1
|
Ahmed IMM, Rofe A, Henry MC, West E, Jamieson C, McEwan IJ, Beveridge R. Ion mobility mass spectrometry unveils conformational effects of drug lead EPI-001 on the intrinsically disordered N-terminal domain of the androgen receptor. Protein Sci 2025; 34:e5254. [PMID: 39665260 PMCID: PMC11635395 DOI: 10.1002/pro.5254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Intrinsically disordered proteins (IDPs) are important drug targets as they are key actors within cell signaling networks. However, the conformational plasticity of IDPs renders them challenging to characterize, which is a bottleneck in developing small molecule drugs that bind to IDPs and modulate their behavior. In relation to this, ion mobility mass spectrometry (IM-MS) is a useful tool to investigate IDPs, as it can reveal their conformational preferences. It can also offer important insights in drug discovery, as it can measure binding stoichiometry and unveil conformational shifts of IDPs exerted by the binding of small drug-like molecules. Herein, we have used IM-MS to investigate the effect of drug lead EPI-001 on the disordered N-terminal domain of the androgen receptor (AR-NTD). Despite structural heterogeneity rendering the NTD a challenging region of the protein to drug, this domain harbors most, if not all, of the transcriptional activity. We quantify the stoichiometry of EPI-001 binding to various constructs corresponding to functional domains of AR-NTD and show that it binds to separate constructs containing transactivation unit (TAU)-1 and TAU-5, respectively, and that 1-2 molecules bind to a larger construct containing both sequences. We also identify a conformational shift upon EPI-001 binding to the TAU-5, and to a much lesser extent with TAU-1 containing constructs. This work provides novel insight on the interactions of EPI-001 with the AR-NTD, and the structural alterations that it exerts, and positions IM-MS as an informative tool that will enhance the tractability of IDPs, potentially leading to better therapies.
Collapse
Affiliation(s)
- Ikhlas M. M. Ahmed
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| | - Adam Rofe
- Institute of Medical Sciences, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Martyn C. Henry
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| | - Eric West
- Institute of Medical Sciences, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Craig Jamieson
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| |
Collapse
|
2
|
Chen Y, Lan T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front Pharmacol 2024; 15:1451957. [PMID: 39359255 PMCID: PMC11444995 DOI: 10.3389/fphar.2024.1451957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The incidence rate of prostate cancer (PCa) has risen by 3% per year from 2014 through 2019 in the United States. An estimated 34,700 people will die from PCa in 2023, corresponding to 95 deaths per day. Castration resistant prostate cancer (CRPC) is the leading cause of deaths among men with PCa. Androgen receptor (AR) plays a critical role in the development of CRPC. N-terminal domain (NTD) is the essential functional domain for AR transcriptional activation, in which modular activation function-1 (AF-1) is important for gene regulation and protein interactions. Over last 2 decades drug discovery against NTD has attracted interest for CRPC treatment. However, NTD is an intrinsically disordered domain without stable three-dimensional structure, which has so far hampered the development of drugs targeting this highly dynamic structure. Employing high throughput cell-based assays, small-molecule NTD inhibitors exhibit a variety of unexpected properties, ranging from specific binding to NTD, blocking AR transactivation, and suppressing oncogenic proliferation, which prompts its evaluation in clinical trials. Furthermore, molecular dynamics simulations reveal that compounds can induce the formation of collapsed helical states. Nevertheless, our knowledge of NTD structure has been limited to the primary sequence of amino acid chain and a few secondary structure motif, acting as a barrier for computational and pharmaceutical analysis to decipher dynamic conformation and drug-target interaction. In this review, we provide an overview on the sequence-structure-function relationships of NTD, including the polymorphism of mono-amino acid repeats, functional elements for transcription regulation, and modeled tertiary structure of NTD. Moreover, we summarize the activities and therapeutic potential of current NTD-targeting inhibitors and outline different experimental methods contributing to screening novel compounds. Finally, we discuss current directions for structure-based drug design and potential breakthroughs for exploring pharmacological motifs and pockets in NTD, which could contribute to the discovery of new NTD inhibitors.
Collapse
Affiliation(s)
- Ye Chen
- Department of Anesthesiology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| | - Tian Lan
- Department of Urology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Senapati D, Sharma V, Rath SK, Rai U, Panigrahi N. Functional implications and therapeutic targeting of androgen response elements in prostate cancer. Biochimie 2023; 214:188-198. [PMID: 37460038 DOI: 10.1016/j.biochi.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The androgen receptor (AR) plays an essential role in the growth and progression of prostate cancer (CaP). Ligand-activated AR inside the nucleus binds to the androgen response element (ARE) of the target genes in dimeric form and recruits transcriptional machinery to facilitate gene transcription. Pharmacological compounds that inhibit the AR action either bind to the ligand binding domain (LBD) or interfere with the interactions of AR with other co-regulatory proteins, slowing the progression of the disease. However, the emergence of resistance to conventional treatment makes clinical management of CaP difficult. Resistance has been associated with activation of androgen/AR axis that restores AR transcriptional activity. Activated AR signaling in resistance cases can be mediated by several mechanisms including AR amplification, gain-of-function AR mutations, androgen receptor variant (ARVs), intracrine androgen production, and overexpression of AR coactivators. Importantly, in castration resistant prostate cancer, ARVs lacking the LBD become constitutively active and promote hormone-independent development, underlining the need to concentrate on the other domain or the AR-DNA interface for the identification of novel actionable targets. In this review, we highlight the plasticity of AR-DNA binding and explain how fine-tuning AR's cooperative interactions with DNA translate into developing an alternative strategy to antagonize AR activity.
Collapse
Affiliation(s)
- Dhirodatta Senapati
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Vikas Sharma
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Uddipak Rai
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Naresh Panigrahi
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
4
|
Elshazly AM, Gewirtz DA. Making the Case for Autophagy Inhibition as a Therapeutic Strategy in Combination with Androgen-Targeted Therapies in Prostate Cancer. Cancers (Basel) 2023; 15:5029. [PMID: 37894395 PMCID: PMC10605431 DOI: 10.3390/cancers15205029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Androgen receptor targeting remains the primary therapeutic strategy in prostate cancer, encompassing androgen biosynthesis inhibitors and androgen receptor antagonists. While both androgen-receptor-positive and "castration-resistant" prostate cancer are responsive to these approaches, the development of resistance is an almost inevitable outcome leading to the castration-resistant form of the disease. Given that "cytoprotective" autophagy is considered to be a predominant mechanism of resistance to various chemotherapeutic agents as well as to radiation in the cancer literature, the purpose of this review is to evaluate whether autophagy plays a central role in limiting the utility of androgen deprivation therapies in prostate cancer. Unlike most of our previous reports, where multiple functional forms of autophagy were identified, making it difficult if not impossible to propose autophagy inhibition as a therapeutic strategy, the cytoprotective form of autophagy appears to predominate in the case of androgen deprivation therapies. This opens a potential pathway for improving the outcomes for prostate cancer patients once effective and reliable pharmacological autophagy inhibitors have been developed.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
| |
Collapse
|
5
|
Riley CM, Elwood JML, Henry MC, Hunter I, Daniel Lopez-Fernandez J, McEwan IJ, Jamieson C. Current and emerging approaches to noncompetitive AR inhibition. Med Res Rev 2023; 43:1701-1747. [PMID: 37062876 DOI: 10.1002/med.21961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
The androgen receptor (AR) has been shown to be a key determinant in the pathogenesis of castration-resistant prostate cancer (CRPC). The current standard of care therapies targets the ligand-binding domain of the receptor and can afford improvements to life expectancy often only in the order of months before resistance occurs. Emerging preclinical and clinical compounds that inhibit receptor activity via differentiated mechanisms of action which are orthogonal to current antiandrogens show promise for overcoming treatment resistance. In this review, we present an authoritative summary of molecules that noncompetitively target the AR. Emerging small molecule strategies for targeting alternative domains of the AR represent a promising area of research that shows significant potential for future therapies. The overall quality of lead candidates in the area of noncompetitive AR inhibition is discussed, and it identifies the key chemotypes and associated properties which are likely to be, or are currently, positioned to be first in human applications.
