1
|
Giannopoulos K, Karikis I, Byrd C, Sanidas G, Wolff N, Triantafyllou M, Simonti G, Vidva R, Koutroulis I, Theocharis S, Kratimenos P. Eph/ephrin-mediated immune modulation: a potential therapeutic target. Front Immunol 2025; 16:1539567. [PMID: 40330460 PMCID: PMC12053175 DOI: 10.3389/fimmu.2025.1539567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Eph/ephrin signaling, a complex network of cell-cell interactions, plays a pivotal role in regulating various biological processes, including cell migration, proliferation, and adhesion. Dysregulation of this signaling pathway has been implicated in various types of cancer. In skin cancers such as squamous cell carcinoma, basal cell carcinoma, and malignant melanoma, Eph/ephrin signaling promotes tumor invasion and metastasis. Aberrant expression of Eph receptors and ephrin ligands can lead to increased cell motility, reduced cell adhesion, and enhanced angiogenesis. Furthermore, Eph/ephrin signaling can significantly impact the tumor microenvironment by modulating the infiltration and activation of immune cells, particularly T cells. Dysregulated Eph/ephrin expression can impair immune surveillance mechanisms, leading to immune evasion and tumor progression. For instance, certain ephrin ligands can inhibit T-cell activation and promote immunosuppressive conditions within the tumor microenvironment. Targeting Eph/ephrin signaling offers a promising therapeutic approach to combating skin cancer metastasis. By disrupting these signaling pathways, tumor cell invasion, angiogenesis, and immune evasion can be inhibited. This could lead to improved therapeutic outcomes for patients with skin cancer.
Collapse
Affiliation(s)
| | - Ioannis Karikis
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Chad Byrd
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Georgios Sanidas
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Nora Wolff
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Maria Triantafyllou
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Gabriele Simonti
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Robinson Vidva
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Ioannis Koutroulis
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Stamatios Theocharis
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Panagiotis Kratimenos
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
2
|
Hao Z, Zhou Y, Zhang Y, Wang D, Wei Y, Ji X, Sun WR, Wang P, Li Y, Lopez IB, Pedraz JL, Ramalingam M, Xie S, Wang R. Celastrol loaded nanocomplex for painless tumor therapy via YAP inhibition. Sci Rep 2025; 15:13133. [PMID: 40240779 PMCID: PMC12003811 DOI: 10.1038/s41598-025-97055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-related pain is prevalent and severely impairs patients' quality of life. However, conventional cancer therapies primarily target tumor cell destruction, often overlooking the management of cancer pain. Thus, there is an immediate necessity to develop therapeutic agents that can both suppress tumor growth and alleviate cancer pain. In this study, we report a celastrol (CEL)-based nanocomposites (PDA-BSA-MnO2-CEL) for pain-less cancer immunotherapy. Results from in vitro and in vivo experiments demonstrate the efficacy and mechanism of the nanocomposites in pain-less immunotherapy. MnO2 and CEL induce immunogenic cell death (ICD), mediating immunotherapy. Additionally, CEL significantly reduces the secretion of the immunosuppressive factor Yes-associated protein (YAP) within the tumor microenvironment, thereby enhancing the efficacy of immunotherapy. The downregulation of YAP leads to reduced expression of vascular endothelial growth factor (VEGF), inhibiting tumor growth and decreasing activation of the pain-associated VEGF receptor 1 (VEGFR1), thus providing an analgesic effect. Moreover, CEL reduces inflammatory pain by lowering levels of inflammatory factors in tumors. The design of this nanocomposites system integrates immunotherapy with cancer pain inhibition, offering a novel approach to patient-centered tumor therapy.
Collapse
Affiliation(s)
- Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yuming Zhou
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Yuqiang Zhang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xiaopu Ji
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - YouJie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Irene Bautista Lopez
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
| |
Collapse
|
3
|
Chen Y, Pan G, Yang Y, Wu H, Weng M, Wu Q, Gao Y, Li W. Tumor exosomal RNPEP promotes lung metastasis of liver cancer via inducing cancer-associated fibroblast activation. Cancer Sci 2025; 116:792-807. [PMID: 39658708 PMCID: PMC11875778 DOI: 10.1111/cas.16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are essential players in the tumor microenvironment (TME) due to their roles in facilitating tumor progression and metastasis. It is worth noting that the high-metastatic hepatocellular carcinoma (HCC) cell-derived exosomes have exhibited the ability to transform normal fibroblasts into CAFs, which further fosters the lung metastasis of low-metastatic HCC cells. Yet, the mechanisms underlying this tumor exosome-induced metastatic niche formation are poorly explored. In this study, the secreted protein arginyl aminopeptidase (RNPEP) was highly expressed in the plasma of patients with HCC. In addition, high-metastatic HCC cells showed augmented RNPEP expression levels in their exosomes. These exosomes induced obvious CAF-like properties in the human fibroblast cell line MRC-5, as evidenced by the increased CAF marker expression, and enhanced migratory ability. More strikingly, the secretions from high-metastatic tumor exosome-educated MRC-5 cells increased tumor stemness and promoted epithelial-mesenchymal transition (EMT) in MHCC-97L cells, a low-metastatic HCC cell line. However, the knockdown of RNPEP in exosomes from high-metastatic HCC cells abated the changes described above. Animal studies in vivo highlighted the pro-tumor and pro-metastatic effects of exosomal RNPEP on MHCC-97L cells by inducing CAF activation. Furthermore, tumor-derived exosomal RNPEP induced the activation of NF-κB signaling in MRC-5 cells, a critical pathway associated with CAF activation. Collectively, these results provide novel insight into tumor-derived exosomal RNPEP for its crosstalk with CAFs during HCC lung metastasis.
Collapse
Affiliation(s)
- Yuankun Chen
- Department of Tropical and Liver DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Gaofeng Pan
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of Infectious DiseasesThe First People's Hospital of KunshanKunshanChina
| | - Yijun Yang
- Department of Tropical and Liver DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Haifeng Wu
- Department of Tropical and Liver DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Minhua Weng
- Department of Tropical and Liver DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Qiuping Wu
- Department of Tropical and Liver DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Yufeng Gao
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wenting Li
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
4
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
5
|
Lavareze L, Kimura TDC, Scarini JF, de Lima-Souza RA, Gonçalves MWA, Sales de Sá R, Aquino IG, Fernandes PM, Ribeiro FCP, Altemani A, Mariano FV, Fillmore GC, Egal ESA. Advances and current concepts on Eph receptors and ephrins in upper digestive tract cancers. Front Oncol 2025; 14:1520306. [PMID: 39839790 PMCID: PMC11746119 DOI: 10.3389/fonc.2024.1520306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Erythropoietin-producing hepatocellular (Eph) receptors comprise the largest group of surface receptors and are responsible for cellular signals. Eph/ephrin signaling has been identified to play a role in key cancer development and progression processes, especially in the upper gastrointestinal tract. The Eph/ephrin system has been described as a tumor suppressor in duodenal cancer, while in esophageal, gastric, hepatic, and pancreatic cancer, the system has been related to tumor progression. For their significant role in developing a wide range of malignancies, Eph receptors and their ligands have proven to be an important target for new anticancer therapies. In this review, we present an overview of the literature and highlight evidence supporting the role of the Eph/ephrin system in upper digestive tract cancers. In addition, we discuss molecular findings that represent promising therapeutic targets for these cancers.
