1
|
Liu B, Yang X, Wang H, Liu P, Feng Q, Xu C, Song Z. Identification of hub genes for the diagnosis and prognosis in triple negative breast cancer using transcriptome and differential methylation integration analysis. J Cancer 2025; 16:2026-2040. [PMID: 40092695 PMCID: PMC11905416 DOI: 10.7150/jca.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Introduction: Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. It is highly invasive and aggressive, making it the subtype of breast cancer with the poorest prognosis. Currently, systemic chemotherapy is the primary treatment option, but targeted therapies remain unavailable. Therefore, there is an urgent need to identify novel biomarkers for the early diagnosis and treatment of TNBC. Methods: We conducted an integrated analysis of transcriptome and methylation data to identify methylation-regulated differentially expressed genes (MDEGs). Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network analysis were performed on MDEGs to investigate the impact of hub genes on the diagnosis and prognosis of TNBC. Subsequently, the expression levels and DNA methylation patterns of key genes were validated in the TNBC cell line MDA-MB-231 and the normal breast epithelial cell line MCF-10A using reverse transcription quantitative PCR (RT-qPCR) and quantitative methylation-specific PCR (qMSP). Results: A total of 98 upregulated and 87 downregulated genes were identified through transcriptomic profiling integration analysis. By incorporating methylation data, we further identified 22 genes with high expression of hypomethylation (hypo-MDEGs) and 32 genes with low expression of hypermethylation (hyper-MDEGs). The hypo-MDEGs were primarily involved in nuclear division, organelle fission, spindle formation, chromosome and kinetochore development, and protein binding. KEGG pathway analysis revealed that these genes were enriched in progesterone-mediated oocyte maturation, cell cycle regulation, and oocyte meiosis. Hyper-MDEGs were associated with cell proliferation, hormone response, pain, extracellular matrix composition, and binding to sulfur compounds, heparin, and glycosaminoglycans. PPI network analysis identified seven hub genes-EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1, and KIF23-which were all significantly overexpressed in TNBC tissues and positively correlated with each other (p < 0.05). Receiver operating characteristic curve analysis showed that the area under the curve (AUC) for all seven genes exceeded 0.9 (p < 0.05), suggesting strong diagnostic potential. Kaplan-Meier survival analysis indicated that KIF11, CCNB1, and PLK1 were associated with a higher hazard ratio (HR > 1, p < 0.05) in TNBC. In vitro validation experiments demonstrated that, compared to MCF-10A cells, MDA-MB-231 cells exhibited higher mRNA expression levels of KIF11, CCNB1, and PLK1, while their DNA methylation levels were lower. Conclusions: This study identified seven hypo-MDEGs, including EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1, and KIF23, which are involved in the regulation of the cell cycle and mitotic processes and have significant potential as diagnostic biomarkers for TNBC. Notably, elevated expression of KIF11, CCNB1, and PLK1 is associated with poor prognosis in patients with TNBC. These findings contribute to an improved understanding of the epigenetic molecular mechanisms underlying TNBC progression and highlight novel biomarkers that may enhance the accuracy of TNBC diagnosis and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Baoe Liu
- Department of Breast Disease Center, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Huxia Wang
- Department of Breast Disease Center, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China
| | - Peijun Liu
- The first affiliated hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhangjun Song
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| |
Collapse
|
2
|
Jia X, Tian J, Chen P, Dong J, Li L, Chen D, Zhang J, Liao D, He Z, Luo K. Methylation-modulated PFTK1 regulates gefitinib resistance via Wnt/β-catenin signaling in EGFR mutant non-small-cell lung cancer cells. Commun Biol 2024; 7:1649. [PMID: 39702755 DOI: 10.1038/s42003-024-07339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Inevitable gefitinib resistance is the biggest bottleneck in current treatment and the mechanisms are not fully understood. Here, we observe that PFTK1 (also named CDK14) is significantly enhanced in NSCLC with gefitinib resistance. And the upregulation of PFTK1 is negatively associated with progression-free survival (PFS) in NSCLC patients who receive gefitinib treatment. Further study suggests that gefitinib can critically accelerate PFTK1 through suppressing its promoter methylation in a DNMT3B-dependent manner. Gain and loss of function assays demonstrate that desregulation of PFTK1 significantly enhances gefitinib resistance in NSCLC. PFTK1 interacts with LRP6 and activates Wnt/β-catenin signaling to attenuate gefitinib-induced cellular apoptosis. Moreover, FMF-04-159-2, a specific covalent inhibitor of PFTK1, can reverse the effect of PFTK1 on gefitinib resistance in vitro and in vivo. Consequently, these findings shed new light on the mechanism underlying gefitinib resistance, and suggest PFTK1 as a target for gefitinib treatment in NSCLC.
Collapse
Affiliation(s)
- Xiaoting Jia
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Jingjie Tian
- Hubei Jianghan Oilfield General Hospital, Qianjiang, Hubei, China
| | - Pingping Chen
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Jing Dong
- Zhuhai People's Hospital, Zhuhai, Guangdong, China
| | - Lei Li
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Danyang Chen
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Jianlei Zhang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Dongjiang Liao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
| | - Zhimin He
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
| | - Kai Luo
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Wang K, Zhang S, Wang Y, Wu X, Wen L, Meng T, Jin X, Li S, Hong Y, Ke J, Xu Y, Yuan H, Hu F. Taprenepag restores maternal-fetal interface homeostasis for the treatment of neurodevelopmental disorders. J Neuroinflammation 2024; 21:307. [PMID: 39609821 PMCID: PMC11603931 DOI: 10.1186/s12974-024-03300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurodevelopmental disorders (NDDs) are characterized by abnormalities in brain development and neurobehaviors, including autism. The maternal-fetal interface (MFI) is a highly specialized tissue through which maternal factors affect fetal brain development. However, limited research exists on restoring and maintaining MFI homeostasis and its potential impact on NDDs. This study explores the role of placental indoleamine 2,3-dioxygenase (IDO-1) in MFI homeostasis and fetal brain development. EXPERIMENTAL APPROACH The maternal-fetal barrier was disrupted by sodium valproate (VPA) in pregnant mice, whose offspring show typical autism-like behaviors. Ultrastructural analysis and flow cytometric analysis were conducted to observe the morphological and immune system changes. Behavioral tests and immunofluorescence staining was used to investigate the ability and mechanism of taprenepag to alleviate the abnormal behaviors of VPA-exposed offspring and normalize the development of serotonergic neurons. KEY RESULTS In VPA-exposed pregnant mice, the downregulation of IDO-1 led to maternal immune overactivation and disruption of maternal-fetal barrier, resulting in excessive 5-HT synthesis in the placenta. This process disrupted the development of the serotonergic neuronal system in the offspring, resulting in impaired development of serotonergic neurons, thalamocortical axons, and NDDs in the progeny. However, a single injection of taprenepag at E13.5 ultimately upregulated placental IDO-1 through amplifying the positive feedback loop COX-2/PGE2/PTGER-2/IDO-1 and abolished these alterations. CONCLUSION Taprenepag improved autism-like behaviors in the offspring of VPA-exposed mice by addressing placental IDO-1 downregulation. This study highlights the potential of targeting IDO-1 to mitigate MFI disruption and NDD development.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Shufen Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaomei Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Lijuan Wen
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Xiangyu Jin
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Sufen Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yiling Hong
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jia Ke
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yichong Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China.