Collapse
Affiliation(s)
- Christopher M Riley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Jessica M L Elwood
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Martyn C Henry
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Irene Hunter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Iain J McEwan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
6
|
Luo S, Wohl S, Zheng W, Yang S. Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery. Biomolecules 2023; 13:biom13030530. [PMID: 36979465 PMCID: PMC10046839 DOI: 10.3390/biom13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Protein intrinsic disorder is increasingly recognized for its biological and disease-driven functions. However, it represents significant challenges for biophysical studies due to its high conformational flexibility. In addressing these challenges, we highlight the complementary and distinct capabilities of a range of experimental and computational methods and further describe integrative strategies available for combining these techniques. Integrative biophysics methods provide valuable insights into the sequence–structure–function relationship of disordered proteins, setting the stage for protein intrinsic disorder to become a promising target for drug discovery. Finally, we briefly summarize recent advances in the development of new small molecule inhibitors targeting the disordered N-terminal domains of three vital transcription factors.
Collapse
Affiliation(s)
- Shuqi Luo
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Samuel Wohl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
- Correspondence: (W.Z.); (S.Y.)
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: (W.Z.); (S.Y.)
| |
Collapse
|
7
|
Ji Y, Zhang R, Han X, Zhou J. Targeting the N-terminal domain of the androgen receptor: The effective approach in therapy of CRPC. Eur J Med Chem 2023; 247:115077. [PMID: 36587421 DOI: 10.1016/j.ejmech.2022.115077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The androgen receptor (AR) is dominant in prostate cancer (PCa) pathology. Current therapeutic agents for advanced PCa include androgen synthesis inhibitors and AR antagonists that bind to the hormone binding pocket (HBP) at the ligand binding domain (LBD). However, AR amplification, AR splice variants (AR-Vs) expression, and intra-tumoral de novo synthesis of androgens result in the reactivation of AR signalling. The AR N-terminal domain (NTD) plays an essential role in AR transcriptional activity. The AR inhibitor targeting NTD could potentially block the activation of both full-length AR and AR-Vs, thus overcoming major resistance mechanisms to current treatments. This review discusses the progress of research in various NTD inhibitors and provides new insight into the development of AR-NTD inhibitors.
Collapse
Affiliation(s)
- Yang Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Xiaoli Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
8
|
Constitutively Active Androgen Receptor in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213768. [PMID: 36430245 PMCID: PMC9699340 DOI: 10.3390/ijms232213768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant type of liver cancer and a leading cause of cancer-related death globally. It is also a sexually dimorphic disease with a male predominance both in HCC and in its precursors, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH). The role of the androgen receptor (AR) in HCC has been well documented; however, AR-targeted therapies have failed to demonstrate efficacy in HCC. Building upon understandings of AR in prostate cancer (PCa), this review examines the role of AR in HCC, non-androgen-mediated mechanisms of induced AR expression, the existence of AR splice variants (AR-SV) in HCC and concludes by surveying current AR-targeted therapeutic approaches in PCa that show potential for efficacy in HCC in light of AR-SV expression.
Collapse
|
9
|
Quick J, Santos ND, Cheng MHY, Chander N, Brimacombe CA, Kulkarni J, van der Meel R, Tam YYC, Witzigmann D, Cullis PR. Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy. J Control Release 2022; 349:174-183. [PMID: 35780952 DOI: 10.1016/j.jconrel.2022.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022]
Abstract
Advanced-stage prostate cancer remains an incurable disease with poor patient prognosis. There is an unmet clinical need to target androgen receptor (AR) splice variants, which are key drivers of the disease. Some AR splice variants are insensitive to conventional hormonal or androgen deprivation therapy due to loss of the androgen ligand binding domain at the C-terminus and are constitutively active. Here we explore the use of RNA interference (RNAi) to target a universally conserved region of all AR splice variants for cleavage and degradation, thereby eliminating protein level resistance mechanisms. To this end, we tested five siRNA sequences designed against exon 1 of the AR mRNA and identified several that induced potent knockdown of full-length and truncated variant ARs in the 22Rv1 human prostate cancer cell line. We then demonstrated that 2'O methyl modification of the top candidate siRNA (siARvm) enhanced AR and AR-V7 mRNA silencing potency in both 22Rv1 and LNCaP cells, which represent two different prostate cancer models. For downstream in vivo delivery, we formulated siARvm-LNPs and functionally validated these in vitro by demonstrating knockdown of AR and AR-V7 mRNA in prostate cancer cells and loss of AR-mediated transcriptional activation of the PSA gene in both cell lines following treatment. We also observed that siARvm-LNP induced cell viability inhibition was more potent compared to LNP containing siRNA targeting full-length AR mRNA (siARfl-LNP) in 22Rv1 cells as their proliferation is more dependent on AR splice variants than LNCaP and PC3 cells. The in vivo biodistribution of siARvm-LNPs was determined in 22Rv1 tumor-bearing mice by incorporating 14C-radiolabelled DSPC in LNP formulation, and we observed a 4.4% ID/g tumor accumulation following intravenous administration. Finally, treatment of 22Rv1 tumor bearing mice with siARvm-LNP resulted in significant tumor growth inhibition and survival benefit compared to siARfl-LNP or the siLUC-LNP control. To best of our knowledge, this is the first report demonstrating therapeutic effects of LNP-siRNA targeting AR splice variants in prostate cancer.