Collapse
Affiliation(s)
- Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Raisa Sales de Sá
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Iara Gonçalves Aquino
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Patricia Maria Fernandes
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| |
Collapse
|
6
|
Qiu C, Sun N, Zeng S, Chen L, Gong F, Tian J, Xiong Y, Peng L, He H, Ming Y. Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review. Discov Oncol 2024; 15:501. [PMID: 39331302 PMCID: PMC11436538 DOI: 10.1007/s12672-024-01380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits remarkable invasiveness and is characterized by its intricate location, infiltrative behavior, the presence of both the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), phenotypic diversity, an immunosuppressive microenvironment with limited development yet rich vascularity, as well as the resistant nature of glioblastoma stem cells (GSCs) towards traditional chemotherapy and radiotherapy. These formidable factors present substantial obstacles in the quest for effective GBM treatments. Following extensive research spanning three decades, the hepatocellular receptor A2 (EphA2) receptor tyrosine kinase has emerged as a promising molecular target with translational potential in the realm of cancer therapy. Numerous compounds aimed at targeting EphA2 have undergone rigorous evaluation and clinical investigation. This article provides a comprehensive account of the distinctive roles played by canonical and non-canonical EphA2 signaling in various contexts, while also exploring the involvement of the EphA2-ephrin A1 signaling axis in GBM pathogenesis. Additionally, the review offers an overview of completed clinical trials targeting EphA2 for GBM treatment, shedding light on both the prospects and challenges associated with EphA2-directed interventions in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Caohang Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ning Sun
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Feilong Gong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yu Xiong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China.
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
7
|
Jackovich A, Gitlitz BJ, Tiu-lim JWW, Duddalwar V, King KG, El-Khoueiry AB, Thomas JS, Tsao-Wei D, Quinn DI, Gill PS, Nieva JJ. Improved efficacy of pembrolizumab combined with soluble EphB4-albumin in HPV-negative EphrinB2 positive head neck squamous cell carcinoma. Oncotarget 2024; 15:444-458. [PMID: 38985143 PMCID: PMC11235133 DOI: 10.18632/oncotarget.28605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVE Patients with relapsed or metastatic head and neck squamous cell carcinoma (HNSCC) after primary local therapy have low response rates with cetuximab, systemic chemotherapy or check point inhibitor therapy. Novel combination therapies with the potential to improve outcomes for patients with HNSCC is an area of high unmet need. METHODS This is a phase II single-arm clinical trial of locally advanced or metastatic HNSCC patients treated with a combination of soluble EphB4-human serum albumin (sEphB4-HSA) fusion protein and pembrolizumab after platinum-based chemotherapy with up to 2 prior lines of treatment. The primary endpoints were safety and tolerability and the primary efficacy endpoint was overall response rate (ORR). Secondary endpoints included progression free survival (PFS) and overall survival (OS). HPV status and EphrinB2 expression were evaluated for outcome. RESULTS Twenty-five patients were enrolled. Median follow up was 40.4 months (range 9.8 - 40.4). There were 6 responders (ORR 24%). There were 5 responders in the 11 HPV-negative and EphrinB2 positive patients, (ORR 45%) with 2 of these patients achieving a complete response (CR). The median PFS in HPV-negative/EphrinB2 positive patients was 3.2 months (95% CI 1.1, 7.3). Median OS in HPV-negative/EphrinB2 positive patients was 10.9 months (95% CI 2.0, 13.7). Hypertension, transaminitis and fatigue were the most common toxicities. DISCUSSION The combination of sEphB4-HSA and pembrolizumab has a favorable toxicity profile and favorable activity particularly among HPV-negative EphrinB2 positive patients with HNSCC.
Collapse
Affiliation(s)
- Alexandra Jackovich
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Barbara J. Gitlitz
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Justin Wayne Wong Tiu-lim
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Vinay Duddalwar
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kevin George King
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Anthony B. El-Khoueiry
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Jacob Stephen Thomas
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Denice Tsao-Wei
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - David I. Quinn
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | | | - Jorge J. Nieva
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| |
Collapse
|
8
|
Cui Z, Liu C, Wang X, Xiang Y. A pan-cancer analysis of EphA family gene expression and its association with prognosis, tumor microenvironment, and therapeutic targets. Front Oncol 2024; 14:1378087. [PMID: 38952552 PMCID: PMC11215048 DOI: 10.3389/fonc.2024.1378087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Background Erythropoietin-producing human hepatocellular (Eph) receptors stand out as the most expansive group of receptor tyrosine kinases (RTKs). Accumulating evidence suggests that within this expansive family, the EphA subset is implicated in driving cancer cell progression, proliferation, invasion, and metastasis, making it a promising target for anticancer treatment. Nonetheless, the extent of EphA family involvement across diverse cancers, along with its intricate interplay with immunity and the tumor microenvironment (TME), remains to be fully illuminated. Methods The relationships between EphA gene expression and patient survival, immunological subtypes, and TME characteristics were investigated based on The Cancer Genome Atlas (TCGA) database. The analyses employed various R packages. Results A significant difference in expression was identified for most EphA genes when comparing cancer tissues and non-cancer tissues. These genes independently functioned as prognostic factors spanning multiple cancer types. Moreover, a significant correlation surfaced between EphA gene expression and immune subtypes, except for EphA5, EphA6, and EphA8. EphA3 independently influenced the prognosis of papillary renal cell carcinoma (KIRP). This particular gene exhibited links with immune infiltration subtypes and clinicopathologic parameters, holding promise as a valuable biomarker for predicting prognosis and responsiveness to immunotherapy in patients with KIRP. Conclusion By meticulously scrutinizing the panorama of EphA genes in a spectrum of cancers, this study supplemented a complete map of the effect of EphA family in Pan-cancer and suggested that EphA family may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zhe Cui
- Division of Hematology and Transfusion Medicine, Tianjin Baodi Hospital, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Chengwang Liu
- Department of Laboratory Medicine, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Xuechao Wang
- Department of Laboratory Medicine, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Yiping Xiang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
9
|
Jiang Y, Li H. The effect of smoking on tumor immunoediting: Friend or foe? Tob Induc Dis 2024; 22:TID-22-108. [PMID: 38887597 PMCID: PMC11181014 DOI: 10.18332/tid/189302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
The recognition of smoking as an independent risk factor for lung cancer has become a widely accepted within the realm of respiratory medicine. The emergence of tumor immunotherapy has notably enhanced the prognosis for numerous late-stage cancer patients. Nevertheless, some studies have noted a tendency for lung cancer patients who smoke to derive greater benefit from immunotherapy. This observation has sparked increased interest in the interaction between smoking and the immune response to tumors in lung cancer. The concept of cancer immunoediting has shed light on the intricate and nuanced relationship between the immune system and tumors. Starting from the perspectives of immune surveillance, immune equilibrium, and immune evasion, this narrative review explores how smoking undermines the immune response against tumor cells and induces the generation of tumor neoantigens, and examines other behaviors that trigger tumor immune evasion. By elucidating these aspects, the review concludes that smoking is not conducive to tumor immunoediting.
