Bo-Jun Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Zhi-Yun Zhuang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Chien-Fu Tseng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
- Department of Dentistry, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Shih-Fen Tseng
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
6
|
Dharavath B, Butle A, Chaudhary A, Pal A, Desai S, Chowdhury A, Thorat R, Upadhyay P, Nair S, Dutt A. Recurrent UBE3C-LRP5 translocations in head and neck cancer with therapeutic implications. NPJ Precis Oncol 2024; 8:63. [PMID: 38438481 PMCID: PMC10912599 DOI: 10.1038/s41698-024-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Head and neck cancer is a major cause of morbidity and mortality worldwide. The identification of genetic alterations in head and neck cancer may improve diagnosis and treatment outcomes. In this study, we report the identification and functional characterization of UBE3C-LRP5 translocation in head and neck cancer. Our whole transcriptome sequencing and RT-PCR analysis of 151 head and neck cancer tumor samples identified the LRP5-UBE3C and UBE3C-LRP5 fusion transcripts in 5.3% of patients of Indian origin (n = 151), and UBE3C-LRP5 fusion transcripts in 1.2% of TCGA-HNSC patients (n = 502). Further, whole genome sequencing identified the breakpoint of UBE3C-LRP5 translocation. We demonstrate that UBE3C-LRP5 fusion is activating in vitro and in vivo, and promotes the proliferation, migration, and invasion of head and neck cancer cells. In contrast, depletion of UBE3C-LRP5 fusion suppresses the clonogenic, migratory, and invasive potential of the cells. The UBE3C-LRP5 fusion activates the Wnt/β-catenin signaling by promoting nuclear accumulation of β-catenin, leading to upregulation of Wnt/β-catenin target genes, MYC, CCND1, TCF4, and LEF1. Consistently, treatment with the FDA-approved drug, pyrvinium pamoate, significantly reduced the transforming ability of cells expressing the fusion protein and improved survival in mice bearing tumors of fusion-overexpressing cells. Interestingly, fusion-expressing cells upon knockdown of CTNNB1, or LEF1 show reduced proliferation, clonogenic abilities, and reduced sensitivity to pyrvinium pamoate. Overall, our study suggests that the UBE3C-LRP5 fusion is a promising therapeutic target for head and neck cancer and that pyrvinium pamoate may be a potential drug candidate for treating head and neck cancer harboring this translocation.
Collapse
Affiliation(s)
- Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Ashwin Butle
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Department of Biochemistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, 441108, India
| | - Akshita Chaudhary
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Ankita Pal
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Aniket Chowdhury
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Pawan Upadhyay
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sudhir Nair
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai, 400012, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
7
|
Bardhan M, Dey D, Suresh V, Javed B, Venur VA, Joe N, Kalidindi R, Ozair A, Khan M, Mahtani R, Lo S, Odia Y, Ahluwalia MS. An overview of the therapeutic strategies for neoplastic meningitis due to breast cancer: when and why? Expert Rev Neurother 2024; 24:77-103. [PMID: 38145503 DOI: 10.1080/14737175.2023.2293223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Neoplastic meningitis (NM), also known as leptomeningeal carcinomatosis, is characterized by the infiltration of tumor cells into the meninges, and poses a significant therapeutic challenge owing to its aggressive nature and limited treatment options. Breast cancer is a common cause of NM among solid tumors, further highlighting the urgent need to explore effective therapeutic strategies. This review aims to provide insights into the evolving landscape of NM therapy in breast cancer by collating existing research, evaluating current treatments, and identifying potential emerging therapeutic options. AREAS COVERED This review explores the clinical features, therapeutic strategies, recent advances, and challenges of managing NM in patients with breast cancer. Its management includes multimodal strategies, including systemic and intrathecal chemotherapy, radiation therapy, and supportive care. This review also emphasizes targeted drug options and optimal drug concentrations, and discusses emerging therapies. Additionally, it highlights the variability in treatment outcomes and the potential of combination regimens to effectively manage NM in breast cancer. EXPERT OPINION Challenges in treating NM include debates over clinical trial end points and the management of adverse effects. Drug resistance and low response rates are significant hurdles, particularly inHER2-negative breast cancer. The development of more precise and cost-effective medications with improved selectivity is crucial. Additionally, global efforts are needed for infrastructure development and cancer control considering the diverse nature of the disease.
Collapse
Affiliation(s)
- Mainak Bardhan
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | | - Vinay Suresh
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Vyshak Alva Venur
- Seattle Cancer Care Alliance, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Neha Joe
- St John's Medical College Hospital, Bengaluru, India
| | | | - Ahmad Ozair
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Reshma Mahtani
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Simon Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yazmin Odia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Manmeet S Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
8
|
Hu P, Zhou P, Sun T, Liu D, Yin J, Liu L. Therapeutic protein PAK restrains the progression of triple negative breast cancer through degrading SREBP-1 mRNA. Breast Cancer Res 2023; 25:151. [PMID: 38082285 PMCID: PMC10714641 DOI: 10.1186/s13058-023-01749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most challenging subtype of breast cancer. Studies have implicated an upregulation of lipid synthesis pathways in the initiation and progression of TNBC. Targeting lipid synthesis pathways may be a promising therapeutic strategy for TNBC. Our previous study developed a therapeutic protein PAK with passive targeting and inhibiting tumor proliferation. In this study, we further substantiate the efficacy of PAK in TNBC. Transcriptome sequencing analysis revealed PAK-mediated downregulation of genes involved in fatty acid synthesis, including key genes like SREBP-1, FASN, and SCD1. RNA immunoprecipitation experiments demonstrated a significant binding affinity of PAK to SREBP-1 mRNA, facilitating its degradation process. Both in vitro and in vivo models, PAK hampered TNBC progression by downregulating lipid synthesis pathways. In conclusion, this study emphasizes that PAK inhibits the progression of TNBC by binding to and degrading SREBP-1 mRNA, revealing a new strategy for regulating lipid synthesis in the intervention of TNBC and its therapeutic significance.