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
4
|
He H, Zhou Q, Zhang Y, Li Y, Ding L, Shen T, Liu S, Peng S, Huang M, Zhou H, Cheng L, Xie R, Zhang Q, Lu J, Li L, Yang J, Bai S, Lin T, Chen X. PTBP1 Regulates DNMT3B Alternative Splicing by Interacting With RALY to Enhance the Radioresistance of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405997. [PMID: 39287090 PMCID: PMC11558147 DOI: 10.1002/advs.202405997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
Radiotherapy is a curative arsenal for prostate cancer (PCa), but radioresistance seriously compromises its effectiveness. Dysregulated RNA splicing factors are extensively involved in tumor progression. Nonetheless, the role of splicing factors in radioresistance remains largely unexplored in PCa. Here, 23 splicing factors that are differentially expressed between PCa and adjacent normal tissues across multiple public PCa databases are identified. Among those genes, polypyrimidine tract binding protein 1 (PTBP1) is significantly upregulated in PCa and is positively associated with advanced clinicopathological features and poor prognosis. Gain- and loss-of-function experiments demonstrate that PTBP1 markedly reinforces genomic DNA stability to desensitize PCa cells to irradiation in vitro and in vivo. Mechanistically, PTBP1 interacts with the heterogeneous nuclear ribonucleoproteins (hnRNP) associated with lethal yellow protein homolog (RALY) and regulates exon 5 splicing of DNA methyltransferase 3b (DNMT3B) from DNMT3B-S to DNMT3B-L. Furthermore, upregulation of DNMT3B-L induces promoter methylation of dual-specificity phosphatase-2 (DUSP2) and subsequently inhibits DUSP2 expression, thereby increasing radioresistance in PCa. The findings highlight the role of splicing factors in inducing aberrant splicing events in response to radiotherapy and the potential role of PTBP1 and DNMT3B-L in reversing radioresistance in PCa.
Collapse
Affiliation(s)
- Haixia He
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qianghua Zhou
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yangjie Zhang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yi Li
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Lin Ding
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Ting Shen
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Shengmeng Peng
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Hua Zhou
- Department of UrologyPu'er People's Hospital of Yunnan ProvincePu'er665000China
| | - Liang Cheng
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qiang Zhang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Liting Li
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jing Yang
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Shoumin Bai
- Department of Radiation OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| |
Collapse
|
5
|
Feng Y, He C, Liu C, Shao B, Wang D, Wu P. Exploring the Complexity and Promise of Tumor Immunotherapy in Drug Development. Int J Mol Sci 2024; 25:6444. [PMID: 38928150 PMCID: PMC11204037 DOI: 10.3390/ijms25126444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer represents a significant threat to human health, and traditional chemotherapy or cytotoxic therapy is no longer the sole or preferred approach for managing malignant tumors. With advanced research into the immunogenicity of tumor cells and the growing elderly population, tumor immunotherapy has emerged as a prominent therapeutic option. Its significance in treating elderly cancer patients is increasingly recognized. In this study, we review the conceptual classifications and benefits of immunotherapy, and discuss recent developments in new drugs and clinical progress in cancer treatment through various immunotherapeutic modalities with different mechanisms. Additionally, we explore the impact of immunosenescence on the effectiveness of cancer immunotherapy and propose innovative and effective strategies to rejuvenate senescent T cells.
Collapse
Affiliation(s)
| | | | | | | | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (C.H.); (C.L.); (B.S.)
| | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (C.H.); (C.L.); (B.S.)
| |
Collapse
|
6
|
Darbandi M, Bado IL. Tumor Microenvironment and Epigenetic Implications in Breast Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:15-36. [PMID: 39586991 DOI: 10.1007/978-3-031-66686-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Breast cancer (BC) poses significant challenges, driven by its diverse nature and intricate dynamics. Epigenetic modifications, such as DNA methylation, histone modifications, and noncoding RNAs, have emerged as key regulators of gene expression and BC metastasis plasticity or therapeutic resistance. Targeting epigenetic regulators and pathways associated with therapeutic resistance holds promise for overcoming treatment obstacles and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Mahsa Darbandi
- Department of Oncological Sciences, Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Igor L Bado
- Department of Oncological Sciences, Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
7
|
Brown KA, Scherer PE. Update on Adipose Tissue and Cancer. Endocr Rev 2023; 44:961-974. [PMID: 37260403 PMCID: PMC10638602 DOI: 10.1210/endrev/bnad015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Adipose tissue is the largest endocrine organ and an accepted contributor to overall energy homeostasis. There is strong evidence linking increased adiposity to the development of 13 types of cancer. With increased adiposity comes metabolic dysfunction and insulin resistance, and increased systemic insulin and glucose support the growth of many cancers, including those of the colon and endometrium. There is also an important direct crosstalk between adipose tissue and various organs. For instance, the healthy development and function of the mammary gland, as well as the development, growth, and progression of breast cancer, are heavily impacted by the breast adipose tissue in which breast epithelial cells are embedded. Cells of the adipose tissue are responsive to external stimuli, including overfeeding, leading to remodeling and important changes in the secretion of factors known to drive the development and growth of cancers. Loss of factors like adiponectin and increased production of leptin, endotrophin, steroid hormones, and inflammatory mediators have been determined to be important mediators of the obesity-cancer link. Obesity is also associated with a structural remodeling of the adipose tissue, including increased localized fibrosis and disrupted angiogenesis that contribute to the development and progression of cancers. Furthermore, tumor cells feed off the adipose tissue, where increased lipolysis within adipocytes leads to the release of fatty acids and stromal cell aerobic glycolysis leading to the increased production of lactate. Both have been hypothesized to support the higher energetic demands of cancer cells. Here, we aim to provide an update on the state of the literature revolving around the role of the adipose tissue in cancer initiation and progression.