Collapse
Affiliation(s)
- Yixia Jiang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Deng ZW, Yang JK, Qiu KJ, Zhang TJ, He Z, Wang N, Chen XG, Liu Y. Long-term combined blockade of CXCR4 and PD-L1 with in vivo reassembly for intensive tumor interference. J Control Release 2024; 370:453-467. [PMID: 38697315 DOI: 10.1016/j.jconrel.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Negative immunoregulatory signal (PD-L1, CXCR4, et al.) and weak immunogenicity elicited immune system failing to detect and destroy cancerous cells. CXCR4 blockade promoted T cell tumor infiltration and increased tumor sensitivity to anti-PD-L1 therapy. Here, pH-responsive reassembled nanomaterials were constructed with anti-PD-L1 peptide and CXCR4 antagonists grafting (APAB), synergized with photothermal therapy for melanoma and breast tumor interference. The self-assembled APAB nanoparticles accumulated in the tumor and rapidly transformed into nanofibers in response to the acidic tumor microenvironment, leading to the exposure of grafted therapeutic agents. APAB enabling to reassemble around tumor cells and remained stable for over 96 h due to the aggregation induced retention (AIR) effect, led to long-term efficiently combined PD-L1 and CXCR4 blockade. Photothermal efficiency (ICG) induced immunogenic cell death (ICD) of tumor cells so as to effectively improve the immunogenicity. The combined therapy (ICG@APAB) could effectively inhibit the growth of primary tumor (∼83.52%) and distant tumor (∼76.24%) in melanoma-bearing mice, and significantly (p < 0.05) prolong the survival time over 42 days. The inhibition assay on tumor metastasis in 4 T1 model mice exhibited ICG@APAB almostly suppressed the occurrence of lung metastases and the expression levels of CD31, MMP-9 and VEGF in tumor decreased by 82.26%, 90.45% and 41.54%, respectively. The in vivo reassembly strategy will offer novel perspectives benefical future immunotherapies and push development of combined therapeutics into clinical settings.
Collapse
Affiliation(s)
- Zhen-Wei Deng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Kai-Jin Qiu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ting-Jie Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
11
|
Pan H, Tian Y, Pei S, Yang W, Zhang Y, Gu Z, Zhu H, Zou N, Zhang J, Jiang L, Hu Y, Shen S, Wang K, Jin H, Li Z, Zhang Y, Xiao Y, Luo Q, Wang H, Huang J. Combination of percutaneous thermal ablation and adoptive Th9 cell transfer therapy against non-small cell lung cancer. Exp Hematol Oncol 2024; 13:52. [PMID: 38760861 PMCID: PMC11100251 DOI: 10.1186/s40164-024-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4+ effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment. METHODS The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model. RESULTS We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8+ T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8+ T cells in mice with tumor lung metastasis and induces peripheral CD8+ T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1β and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1β signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models. CONCLUSIONS Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.
Collapse
Affiliation(s)
- Hanbo Pan
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Siyu Pei
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200030, China
| | - Wanlin Yang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200030, China
| | - Yanyang Zhang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zenan Gu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hongda Zhu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ningyuan Zou
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiaqi Zhang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Long Jiang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingjie Hu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shengping Shen
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Kai Wang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Haizhen Jin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ziming Li
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yanyun Zhang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200030, China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200030, China.
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
12
|
Yuan H, Liang Y, Hu S, Chen J, You J, Jiang J, Luo M, Zeng M. The role of transcription factor FOXA1/C2/M1/O3/P1/Q1 in breast cancer. Medicine (Baltimore) 2024; 103:e37709. [PMID: 38608123 PMCID: PMC11018205 DOI: 10.1097/md.0000000000037709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer is a common malignancy with the highest mortality rate among women worldwide. Its incidence is on the rise year after year, accounting for more than one-tenth of new cancers worldwide. Increasing evidence suggests that forkhead box (FOX) transcription factors play an important role in the occurrence and development of breast cancer. However, little is known about the relationship between the expression, prognostic value, function, and immune infiltration of FOX transcription factors in tumor microenvironment. We used bioinformatics to investigate expression and function of FOX factor in breast cancer. Our results revealed the expression levels of FOXA1 and FOXM1 were significantly higher in breast cancer tissues than in normal tissues. The high expression of mRNA in FOXA1 (P < .05), FOXM1 (P < .01), and FOXP1 (P < .05) groups was related to tumor stage. Survival analysis results showed that increased FOXP1 mRNA levels were significantly associated with overall survival (OS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) in all patients with breast cancer (P < .05). Patients with the FOXA1 high-expression group had better RFS and DMFS than the low-expression group (P < .05), while patients with FOXM1 high-expression group had worse RFS, OS, and DMFS than the low-expression group (P < .05). Meanwhile, mutation analysis showed that genetic alterations in FOX transcription factors were significantly associated with shorter OS and progression-free survival (P < .05), but not with disease-free survival (P = .710) in patients with breast cancer. FOXP1, FOXA1, and FOXM1 may be used as potential biomarkers to predict the prognosis of patients with breast cancer. Functional enrichment indicated that FOX was mainly involved in cell division, cell senescence, cell cycle, and prolactin signaling pathway. In patients with breast cancer, FOXC2 expression was negatively correlated with the infiltration of B cells and positively correlated with the infiltration of neutrophils and dendritic cells. However, FOXM1 was negatively correlated with the infiltration of CD8 + T cells and macrophages and positively correlated with the infiltration of neutrophils and dendritic cells. These findings provided novel insights into the screening of prognostic biomarkers of the FOX family in breast cancer and laid a foundation for further research on the immune infiltration of the FOX transcription factor family members in tumors.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
14
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Juan-Guadarrama DG, Beltrán-Navarro YM, Reyes-Cruz G, Vázquez-Prado J. Ephexin3/ARHGEF5 Together with Cell Migration Signaling Partners within the Tumor Microenvironment Define Prognostic Transcriptional Signatures in Multiple Cancer Types. Int J Mol Sci 2023; 24:16427. [PMID: 38003617 PMCID: PMC10671824 DOI: 10.3390/ijms242216427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer cell migration involves a repertoire of signaling proteins that lead cytoskeleton reorganization as a critical step in metastatic dissemination. RhoGEFs are multidomain effectors that integrate signaling inputs to activate the molecular switches that orchestrate actin cytoskeleton reorganization. Ephexins, a group of five RhoGEFs, play oncogenic roles in invasive and metastatic cancer, leading to a mechanistic hypothesis about their function as signaling nodes assembling functional complexes that guide cancer cell migration. To identify clinically significant Ephexin signaling partners, we applied three systematic data mining strategies, based on the screening of essential Ephexins in multiple cancer cell lines and the identification of coexpressed signaling partners in the TCGA cancer patient datasets. Based on the domain architecture of encoded proteins and gene ontology criteria, we selected Ephexin signaling partners with a role in cytoskeletal reorganization and cell migration. We focused on Ephexin3/ARHGEF5, identified as an essential gene in multiple cancer cell types. Based on significant coexpression data and coessentiality, the signaling repertoire that accompanies Ephexin3 corresponded to three groups: pan-cancer, cancer-specific and coessential. To further select the Ephexin3 signaling partners likely to be relevant in clinical settings, we first identified those whose high expression was statistical linked to shorter patient survival. The resulting Ephexin3 transcriptional signatures represent significant accumulated risk, predictive of shorter survival, in 17 cancer types, including PAAD, LUAD, LGG, OSC, AML, KIRC, THYM, BLCA, LIHC and UCEC. The signaling landscape that accompanies Ephexin3 in various cancer types included the tyrosine kinase receptor MET and the tyrosine phosphatase receptor PTPRF, the serine/threonine kinases MARK2 and PAK6, the Rho GTPases RHOD, RHOF and RAC1, and the cytoskeletal regulator DIAHP1. Our findings set the basis to further explore the role of Ephexin3/ARHGEF5 as an essential effector and signaling hub in cancer cell migration.