Collapse
Affiliation(s)
- Pan Hu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Peiyi Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Tieyun Sun
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
9
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Zhu M, Zhao Q, Zhang W, Xu H, Zhang B, Zhang S, Duan Y, Liao C, Yang X, Chen Y. Hydroxypropyl-β-cyclodextrin inhibits the development of triple negative breast cancer by enhancing antitumor immunity. Int Immunopharmacol 2023; 125:111168. [PMID: 37939513 DOI: 10.1016/j.intimp.2023.111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-β-cyclodextrin (HP-β-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-β-CD on TNBC are not fully understood. To examine the influence of HP-β-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-β-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-β-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-β-CD-inhibited TNBC growth. Mechanistically, HP-β-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-β-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-β-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-β-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-β signaling pathway. In summary, our study suggests that HP-β-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-β-CD may hold promise as a potential antitumor drug.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qian Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenwen Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
11
|
Ponzini FM, Schultz CW, Leiby BE, Cannaday S, Yeo T, Posey J, Bowne WB, Yeo C, Brody JR, Lavu H, Nevler A. Repurposing the FDA-approved anthelmintic pyrvinium pamoate for pancreatic cancer treatment: study protocol for a phase I clinical trial in early-stage pancreatic ductal adenocarcinoma. BMJ Open 2023; 13:e073839. [PMID: 37848297 PMCID: PMC10582846 DOI: 10.1136/bmjopen-2023-073839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Recent reports of the utilisation of pyrvinium pamoate (PP), an FDA-approved anti-helminth, have shown that it inhibits pancreatic ductal adenocarcinoma (PDAC) cell growth and proliferation in-vitro and in-vivo in preclinical models. Here, we report about an ongoing phase I open-label, single-arm, dose escalation clinical trial to determine the safety and tolerability of PP in PDAC surgical candidates. METHODS AND ANALYSIS In a 3+3 dose design, PP is initiated 3 days prior to surgery. The first three patients will be treated with the initial dose of PP at 5 mg/kg orally for 3 days prior to surgery. Dose doubling will be continued to a reach a maximum of 20 mg/kg orally for 3 days, if the previous two dosages (5 mg/kg and 10 mg/kg) were tolerated. Dose-limiting toxicity grade≥3 is used as the primary endpoint. The pharmacokinetic and pharmacodynamic (PK/PD) profile of PP and bioavailability in humans will be used as the secondary objective. Each participant will be monitored weekly for a total of 30 days from the final dose of PP for any side effects. The purpose of this clinical trial is to examine whether PP is safe and tolerable in patients with pancreatic cancer, as well as assess the drug's PK/PD profile in plasma and fatty tissue. Potential implications include the utilisation of PP in a synergistic manner with chemotherapeutics for the treatment of pancreatic cancer. ETHICS AND DISSEMINATION This study was approved by the Thomas Jefferson Institutional Review Board. The protocol number for this study is 20F.041 (Version 3.1 as of 27 October 2021). The data collected and analysed from this study will be used to present at local and national conferences, as well as, written into peer-reviewed manuscript publications. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT05055323.
Collapse
Affiliation(s)
- Francesca M Ponzini
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Benjamin E Leiby
- Sidney Kimmel Medical College, Department of Pharmacology and Experimental Therapeutics, Division of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shawnna Cannaday
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - T Yeo
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - James Posey
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
- Department of Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wilbur B Bowne
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Charles Yeo
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care; Departments of Surgery and Cell, Developmental & Cancer Biology, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Harish Lavu
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Avinoam Nevler
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Kurmi K, Liang D, van de Ven R, Georgiev P, Gassaway BM, Han S, Notarangelo G, Harris IS, Yao CH, Park JS, Hu SH, Peng J, Drijvers JM, Boswell S, Sokolov A, Dougan SK, Sorger PK, Gygi SP, Sharpe AH, Haigis MC. Metabolic modulation of mitochondrial mass during CD4 + T cell activation. Cell Chem Biol 2023; 30:1064-1075.e8. [PMID: 37716347 PMCID: PMC10604707 DOI: 10.1016/j.chembiol.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4+ T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4+ T cell differentiation, and reduced cytokine production. Furthermore, administration of pyrvinium pamoate at the time of induction of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis in mice, prevented the onset of clinical disease. Thus, modulation of mitochondrial biogenesis may provide a therapeutic strategy for modulating T cell immune responses.