Collapse
Affiliation(s)
- Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Jacquet E, Chuffart F, Vitte AL, Nika E, Mousseau M, Khochbin S, Rousseaux S, Bourova-Flin E. Aberrant activation of five embryonic stem cell-specific genes robustly predicts a high risk of relapse in breast cancers. BMC Genomics 2023; 24:463. [PMID: 37592220 PMCID: PMC10436393 DOI: 10.1186/s12864-023-09571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND In breast cancer, as in all cancers, genetic and epigenetic deregulations can result in out-of-context expressions of a set of normally silent tissue-specific genes. The activation of some of these genes in various cancers empowers tumours cells with new properties and drives enhanced proliferation and metastatic activity, leading to a poor survival prognosis. RESULTS In this work, we undertook an unprecedented systematic and unbiased analysis of out-of-context activations of a specific set of tissue-specific genes from testis, placenta and embryonic stem cells, not expressed in normal breast tissue as a source of novel prognostic biomarkers. To this end, we combined a strict machine learning framework of transcriptomic data analysis, and successfully created a new robust tool, validated in several independent datasets, which is able to identify patients with a high risk of relapse. This unbiased approach allowed us to identify a panel of five biomarkers, DNMT3B, EXO1, MCM10, CENPF and CENPE, that are robustly and significantly associated with disease-free survival prognosis in breast cancer. Based on these findings, we created a new Gene Expression Classifier (GEC) that stratifies patients. Additionally, thanks to the identified GEC, we were able to paint the specific molecular portraits of the particularly aggressive tumours, which show characteristics of male germ cells, with a particular metabolic gene signature, associated with an enrichment in pro-metastatic and pro-proliferation gene expression. CONCLUSIONS The GEC classifier is able to reliably identify patients with a high risk of relapse at early stages of the disease. We especially recommend to use the GEC tool for patients with the luminal-A molecular subtype of breast cancer, generally considered of a favourable disease-free survival prognosis, to detect the fraction of patients undergoing a high risk of relapse.
Collapse
Affiliation(s)
- Emmanuelle Jacquet
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
- Université Grenoble Alpes, CHU Grenoble Alpes, Medical Oncology Unit, Cancer and Blood Diseases Department, Grenoble, France
| | - Florent Chuffart
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Laure Vitte
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
| | - Eleni Nika
- Université Grenoble Alpes, CHU Grenoble Alpes, Department of Pathology, Grenoble, France
| | - Mireille Mousseau
- Université Grenoble Alpes, CHU Grenoble Alpes, Medical Oncology Unit, Cancer and Blood Diseases Department, Grenoble, France
- Université Grenoble Alpes, INSERM U1039, Bioclinical Radiopharmaceuticals, Grenoble, France
| | - Saadi Khochbin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
| | - Ekaterina Bourova-Flin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France.
| |
Collapse
|
9
|
Kravitz CJ, Yan Q, Nguyen DX. Epigenetic markers and therapeutic targets for metastasis. Cancer Metastasis Rev 2023; 42:427-443. [PMID: 37286865 PMCID: PMC10595046 DOI: 10.1007/s10555-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.
Collapse
Affiliation(s)
- Carolyn J Kravitz
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
Finetti F, Paradisi L, Bernardi C, Pannini M, Trabalzini L. Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy. Cancers (Basel) 2023; 15:cancers15082374. [PMID: 37190301 DOI: 10.3390/cancers15082374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
It is recognized that prostaglandin E2 (PGE2) is one key lipid mediator involved in chronic inflammation, and it is directly implicated in tumor development by regulating cancer cell growth and migration, apoptosis, epithelial-mesenchymal transition, angiogenesis, and immune escape. In addition, the expression of the enzymes involved in PGE2 synthesis, cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES1), positively correlates with tumor progression and aggressiveness, clearly indicating the crucial role of the entire pathway in cancer. Moreover, several lines of evidence suggest that the COX2/mPGES1/PGE2 inflammatory axis is involved in the modulation of epidermal growth factor receptor (EGFR) signaling to reinforce the oncogenic drive of EGFR activation. Similarly, EGFR activation promotes the induction of COX2/mPGES1 expression and PGE2 production. In this review, we describe the interplay between COX2/mPGES1/PGE2 and EGFR in cancer, and new therapeutic strategies that target this signaling pathway, to outline the importance of the modulation of the inflammatory process in cancer fighting.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lucrezia Paradisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Clizia Bernardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Margherita Pannini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
11
|
Tian H, Liu C, Yu J, Han J, Du J, Liang S, Wang W, Liu Q, Lian R, Zhu T, Wu S, Tao T, Ye Y, Zhao J, Yang Y, Zhu X, Cai J, Wu J, Li M. PHF14 enhances DNA methylation of SMAD7 gene to promote TGF-β-driven lung adenocarcinoma metastasis. Cell Discov 2023; 9:41. [PMID: 37072414 PMCID: PMC10113255 DOI: 10.1038/s41421-023-00528-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/07/2023] [Indexed: 04/20/2023] Open
Abstract
Aberrant activation of TGF-β signaling plays a pivotal role in cancer metastasis and progression. However, molecular mechanisms underlying the dysregulation of TGF-β pathway remain to be understood. Here, we found that SMAD7, a direct downstream transcriptional target and also a key antagonist of TGF-β signaling, is transcriptionally suppressed in lung adenocarcinoma (LAD) due to DNA hypermethylation. We further identified that PHF14 binds DNMT3B and serves as a DNA CpG motif reader, recruiting DNMT3B to the SMAD7 gene locus, resulting in DNA methylation and transcriptional suppression of SMAD7. Our in vitro and in vivo experiments showed that PHF14 promotes metastasis through binding DNMT3B to suppress SMAD7 expression. Moreover, our data revealed that PHF14 expression correlates with lowered SMAD7 level and shorter survival of LAD patients, and importantly that SMAD7 methylation level of circulating tumor DNA (ctDNA) can potentially be used for prognosis prediction. Together, our present study illustrates a new epigenetic mechanism, mediated by PHF14 and DNMT3B, in the regulation of SMAD7 transcription and TGF-β-driven LAD metastasis, and suggests potential opportunities for LAD prognosis.