Collapse
Affiliation(s)
- Dante Gustavo Juan-Guadarrama
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Yarely Mabell Beltrán-Navarro
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| |
Collapse
|
17
|
Chiang CW, Lin YS, Chang FL, Lin TY, Tsai KC, HuangFu WC, Lee YC. Single-chain fragment antibody disrupting the EphA4 function as a therapeutic drug for gastric cancer. Biochem Biophys Res Commun 2023; 680:161-170. [PMID: 37741263 DOI: 10.1016/j.bbrc.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Studies have shown that the high expression of EphA4 in gastric cancer tissues may correlate with unfavorable clinical pathological characteristics. Therefore, EphA4 may be an effective target for treating gastric cancer in addition to HER-2/neu. In this study, generated scFv S3 can bind endogenous EphA4 of gastric cancer cells and has significant membrane staining. Additionally, scFv S3 binding to EphA4 inhibits the growth and migration of cancer cells and the growth induction that ephrinA1 generates in gastric cancer cells. We found that EphA4 molecules may degrade through antibody treatment of cells, and the increase in LAMP1 and LAMP2 indicates that lysosome is involved in the degradation. The scFv S3 administration leads to the signals pAKT, pERK, and pSTAT3 decrease in cancer cells. The xenograft model of HER-2/neu low expressing gastric cancer cell SNU-16 exhibits better therapeutic effects by scFv S3 than trastuzumab scFv. The scFv S3 administration in vivo can degrade EphA4 molecules in tumor tissues, decreasing Ki67 and increasing cleaved C3 molecule expression. Furthermore, we identified and validated that scFv S3 generates essential ionic bonding with R162 on EphA4. The antibody may provide effective treatment for patients with gastric cancer and abnormal activation or overexpression of EphA4 signaling.
Collapse
Affiliation(s)
- Chen-Wei Chiang
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yun-Shih Lin
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Fu-Ling Chang
- Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ching Lee
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Festuccia C, Corrado M, Rossetti A, Castelli R, Lodola A, Gravina GL, Tognolini M, Giorgio C. A Pharmacological Investigation of Eph-Ephrin Antagonism in Prostate Cancer: UniPR1331 Efficacy Evidence. Pharmaceuticals (Basel) 2023; 16:1452. [PMID: 37895923 PMCID: PMC10609876 DOI: 10.3390/ph16101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph-ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A pharmacological approach with agonists did not show significant efficacy on tumor growth in prostate orthotopic murine models, but reduced distal metastasis formation. In order to improve the comprehension of the pharmacological targeting of Eph receptors in prostate cancer, in the present work, we investigated the efficacy of Eph antagonism both in vitro and in vivo, using UniPR1331, a small orally bioavailable Eph-ephrin interaction inhibitor. UniPR1331 was able to inhibit PC3 cells' growth in vitro in a dose-dependent manner, affecting the cell cycle and inducing apoptosis. Moreover, UniPR1331 promoted the PC3 epithelial phenotype, downregulating epithelial mesenchymal transition (EMT) markers. As a consequence, UniPR1331 reduced in vitro PC3 migration, invasion, and vasculomimicry capabilities. The antitumor activity of UniPR1331 was confirmed in vivo when administered alone or in combination with cytotoxic drugs in PC3-xenograft mice. Our results demonstrated that Eph antagonism is a promising strategy for inhibiting prostate cancer growth, especially in combination with cytotoxic drugs.
Collapse
Affiliation(s)
- Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Miriam Corrado
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Massimiliano Tognolini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| |
Collapse
|
19
|
Vail ME, Farnsworth RH, Hii L, Allen S, Arora S, Anderson RL, Dickins RA, Orimo A, Wu SZ, Swarbrick A, Scott AM, Janes PW. Inhibition of EphA3 Expression in Tumour Stromal Cells Suppresses Tumour Growth and Progression. Cancers (Basel) 2023; 15:4646. [PMID: 37760615 PMCID: PMC10527215 DOI: 10.3390/cancers15184646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mary E. Vail
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Rae H. Farnsworth
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Linda Hii
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Stacey Allen
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Sakshi Arora
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Robin L. Anderson
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Ross A. Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Akira Orimo
- Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Sunny Z. Wu
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Alexander Swarbrick
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Peter W. Janes
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
20
|
Jia X, Zhang D, Zhou C, Yan Z, Jiang Z, Xie L, Jiang J. Eph receptor B6 shapes a cold immune microenvironment, inhibiting anti-cancer immunity and immunotherapy response in bladder cancer. Front Oncol 2023; 13:1175183. [PMID: 37637034 PMCID: PMC10450340 DOI: 10.3389/fonc.2023.1175183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Background The role of Eph receptors and related ephrin (EFN) ligands (as the largest family of transmembrane-bound RTKs) in immunomodulation in many types of cancer, especially bladder cancer (BLCA), is scarcely known. Methods A pan-cancer dataset was retrieved from The Cancer Genome Atlas (TCGA) to explore the relation between Eph receptor/EFN ligand family genes and immunomodulators and tumor-infiltrated immune cells (TIICs). Local BLCA, GSE32894, and GSE31684 cohorts were applied to validate. The IMvigor210 cohort was employed to explore the relationship between EPHB6 and immunotherapy response. Moreover, association between EPHB6 and molecular subtype was investigated to explore potential therapeutic strategies. Immunohistochemical staining of CD8 and CD68 was performed to validate the correlation between EPHB6 and TIICs. Results The pan-cancer analysis revealed variations in the immunological effects of Eph receptor/EFN ligand family genes across different types of cancer. EPHB6 expression negatively correlated with the expression of the majority of immunomodulators (including HLA and immune checkpoints), and CD8 T cells and macrophages in both the TCGA-BLCA and validation BLCA cohorts, shaping a cold immune microenvironment with inhibited immunity. In the IMvigor210 cohort, patients with high-EPHB6 highly correlated with a non-inflamed, low PD-L1 expression immune phenotype, and correspondingly, with less responders to immunotherapy. The high-EPHB6 group, enriched with the basal subtype, presented significantly fewer TP53 and more FGFR3 genomic alterations. Finally, a novel EPHB6-related Genes signature, with reliable and robust ability in prognosis prediction, was constructed. Conclusions This study comprehensively investigated the immunological effects of Eph receptor/EFN ligand family genes pan-cancer, and specially identified the immunosuppressive role of EPHB6 in BLCA. Furthermore, EPHB6 may predict the molecular subtype and prognosis of BLCA, and serve as a novel therapeutic target to improve the sensitivity of immunotherapy.