Collapse
Affiliation(s)
- Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Dan Liang
- Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Robert van de Ven
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Brandon Mark Gassaway
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Giulia Notarangelo
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Harris
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Jingyu Peng
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Jefte M Drijvers
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Boswell
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Zheng XX, Chen JJ, Sun YB, Chen TQ, Wang J, Yu SC. Mitochondria in cancer stem cells: Achilles heel or hard armor. Trends Cell Biol 2023; 33:708-727. [PMID: 37137792 DOI: 10.1016/j.tcb.2023.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
Previous studies have shown that mitochondria play core roles in not only cancer stem cell (CSC) metabolism but also the regulation of CSC stemness maintenance and differentiation, which are key regulators of cancer progression and therapeutic resistance. Therefore, an in-depth study of the regulatory mechanism of mitochondria in CSCs is expected to provide a new target for cancer therapy. This article mainly introduces the roles played by mitochondria and related mechanisms in CSC stemness maintenance, metabolic transformation, and chemoresistance. The discussion mainly focuses on the following aspects: mitochondrial morphological structure, subcellular localization, mitochondrial DNA, mitochondrial metabolism, and mitophagy. The manuscript also describes the recent clinical research progress on mitochondria-targeted drugs and discusses the basic principles of their targeted strategies. Indeed, an understanding of the application of mitochondria in the regulation of CSCs will promote the development of novel CSC-targeted strategies, thereby significantly improving the long-term survival rate of patients with cancer.
Collapse
Affiliation(s)
- Xiao-Xia Zheng
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Jun-Jie Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Yi-Bo Sun
- College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tian-Qing Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
14
|
du Plessis TL, Abdulla N, Kaur M. The utility of 3D models to study cholesterol in cancer: Insights and future perspectives. Front Oncol 2023; 13:1156246. [PMID: 37077827 PMCID: PMC10106729 DOI: 10.3389/fonc.2023.1156246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Cholesterol remains a vital molecule required for life; however, increasing evidence exists implicating cholesterol in cancer development and progression. Numerous studies investigating the relationship between cholesterol and cancer in 2-dimensional (2D) culture settings exist, however these models display inherent limitations highlighting the incipient need to develop better models to study disease pathogenesis. Due to the multifaceted role cholesterol plays in the cell, researchers have begun utilizing 3-dimensional (3D) culture systems, namely, spheroids and organoids to recapitulate cellular architecture and function. This review aims to describe current studies exploring the relationship between cancer and cholesterol in a variety of cancer types using 3D culture systems. We briefly discuss cholesterol dyshomeostasis in cancer and introduce 3D in-vitro culture systems. Following this, we discuss studies performed in cancerous spheroid and organoid models that focused on cholesterol, highlighting the dynamic role cholesterol plays in various cancer types. Finally, we attempt to provide potential gaps in research that should be explored in this rapidly evolving field of study.
Collapse
|
15
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
16
|
Zhang L, Chen W, Liu S, Chen C. Targeting Breast Cancer Stem Cells. Int J Biol Sci 2023; 19:552-570. [PMID: 36632469 PMCID: PMC9830502 DOI: 10.7150/ijbs.76187] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The potential roles of breast cancer stem cells (BCSCs) in tumor initiation and recurrence have been recognized for many decades. Due to their strong capacity for self-renewal and differentiation, BCSCs are the major reasons for poor clinical outcomes and low therapeutic response. Several hypotheses on the origin of cancer stem cells have been proposed, including critical gene mutations in stem cells, dedifferentiation of somatic cells, and cell plasticity remodeling by epithelial-mesenchymal transition (EMT) and the tumor microenvironment. Moreover, the tumor microenvironment, including cellular components and cytokines, modulates the self-renewal and therapeutic resistance of BCSCs. Small molecules, antibodies, and chimeric antigen receptor (CAR)-T cells targeting BCSCs have been developed, and their applications in combination with conventional therapies are undergoing clinical trials. In this review, we focus on the features of BCSCs, emphasize the major factors and tumor environment that regulate the stemness of BCSCs, and discuss potential BCSC-targeting therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China
| | - Wenmin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Kunming College of Life Sciences, the University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| |
Collapse
|
17
|
The FDA-Approved Drug Pyrvinium Selectively Targets ER + Breast Cancer Cells with High INPP4B Expression. Cancers (Basel) 2022; 15:cancers15010135. [PMID: 36612130 PMCID: PMC9817693 DOI: 10.3390/cancers15010135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The majority of breast cancers are estrogen receptor-positive (ER+), and endocrine therapies that suppress ER signaling are the standard-of-care treatment for this subset. However, up to half of all ER+ cancers eventually relapse, highlighting a need for improved clinical therapies. The phosphoinositide phosphatase, INPP4B, is overexpressed in almost half of all ER+ breast cancers, and promotes Wnt/β-catenin signaling, cell proliferation and tumor growth. Here, using cell viability assays, we report that INPP4B overexpression does not affect the sensitivity of ER+ breast cancer cells to standard-of-care treatments including the anti-estrogen 4-hydroxytamoxifen (4-OHT) or the PI3Kα inhibitor alpelisib. Examination of four small molecule Wnt inhibitors revealed that ER+ breast cancer cells with INPP4B overexpression were more sensitive to the FDA-approved drug pyrvinium and a 4-OHT-pyrvinium combination treatment. Using 3D culture models, we demonstrated that pyrvinium selectively reduced the size of INPP4B-overexpressing ER+ breast cancer spheroids in the presence and absence of 4-OHT. These findings suggest that repurposing pyrvinium as a Wnt inhibitor may be an effective therapeutic strategy for human ER+ breast cancers with high INPP4B levels.