Collapse
Affiliation(s)
- Han Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenying Liu
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianchen Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, China
| | - Jian Han
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Du
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shujun Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenting Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qin Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong Lian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianyu Tao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaokai Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Zhao
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junchao Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jueheng Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengfeng Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Baral I, Shirude MB, Jothi DL, Mukherjee A, Dutta D. Characterization of a Distinct State in the Continuum of Pluripotency Facilitated by Inhibition of PKCζ in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023; 19:1098-1115. [PMID: 36781773 DOI: 10.1007/s12015-023-10513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Inhibition of PKC (PKCi) signaling maintains pluripotency of embryonic stem cells (ESCs) across different mammalian species. However, the position of PKCi maintained ESCs in the pluripotency continuum is largely unknown. Here we demonstrate that mouse ESCs when cultured continuously, with PKCi, for 75 days are retained in naïve state of pluripotency. Gene expression analysis and proteomics studies demonstrated enhanced naïve character of PKCi maintained ESCs in comparison to classical serum/LIF (S/L) supported ESCs. Molecular analysis revealed that activation of PKCζ isoform associate with primed state of pluripotency, present in epiblast-like stem cells generated in vitro while inhibition of PKCζ phosphorylation associated with naïve state of pluripotency in vitro and in vivo. Phosphoproteomics and chromatin modification enzyme array based studies showed loss in DNA methyl transferase 3B (DNMT3B) and its phosphorylation level upon functional inhibition of PKCζ as one of the crucial components of this regulatory pathway. Unlike ground state of pluripotency maintained by MEK/GSK3 inhibitor in addition to LIF (2i/LIF), loss in DNMT3B is a reversible phenomenon in PKCi maintained ESCs. Absence of phosphorylation of c-MYC, RAF1, SPRY4 while presence of ERF, DUSP6, CIC and YAP1 phosphorylation underlined the phosphoproteomics signature of PKCi mediated maintenance of naïve pluripotency. States of pluripotency represent the developmental continuum and the existence of PKCi mediated mouse ESCs in a distinct state in the continuum of pluripotency (DiSCo) might contribute to the establishment of stages of murine embryonic development that were non-permissible till date.
Collapse
Affiliation(s)
- Ishita Baral
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Mayur Balkrishna Shirude
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Dhana Lakshmi Jothi
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Ananda Mukherjee
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
13
|
Sadeghirad H, Bahrami T, Layeghi SM, Yousefi H, Rezaei M, Hosseini-Fard SR, Radfar P, Warkiani ME, O'Byrne K, Kulasinghe A. Immunotherapeutic targets in non-small cell lung cancer. Immunology 2023; 168:256-272. [PMID: 35933597 DOI: 10.1111/imm.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of cancer in the world and has a 5-year survival rate of ~20%. Immunotherapies have shown promising results leading to durable responses, however, they are only effective for a subset of patients. To determine the best therapeutic approach, a thorough and in-depth profiling of the tumour microenvironment (TME) is required. The TME is a complex network of cell types that form an interconnected network, promoting tumour cell initiation, growth and dissemination. The stroma, immune cells and endothelial cells that comprise the TME generate a plethora of cytotoxic or cytoprotective signalling pathways. In this review, we discuss immunotherapeutic targets in NSCLC tumours and how the TME may influence patients' response to immunotherapy.
Collapse
Affiliation(s)
- Habib Sadeghirad
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tayyeb Bahrami
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh M Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Meysam Rezaei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Seyed R Hosseini-Fard
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Payar Radfar
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ken O'Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Arutha Kulasinghe
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Bai J, Wang H, Yang S, Lu J, Li C, Sun Y, Huo T, Deng J, Zhang Q. Dust fall PM 2.5-induced lung inflammation in rats is associated with hypermethylation of the IFN-γ gene promoter via the PI3K-Akt-DNMT3b pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103942. [PMID: 35933082 DOI: 10.1016/j.etap.2022.103942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Inflammation is one of the major adverse effects of fine particulate matter (PM2.5) on the lung system; however, its mechanisms remain unclear. Rats were exposed to different concentrations of PM2.5 to investigate the mechanism of short-term exposure-induced lung inflammation. The regulation of PI3K-Akt and DNA methyltransferase 3b (DNMT3b) was assessed by using a PI3K inhibitor and a DNA methyltransferase inhibitor. We found that PM2.5 could decrease interferon-γ (IFN-γ) levels and increase interleukin 4 (IL-4), IL-5 and IL-13 levels in bronchoalveolar lavage fluid (BALF) to promote eosinophil infiltration and eventually lead to allergic pulmonary inflammation. Moreover, the CpG island methylation rate of the IFN-γ promoter and the protein expression of DNMT3b, PI3K and p-Akt were increased in lung tissues after PM2.5 exposure. Both inhibitors reversed the CpG island hypermethylation of IFN-γ. In conclusion, in PM2.5-induced lung injury, the activated PI3K-Akt pathway, via an increase in DNMT3b expression, is involved in CpG hypermethylation of the IFN-γ gene promoter.
Collapse
Affiliation(s)
- Jun Bai
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Hailan Wang
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Siyu Yang
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Ji Lu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chenwen Li
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Tingting Huo
- School of Environmental and Resource, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jianjun Deng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang 621000, China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
15
|
So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options. Pharmacol Ther 2022; 237:108253. [PMID: 35872332 PMCID: PMC9378710 DOI: 10.1016/j.pharmthera.2022.108253] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by extensive intra-tumoral heterogeneity, and frequently develops resistance to therapies. Tumor heterogeneity and lack of biomarkers are thought to be some of the most difficult challenges driving therapeutic resistance and relapse. This review will summarize current therapy for TNBC, studies in treatment resistance and relapse, including data from recent single cell sequencing. We will discuss changes in both the transcriptome and epigenome of TNBC, and we will review mechanisms regulating the immune microenvironment. Lastly, we will provide new perspective in patient stratification, and treatment options targeting transcriptome dysregulation and the immune microenvironment of TNBC patients.