Collapse
Affiliation(s)
- Xiaolong Jia
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Dongxu Zhang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Cheng Zhou
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Zejun Yan
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Zhaohui Jiang
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junhui Jiang
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
21
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
22
|
Hanover G, Vizeacoumar FS, Banerjee SL, Nair R, Dahiya R, Osornio-Hernandez AI, Morales AM, Freywald T, Himanen JP, Toosi BM, Bisson N, Vizeacoumar FJ, Freywald A. Integration of cancer-related genetic landscape of Eph receptors and ephrins with proteomics identifies a crosstalk between EPHB6 and EGFR. Cell Rep 2023; 42:112670. [PMID: 37392382 DOI: 10.1016/j.celrep.2023.112670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.
Collapse
Affiliation(s)
- Glinton Hanover
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Sara L Banerjee
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Raveena Nair
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Renuka Dahiya
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Ana I Osornio-Hernandez
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Alain Morejon Morales
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Tanya Freywald
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Juha P Himanen
- Department of Biochemistry, University of Turku, 20500 Turku, Finland
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Nicolas Bisson
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada.
| | - Franco J Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
23
|
Huang G, Xiao S, Jiang Z, Zhou X, Chen L, Long L, Zhang S, Xu K, Chen J, Jiang B. Machine learning immune-related gene based on KLRB1 model for predicting the prognosis and immune cell infiltration of breast cancer. Front Endocrinol (Lausanne) 2023; 14:1185799. [PMID: 37351109 PMCID: PMC10282768 DOI: 10.3389/fendo.2023.1185799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 06/24/2023] Open
Abstract
Objective Breast cancer is a prevalent malignancy that predominantly affects women. The development and progression of this disease are strongly influenced by the tumor microenvironment and immune infiltration. Therefore, investigating immune-related genes associated with breast cancer prognosis is a crucial approach to enhance the diagnosis and treatment of breast cancer. Methods We analyzed data from the TCGA database to determine the proportion of invasive immune cells, immune components, and matrix components in breast cancer patients. Using this data, we constructed a risk prediction model to predict breast cancer prognosis and evaluated the correlation between KLRB1 expression and clinicopathological features and immune invasion. Additionally, we investigated the role of KLRB1 in breast cancer using various experimental techniques including real-time quantitative PCR, MTT assays, Transwell assays, Wound healing assays, EdU assays, and flow cytometry. Results The functional enrichment analysis of immune and stromal components in breast cancer revealed that T cell activation, differentiation, and regulation, as well as lymphocyte differentiation and regulation, play critical roles in determining the status of the tumor microenvironment. These DEGs are therefore considered key factors affecting TME status. Additionally, immune-related gene risk models were constructed and found to be effective predictors of breast cancer prognosis. Further analysis through KM survival analysis and univariate and multivariate Cox regression analysis demonstrated that KLRB1 is an independent prognostic factor for breast cancer. KLRB1 is closely associated with immunoinfiltrating cells. Finally, in vitro experiments confirmed that overexpression of KLRB1 inhibits breast cancer cell proliferation, migration, invasion, and DNA replication ability. KLRB1 was also found to inhibit the proliferation of breast cancer cells by blocking cell division in the G1/M phase. Conclusion KLRB1 may be a potential prognostic marker and therapeutic target associated with the microenzymic environment of breast cancer tumors, providing a new direction for breast cancer treatment.
Collapse
Affiliation(s)
- Guo Huang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuhui Xiao
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Zhan Jiang
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Xue Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Chen
- Department of Ultrasonography, Chengdu First People's Hospital, Chengdu, China
| | - Lin Long
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Sheng Zhang
- Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Juan Chen
- The Second Affiliated Hospital, Department of Radiotherapy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bin Jiang
- The Second Affiliated Hospital, Department of Burn and Plastic Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
Kina S, Kawabata-Iwakawa R, Miyamoto S, Kato T, Kina-Tanada M, Arasaki A. EphA4 signaling is involved in the phenotype of well-differentiated oral squamous cell arcinoma with decreased tumor immunity. Eur J Pharmacol 2023; 945:175611. [PMID: 36804938 DOI: 10.1016/j.ejphar.2023.175611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Metronomic chemotherapy is defined as a high-frequency low-dose schedule of chemotherapy drug administration. Although metronomic chemotherapy is widely used, the mechanisms underlying resistance to metronomic chemotherapy remain unclear. Therefore, we herein conducted a single institutional phase I/II trial to assess the efficacy and safety of metronomic chemotherapy with bleomycin plus S-1, an oral 5-FU prodrug, in the neoadjuvant setting for patients with oral squamous cell carcinoma (OSCC). The response rate of well-differentiated OSCC to metronomic chemotherapy was significantly lower. We investigated differences in molecular profiles between poorly or moderately differentiated head and neck squamous cell carcinoma (HNSCC) and well-differentiated HNSCC from patients with HNSCC TCGA data. EphA4 expression positively correlated with histological differentiation. An upstream regulator analysis correlated with EphA4 expression identified pathways associated with decreased mTORC1 signaling and T cell activation, including TCR, CD3, CD28, and CD40LG. An EphA4 blocking peptide (KYL) induced mTOR activation in well-differentiated OSCC cell lines. Plasmacytoid dendritic cell and CD8+ T cell numbers were higher in the microenvironment of poorly or moderately differentiated HNSCC than in that of well-differentiated HNSCC. Well-differentiated HNSCC had the characteristics of "cold tumors" (immune-excluded tumors). Moreover, KYL used with chemotherapeutic drugs synergistically increased cancer cell death. Well-differentiated OSCC is depleted of immune cells, which may be partly explained by the receptor tyrosine kinase EphA4.