Collapse
|
18
|
Zhang R, Liu L, Wang F, Zhao W, Liu K, Yu H, Zhao S, Xu B, Zhang X, Chai J, Hao J. AKAP8L enhances the stemness and chemoresistance of gastric cancer cells by stabilizing SCD1 mRNA. Cell Death Dis 2022; 13:1041. [PMID: 36522343 PMCID: PMC9755141 DOI: 10.1038/s41419-022-05502-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Gastric cancer (GC) remains the third leading cause of cancer-related deaths. Chemoresistance is the major determinant of GC treatment failure. To explore the molecular mechanisms of GC chemoresistance, mass spectrometry was performed to detect the genes altered in expression between chemoresistant and chemosensitive GC. PRKA kinase anchor protein 8L (AKAP-8L) was identified as one of the top upregulated genes in chemoresistant GC tissues. Moreover, the higher AKAP-8L expression was associated with the lower survival rate in GC patients. Overexpression of AKAP-8L enhanced the GC cell stemness and chemoresistance of oxaliplatin in vivo and in vitro. AKAP-8L deficiency obtained the opposite results. Mechanistically, AKAP-8L interacted with Stearoyl-CoA desaturase 1 (SCD1) mRNA and IGF2BP1 protein, and regulated SCD1 mRNA stability via IGF2BP1-dependent manner. SCD1 played a critical role in mediating the function of AKAP-8L in GC cell stemness and chemoresistance. Clinically, AKAP-8L and SCD1 protein levels was positively associated with human GC chemoresistance. Taken together, our results demonstrated that AKAP-8L facilitates GC chemoresistance via regulating SCD1-mediated stemness of GC cells. AKAP8L may represent a novel therapeutic target to overcome GC chemoresistance.
Collapse
Affiliation(s)
- Ruihong Zhang
- grid.27255.370000 0004 1761 1174Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong P. R. China
| | - Luguang Liu
- grid.27255.370000 0004 1761 1174Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwuweiqi Road, Jinan, Shandong P. R. China ,grid.410587.fDepartment of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong P. R. China
| | - Fengqin Wang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong P. R. China
| | - Weizhu Zhao
- grid.476866.dDepartment of Oncology, Binzhou People’s Hospital, 515 Huangheqi Road, Binzhou, Shandong P. R. China
| | - Kai Liu
- grid.410587.fDepartment of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong P. R. China
| | - Hang Yu
- grid.410587.fDepartment of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong P. R. China
| | - Siwei Zhao
- grid.410587.fDepartment of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong P. R. China
| | - Botao Xu
- grid.410587.fDepartment of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong P. R. China
| | - Xiaoli Zhang
- grid.27255.370000 0004 1761 1174Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong P. R. China
| | - Jie Chai
- grid.410587.fDepartment of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong P. R. China
| | - Jing Hao
- grid.27255.370000 0004 1761 1174Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong P. R. China
| |
Collapse
|
19
|
Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022; 10:3249. [PMID: 36552005 PMCID: PMC9775650 DOI: 10.3390/biomedicines10123249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.
Collapse
Affiliation(s)
- Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
20
|
Wu C. β-catenin inhibitors ICG-001 and pyrvinium sensitize bortezomib-resistant multiple myeloma cells to bortezomib. Oncol Lett 2022; 24:205. [PMID: 35720475 PMCID: PMC9178704 DOI: 10.3892/ol.2022.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/23/2021] [Indexed: 11/06/2022] Open
Abstract
Although bortezomib (BTZ) displays efficacy in treating multiple myeloma (MM), BTZ resistance in MM patients has been reported. Meanwhile, treating BTZ resistant MM cells with β-catenin inhibitors have demonstrated the ability to reserve BTZ resistance. Thus, the present study aimed to investigate the synergistic effect of the β-catenin inhibitors, ICG-001 and pyrvinium (PP), with BTZ in the treatment of BTZ-resistant MM cells. Different concentrations of ICG-001 (0–32 µM) or PP (0–32 nM) were used to treat the BTZ-resistant RPMI-8226 (RPMI-8226BR) and BTZ-resistant KMS-11 (KMS-11BR) cell lines, followed by a BTZ combination treatment. Subsequently, cell viability and apoptosis in these two cell lines were determined by CCK-8 assay and flow cytometry, respectively. The proteins involved in the Wnt/β-catenin signaling pathway were detected using western blotting. The Wnt/β-catenin signaling pathway was activated in the RPMI-8226BR and the KMS-11BR cells. In addition, the cell viability of RPMI-8226BR and KMS-11BR cells were decreased following β-catenin inhibitor (ICG-001 and PP) treatment alone. Furthermore, the β-catenin inhibitors, ICG-001 and PP, plus BTZ combination treatment revealed a notable decrease in cell viability and a marked increase in cell apoptosis rate, compared with that in cells treated with ICG-001, PP or BTZ alone in the RPMI-8226BR and KMS-11BR cell lines. In conclusion, the β-catenin inhibitors, ICG-001 and PP not only increased apoptosis, but also sensitized BTZ-resistant MM cells to BTZ, indicating their potential therapeutic application in MM.