Collapse
Affiliation(s)
- Jae Young So
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Stan Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Liu P, Yang F, Zhang L, Hu Y, Chen B, Wang J, Su L, Wu M, Chen W. Emerging role of different DNA methyltransferases in the pathogenesis of cancer. Front Pharmacol 2022; 13:958146. [PMID: 36091786 PMCID: PMC9453300 DOI: 10.3389/fphar.2022.958146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is one of the most essential epigenetic mechanisms to regulate gene expression. DNA methyltransferases (DNMTs) play a vital role in DNA methylation in the genome. In mammals, DNMTs act with some elements to regulate the dynamic DNA methylation patterns of embryonic and adult cells. Conversely, the aberrant function of DNMTs is frequently the hallmark in judging cancer, including total hypomethylation and partial hypermethylation of tumor suppressor genes (TSGs), which improve the malignancy of tumors, aggravate the ailment for patients, and significantly exacerbate the difficulty of cancer therapy. Since DNA methylation is reversible, currently, DNMTs are viewed as an important epigenetic target for drug development. However, the impression of DNMTs on cancers is still controversial, and therapeutic methods targeting DNMTs remain under exploration. This review mainly summarizes the relationship between the main DNMTs and cancers as well as regulatory mechanisms and clinical applications of DNMTs in cancer and highlights several forthcoming strategies for targeting DNMTs.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Human Resources, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lizhi Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianpeng Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Su
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingyue Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
17
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Sanchez VC, Yang HH, Craig-Lucas A, Dubois W, Carofino BL, Lack J, Dwyer JE, Simpson RM, Cataisson C, Lee MP, Luo J, Hunter KW, Yuspa SH. Host CLIC4 expression in the tumor microenvironment is essential for breast cancer metastatic competence. PLoS Genet 2022; 18:e1010271. [PMID: 35727842 PMCID: PMC9249210 DOI: 10.1371/journal.pgen.1010271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/01/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
The TGF-β-regulated Chloride Intracellular Channel 4 (CLIC4) is an essential participant in the formation of breast cancer stroma. Here, we used data available from the TCGA and METABRIC datasets to show that CLIC4 expression was higher in breast cancers from younger women and those with early-stage metastatic disease. Elevated CLIC4 predicted poor outcome in breast cancer patients and was linked to the TGF-β pathway. However, these associations did not reveal the underlying biological contribution of CLIC4 to breast cancer progression. Constitutive ablation of host Clic4 in two murine metastatic breast cancer models nearly eliminated lung metastases without reducing primary tumor weight, while tumor cells ablated of Clic4 retained metastatic capability in wildtype hosts. Thus, CLIC4 was required for host metastatic competence. Pre- and post-metastatic proteomic analysis identified circulating pro-metastatic soluble factors that differed in tumor-bearing CLIC4-deficient and wildtype hosts. Vascular abnormalities and necrosis increased in primary tumors from CLIC4-deficient hosts. Transcriptional profiles of both primary tumors and pre-metastatic lungs of tumor-bearing CLIC4-deficient hosts were consistent with a microenvironment where inflammatory pathways were elevated. Altogether, CLIC4 expression in human breast cancers may serve as a prognostic biomarker; therapeutic targeting of CLIC4 could reduce primary tumor viability and host metastatic competence.
Collapse
Affiliation(s)
- Vanesa C. Sanchez
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alayna Craig-Lucas
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Jennifer E. Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - R. Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Max P. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kent W. Hunter
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Man X, Li Q, Wang B, Zhang H, Zhang S, Li Z. DNMT3A and DNMT3B in Breast Tumorigenesis and Potential Therapy. Front Cell Dev Biol 2022; 10:916725. [PMID: 35620052 PMCID: PMC9127442 DOI: 10.3389/fcell.2022.916725] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023] Open
Abstract
Breast cancer has become a leading cause of cancer-related deaths in women worldwide. DNA methylation has been revealed to play an enormously important role in the development and progression of breast cancer. DNA methylation is regulated by DNA methyltransferases (DNMTs), including DNMT1, DNMT2, and DNMT3. DNMT3 family has three members: DNMT3A, DNMT3B, and DNMT3L. The roles and functions of DNMT1 in breast cancer have been well reviewed. In this article, the roles of DNMT3A and DNMT3B in breast tumorigenesis and development are reviewed. We also discuss the SNP and mutations of DNMT3A and DNMT3B in breast cancer. In addition, we summarize how DNMT3A and DNMT3B are regulated by non-coding RNAs and signaling pathways in breast cancer, and targeting the expression levels of DNMT3A and DNMT3B may be a promising therapeutic approach for breast cancer. This review will provide reference for further studies on the biological functions and molecular mechanisms of DNMT3A and DNMT3B in breast cancer.
Collapse
Affiliation(s)
- Xiaxia Man
- Department of Oncologic Gynecology, the First Hospital of Jilin University, Jilin, China
| | - Qi Li
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, the First Hospital of Jilin University, Jilin, China
| | - Baogang Wang
- Department of Cardiac Surgery, the First Hospital of Jilin University, Jilin, China
| | - He Zhang
- Department of Oncologic Gynecology, the First Hospital of Jilin University, Jilin, China
| | - Songling Zhang
- Department of Oncologic Gynecology, the First Hospital of Jilin University, Jilin, China
| | - Ziyi Li
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, the First Hospital of Jilin University, Jilin, China
| |
Collapse
|
20
|
Zhou W, Zhu H, Xu Y, Gu L, Wu W, Zhang Y, Huang X, Jiang Y. miR-498/DNMT3b Axis Mediates Resistance to Radiotherapy in Esophageal Cancer Cells. Cancer Biother Radiopharm 2022; 37:287-299. [PMID: 33885332 DOI: 10.1089/cbr.2020.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the role of miR-498 in the radiotherapy resistance of esophageal cancer (EC) and its underlying mechanism. Methods: In vivo models of EC tissues with radioresistance or radiosensitivity were isolated from 72 EC patients who received radiotherapy. In vitro models were established after irradiation of KYSE30 cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were employed to measure the expression levels of miR-498 and DNMT3b in EC cells sensitive or resistant to irradiation. Then, protein expression of DNMT3b was verified by immunohistochemistry. The cell viability, colony formation rate, and cell apoptotic rate of EC were correspondingly assessed by CCK-8, colony formation assay, and Annexin V/PI (propidium iodide) double staining. Western blot was utilized to perform the expression levels of PI3K, p-PI3K, AKT, and p-AKT in EC cell lines after irradiation. Results: Highly expressed DNMT3b and lowly expressed miR-498 were found in EC tissues. EC tissues with radiosensitivity had higher miR-498 level and lower DNMT3b expression than EC tissues with radioresistance. Overexpression of miR-498 or knockdown of DNMT3b enhanced the radiosensitivity of EC cells. DNMT3b was a target gene of miR-498. DNMT3b diminished the radiosensitization of miR-498 in EC cells. Conclusions: MiR-498 enhances the sensitivity of EC cells to radiation by DNMT3b inhibition, and exerts biological functions by inactivating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Weihe Zhou