Collapse
Affiliation(s)
- Shinichiro Kina
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Japan; Center for Medical Education, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Japan
| | - Sho Miyamoto
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Tomoki Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mika Kina-Tanada
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Japan; Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
25
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
26
|
Güneş S, Wu J, Özyılmaz B, Deveci Sevim R, Ünüvar T, Anık A. Cooccurring Type 1 Diabetes Mellitus and Autoimmune Thyroiditis in a Girl with Craniofrontonasal Syndrome: Are EFNB1 Variants Associated with Autoimmunity? Pharmaceuticals (Basel) 2022; 15:ph15121535. [PMID: 36558986 PMCID: PMC9784758 DOI: 10.3390/ph15121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Craniofrontonasal syndrome (CFNS), also known as craniofrontonasal dysplasia, is an X-linked inherited developmental malformation caused by mutations in the ephrin B1 (EFNB1) gene. The main phenotypic features of the syndrome are coronal synostosis, hypertelorism, bifid nasal tip, dry and curly hair, and longitudinal splitting of nails. A 9-year-and-11-month-old girl with CFNS was admitted due to polyuria, polydipsia, fatigue, and abdominal pain. On physical examination, she had the classical phenotypical features of CFNS. Genetic tests revealed a c.429_430insT (p.Gly144TrpfsTer31) heterozygote variant in the EFNB1 coding region. The patient was diagnosed with type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis based on laboratory findings and symptoms. The mother of the patient, who had the same CFNS phenotype and EFNB1 variant, was screened for autoimmune diseases and was also with autoimmune thyroiditis. This is the first report describing the association of CFNS with T1DM and autoimmune thyroiditis in patients with EFNB1 mutation.
Collapse
Affiliation(s)
- Sebla Güneş
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, 09100 Aydın, Turkey
| | - Jiangping Wu
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QU H2X 0A9, Canada
| | - Berk Özyılmaz
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, 35020 Izmir, Turkey
| | - Reyhan Deveci Sevim
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, 09100 Aydın, Turkey
| | - Tolga Ünüvar
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, 09100 Aydın, Turkey
| | - Ahmet Anık
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, 09100 Aydın, Turkey
- Correspondence: ; Tel.: +90-5325684340
| |
Collapse
|
27
|
Daly RJ, Scott AM, Klein O, Ernst M. Enhancing therapeutic anti-cancer responses by combining immune checkpoint and tyrosine kinase inhibition. Mol Cancer 2022; 21:189. [PMID: 36175961 PMCID: PMC9523960 DOI: 10.1186/s12943-022-01656-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitor (ICI) therapy has been established as the standard of care for many types of cancer, but the strategies employed have continued to evolve. Recently, much clinical focus has been on combining targeted therapies with ICI for the purpose of manipulating the immune setpoint. The latter concept describes the equilibrium between factors that promote and those that suppress anti-cancer immunity. Besides tumor mutational load and other cancer cell-intrinsic determinants, the immune setpoint is also governed by the cells of the tumor microenvironment and how they are coerced by cancer cells to support the survival and growth of the tumor. These regulatory mechanisms provide therapeutic opportunities to intervene and reduce immune suppression via application of small molecule inhibitors and antibody-based therapies against (receptor) tyrosine kinases and thereby improve the response to ICIs. This article reviews how tyrosine kinase signaling in the tumor microenvironment can promote immune suppression and highlights how therapeutic strategies directed against specific tyrosine kinases can be used to lower the immune setpoint and elicit more effective anti-tumor immunity.
Collapse
Affiliation(s)
- Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
| | - Andrew M Scott
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
- Department of Molecular Imaging & Therapy, Austin Health, and Faculty of Medicine, University of Melbourne, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
| | - Oliver Klein
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
| | - Matthias Ernst
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
28
|
Huang S, Dong C, Zhang J, Fu S, Lv Y, Wu J. A comprehensive prognostic and immunological analysis of ephrin family genes in hepatocellular carcinoma. Front Mol Biosci 2022; 9:943384. [PMID: 36052169 PMCID: PMC9424725 DOI: 10.3389/fmolb.2022.943384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Ephrins, a series of Eph-associated receptor tyrosine kinase ligands, play an important role in the tumorigenesis and progression of various cancers. However, their contributions to hepatocellular carcinoma (HCC) remain unclear. Thus, we aimed to explore their prognostic value and immune implications in HCC. Methods: Multiple public databases, such as TCGA, GTEx, and UCSC XENA, were used to analyze the expression of ephrin genes across cancers. Kaplan-Meier analysis and Cox regression were used to explore the prognostic role of ephrin genes in HCC. A logistic regression model was utilized to evaluate the association between ephrin gene expression and clinical characteristics. Gene set enrichment analysis (GSEA) was conducted to elucidate their potential biological mechanisms. Various immune algorithms were utilized to investigate the correlation between ephrin genes and tumor immunity. We also analyzed their association with drug sensitivity, and gene mutations. Finally, RT–qPCR was performed to validate the expression of ephrin family genes in HCC cells and clinical tissues. Results: The expression of EFNA1, EFNA2, EFNA3, EFNA4, EFNB1, and EFNB2 was upregulated in most cancer types, while EFNA5 and EFNB3 was downregulated in most cancers. In HCC, the expression levels of EFNA1, EFNA3, EFNA4, EFNB1, and EFNB2 were significantly higher in tumor tissues than in normal tissues. High expression of EFNA3, EFNA4, and EFNB1 was associated with tumor progression and worse prognosis in HCC patients. The expression of EFNA3 and EFNA4 was negatively associated with the stromal/ESTIMATE scores, while EFNB1 was positively correlated with the immune/stromal/ESTIMATE scores. Moreover, these ephrin genes were closely relevant to the infiltration of immune cells, such as B cells, CD4+ T cells, CD8+ T cells, neutrophil cells, macrophage cells, and dendritic cells. EFNB1 expression was positively associated with most immune-related genes, while EFNA3/EFNA4 was positively related to TMB and MSI. In addition, EFNA3, EFNA4, and EFNB1 were related to drug sensitivity and affected the mutation frequency of some genes in HCC. Conclusion: EFNA3, EFNA4, and EFNB1 are independent prognostic factors for HCC patients and are closely correlated with tumor immunity, which may provide a new direction for exploring novel therapeutic targets and biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi, China
| | - Cairong Dong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi, China
| | - Shumin Fu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi, China
| | - Yaqin Lv
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
29
|
Jiao Z, Feng X, Cui Y, Wang L, Gan J, Zhao Y, Meng Q. Expression characteristic, immune signature, and prognosis value of EFNA family identified by multi-omics integrative analysis in pan-cancer. BMC Cancer 2022; 22:871. [PMID: 35945523 PMCID: PMC9364540 DOI: 10.1186/s12885-022-09951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background EphrinA (EFNA) are Eph receptor ligands that regulate various disease processes. Nonetheless, the expression characteristics of EFNAs in pan-cancer, their relationship with tumor immune microenvironment, and prognostic value landscape remain unknown. Methods A comprehensive landscape of EFNAs was created using various statistical data extracted from 33 cancers. Subsequently, we identified differential expression, genetic variations, potential function enrichment, tumor immune-related analysis, and drug sensitivity. Further, we investigated the clinical features and diagnostic prognostic value of EFNAs. RT-qPCR, western blot and immunohistochemistry (IHC) were used to validate the expression level and significant clinical value of EFNA5 in lung adenocarcinoma cell lines and tissues. Results EFNAs were highly mutated in various cancers. Genomic and epigenetic alterations of EFNAs were observed in various tumors, where an oncogenic mutation in specific cancer types potentially affected EFNA expression. Moreover, tumor-derived EFNAs were significantly related to the tumor immune microenvironment, suggesting that they are promising therapeutic targets. The majority of EFNA family genes were significantly linked to patient prognosis. Eventually, EFNA5 was an independent prognostic factor in lung adenocarcinoma. Conclusion In summary, EFNAs are crucial in tumor immune regulation, and EFNA5 is a prognostic marker in lung adenocarcinoma. Our findings provide new insights into EFNAs from a bioinformatics standpoint and highlight the significance of EFNAs in cancer diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09951-0.