Collapse
Affiliation(s)
- Cuicui Wu
- Department of Hematology, Yueyang Second People's Hospital, Yueyang, Hunan 414000, P.R. China
| |
Collapse
|
21
|
Analyzing the Systems Biology Effects of COVID-19 mRNA Vaccines to Assess Their Safety and Putative Side Effects. Pathogens 2022; 11:pathogens11070743. [PMID: 35889989 PMCID: PMC9320269 DOI: 10.3390/pathogens11070743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
COVID-19 vaccines have been instrumental tools in reducing the impact of SARS-CoV-2 infections around the world by preventing 80% to 90% of hospitalizations and deaths from reinfection, in addition to preventing 40% to 65% of symptomatic illnesses. However, the simultaneous large-scale vaccination of the global population will indubitably unveil heterogeneity in immune responses as well as in the propensity to developing post-vaccine adverse events, especially in vulnerable individuals. Herein, we applied a systems biology workflow, integrating vaccine transcriptional signatures with chemogenomics, to study the pharmacological effects of mRNA vaccines. First, we derived transcriptional signatures and predicted their biological effects using pathway enrichment and network approaches. Second, we queried the Connectivity Map (CMap) to prioritize adverse events hypotheses. Finally, we accepted higher-confidence hypotheses that have been predicted by independent approaches. Our results reveal that the mRNA-based BNT162b2 vaccine affects immune response pathways related to interferon and cytokine signaling, which should lead to vaccine success, but may also result in some adverse events. Our results emphasize the effects of BNT162b2 on calcium homeostasis, which could be contributing to some frequently encountered adverse events related to mRNA vaccines. Notably, cardiac side effects were signaled in the CMap query results. In summary, our approach has identified mechanisms underlying both the expected protective effects of vaccination as well as possible post-vaccine adverse effects. Our study illustrates the power of systems biology approaches in improving our understanding of the comprehensive biological response to vaccination against COVID-19.
Collapse
|
22
|
Corona SP, Walker F, Weinstock J, Lessene G, Faux M, Burgess AW. Dual drug targeting to kill colon cancers. Cancer Med 2022; 11:2612-2626. [PMID: 35301819 PMCID: PMC9249985 DOI: 10.1002/cam4.4641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/06/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is driven by a small set of oncogenic and tumour suppressor mutations. However, different combinations of mutations often lead to poor tumour responses to individual anticancer drugs. We have investigated the antiproliferative and in vitro cytotoxic activity of pair‐wise combinations of inhibitors which target specific signalling pathways in colon cancer cells. Objectives To target specific signaling pathways pairwise with inhibitors in order to kill colon cancer cells. Methods The effects of different concentrations of two inhibitors on the proliferation and viability of colon cancer cell lines were measured using cell titre glow and cytotoxic assays in 2D and 3D cell micro‐cultures. One successful drug combination was used to treat a colon cancer cell line growing as a xenograft in nude mice. Results Colon cancer cells in non‐adherent cultures were killed more effectively by combinations of pyrvinium pamoate (a Wnt pathway inhibitor) and ABT263 (a pro‐apoptotic Bcl‐2 family inhibitor) or Ly29004 (a PI3kinase inhibitor). However, in a mouse xenograft model, the formulation and toxicity of the ABT737/PP combination prevent the use of these drugs for treatment of tumours. Fortunately, oral analogues of PP (pyrvinium phosphate, PPh) and ABT737(ABT263) have equivalent activity and can be used for treatment of mice carrying SW620 colorectal cancer xenografts. The PPh/ABT263 induced SW620 tumour cell apoptosis and reduced the rate of SW620 tumour growth. Conclusion By combining a Wnt signaling inhibitor (pyrvinium phosphate) and a pro‐survival inhibitor (ABT263) colon cancer cells can be killed. Combinations of Wnt signalling inhibitors with an inhibitor of the Bcl pro‐survival protein family should be considered for the treatment of patients with precancerous colon adenomas or advanced colorectal cancers with APC mutations.
Collapse
Affiliation(s)
- Silvia Paola Corona
- Structural Biology Division, WEHI, Parkville, Australia.,Personalised Oncology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia
| | - Francesca Walker
- Structural Biology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia
| | - Janet Weinstock
- Structural Biology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia
| | - Guillaume Lessene
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Chemical Biology Division, WEHI, Parkville, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
| | - Maree Faux
- Structural Biology Division, WEHI, Parkville, Australia.,Personalised Oncology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Antony W Burgess
- Structural Biology Division, WEHI, Parkville, Australia.,Personalised Oncology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia
| |
Collapse
|
23
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
24
|
Wang SY, Hu QC, Wu T, Xia J, Tao XA, Cheng B. Abnormal lipid synthesis as a therapeutic target for cancer stem cells. World J Stem Cells 2022; 14:146-162. [PMID: 35432735 PMCID: PMC8963380 DOI: 10.4252/wjsc.v14.i2.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation and are associated with the occurrence, metastasis, therapy resistance, and relapse of cancer. Compared with differentiated cells, CSCs have unique metabolic characteristics, and metabolic reprogramming contributes to the self-renewal and maintenance of stem cells. It has been reported that CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the requirements of biosynthesis and energy metabolism. In this review, we demonstrate that lipid anabolism alterations promote the survival of CSCs, including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In addition, we also emphasize the molecular mechanism underlying the relationship between lipid synthesis and stem cell survival, the signal trans-duction pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. It is demonstrated that the dependence on lipid synthesis makes targeting of lipid synthesis metabolism a promising therapeutic strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play an important role in anti-CSC therapy.