Collapse
Affiliation(s)
- Joslyn Quick
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nancy Dos Santos
- BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Miffy H Y Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nisha Chander
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Cedric A Brimacombe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayesh Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roy van der Meel
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
10
|
Serritella AV, Shevrin D, Heath EI, Wade JL, Martinez E, Anderson A, Schonhoft J, Chu YL, Karrison T, Stadler WM, Szmulewitz RZ. Phase I/II trial of enzalutamide and mifepristone, a glucocorticoid receptor antagonist, for metastatic castration-resistant prostate cancer. Clin Cancer Res 2022; 28:1549-1559. [PMID: 35110415 DOI: 10.1158/1078-0432.ccr-21-4049] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Although androgen deprivation therapy (ADT) and androgen receptor signaling inhibitors (ARSI) are effective in metastatic prostate cancer (PC), resistance occurs in most patients. This phase I/II trial assessed the safety, pharmacokinetic impact, and efficacy of the glucocorticoid receptor (GR) antagonist mifepristone (Mif) in combination with enzalutamide (Enz) for castration-resistant PC (CRPC). PATIENTS AND METHODS 106 patients with CRPC were accrued. Phase I subjects were treated with Enz monotherapy at 160 mg per day for 28 days to allow steady-state accumulation. Patients then entered the dose escalation combination portion of the study. In phase II, patients were randomized 1:1 to either receive Enz alone or Enz plus Mif. The primary endpoint was PSA progression free survival (PFS), with radiographic PFS, and PSA response rate (RR) as key secondary endpoints. Circulating tumor cells were collected before randomization for exploratory translational biomarker studies. RESULTS We determined a 25% dose reduction in Enz, when added to Mif resulted in equivalent drug levels compared to full dose Enz and was well tolerated. However, the addition of Mif to Enz following a 12-week Enz lead-in did not delay time to PSA, radiographic or clinical PFS. The trial was terminated early due to futility. CONCLUSION This is the first prospective trial of dual AR-GR antagonism in CRPC. Enz combined with Mif was safe and well tolerated but did not meet its primary endpoint. The development of more specific GR antagonists combined with AR antagonists, potentially studied in an earlier disease state, should be explored.
Collapse
Affiliation(s)
| | | | | | - James L Wade
- Medical Oncology, Decatur Memorial Hospital Cancer Care Institute
| | | | | | | | | | | | - Walter M Stadler
- Department of Medicine/Section of Hematology/Oncology, University of Chicago
| | | |
Collapse
|
11
|
Yu EM, Aragon-Ching JB. Advances with androgen deprivation therapy for prostate cancer. Expert Opin Pharmacother 2022; 23:1015-1033. [PMID: 35108137 DOI: 10.1080/14656566.2022.2033210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) has been a treatment of choice for prostate cancer in almost all phases, particularly in the locally advanced, metastatic setting in both hormone-sensitive and castration-resistant diseaseand in those who are unfit for any local therapy. Different ways of administering ADT comes in the form of surgical or chemical castration with the use of gonadotropin-releasing hormone (GnRH-agonists) being the foremost way of delivering ADT. AREAS COVERED This review encompasses ADT history, use of leuprolide, degarelix, and relugolix, with contextual use of ADT in combination with androgen-signaling inhibitors and potential mechanisms of resistance. Novel approaches with regard to hormone therapy are also discussed. EXPERT OPINION The use of GnRH-agonists and GnRH-antagonists yields efficacy that is likely equivalent in resulting in testosterone suppression. While the side-effect profile with ADT are generally equivalent, effects on cardiovascular morbidity may be improved with the use of oral relugolix though this is noted with caution since the cardiovascular side-effects were a result of secondary subgroup analyses. The choice of ADT hinges upon cost, availability, ease of administration, and preference amongst physicians and patients alike.
Collapse
Affiliation(s)
- Eun-Mi Yu
- GU Medical Oncology, Inova Schar Cancer Institute, Fairfax, VA, USA
| | | |
Collapse
|
12
|
Wang TL, Zhang BS, Liu JJ, Liu XJ, Wang XC, Quan ZJ. Visible light promoted polyhalomethylation of alkenes: alkylation and cyclization. Org Chem Front 2022. [DOI: 10.1039/d1qo01662h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The report describes a visible light promoted carbochloromethylation of 2-bromomethyl acrylate and N-arylmethacrylamide, and a series of trihalomethyl substituted allylic acid esters and indolone derivatives were synthesized.
Collapse
Affiliation(s)
- Tong-Lin Wang
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Bo-Sheng Zhang
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Jing-Jiang Liu
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xiao-Jun Liu
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xi-Cun Wang
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Zheng-Jun Quan
- Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
13
|
Sadar MD. Drugging the Undruggable: Targeting the N-Terminal Domain of Nuclear Hormone Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:311-326. [PMID: 36107327 DOI: 10.1007/978-3-031-11836-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This chapter focuses on the development of drugs targeting the N-terminal domain of nuclear hormone receptors, using progress with the androgen receptor as an example. Historically, development of therapies targeting nuclear hormone receptors has focused on the folded C-terminal ligand-binding domain. Therapies were traditionally not developed to target the intrinsically disordered N-terminal domain as it was considered "undruggable". Recent developments have now shown it is possible to direct therapies to the N-terminal domain. This chapter will provide an introduction of the structure and function of the domains of nuclear hormone receptors, followed by a discussion of the rationale supporting the development of N-terminal domain inhibitors. Chemistry and mechanisms of action of small molecule inhibitors will be described with emphasis on N-terminal domain inhibitors developed to the androgen receptor including those in clinical trials.
Collapse
Affiliation(s)
- Marianne D Sadar
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor n-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest New Drugs 2021; 40:322-329. [PMID: 34843005 DOI: 10.1007/s10637-021-01202-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND EPI-506 is the first of a new class of drugs targeting the N-terminal domain (NTD) of the androgen receptor (AR), potentially overcoming known resistance mechanisms to androgen receptor pathway inhibitors (ARPIs) among men with metastatic castration resistant prostate cancer (mCRPC). METHODS Patients with mCRPC who had progressed on prior ARPI were enrolled in this phase 1 open-label, adaptive 3 + 3 dose escalation study. The primary outcome was safety and tolerability of oral EPI-506. Secondary objectives included determination of the maximal tolerated dose (MTD), pharmacokinetic profile, and antitumor efficacy. RESULTS 28 mCRPC patients were enrolled into 7 dose cohorts of EPI-506 ranging from 80-3600 mg given once daily and 1800 mg given twice daily. Six DLTs occurred in 4 patients; Grade 4 elevated amylase; Grade 3 abdominal pain; Grade 3 elevated ALT and Grade 3 elevated AST; Grade 2 nausea and Grade 1 vomiting which resulted in study drug intake of < 75% of the expected dose during the DLT assessment period. The most common drug-related adverse events included diarrhea, nausea and fatigue. Six patients had a PSA decline not meeting PSA response criteria. The study was terminated prior to reaching the MTD due to poor oral bioavailability. CONCLUSIONS This phase 1 trial established the safety of EPI-506 and provides proof of concept for targeting the AR NTD. Next generation compounds with improved bioavailability and potency are in clinical development.