Collapse
Affiliation(s)
- Zonglin Jiao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiao Feng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuqing Cui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junqing Gan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbin Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
30
|
Dai X, Wang X, Yang C, Huang M, Zhou Z, Qu Y, Cui X, Liu R, Chen C. Human fibroblasts facilitate the generation of iPSCs-derived mammary-like organoids. Stem Cell Res Ther 2022; 13:377. [PMID: 35902878 PMCID: PMC9330643 DOI: 10.1186/s13287-022-03023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background Breast cancer is the most common malignancy in women worldwide, and its treatment largely depends on mastectomy. Patients after mastectomy suffer from crippled body image, self-esteem, and quality of life. Post-mastectomy breast reconstruction can improve patients’ psychosocial health. Although silicone and fat have been widely used for breast reconstruction, they have remarkable limitations. Our study aimed to establish an improved method for breast reconstruction from human-induced pluripotent stem cells (iPSCs). Methods We used a two-step procedure to induce mammary-like organoids (MLOs) from iPSCs and applied transcriptome sequencing to analyze the gene expression profiles during the development process from embryoid bodies (mEBs) to MLOs. Moreover, we evaluated the in vitro effect of fibroblasts cell line HFF (human foreskin fibroblasts) on the size and morphology of MLOs and explored the in vivo effect of HFF on regeneration rate of MLOs. Results MLOs had a similar gene expression profile and morphogenesis as the normal mammary glands. Furthermore, the addition of HFF increases the branching ratio and organoid diameters and facilitates the formation of multiple cell layers duct-like structures in MLOs in vitro. Finally, orthotopical transplantation of the MLOs to cleared mammary gland fad pad of NSG mice showed that HFF increases the formation of mammary gland-like structures. Conclusions Fibroblasts facilitate iPSC-derived MLOs to generate mammary gland-like structures in both in vitro and in vivo conditions. Our findings lay a foundation for breast reconstruction by using iPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03023-7.
Collapse
Affiliation(s)
- Xueqin Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Maobo Huang
- Biomedical Research Center, The First Hospital of Kunming (The Affiliated Calmette Hospital of Kunming Medical University), Kunming, 650224, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
31
|
Hadjimichael AC, Pergaris A, Kaspiris A, Foukas AF, Kokkali S, Tsourouflis G, Theocharis S. The EPH/Ephrin System in Bone and Soft Tissue Sarcomas' Pathogenesis and Therapy: New Advancements and a Literature Review. Int J Mol Sci 2022; 23:ijms23095171. [PMID: 35563562 PMCID: PMC9100911 DOI: 10.3390/ijms23095171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Musculoskeletal sarcomas represent rare heterogenous malignancies of mesenchymal origin that can be divided in two distinct subtypes, bone and soft tissue sarcomas. Current treatment options combine the surgical excision of local tumors and multidrug chemotherapy to prevent metastatic widespread disease. Due to the grim prognosis that usually accompanies such tumors, researchers have attempted to shed light on the molecular pathways implicated in their pathogenesis in order to develop novel, innovative, personalized therapeutic strategies. Erythropoietin-producing human hepatocellular receptors (EPHs) are tyrosine-kinase transmembrane receptors that, along with their ligands, ephrins, participate in both tumor-suppressive or tumor-promoting signaling pathways in bone and soft tissue sarcomas. The EPH/ephrin axis orchestrates cancerous processes such as cell–cell and cell–substrate adhesion and enhances the remodeling of the intracellular cytoskeleton to stimulate the motility and invasiveness of sarcoma cells. The purpose of our study was to review published PubMed literature to extract results from in vitro, in vivo and clinical trials indicative of the role of EPH/ephrin signaling in bone and soft tissue sarcomas. Based on these reports, significant interactions between the EPH/ephrin signaling pathway and a plethora of normal and abnormal cascades contribute to molecular mechanisms enhancing malignancy during sarcoma progression. In addition, EPHs and ephrins are prospective candidates for diagnostic, monitoring and therapeutic purposes in the clinical setting against bone and soft tissue sarcomas.
Collapse
Affiliation(s)
- Argyris C. Hadjimichael
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
- Department of Orthopaedics, St Mary’s Hospital, Imperial College Healthcare NHS Trust, Praed Street, London W2 1NY, UK
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Athanasios F. Foukas
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Gerasimos Tsourouflis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
- Correspondence:
| |
Collapse
|
32
|
Abstract
The EPH receptor tyrosine kinases and their signaling partners, the EPHRINS, comprise a large class of cell signaling molecules that plays diverse roles in development. As cell membrane-anchored signaling molecules, they regulate cellular organization by modulating the strength of cellular contacts, usually by impacting the actin cytoskeleton or cell adhesion programs. Through these cellular functions, EPH/EPHRIN signaling often regulates tissue shape. Indeed, recent evidence indicates that this signaling family is ancient and associated with the origin of multicellularity. Though extensively studied, our understanding of the signaling mechanisms employed by this large family of signaling proteins remains patchwork, and a truly "canonical" EPH/EPHRIN signal transduction pathway is not known and may not exist. Instead, several foundational evolutionarily conserved mechanisms are overlaid by a myriad of tissue -specific functions, though common themes emerge from these as well. Here, I review recent advances and the related contexts that have provided new understanding of the conserved and varied molecular and cellular mechanisms employed by EPH/EPHRIN signaling during development.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, United States; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
33
|
Papadakos SP, Petrogiannopoulos L, Pergaris A, Theocharis S. The EPH/Ephrin System in Colorectal Cancer. Int J Mol Sci 2022; 23:2761. [PMID: 35269901 PMCID: PMC8910949 DOI: 10.3390/ijms23052761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
The EPH/ephrin system constitutes a bidirectional signaling pathway comprised of a family of tyrosine kinase receptors in tandem with their plasma membrane-bound ligand (ephrins). Its significance in a wide variety of physiologic and pathologic processes has been recognized during the past decades. In carcinogenesis, EPH/ephrins coordinate a wide spectrum of pathologic processes, such as angiogenesis, vessel infiltration, and metastasis. Despite the recent advances in colorectal cancer (CRC) diagnosis and treatment, it remains a leading cause of death globally, accounting for 9.2% of all cancer deaths. A growing body of literature has been published lately revitalizing our scientific interest towards the role of EPH/ephrins in pathogenesis and the treatment of CRC. The aim of the present review is to present the recent CRC data which might lead to clinical practice changes in the future.