Collapse
Affiliation(s)
- Si-Yu Wang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Qin-Chao Hu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Tong Wu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-An Tao
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
25
|
He L, Wick N, Germans SK, Peng Y. The Role of Breast Cancer Stem Cells in Chemoresistance and Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13246209. [PMID: 34944829 PMCID: PMC8699562 DOI: 10.3390/cancers13246209] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Triple negative breast cancer (TNBC) remains an aggressive disease due to the lack of targeted therapies and low rate of response to chemotherapy that is currently the main treatment modality for TNBC. Breast cancer stem cells (BCSCs) are a small subpopulation of breast tumors and recognized as drivers of tumorigenesis. TNBC tumors are characterized as being enriched for BCSCs. Studies have demonstrated the role of BCSCs as the source of metastatic disease and chemoresistance in TNBC. Multiple targets against BCSCs are now under investigation, with the considerations of either selectively targeting BCSCs or co-targeting BCSCs and non-BCSCs (majority of tumor cells). This review article provides a comprehensive overview of recent advances in the role of BCSCs in TNBC and the identification of cancer stem cell biomarkers, paving the way for the development of new targeted therapies. The review also highlights the resultant discovery of cancer stem cell targets in TNBC and the ongoing clinical trials treating chemoresistant breast cancer. We aim to provide insights into better understanding the mutational landscape of BCSCs and exploring potential molecular signaling pathways targeting BCSCs to overcome chemoresistance and prevent metastasis in TNBC, ultimately to improve the overall survival of patients with this devastating disease.
Collapse
Affiliation(s)
- Lin He
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Neda Wick
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Sharon Koorse Germans
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235, USA
- Correspondence:
| |
Collapse
|
26
|
Effects of the Combined Treatment with a G-Quadruplex-Stabilizing Ligand and Photon Beams on Glioblastoma Stem-like Cells: A Magnetic Resonance Study. Int J Mol Sci 2021; 22:ijms222312709. [PMID: 34884511 PMCID: PMC8657890 DOI: 10.3390/ijms222312709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme is a malignant primary brain tumor with a poor prognosis and high rates of chemo-radiotherapy failure, mainly due to a small cell fraction with stem-like properties (GSCs). The mechanisms underlying GSC response to radiation need to be elucidated to enhance sensitivity to treatments and to develop new therapeutic strategies. In a previous study, two GSC lines, named line #1 and line #83, responded differently to carbon ions and photon beams, with the differences likely attributable to their own different metabolic fingerprint rather than to radiation type. Data from the literature showed the capability of RHPS4, a G-quadruplex stabilizing ligand, to sensitize the glioblastoma radioresistant U251MG cells to X-rays. The combined metabolic effect of ligand #190, a new RHPS4-derivative showing reduced cardiotoxicity, and a photon beam has been monitored by magnetic resonance (MR) spectroscopy for the two GSC lines, #1 and #83, to reveal whether a synergistic response occurs. MR spectra from both lines were affected by single and combined treatments, but the variations of the analysed metabolites were statistically significant mainly in line #1, without synergistic effects due to combination. The multivariate analysis of ten metabolites shows a separation between control and treated samples in line #1 regardless of treatment type, while separation was not detected in line #83.