Collapse
|
15
|
Ray U, Raghavan SC. Understanding the DNA double-strand break repair and its therapeutic implications. DNA Repair (Amst) 2021; 106:103177. [PMID: 34325086 DOI: 10.1016/j.dnarep.2021.103177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) and its regulation are tightly integrated inside cells. Homologous recombination, nonhomologous end joining and microhomology mediated end joining are three major DSB repair pathways in mammalian cells. Targeting proteins associated with these repair pathways using small molecule inhibitors can prove effective in tumors, especially those with deregulated repair. Sensitization of cancer to current age therapy including radio and chemotherapy, using small molecule inhibitors is promising and warrant further development. Although several are under clinical trial, till date no repair inhibitor is approved for commercial use in cancer patients, with the exception of PARP inhibitors targeting single-strand break repair. Based on molecular profiling of repair proteins, better prognostic and therapeutic output can be achieved in patients. In the present review, we highlight the different mechanisms of DSB repair, chromatin dynamics to provide repair accessibility and modulation of inhibitors in association with molecular profiling and current gold standard treatment modalities for cancer.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Yan L, Banuelos CA, Mawji NR, Patrick BO, Sadar MD, Andersen RJ. Structure-Activity Relationships for the Marine Natural Product Sintokamides: Androgen Receptor N-Terminus Antagonists of Interest for Treatment of Metastatic Castration-Resistant Prostate Cancer. JOURNAL OF NATURAL PRODUCTS 2021; 84:797-813. [PMID: 33124806 PMCID: PMC8802828 DOI: 10.1021/acs.jnatprod.0c00921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic analogues of the marine natural product sintokamides have been prepared in order to investigate the structure-activity relationships for the androgen receptor N-terminal domain (AR NTD) antagonist activity of the sintokamide scaffold. An in vitro LNCaP cell-based transcriptional activity assay with an androgen-driven luciferase (Luc) reporter was used to monitor the potency of analogues. The data have shown that the chlorine atoms on the leucine side chains are essential for potent activity. Analogues missing the nonchlorinated methyl groups of the leucine side chains (C-1 and C-17) are just as active and in some cases more active than the natural products. Analogues with the natural R configuration at C-10 and the unnatural R configuration at C-4 are most potent. Replacing the natural propionamide N-terminus cap with the more sterically hindered pivaloylamide N-terminus cap leads to enhanced potency. The tetramic acid fragment and the methyl ether on the tetramic acid fragment are essential for activity. The SAR optimized analogue 76 is more selective, easier to synthesize, more potent, and presumed to be more resistant to proteolysis than the natural sintokamides.
Collapse
Affiliation(s)
- Luping Yan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Carmen A. Banuelos
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada V5Z 1L3 and Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Nasrin R. Mawji
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada V5Z 1L3 and Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Brian O. Patrick
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Marianne D. Sadar
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada V5Z 1L3 and Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Raymond J. Andersen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
17
|
Cohen L, Livney YD, Assaraf YG. Targeted nanomedicine modalities for prostate cancer treatment. Drug Resist Updat 2021; 56:100762. [PMID: 33857756 DOI: 10.1016/j.drup.2021.100762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PC) is the second most common cause of death amongst men in the USA. Therapy of PC has been transformed in the past decade by introducing novel therapeutics, advanced functional imaging and diagnostic approaches, next generation sequencing, as well as improved application of existing therapies in localized PC. Treatment of PC at the different stages of the disease may include surgery, androgen deprivation therapy (ADT), chemotherapy and radiation therapy. However, although ADT has proven efficacious in PC treatment, its effectiveness may be temporary, as these tumors frequently develop molecular mechanisms of therapy resistance, which allow them to survive and proliferate even under conditions of testosterone deprivation, inhibition of androgen receptor signaling, or cytotoxic drug treatment. Importantly, ADT was found to induce key alterations which frequently result in the formation of metastatic tumors displaying a therapy refractory phenotype. Hence, to overcome these serious therapeutic impediments, novel PC cell-targeted therapeutic strategies are being developed. These include diverse platforms enabling specific enhanced antitumor drug uptake and increased intracellular accumulation. Studies have shown that these novel treatment modalities lead to enhanced antitumor activity and diminished systemic toxicity due to the use of selective targeting and decreased drug doses. The underlying mechanism of targeting and internalization is based upon the interaction between a selective ligand, conjugated to a drug-loaded nanoparticle or directly to an anti-cancer drug, and a specific plasma membrane biomarker, uniquely overexpressed on the surface of PC cells. Another targeted therapeutic approach is the delivery of unique anti-oncogenic signaling pathway-based therapeutic drugs, which are selectively cytotoxic to PC cells. The current paper reviews PC targeted modalities reported in the past 6 years, and discusses both the advantages and limitations of the various targeted treatment strategies.
Collapse
Affiliation(s)
- Lital Cohen
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yoav D Livney
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
18
|
Shiota M, Sekino Y, Tsukahara S, Abe T, Kinoshita F, Imada K, Ueda S, Ushijima M, Nagakawa S, Matsumoto T, Kashiwagi E, Takeuchi A, Inokuchi J, Uchiumi T, Oda Y, Eto M. Gene amplification of YB-1 in castration-resistant prostate cancer in association with aberrant androgen receptor expression. Cancer Sci 2020; 112:323-330. [PMID: 33064355 PMCID: PMC7780013 DOI: 10.1111/cas.14695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
Although Y‐box binding protein‐1 (YB‐1) is known to be overexpressed in prostate cancer, especially castration‐resistant prostate cancer (CRPC), the mechanism of its overexpression remains unclear. We aimed to elucidate the mechanism of YB‐1 overexpression in CRPC. Gene amplification in CRPC cells and tissues was examined by public database analysis, and digital PCR. The significance of YB‐1 amplification for the YB‐1/androgen receptor (AR) axis and prognosis was examined by public database analysis and immunohistochemistry. YB‐1 amplification was mainly observed in CRPC tissues by public database analysis and confirmed in CRPC cells and tissues by digital PCR. Expression of YB‐1 was increased in CRPC tissues compared with treatment‐naïve tissues. Furthermore, YB‐1 and phosphorylated YB‐1 levels were associated with AR and AR V7 expression levels. Finally, YB‐1 amplification was associated with poor outcomes in CRPC. Taken together, the present findings suggest that YB‐1 amplification contributes to progression to CRPC through regulation of AR and AR V7 expressions, and that YB‐1 is a promising therapeutic target in CRPC.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Abe
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Kinoshita
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Imada
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Ueda
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
He Y, Hwang DJ, Ponnusamy S, Thiyagarajan T, Mohler ML, Narayanan R, Miller DD. Pyrazol-1-yl-propanamides as SARD and Pan-Antagonists for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2020; 63:12642-12665. [PMID: 33095584 DOI: 10.1021/acs.jmedchem.0c00943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report herein the design, synthesis, and pharmacological characterization of a library of novel aryl pyrazol-1-yl-propanamides as selective androgen receptor degraders (SARDs) and pan-antagonists that exert broad-scope AR antagonism. Pharmacological evaluation demonstrated that introducing a pyrazole moiety as the B-ring structural element in the common A-ring-linkage-B-ring nonsteroidal antiandrogens' general pharmacophore allowed the development of a new scaffold of small molecules with unique SARD and pan-antagonist activities even compared to our recently published AF-1 binding SARDs such as UT-155 (9) and UT-34 (10). Novel B-ring pyrazoles exhibited potent AR antagonist activities, including promising distribution, metabolism, and pharmacokinetic properties, and broad-spectrum AR antagonist properties, including potent in vivo antitumor activity. 26a was able to induce an 80% tumor growth inhibition of xenografts derived from the enzalutamide-resistant (Enz-R) VCaP cell line. These results represent an advancement toward the development of novel AR antagonists for the treatment of Enz-R prostate cancer.