Collapse
Affiliation(s)
| | | | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.P.P.); (L.P.); (A.P.)
| |
Collapse
|
34
|
Comprehensive Analysis of the Expression and Prognosis for E2Fs in Human Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5790416. [PMID: 34531966 PMCID: PMC8440094 DOI: 10.1155/2021/5790416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
Background E2F transcription factors is a family of transcription factors, and lots of studies have shown that they play a key role in the occurrence and development of many tumors. However, the association between expression, prognostic value, and immune infiltration in the tumor microenvironment of the eight E2Fs members in ccRCC is still unclear. Method s. We used online databases, such as ONCOMINE, UALCAN, Kaplan–Meier plotter, GEPIA, Metascape, TIMER, and cBioPortal, to analyze the effect of mRNA expression of E2Fs family members in ccRCC on the prognosis of patients and the relationship with immune infiltration. Results Except for E2F5, other seven members of the family of E2Fs mRNA expression levels in ccRCC tissues were significantly higher than control tissues. And the high expression of E2Fs mRNA in ccRCC patients was related to cancer stage and tumor grade. Survival analysis results suggested that elevated mRNA expression levels of E2F1/2/3/4/7/8 were significantly related to the shorter overall survival (OS) in ccRCC patients (P = 3.9E – 06), while high mRNA expression of E2F6 is not related to OS (P = 0.061). Mutations of E2Fs were correlated with shorter OS of ccRCC patients (P = 7.094E – 5). In addition, mRNA expression of E2F1/2/3/4/7/8 was positively correlated with infiltration of six types of immune cells, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Conclusions These results indicate that E2F1/2/3/4/7/8 may be used as a prognostic marker for the survival of ccRCC patients and laid the foundation for studying the immune infiltration role of E2Fs family members in tumors.
Collapse
|
35
|
Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression. Cancers (Basel) 2021; 13:cancers13153858. [PMID: 34359759 PMCID: PMC8345401 DOI: 10.3390/cancers13153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss of this engraftment ability (by deletion of the Lyl1 gene) did not result in any loss of leukemogenesis activity, indicating the activity of redundant oncogenic pathways in this model. Having observed an overexpression of the EphA3 protein in the NHD13 thymocytes, we hypothesized that this gene might be involved in a redundant leukaemogenic pathway. Deletion of EphA3 did not affect the engraftment ability of the thymocytes, but did reduce the incidence of T-ALL. We thus uncovered a distinct mechanism of leukaemogenesis, which we believe operates in parallel to that mediated by Lyl1. Abstract We recently characterised the NUP98-HOXD13 (NHD13) mouse as a model of T-cell pre-leukaemia, featuring thymocytes that can engraft in recipient animals and progress to T-cell acute lymphoblastic leukaemia (T-ALL). However, loss of this engraftment ability by deletion of Lyl1 did not result in any loss of leukemogenesis activity. In the present study, we observe that NHD13 thymocytes overexpress EPHA3, and we characterise thymocyte behaviour in NHD13 mice with deletion of EphA3, which show a markedly reduced incidence of T-ALL. Deletion of EphA3 from the NHD13 mice does not prevent the abnormal accumulation or transplantation ability of these thymocytes. However, upon transplantation, these cells are unable to block the normal progression of recipient wild type (WT) progenitor cells through the normal developmental pathway. This is in contrast to the EphA3+/+ NHD13 thymocytes, which block the progression of incoming WT progenitors past the DN1 stage. Therefore, EphA3 is not critical for classical self-renewal, but is essential for mediating an interaction between the abnormally self-renewing cells and healthy progenitors—an interaction that results in a failure of the healthy cells to differentiate normally. We speculate that this may orchestrate a loss of healthy cell competition, which in itself has been demonstrated to be oncogenic, and that this may explain the decrease in T-ALL incidence in the absence of EphA3. We suggest that pre-leukaemic self-renewal in this model is a complex interplay of cell-intrinsic and -extrinsic factors, and that multiple redundant pathways to leukaemogenesis are active.
Collapse
|
36
|
Liu J, Wei Y, Wu Y, Li J, Sun J, Ren G, Li H. ATP2C2 Has Potential to Define Tumor Microenvironment in Breast Cancer. Front Immunol 2021; 12:657950. [PMID: 33936088 PMCID: PMC8079766 DOI: 10.3389/fimmu.2021.657950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Tumor microenvironment (TME) is vital for the occurrence and development of breast cancer (BRCA). However, it remains challenging to understand the dynamic modulation of the stromal and immune components comprehensively in TME. Herein, we used ESTIMATE and CIBERSORT algorithm to estimate the number of stromal and immune components and the abundance of tumor-infiltrating immune cells (TICs) in 582 BRCA cases from gene expression omnibus (GEO) database. We employed three regression models including univariable Cox proportion, LASSO regression model and multivariate Cox regression, and identified 7 immune-specific genes related to BRCA survival. Of 7 genes, ATPase Secretory Pathway Ca2+ Transporting 2 (ATP2C2) attracts our attention for significantly predicting prognosis of BRCA patients. Further analysis indicated that ATP2C2 expression was closely related to the clinicopathological features (age, T- and N-staging) and negatively correlated with patients' survival in BRCA. Gene Set Enrichment Analysis (GSEA) was performed to reveal pathway enrichment between ATP2C2high and ATP2C2low groups. The low ATP2C2 expression groups' genes were mainly enriched for immune-related activities, while those in the ATP2C2 high-expression group were largely enriched in metabolic-related pathways. Notably, Pearson's correlation analysis identified that ATP2C2 expression was positively correlated with T follicular helper (Tfh) cells, and negatively correlated with gamma delta (γδ) T cell, suggesting that ATP2C2 might be accountable for the maintenance of immune-dominant status for TME. To sum up, this study comprehensively analyzed the TME and shed light on prognostic immune-related biomarkers for BRCA. In particular, ATP2C2 might be helpful for predicting the prognosis of BRCA patients, which provided an extra insight for BRCA treatment.
Collapse
Affiliation(s)
- Jiazhou Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yushen Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|