Collapse
|
27
|
Liu J, Chen C, Wang Y, Qian C, Wei J, Xing Y, Bai J. Comprehensive of N1-Methyladenosine Modifications Patterns and Immunological Characteristics in Ovarian Cancer. Front Immunol 2021; 12:746647. [PMID: 34777359 PMCID: PMC8588846 DOI: 10.3389/fimmu.2021.746647] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background recently, many researches have concentrated on the relevance between N1-methyladenosine (m1A) methylation modifications and tumor progression and prognosis. However, it remains unknown whether m1A modification has an effect in the prognosis of ovarian cancer (OC) and its immune infiltration. Methods Based on 10 m1A modulators, we comprehensively assessed m1A modification patterns in 474 OC patients and linked them to TME immune infiltration characteristics. m1Ascore computed with principal component analysis algorithm was applied to quantify m1A modification pattern in OC patients. m1A regulators protein and mRNA expression were respectively obtained by HPA website and RT-PCR in clinical OC and normal samples. Results We finally identified three different m1A modification patterns. The immune infiltration features of these m1A modification patterns correspond to three tumor immune phenotypes, including immune-desert, immune-inflamed and immune-excluded phenotypes. The results demonstrate individual tumor m1A modification patterns can predict patient survival, stage and grade. The m1Ascore was calculated to quantify individual OC patient's m1A modification pattern. A high m1Ascore is usually accompanied by a better survival advantage and a lower mutational load. Research on m1Ascore in the treatment of OC patients showed that patients with high m1Ascore showed marked therapeutic benefits and clinical outcomes in terms of chemotherapy and immunotherapy. Lastly, we obtained four small molecule drugs that may potentially ameliorate prognosis. Conclusion This research demonstrates that m1A methylation modification makes an essential function in the prognosis of OC and in shaping the immune microenvironment. Comprehensive evaluation of m1A modifications improves our knowledge of immune infiltration profile and provides a more efficient individualized immunotherapy strategy for OC patients.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junting Wei
- The Second Clinical School of Nanjing Medical University, Nanjing, China
| | - Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Neiheisel A, Kaur M, Ma N, Havard P, Shenoy AK. Wnt pathway modulators in cancer therapeutics: An update on completed and ongoing clinical trials. Int J Cancer 2021; 150:727-740. [PMID: 34536299 DOI: 10.1002/ijc.33811] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023]
Abstract
Wnt signaling plays an essential role in the initiation and progression of various types of cancer. Besides, the Wnt pathway components have been established as reliable biomarkers and potential targets for cancer therapy. Wnt signaling is categorized into canonical and noncanonical pathways. The canonical pathway is involved in cell survival, proliferation, differentiation and migration, while the noncanonical pathway regulates cell polarity and migration. Apart from its biological role in development and homeostasis, the Wnt pathway has been implicated in several pathological disorders, including cancer. As a result, inhibiting this pathway has been a focus of cancer research with multiple targetable candidates in development. In this review, our focus will be to summarize information about ongoing and completed clinical trials targeting various Wnt pathway components, along with describing current and emerging Wnt targeted therapies. In addition, we will discuss potential opportunities and associated challenges of inhibiting Wnt signaling for cancer therapy.
Collapse
Affiliation(s)
- Ann Neiheisel
- College of Pharmacy, California Health Sciences University, Clovis, California, USA
| | - Manpreet Kaur
- College of Pharmacy, California Health Sciences University, Clovis, California, USA
| | - Nancy Ma
- College of Pharmacy, California Health Sciences University, Clovis, California, USA
| | - Patty Havard
- Kaweah Health Foundation, Kaweah Health, Visalia, California, USA
| | - Anitha K Shenoy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Health Sciences University, Clovis, California, USA
| |
Collapse
|
29
|
Niclosamide and Pyrvinium Are Both Potential Therapeutics for Osteosarcoma, Inhibiting Wnt-Axin2-Snail Cascade. Cancers (Basel) 2021; 13:cancers13184630. [PMID: 34572856 PMCID: PMC8464802 DOI: 10.3390/cancers13184630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Epithelial–mesenchymal transition (EMT) regulated by Wnt signaling is known as a key mechanism of cancer progression. Although evidence has suggested that the oncogenic Wnt signaling pathway and EMT program are important in the progression of osteosarcoma, there is no known therapeutic drug targeting EMT for osteosarcoma. We investigated whether Axin2, an important EMT target, could be a suitable molecular target and biomarker for osteosarcoma. Furthermore, we showed that both niclosamide and pyrvinium target Axin2, and effectively induce EMT reversion in osteosarcoma cell lines. Our findings suggest an effective biomarker and potential EMT therapeutics for osteosarcoma patients. Abstract Osteosarcoma, the most common primary bone malignancy, is typically related to growth spurts during adolescence. Prognosis is very poor for patients with metastatic or recurrent osteosarcoma, with survival rates of only 20–30%. Epithelial–mesenchymal transition (EMT) is a cellular mechanism that contributes to the invasion and metastasis of cancer cells, and Wnt signaling activates the EMT program by stabilizing Snail and β-catenin in tandem. Although the Wnt/Snail axis is known to play significant roles in the progression of osteosarcoma, and the anthelmintic agents, niclosamide and pyrvinium, have been studied as inhibitors of the Wnt pathway, their therapeutic effects and regulatory mechanisms in osteosarcoma remain unidentified. In this study, we show that both niclosamide and pyrvinium target Axin2, resulting in the suppression of EMT by the inhibition of the Wnt/Snail axis in osteosarcoma cells. Axin2 and Snail are abundant in patient samples and cell lines of osteosarcoma. The treatment of niclosamide and pyrvinium inhibits the migration of osteosarcoma cells at nanomolar concentrations. These results suggest that Axin2 and Snail are candidate therapeutic targets in osteosarcoma, and that anthelminthic agents, niclosamide and pyrvinium, may be effective for osteosarcoma patients.