- Department of Cardiothoracic Surgery and the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Haoqi Zhu
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yuan Xu
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Lizhong Gu
- Department of Cardiothoracic Surgery and the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Weijia Wu
- Department of Cardiothoracic Surgery and the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yuefeng Zhang
- Department of Cardiothoracic Surgery and the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xianping Huang
- Department of Cardiothoracic Surgery and the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yi Jiang
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
21
|
Ren Z, He Y, Yang Q, Guo J, Huang H, Li B, Wang D, Yang Z, Tian X. A Comprehensive Analysis of the Glutathione Peroxidase 8 (GPX8) in Human Cancer. Front Oncol 2022; 12:812811. [PMID: 35402257 PMCID: PMC8991916 DOI: 10.3389/fonc.2022.812811] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 01/22/2023] Open
Abstract
Objective Nowadays, cancer is still a leading public health problem all over the world. Several studies have reported the GPX8 could be correlated with the poor prognostic of Gastric Cancer and Breast Cancer. However, the prognostic potential of GPX8 in pan-cancer remains unclear. In this work, we aimed to explore the prognostic and immunological role of GPX8 in human cancer and confirm the oncogenic value in GBM. Methods The data of TCGA, CPTAC and GEO databases were adopted for the survival analysis. Based on the RNAseq and Methylation450 data of TCGA, the R language and package “ggplot2” were used to analyze the DNA methylation at the region of the promoter of GPX8 in tumors. The genetic alteration of GPX8 from TCGA cancers was investigated in cBioPortal. The R package “GSVA” and “ssGSEA” were employed to evaluate the correlation of GPX8 expression with the immune infiltration. The KEGG website was used for pathway analysis. The STRING website and GEPIA were performed to predict GPX8-binding proteins. The R package “ggplot2” and “clusterprofile” were used to analyze and visualize the GO and KEGG analysis. A normal human astrocyte cell line and three GBM cell lines were cultured under suitable conditions. The shRNA was transferred to cells by Lipofectamine 3000. The qRT-PCR and WB were adopted to detect the expression of GPX8. The wound-healing assay and transwell assay were taken to analyze the invasive and metastatic abilities. The tumor tissues and paracancerous ones were collected from patients with GBM. WB assay was employed to analyze the expression of GPX8 protein. Results GPX8 was a valuable diagnostic biomarker in multiple cancers, including GBM/LGG (glioblastoma multiforme/Brain lower grade glioma), KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma) and STAD (stomach adenocarcinoma). Moreover, we observed a correlation between the expression of GPX8 and the reduced DNA methylation at the promoter region in several tumors, such as GBM/LGG. Our results indicated a positive correlation between the GPX8 expression and immune infiltration. In addition, the enrichment analysis demonstrated that antioxidant activity was mainly involved in the functional mechanism of GPX8. In particular, we first confirmed the up-regulated of GPX8 in GBM cells and observed the suppression of migrative and invasive phenotypes by knockdown of GPX8. Furthermore, we confirmed the expression of GPX8 was higher in GBM tumor tissues than paracancerous ones. Conclusion Our study showed a correlation of GPX8 expression with clinical prognosis, DNA methylation and immune infiltrates. Furthermore, we first confirmed GPX8 was highly expressed in GBM cells and contributed to migration and invasion. These results provided a predictive biomarker and an inclusive understanding of the GPX8 expression in multiple tumors types, especially in GBM.
Collapse
Affiliation(s)
- Zhijing Ren
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yu He
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qinqin Yang
- Medical College, Guizhou University, Guiyang, China
| | - Jiajia Guo
- Medical College, Guizhou University, Guiyang, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dong Wang
- Department of Orthopedics, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaobin Tian
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
22
|
Abstract
Natural killer (NK) cells are innate immune cells that are critical to the body's antitumor and antimetastatic defense. As such, novel therapies are being developed to utilize NK cells as part of a next generation of immunotherapies to treat patients with metastatic disease. Therefore, it is essential for us to examine how metastatic cancer cells and NK cells interact with each other throughout the metastatic cascade. In this Review, we highlight the recent body of work that has begun to answer these questions. We explore how the unique biology of cancer cells at each stage of metastasis alters fundamental NK cell biology, including how cancer cells can evade immunosurveillance and co-opt NK cells into cells that promote metastasis. We also discuss the translational potential of this knowledge.
Collapse
Affiliation(s)
- Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology, and
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew J. Ewald
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Saglam O, Cao B, Wang X, Toruner GA, Conejo-Garcia JR. Expression of epigenetic pathway related genes in association with PD-L1, ER/PgR and MLH1 in endometrial carcinoma. PLoS One 2022; 17:e0264014. [PMID: 35226658 PMCID: PMC8884513 DOI: 10.1371/journal.pone.0264014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
The distribution of Endometrial Cancer (EC)-related deaths is uneven among the morphologic subtypes of EC. Serous Cancer (SC) makes 10% of all EC and accounts for 40% of EC-related deaths. We investigated expression of selected genes involved in epigenetic pathways by immunohistochemistry in a cohort of 106 EC patients and analyzed mRNA-based expression levels for the same set of genes in EC samples from The Cancer Genome Atlas (TCGA) dataset. A tissue microarray was constructed using low-grade (n = 30) and high-grade (n = 28) endometrioid, serous (n = 31) and clear cell carcinoma (n = 17) samples. Epigenetic marker levels were associated with PD-L1, ER/PgR, and MLH1 expression. Epigenetic markers were evaluated by H-score and PD-L1 expression was recorded by using Combined Positive Score. Results were correlated with disease stage and survival outcome. BRD4, KAT6a and HDAC9 levels were higher in SC compared to other histologic subtypes (p<0.001–0.038). After adjusting for multiple comparisons, DNMT3b expression was higher in SC compared to endometrioid-type but not between SC and CCC. The expression levels of BRD4 (p = 0.021) and KAT6a (p = 0.0027) were positively associated with PD-L abundance, while PgR (p = 0.029) and PD-L1 expression were negatively associated. In addition, BRD4 expression was low in specimens with loss of MLH1 expression (p = 0.02). More importantly, BRD4 abundance had a negative impact on disease outcome (p = 0.02). Transcriptionally, BRD4, KAT6a and DNMT3b expression levels were higher in SC in TCGA dataset. The median PD-L1 expression was marginally associated with BRD4, a transcriptional activator of CD274/PD-L1 (p = 0.069) and positively with KAT6a (p = 0.0095). In conclusion, the protein expression levels of epigenetic markers involved in cancer pathogenesis are increased by immunohistochemistry in SC. PD-L1 levels are associated with BRD4 and KAT6a in EC samples. A combination therapy with BRD4/PD-L1 or KAT6a/PD-L1 inhibitors might have a potential use in EC, in particular serous-type carcinoma.