Collapse
Affiliation(s)
- Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Michael L Mohler
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
20
|
The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines 2020; 8:biomedicines8100422. [PMID: 33076388 PMCID: PMC7602609 DOI: 10.3390/biomedicines8100422] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) plays a predominant role in prostate cancer (PCa) pathology. It consists of an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), and a ligand-binding domain (LBD) that binds androgens, including testosterone (T) and dihydrotestosterone (DHT). Ligand binding at the LBD promotes AR dimerization and translocation to the nucleus where the DBD binds target DNA. In PCa, AR signaling is perturbed by excessive androgen synthesis, AR amplification, mutation, or the formation of AR alternatively spliced variants (AR-V) that lack the LBD. Current therapies for advanced PCa include androgen synthesis inhibitors that suppress T and/or DHT synthesis, and AR inhibitors that prevent ligand binding at the LBD. However, AR mutations and AR-Vs render LBD-specific therapeutics ineffective. The DBD and NTD are novel targets for inhibition as both perform necessary roles in AR transcriptional activity and are less susceptible to AR alternative splicing compared to the LBD. DBD and NTD inhibition can potentially extend patient survival, improve quality of life, and overcome predominant mechanisms of resistance to current therapies. This review discusses various small molecule and other inhibitors developed against the DBD and NTD—and the current state of the available compounds in clinical development.
Collapse
|
21
|
Kregel S, Bagamasbad P, He S, LaPensee E, Raji Y, Brogley M, Chinnaiyan A, Cieslik M, Robins DM. Differential modulation of the androgen receptor for prostate cancer therapy depends on the DNA response element. Nucleic Acids Res 2020; 48:4741-4755. [PMID: 32198885 PMCID: PMC7229860 DOI: 10.1093/nar/gkaa178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Androgen receptor (AR) action is a hallmark of prostate cancer (PCa) with androgen deprivation being standard therapy. Yet, resistance arises and aberrant AR signaling promotes disease. We sought compounds that inhibited genes driving cancer but not normal growth and hypothesized that genes with consensus androgen response elements (cAREs) drive proliferation but genes with selective elements (sAREs) promote differentiation. In a high-throughput promoter-dependent drug screen, doxorubicin (dox) exhibited this ability, acting on DNA rather than AR. This dox effect was observed at low doses for multiple AR target genes in multiple PCa cell lines and also occurred in vivo. Transcriptomic analyses revealed that low dox downregulated cell cycle genes while high dox upregulated DNA damage response genes. In chromatin immunoprecipitation (ChIP) assays with low dox, AR binding to sARE-containing enhancers increased, whereas AR was lost from cAREs. Further, ChIP-seq analysis revealed a subset of genes for which AR binding in low dox increased at pre-existing sites that included sites for prostate-specific factors such as FOXA1. AR dependence on cofactors at sAREs may be the basis for differential modulation by dox that preserves expression of genes for survival but not cancer progression. Repurposing of dox may provide unique opportunities for PCa treatment.
Collapse
Affiliation(s)
- Steven Kregel
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pia Bagamasbad
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shihan He
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth LaPensee
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yemi Raji
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michele Brogley
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicine and Urology, University of Michigan, Ann Arbor, MI 48109, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diane M Robins
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Williams DE, Andersen RJ. Biologically active marine natural products and their molecular targets discovered using a chemical genetics approach. Nat Prod Rep 2020; 37:617-633. [PMID: 31750842 PMCID: PMC7874888 DOI: 10.1039/c9np00054b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Covering: 2000 to 2019The discovery of new natural products that have some combination of unprecedented chemical structures, biological activities of therapeutic interest for urgent medical needs, and new molecular targets provides the fuel that sustains the vitality of natural products chemistry research. Unfortunately, finding these important new compounds is neither routine or trivial and a major challenge is finding effective discovery paradigms. This review presents examples that illustrate the effectiveness of a chemical genetics approach to marine natural product (MNP) discovery that intertwines compound discovery, molecular target identification, and phenotypic response/biological activity. The examples include MNPs that have complex unprecedented structures, new or understudied molecular targets, and potent biological activities of therapeutic interest. A variety of methods to identify molecular targets are also featured.
Collapse
Affiliation(s)
- David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| | | |
Collapse
|
23
|
Sadar MD. Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Expert Opin Drug Discov 2020; 15:551-560. [PMID: 32100577 DOI: 10.1080/17460441.2020.1732920] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Intrinsically disordered proteins (IDPs) and regions (IDRs) lack stable three-dimensional structure making drug discovery challenging. A validated therapeutic target for diseases such as prostate cancer is the androgen receptor (AR) which has a disordered amino-terminal domain (NTD) that contains all of its transcriptional activity. Drug discovery against the AR-NTD is of intense interest as a potential treatment for disease such as advanced prostate cancer that is driven by truncated constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD).Areas covered: This article presents an overview of the relevance of AR and its intrinsically disordered NTD as a drug target. AR structure and approaches to blocking AR transcriptional activity are discussed. The discovery of small molecules, including the libraries used, proven binders to the AR-NTD, and site of interaction of these small molecules in the AR-NTD are presented along with discussion of the Phase I clinical trial.Expert opinion: The lack of drugs in the clinic that directly bind IDPs/IDRs reflects the difficulty of targeting these proteins and obtaining specificity. However, it may also point to an inappropriateness of too closely borrowing concepts and resources from drug discovery to folded proteins.
Collapse
Affiliation(s)
- Marianne D Sadar
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Regression of castration-resistant prostate cancer by a novel compound QW07 targeting androgen receptor N-terminal domain. Cell Biol Toxicol 2020; 36:399-416. [PMID: 32002708 DOI: 10.1007/s10565-020-09511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Androgen deprivation therapy (ADT) via surgical or chemical castration frequently fails to halt lethal castration-resistant prostate cancer (CRPC), which is induced by multiple mechanisms involving constitutive androgen receptor (AR) splice variants, AR mutation, and/or de novo androgen synthesis. The AR N-terminal domain (NTD) possesses most transcriptional activity and is proposed as a potential target for CRPC drug development. We constructed a screening system targeting AR-NTD transcription activity to screening a compound library and identified a novel small molecule compound named QW07. The function evaluation and mechanism investigation of QW07 were carried out in vitro and in vivo. QW07 bound to AR-NTD directly, blocked the transactivation of AR-NTD, blocked interactions between co-regulatory proteins and androgen response elements (AREs), inhibited the expression of genes downstream of AR, and inhibited prostate cancer growth in vitro and in vivo. QW07 was demonstrated as an AR-NTD-specific antagonist with the potential to inhibit both canonical and variant-mediated AR signaling to regress the CRPC xenografts and is proposed as a lead compound for a specific antagonist targeting AR-NTD.