Collapse
|
30
|
Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021; 12:730751. [PMID: 34603046 PMCID: PMC8479196 DOI: 10.3389/fphar.2021.730751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence showed that cancer stem cells (CSCs) play significant roles in cancer initiation, resistance to therapy, recurrence and metastasis. Cancer stem cells possess the ability of self-renewal and can initiate tumor growth and avoid lethal factors through flexible metabolic reprogramming. Abnormal lipid metabolism has been reported to be involved in the cancer stemness and promote the development of cancer. Lipid metabolism includes lipid uptake, lipolysis, fatty acid oxidation, de novo lipogenesis, and lipid desaturation. Abnormal lipid metabolism leads to ferroptosis of CSCs. In this review, we comprehensively summarized the role of intra- and extracellular lipid signals in cancer stemness, and explored the feasibility of using lipid metabolism-related treatment strategies for future cancer.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Peng Y, Yang H, Li S. The role of glycometabolic plasticity in cancer. Pathol Res Pract 2021; 226:153595. [PMID: 34481210 DOI: 10.1016/j.prp.2021.153595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Dysregulated glycometabolism represented by the Warburg effect is well recognized as a hallmark of cancer that can be driven by oncogenes (e.g., c-Myc, K-ras, and BRAF) and contribute to cellular malignant transformation. The Warburg effect reveals the different glycometabolic patterns of cancer cells, but this unique glycometabolic pattern has the characteristic of plasticity rather than changeless which can vary with different internal or external stimuli during evolution. Glycometabolic plasticity enables cancer cells to modulate glycometabolism to support progression, metastasis, treatment resistance and recurrence. In this review, we report the characteristics of glycometabolic plasticity during different stages of cancer evolution, providing insight into the molecular mechanisms of glycometabolic plasticity in cancer. In addition, we discussed the challenges and future research directions of glycometabolism research in cancer.
Collapse
Affiliation(s)
- Yuyang Peng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Song Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
32
|
Mitochondria and Antibiotics: For Good or for Evil? Biomolecules 2021; 11:biom11071050. [PMID: 34356674 PMCID: PMC8301944 DOI: 10.3390/biom11071050] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
The discovery and application of antibiotics in the common clinical practice has undeniably been one of the major medical advances in our times. Their use meant a drastic drop in infectious diseases-related mortality and contributed to prolonging human life expectancy worldwide. Nevertheless, antibiotics are considered by many a double-edged sword. Their extensive use in the past few years has given rise to a global problem: antibiotic resistance. This factor and the increasing evidence that a wide range of antibiotics can damage mammalian mitochondria, have driven a significant sector of the medical and scientific communities to advise against the use of antibiotics for purposes other to treating severe infections. Notwithstanding, a notorious number of recent studies support the use of these drugs to treat very diverse conditions, ranging from cancer to neurodegenerative or mitochondrial diseases. In this context, there is great controversy on whether the risks associated to antibiotics outweigh their promising beneficial features. The aim of this review is to provide insight in the topic, purpose for which the most relevant findings regarding antibiotic therapies have been discussed.
Collapse
|
33
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
34
|
Alavi SE, Ebrahimi Shahmabadi H. Anthelmintics for drug repurposing: Opportunities and challenges. Saudi Pharm J 2021; 29:434-445. [PMID: 34135669 PMCID: PMC8180459 DOI: 10.1016/j.jsps.2021.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Drug repositioning is defined as a process to identify a new application for drugs. This approach is critical as it takes advantage of well-known pharmacokinetics, pharmacodynamics, and toxicity profiles of the drugs; thus, the chance of their future failure decreases, and the cost of their development and the required time for their approval are reduced. Anthelmintics, which are antiparasitic drugs, have recently demonstrated promising anticancer effects in vitro and in vivo. This literature review focuses on the potential of anthelmintics for repositioning in the treatment of cancers. It also discusses their pharmacokinetics and pharmacodynamics as antiparasitic drugs, proposed anticancer mechanisms, present development conditions, challenges in cancer therapy, and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
35
|
Abstract
Cancer stem cells (CSCs), also known as tumorinitiating cells (TICs), are a group of cells found within cancer cells. Like normal stem cells, CSCs can proliferate, engage in self-renewal, and are often implicated in the recurrence of tumors after therapy [1, 2]. The existence of CSCs in various types of cancer has been proven, such as in acute myeloid leukemia (AML) [3], breast [4], pancreatic [5], and lung cancers [6], to name a few. There are two theories regarding the origin of CSCs. First, CSCs may have arisen from normal stem/progenitor cells that experienced changes in their environment or genetic mutations. On the other hand, CSCs may also have originated from differentiated cells that underwent genetic and/or heterotypic modifications [7]. Either way, CSCs reprogram their metabolism in order to support tumorigenesis.
Collapse
|
36
|
Ehmsen S, Ditzel HJ. Signaling pathways essential for triple-negative breast cancer stem-like cells. Stem Cells 2020; 39:133-143. [PMID: 33211379 DOI: 10.1002/stem.3301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
Since the discovery of breast cancer stem cells (CSCs), a significant effort has been made to identify and characterize these cells. It is a generally believe that CSCs play an important role in cancer initiation, therapy resistance, and progression of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with poor prognosis. Thus, therapies targeting these cells would be a valuable addition to standard treatments that primarily target more differentiated, rapidly dividing TNBC cells. Although several cell surface and intracellular proteins have been described as biomarkers for CSCs, none of these are specific to this population of cells. Recent research is moving toward cellular signaling pathways as targets and biomarkers for CSCs. The WNT pathway, the nuclear factor-kappa B (NF-κB) pathway, and the cholesterol biosynthesis pathway have recently been identified to play a key role in proliferation, survival, and differentiation of CSCs, including those of breast cancer. In this review, we assess recent findings related to these three pathways in breast CSC, with particular focus on TNBC CSCs, and discuss how targeting these pathways, in combination with current standard of care, might prove effective and improve the prognosis of TNBC patients.
Collapse
Affiliation(s)
- Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Research Unit of Oncology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Research Unit of Oncology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
37
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|