Collapse
Affiliation(s)
- Ozlen Saglam
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, United States of America
- * E-mail:
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Gokce A. Toruner
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jose R. Conejo-Garcia
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, United States of America
| |
Collapse
|
24
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
25
|
Pang L, Shah H, Xu Y, Qian S. Delta-5-desaturase: A novel therapeutic target for cancer management. Transl Oncol 2021; 14:101207. [PMID: 34438249 PMCID: PMC8390547 DOI: 10.1016/j.tranon.2021.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
D5D is an independent prognostic factor in cancer. D5D aggravates cancer progression via mediating AA/PGE2 production from DGLA. AA/PGE2 promotes cancer progression via regulating the tumor microenvironment. Inhibition of D5D redirects COX-2 catalyzed DGLA peroxidation, producing 8-HOA. 8-HOA suppress cancer by regulating proliferation, apoptosis, and metastasis.
Delta-5 desaturase (D5D) is a rate-limiting enzyme that introduces double-bonds to the delta-5 position of the n-3 and n-6 polyunsaturated fatty acid chain. Since fatty acid metabolism is a vital factor in cancer development, several recent studies have revealed that D5D activity and expression could be an independent prognostic factor in cancers. However, the mechanistic basis of D5D in cancer progression is still controversial. The classical concept believes that D5D could aggravate cancer progression via mediating arachidonic acid (AA)/prostaglandin E2 production from dihomo-γ-linolenic acid (DGLA), resulting in activation of EP receptors, inflammatory pathways, and immunosuppression. On the contrary, D5D may prevent cancer progression through activating ferroptosis, which is iron-dependent cell death. Suppression of D5D by RNA interference and small-molecule inhibitor has been identified as a promising anti-cancer strategy. Inhibition of D5D could shift DGLA peroxidation pattern from generating AA to a distinct anti-cancer free radical byproduct, 8-hydroxyoctanoic acid, resulting in activation of apoptosis pathway and simultaneously suppression of cancer cell survival, proliferation, migration, and invasion. Hence, understanding the molecular mechanisms of D5D on cancer may therefore facilitate the development of novel therapeutical applications. Given that D5D may serve as a promising target in cancer, in this review, we provide an updated summary of current knowledge on the role of D5D in cancer development and potentially useful therapeutic strategies.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA.
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| | - Yi Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| |
Collapse
|
26
|
COVID-19 and Malignancy: Exploration of the possible genetic and epigenetic interlinks and overview of the vaccination scenario. Cancer Treat Res Commun 2021; 28:100425. [PMID: 34171559 PMCID: PMC8213508 DOI: 10.1016/j.ctarc.2021.100425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignancy is one of the prime global causes of mortality. Cancer Patients suffering from SARS-CoV-2 have demonstrated higher rates of severe complications exacerbating towards death. Possible genetic and epigenetic alterations may exist in cancer patients which have the potential to contribute towards their increased vulnerability towards COVID-19. METHOD An exhaustive literature search using 'COVID-19', 'SARS-CoV-2', 'Cancer', 'Malignancy', 'Relationships', Interlinks', 'Genetic', 'Epigenetic', 'Epidemiological studies', 'Clinical Studies', 'Vaccination', 'Vaccine scenario' were conducted in PubMed and EMBASE till 2nd June 2021. RESULT In this narrative review, 17 epidemiological studies were listed which focused on clinical parameters of several malignancy patient cohorts who contracted COVID-19. Besides, genetic and epigenetic alterations seen among cancer patients are also discussed which may plausibly increase the vulnerability of cancer patients to SARS-CoV-2 infection. Also, global vaccination scenario among malignant patients along with the necessity to prioritize them in the vaccination campaigns are also elaborated. CONCLUSION Genetic and epigenetic modifications present in ACE2, TMPRSS2, IL-6 and several cytokines require more in-depth research to elucidate the shared mechanisms of malignancy and SARS-CoV-2.
Collapse
|
27
|
Sadeghi Rad H, Monkman J, Warkiani ME, Ladwa R, O'Byrne K, Rezaei N, Kulasinghe A. Understanding the tumor microenvironment for effective immunotherapy. Med Res Rev 2021; 41:1474-1498. [PMID: 33277742 PMCID: PMC8247330 DOI: 10.1002/med.21765] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Advances in immunotherapy have led to durable and long-term benefits in a subset of patients across a number of solid tumor types. Understanding of the subsets of patients that respond to immune checkpoint inhibitors at the cellular level, and in the context of their tumor microenvironment (TME) is becoming increasingly important. The TME is composed of a heterogeneous milieu of tumor and immune cells. The immune landscape of the TME can inhibit or promote tumor initiation and progression; thus, a deeper understanding of tumor immunity is necessary to develop immunotherapeutic strategies. Recent developments have focused on characterizing the TME immune contexture (type, density, and function) to discover mechanisms and biomarkers that may predict treatment outcomes. This has, in part, been powered by advancements in spatial characterization technologies. In this review article, we address the role of specific immune cells within the TME at various stages of tumor progression and how the immune contexture determinants affecting tumor growth are used therapeutically.