Collapse
|
25
|
Zheng L, Kang Y, Zhang L, Zou W. MiR-133a-5p inhibits androgen receptor (AR)-induced proliferation in prostate cancer cells via targeting FUsed in Sarcoma (FUS) and AR. Cancer Biol Ther 2019; 21:34-42. [PMID: 31736422 DOI: 10.1080/15384047.2019.1665393] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Androgens and androgen receptors are vital factors involved in prostate cancer progression, and androgen ablation therapies are commonly employed to treat advanced prostate cancer. Previously, FUsed in Sarcoma (FUS) was identified as an AR-interacting protein that enhances AR transcriptional activity. In the present study, we attempted to identify miRNAs that might target both FUS and AR to inhibit FUS and AR expression. Based on TCGA data and the online tools UALCAN, Kaplan Meier-plotter (KMplot), LncTar and miRWalk prediction, miR-133a-5p was selected. MiR-133a-5p expression was significantly downregulated in prostate cancer, and low miR-133a-5p expression was correlated with low survival probability. As predicted by LncTar and miRWalk, miR-133a-5p could bind to the 3'UTR of FUS and AR to inhibit their expression. MiR-133a-5p overexpression significantly suppressed the cell viability of the AR-positive prostate cancer cell lines VCaP and LNCaP, inhibited the expression of FUS, AR, as well as AR downstream targets IGF1R and EGFR. More importantly, miR-133a inhibition increased cancer cell proliferation as well as the expression of AR and AR downstream factors, while FUS knockdown exerted an opposite effect; the effect of miR-133a on cancer cell proliferation and AR could be significantly reversed by FUS knockdown. Moreover, IGF1R and EGFR knockdown reversed the effect of the miR-133a-5p inhibition. In summary, miR-133a-5p inhibits AR-positive prostate cancer cell proliferation by targeting FUS/AR, thus improving the resistance of prostate cancer to androgen ablation therapies, which requires further in vivo validation. We provided a novel miRNA regulation mechanism for proliferation regulation in AR-positive prostate cancer cells.
Collapse
Affiliation(s)
- Long Zheng
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, Anxiang People's Hospital, Anxiang, China
| | - Ye Kang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zou
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
27
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
28
|
Abstract
The transcriptional activity of the androgen receptor is tightly regulated by an intrinsically disordered N-terminal transactivation domain. In this issue of Structure, De Mol et al. (2018) identify a motif in the disordered transactivation domain that can be induced to adopt a helical conformation essential for interaction with the transcriptional machinery.
Collapse
Affiliation(s)
- Amy H Tien
- Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Marianne D Sadar
- Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
29
|
Li D, Zhou W, Pang J, Tang Q, Zhong B, Shen C, Xiao L, Hou T. A magic drug target: Androgen receptor. Med Res Rev 2018; 39:1485-1514. [PMID: 30569509 DOI: 10.1002/med.21558] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) is closely associated with a group of hormone-related diseases including the cancers of prostate, breast, ovary, pancreas, etc and anabolic deficiencies such as muscle atrophy and osteoporosis. Depending on the specific type and stage of the diseases, AR ligands including not only antagonists but also agonists and modulators are considered as potential therapeutics, which makes AR an extremely interesting drug target. Here, we at first review the current understandings on the structural characteristics of AR, and then address why and how AR is investigated as a drug target for the relevant diseases and summarize the representative antagonists and agonists targeting five prospective small molecule binding sites at AR, including ligand-binding pocket, activation function-2 site, binding function-3 site, DNA-binding domain, and N-terminal domain, providing recent insights from a target and drug development view. Further comprehensive studies on AR and AR ligands would bring fruitful information and push the therapy of AR relevant diseases forward.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenfang Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinping Pang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingling Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Xiao
- School of Life Science, Huzhou University, Huzhou, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Ito Y, Sadar MD. Enzalutamide and blocking androgen receptor in advanced prostate cancer: lessons learnt from the history of drug development of antiandrogens. Res Rep Urol 2018; 10:23-32. [PMID: 29497605 PMCID: PMC5818862 DOI: 10.2147/rru.s157116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enzalutamide is a nonsteroidal antiandrogen for the treatment of metastatic castration-resistant prostate cancer (mCRPC) both before and after chemotherapy. Enzalutamide is more effective than its predecessor bicalutamide, which was analyzed in head-to-head studies of patients with CRPC. This family of nonsteroidal antiandrogens is now comprised of four drugs approved by the US Food and Drug Administration with two investigational drugs in clinical trials. Antiandrogens have been employed clinically for more than five decades to provide a rich resource of information. Steady-state concentration minimums (Cmin or trough) in the range of ~1–13 μg/mL are measured in patients at therapeutic doses. Interestingly, enzalutamide which is considered to have strong affinity for the androgen receptor (AR) requires Cmin levels >10 μg/mL. The sequence of antiandrogens and the clinical order of application in regard to other drugs that target the androgen axis remain of high interest. One novel first-in-class drug, called ralaniten, which binds to a unique region in the N-terminus domain of both the full-length and the truncated constitutively active splice variants of the AR, is currently in clinical trials for patients who previously received abiraterone, enzalutamide, or both. This highlights the trend to develop drugs with novel mechanisms of action and potentially differing mechanisms of resistance compared with antiandrogens. Better and more complete inhibition of the transcriptional activity of the AR appears to continue to provide improvements in the clinical management of mCRPC.
Collapse
Affiliation(s)
- Yusuke Ito
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | |
Collapse
|
31
|
Li Q, Ingram L, Kim S, Beharry Z, Cooper JA, Cai H. Paracrine Fibroblast Growth Factor Initiates Oncogenic Synergy with Epithelial FGFR/Src Transformation in Prostate Tumor Progression. Neoplasia 2018; 20:233-243. [PMID: 29444487 PMCID: PMC5814375 DOI: 10.1016/j.neo.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022] Open
Abstract
Cross talk of stromal-epithelial cells plays an essential role in both normal development and tumor initiation and progression. Fibroblast growth factor (FGF)-FGF receptor (FGFR)-Src kinase axis is one of the major signal transduction pathways to mediate this cross talk. Numerous genomic studies have demonstrated that expression levels of FGFR/Src are deregulated in a variety of cancers including prostate cancer; however, the role that paracrine FGF (from stromal cells) plays in dysregulated expression of epithelial FGFRs/Src and tumor progression in vivo is not well evaluated. In this study, we demonstrate that ectopic expression of wild-type FGFR1/2 or Src kinase in epithelial cells was not sufficient to initiate prostate tumorigenesis under a normal stromal microenvironment in vivo. However, paracrine FGF10 synergized with ectopic expression of epithelial FGFR1 or FGFR2 to induce epithelial-mesenchymal transition. Additionally, paracrine FGF10 sensitized FGFR2-transformed epithelial cells to initiate prostate tumorigenesis. Next, paracrine FGF10 also synergized with overexpression of epithelial Src kinase to high-grade tumors. But loss of the myristoylation site in Src kinase inhibited paracrine FGF10-induced prostate tumorigenesis. Loss of myristoylation alters Src levels in the cell membrane and inhibited FGF-mediated signaling including inhibition of the phosphotyrosine pattern and FAK phosphorylation. Our study demonstrates the potential tumor progression by simultaneous deregulation of proteins in the FGF/FGFRs/Src signal axis and provides a therapeutic strategy of targeting myristoylation of Src kinase to interfere with the tumorigenic process.
Collapse
Affiliation(s)
- Qianjin Li
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Lishann Ingram
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Sungjin Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Zanna Beharry
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | | | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
32
|
Ding G, Wang J, Feng C, Jiang H, Xu J, Ding Q. Lipocalin 2 over-expression facilitates progress of castration-resistant prostate cancer via improving androgen receptor transcriptional activity. Oncotarget 2018; 7:64309-64317. [PMID: 27602760 PMCID: PMC5325444 DOI: 10.18632/oncotarget.11790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is the lethal phenotype of prostate cancer. Lipocalin 2 (LCN2) is aberrantly expressed in many cancers including primary prostate cancer (PCa), but its role in CRPC has not been reported. RESULTS LCN2 expression was upregulated in human primary PCa and CRPC tissues. Overexpression of LCN2 promoted C4-2B and 22RV1 cell proliferation while knockdown of LCN2 markedly inhibited C4-2B and 22RV1 cell growth. LCN2 overexpression led to increased AR downstream gene SLC45A3 without upregulating AR expression. In the xenograft model, overexpression of LCN2 significantly promoted tumor growth. METHODS LCN2 expression was detected in primary PCa and CRPC tissues and cell lines C4-2B and 22RV1 using immunohistochemistry and western blotting, respectively. Serum LCN2 level was detected vi ELISA. Lentiviruses-mediated over-expression of LCN2 and LCN2 knockdown were performed in CRPC cell lines. Expressions of androgen receptor (AR) downstream genes was examined in cell lines, in CRPC tissues, and in animal models. CONCLUSION LCN2 could facilitate cell proliferation of CRPC via AR transcriptional activity. LCN2 could be a novel target in CRPC.
Collapse
Affiliation(s)
- Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianqing Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Regulation of Androgen Receptor Activity by Transient Interactions of Its Transactivation Domain with General Transcription Regulators. Structure 2017; 26:145-152.e3. [PMID: 29225078 DOI: 10.1016/j.str.2017.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022]
Abstract
The androgen receptor is a transcription factor that plays a key role in the development of prostate cancer, and its interactions with general transcription regulators are therefore of potential therapeutic interest. The mechanistic basis of these interactions is poorly understood due to the intrinsically disordered nature of the transactivation domain of the androgen receptor and the generally transient nature of the protein-protein interactions that trigger transcription. Here, we identify a motif of the transactivation domain that contributes to transcriptional activity by recruiting the C-terminal domain of subunit 1 of the general transcription regulator TFIIF. These findings provide molecular insights into the regulation of androgen receptor function and suggest strategies for treating castration-resistant prostate cancer.
Collapse
|
34
|
Goicochea NL, Garnovskaya M, Blanton MG, Chan G, Weisbart R, Lilly MB. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy†. Protein Eng Des Sel 2017; 30:785-793. [DOI: 10.1093/protein/gzx058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nancy L Goicochea
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Maria Garnovskaya
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Mary G Blanton
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Grace Chan
- Veterans Affairs Greater Los Angeles Health Care System, 16111 Plummer St., Sepulveda, CA 91343, USA
| | - Richard Weisbart
- Veterans Affairs Greater Los Angeles Health Care System, 16111 Plummer St., Sepulveda, CA 91343, USA
| | - Michael B Lilly
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| |
Collapse
|
35
|
Jernberg E, Bergh A, Wikström P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr Connect 2017; 6:R146-R161. [PMID: 29030409 PMCID: PMC5640574 DOI: 10.1530/ec-17-0118] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PC) remains a leading cause of cancer-related deaths among men worldwide, despite continuously improved treatment strategies. Patients with metastatic disease are treated by androgen deprivation therapy (ADT) that with time results in the development of castration-resistant prostate cancer (CRPC) usually established as metastases within bone tissue. The androgen receptor (AR) transcription factor is the main driver of CRPC development and of acquired resistance to drugs given for treatment of CRPC, while a minority of patients have CRPC that is non-AR driven. Molecular mechanisms behind epithelial AR reactivation in CRPC include AR gene amplification and overexpression, AR mutations, expression of constitutively active AR variants, intra-tumoural and adrenal androgen synthesis and promiscuous AR activation by other factors. This review will summarize AR alterations of clinical relevance for patients with CRPC, with focus on constitutively active AR variants, their possible association with AR amplification and structural rearrangements as well as their ability to predict patient resistance to AR targeting drugs. The review will also discuss AR signalling in the tumour microenvironment and its possible relevance for metastatic growth and therapy.
Collapse
Affiliation(s)
- Emma Jernberg
- Department of Medical biosciencesUmeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical biosciencesUmeå University, Umeå, Sweden
| | | |
Collapse
|
36
|
Low TIM3 expression indicates poor prognosis of metastatic prostate cancer and acts as an independent predictor of castration resistant status. Sci Rep 2017; 7:8869. [PMID: 28827755 PMCID: PMC5567055 DOI: 10.1038/s41598-017-09484-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/26/2017] [Indexed: 12/02/2022] Open
Abstract
T cell immunoglobulin 3 (TIM3) is a cell surface star molecule expressed on T cells, and also marks dysfunctional CD8+ T cells in various kinds of cancers. However, there are few studies focusing on the expression of TIM3 in tumor cells. In our study, we recruited 139 patients with metastatic prostate cancer (mPCa) who received transurethral resection of the prostate (TURP) consecutively to examine whether TIM3 expression level is associated with overall survival (OS) in mPCa patients. Immunohistochemistry was performed to determine TIM3 expression in prostate cancer tissues and then patients were divided into two groups. In multivariate Cox analysis, we revealed that mPCa patients with negative TIM3 expression, younger age, no radiotherapy, higher Gleason score, higher cT stage and patients of mCRPC had a shorter OS. Therefore, a predictive nomogram was generated with identified independent prognostic factors to assess patients’ OS at 3 years. Multivariate logistic regression revealed that higher cT stage, higher Gleason score and low TIM3 expression were independent predictors of metastatic castration resistant prostate cancer (mCRPC). In conclusion, low expression level of TIM3 in prostate cancer tissues is an independent prognostic factor of poor prognosis for mPCa patients, and also an independent predictor of mCRPC.
Collapse
|
37
|
Andersen RJ. Sponging off nature for new drug leads. Biochem Pharmacol 2017; 139:3-14. [PMID: 28411115 DOI: 10.1016/j.bcp.2017.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Marine sponges have consistently been the richest source of new marine natural products with unprecedented chemical scaffolds and potent biological activities that have been reported in the chemical literature since the early 1970s. During the last 40years, chemists in the Andersen laboratory at UBC, in collaboration with biologists, have discovered many novel bioactive sponge natural products. Four experimental drug candidates for treatment of inflammation and cancer, that were inspired by members of this sponge natural product collection, have progressed to phase I/II/III clinical trials. This review recounts the scientific stories behind the discovery and development of these four drug candidates; IPL576,092, HTI-286 (Taltobulin), EPI-506 (Ralaniten acetate), and AQX-1125.