Collapse
Affiliation(s)
| | - James Monkman
- The School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
| | - Majid E. Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneyUltimoNew South WalesAustralia
- Institute of Molecular MedicineSechenov UniversityMoscowRussia
| | - Rahul Ladwa
- Princess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Ken O'Byrne
- The School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
- Princess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Nima Rezaei
- School of MedicineTehran University of Medical SciencesTehranIran
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and AutoimmunityUniversal Scientific Education and Research NetworkTehranIran
| | - Arutha Kulasinghe
- The School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
- Institute for Molecular BiosciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
28
|
Cell lineage-specific methylome and genome alterations in gout. Aging (Albany NY) 2021; 13:3843-3865. [PMID: 33493135 PMCID: PMC7906142 DOI: 10.18632/aging.202353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
In this study, we examined data from 69 gout patients and 1,455 non-gout controls using a MethylationEPIC BeadChip assay and Illumina HiSeq platform to identify lineage-specific epigenetic alterations and associated genetic factors that contributed to gouty inflammation. Cell lineage-specific differentially methylated sites were identified using CellDMC after adjusting for sex, age, alcohol drinking, smoking status, and smoking history (total pack-years). Different cell lineages displayed distinct differential methylation. Ingenuity Pathway Analysis and NetworkAnalyst indicated that many differential methylated sites were associated with interleukin-1β expression in monocytes. On the UCSC Genome Browser and WashU Epigenome Browser, metabolic trait, cis-methylation quantitative trait loci, genetic, and functional annotation analyses identified nine methylation loci located in interleukin-1β-regulating genes (PRKCZ, CIDEC, VDAC1, CPT1A, BIRC2, BRCA1, STK11, and NLRP12) that were associated specifically with gouty inflammation. All nine sites mapped to active regulatory elements in monocytes. MoLoTool and ReMap analyses indicated that the nine methylation loci overlapped with binding sites of several transcription factors that regulated interleukin-1β production and gouty inflammation. Decreases in PRKCZ and STK11 methylation were also associated with higher numbers of first-degree relatives who also had gout. The gouty-inflammation specific methylome and genome alterations could potentially aid in the identification of novel therapeutic targets.
Collapse
|
29
|
Shinden Y, Hirashima T, Nohata N, Toda H, Okada R, Asai S, Tanaka T, Hozaka Y, Ohtsuka T, Kijima Y, Seki N. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes. J Hum Genet 2020; 66:519-534. [PMID: 33177704 DOI: 10.1038/s10038-020-00865-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Our recent research has revealed that passenger strands of certain microRNAs (miRNAs) function as tumor-suppressive miRNAs in cancer cells, e.g., miR-101-5p, miR-143-5p, miR-144-5p, miR-145-3p, and miR-150-3p. Thus, they are important in cancer pathogenesis. Analysis of the miRNA expression signature of breast cancer (BrCa) showed that the expression levels of two miRNAs derived from pre-miR-99a (miR-99a-5p and miR-99a-3p) were suppressed in cancerous tissues. The aim of this study was to identify oncogenic genes controlled by pre-miR-99a that are closely involved in the molecular pathogenesis of BrCa. A total of 113 genes were identified as targets of pre-miR-99a regulation (19 genes modulated by miR-99a-5p, and 95 genes regulated by miR-99a-3p) in BrCa cells. Notably, FAM64A was targeted by both of the miRNAs. Among these targets, high expression of 16 genes (C5orf22, YOD1, SLBP, F11R, C12orf49, SRPK1, ZNF250, ZNF695, CDK1, DNMT3B, TRIM25, MCM4, CDKN3, PRPS, FAM64A, and DESI2) significantly predicted reduced survival of BrCa patients based upon The Cancer Genome Atlas (TCGA) database. In this study, we focused on FAM64A and investigated the relationship between FAM64A expression and molecular pathogenesis of BrCa subtypes. The upregulation of FAM64A was confirmed in BrCa clinical specimens. Importantly, the expression of FAM64A significantly differed between patients with Luminal-A and Luminal-B subtypes. Our data strongly suggest that the aberrant expression of FAM64A is involved in the malignant transformation of BrCa. Our miRNA-based approaches (identification of tumor-suppressive miRNAs and their controlled targets) will provide novel information regarding the molecular pathogenesis of BrCa.
Collapse
Affiliation(s)
- Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tadahiro Hirashima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Hiroko Toda
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
30
|
Liu B, Sun W, Gao W, Li L, Cao Z, Yang X, Liu J, Guo Y. microRNA-451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis. BMC Cancer 2020; 20:1019. [PMID: 33087088 PMCID: PMC7579823 DOI: 10.1186/s12885-020-07523-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The downregulation of microRNA (miR)-451a has been reported in bladder cancer (BCa) tissues. Herein, we elucidated the role of miR-451a in BCa with the involvement of DNA methyltransferase 3B (DNMT3B). METHODS We first screened the differentially expressed miRNAs from the serum of 12 BCa patients and 10 healthy controls in the BCa database GSE113486. Subsequently, we detected miR-451a expression and CpG island methylation of the promoter in BCa cells T24 and 5637 with DNMT3B knockdown. The downstream mRNAs of miR-451a were predicted by bioinformatics and KEGG enrichment analysis. Afterwards, the expression patterns of DNMT3B, miR-451a and erythropoietin-producing hepatocellular receptor tyrosine kinase class A2 (EPHA2) were altered in BCa cells to test the ability of cell proliferation, apoptosis, migration as well as invasion. Finally, the effect of miR-451a and DNMT3B was evaluated in vivo. RESULTS miR-451a was significantly reduced in serum of BCa patients and cell lines. Moreover, the expression of DNMT3B in BCa cells was significantly increased, thus promoting methylation of the miR-451a promoter, resulting in miR-451a inhibition. Additionally, we found that miR-451a targeted and negatively regulated EPHA2, while EPHA2 could activate the PI3K/AKT signaling, driving BCa cell growth and metastasis. CONCLUSIONS Our study proposed and demonstrated that miR-451a downregulation mediated by DNMT3B is critical for proliferation, migration, and invasion of BCa, which may be beneficial for developing more effective therapies against BCa.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Wuyue Gao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Liqiang Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Zhenxue Cao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Xiaohuai Yang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Jianmin Liu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Yuanyuan Guo
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China.
| |
Collapse
|
31
|
Battram AM, Bachiller M, Martín-Antonio B. Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword. Int J Mol Sci 2020; 21:ijms21124346. [PMID: 32570952 PMCID: PMC7352478 DOI: 10.3390/ijms21124346] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.
Collapse
Affiliation(s)
- Anthony M. Battram
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Mireia Bachiller
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
- Department of Hematology, Hospital Clinic, IDIBAPS/Josep Carreras Leukaemia Research Institute, Carrer Rosselló 149-153, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-45-28; Fax: +34-93-312-94-07
| |
Collapse
|