Collapse
Affiliation(s)
- Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
38
|
Shiota M, Yokomizo A, Takeuchi A, Kashiwagi E, Dejima T, Inokuchi J, Tatsugami K, Uchiumi T, Eto M. Protein kinase C regulates Twist1 expression via NF-κB in prostate cancer. Endocr Relat Cancer 2017; 24:171-180. [PMID: 28223364 DOI: 10.1530/erc-16-0384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 11/08/2022]
Abstract
The progression of prostate cancer to metastatic and castration-resistant disease represents a critical step. We previously showed that protein kinase C (PKC) activation followed by Twist1 and androgen receptor (AR) induction played a critical role in castration resistance, but the precise molecular mechanism remains unknown. This study aimed to elucidate the relevant molecular mechanism, focusing on NF-κB transcription factor. We examined the activity of NF-κB after PKC inhibition, and the expression of Twist1 and AR after inhibition of NF-κB in human prostate cancer cells. We also investigated the status of PKC/NF-κB after inhibition of AR signaling in cells resistant to hormonal therapy. As a result, inhibition of PKC signaling using knockdown and small-molecule inhibition of PKC suppressed RelA activity, while blocking NF-κB suppressed Twist1 and AR expression. Conversely, inhibition of AR signaling by androgen depletion and the novel antiandrogen enzalutamide induced PKC and RelA activation, resulting in Twist1/AR induction at the transcript level. Moreover, inhibition of NF-κB signaling prevented enzalutamide-induced Twist1 and AR induction. Finally, NF-κB was activated in both castration-resistant and enzalutamide-resistant cells. In conclusion, NF-κB signaling was responsible for Twist1 upregulation by PKC in response to AR inhibition, resulting in aberrant activation of AR. NF-κB signaling thus appears to play a critical role in promoting both castration resistance and enzalutamide resistance in PKC/Twist1 signaling in prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of UrologyGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Yokomizo
- Department of UrologyGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of UrologyGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of UrologyGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Dejima
- Department of UrologyGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of UrologyGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsunori Tatsugami
- Department of UrologyGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory MedicineGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of UrologyGraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Nunes JJ, Pandey SK, Yadav A, Goel S, Ateeq B. Targeting NF-kappa B Signaling by Artesunate Restores Sensitivity of Castrate-Resistant Prostate Cancer Cells to Antiandrogens. Neoplasia 2017; 19:333-345. [PMID: 28319807 PMCID: PMC5358938 DOI: 10.1016/j.neo.2017.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 10/24/2022]
Abstract
Androgen deprivation therapy (ADT) is the most preferred treatment for men with metastatic prostate cancer (PCa). However, the disease eventually progresses and develops resistance to ADT in majority of the patients, leading to the emergence of metastatic castration-resistant prostate cancer (mCRPC). Here, we assessed artesunate (AS), an artemisinin derivative, for its anticancer properties and ability to alleviate resistance to androgen receptor (AR) antagonists. We have shown AS in combination with bicalutamide (Bic) attenuates the oncogenic properties of the castrate-resistant (PC3, 22RV1) and androgen-responsive (LNCaP) PCa cells. Mechanistically, AS and Bic combination inhibits nuclear factor (NF)-κB signaling and decreases AR and/or AR-variant 7 expression via ubiquitin-mediated proteasomal degradation. The combination induces oxidative stress and apoptosis via survivin downregulation and caspase-3 activation, resulting in poly-ADP-ribose polymerase (PARP) cleavage. Moreover, preclinical castrate-resistant PC3 xenograft studies in NOD/SCID mice (n =28, seven per group) show remarkable tumor regression and significant reduction in lungs and bone metastases upon administering AS (50 mg/kg per day in two divided doses) and Bic (50 mg/kg per day) via oral gavage. Taken together, we for the first time provide a compelling preclinical rationale that AS could disrupt AR antagonist-mediated resistance observed in mCRPC. The current study also indicates that the therapeutic combination of Food and Drug Administration-approved AS or NF-κB inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC patients.
Collapse
Affiliation(s)
- Jessica J Nunes
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | - Swaroop K Pandey
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | - Anjali Yadav
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | - Sakshi Goel
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, U.P., India.
| |
Collapse
|
40
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
41
|
Crawford ED, Petrylak D, Sartor O. Navigating the evolving therapeutic landscape in advanced prostate cancer. Urol Oncol 2017; 35S:S1-S13. [PMID: 28283376 DOI: 10.1016/j.urolonc.2017.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most common cause of cancer in men, with 137.9 new cases per 100,000 men per year. The overall 5-year survival rate for prostate cancer is very high. Up to 20% of men who undergo state-of-the art treatment for prostate cancer will develop castration-resistant prostate cancer (CRPC) within 5 years, with median survival for those with metastatic CRPC ranging from approximately 15 to 36 months in recent studies. With the advent of several new drugs in the past 5 years to treat CRPC, the challenge facing clinicians is how to best sequence or combine therapies or both to optimize outcomes. A better understanding of the disease process and the role of the androgen receptor as a target for both therapy and resistance have led to the consideration of biomarkers as an approach to aid in selecting the appropriate agent for a given patient as patients respond to or tolerate different drugs differently. Research to identify new prognostic biomarkers, which are associated with outcome measures, as well as predictive biomarkers, which predict response or resistance to therapy is ongoing. The treatment of advanced prostate cancer and the research related to biomarkers are discussed.
Collapse
Affiliation(s)
- E David Crawford
- Department of Surgery, Section of Urologic Oncology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Daniel Petrylak
- Department of Medicine (Medical Oncology), Yale (Smilow) Cancer Center, New Haven, CT; Department of Urology, Yale (Smilow) Cancer Center, New Haven, CT
| | - Oliver Sartor
- Department of Medicine, Tulane Cancer Center, New Orleans, LA; Department of Urology, Tulane Cancer Center, New Orleans, LA.
| |
Collapse
|
42
|
Azoitei A, Merseburger AS, Godau B, Hoda MR, Schmid E, Cronauer MV. C-terminally truncated constitutively active androgen receptor variants and their biologic and clinical significance in castration-resistant prostate cancer. J Steroid Biochem Mol Biol 2017; 166:38-44. [PMID: 27345700 DOI: 10.1016/j.jsbmb.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
A mechanism allowing castration resistant prostate cancer cells to escape the effects of conventional anti-hormonal treatments is the synthesis of constitutively active, C-terminally truncated androgen receptor (AR)-variants. Lacking the entire or vast parts of the ligand binding domain, the intended target of traditional endocrine therapies, these AR-variants (termed ARΔLBD) are insensitive to all traditional treatments including second generation compounds like abiraterone, enzalutamide or ARN-509. Although ARΔLBD are predominantly products of alternative splicing, they can also be products of nonsense mutations or proteolytic cleavage. In this review, we will discuss the etiology and function of c-terminally truncated AR-variants and their clinical significance as markers/targets for the treatment of castration resistant prostate cancer.
Collapse
Affiliation(s)
- Anca Azoitei
- Department of Urology, Ulm University Medical School, 89075 Ulm, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Beate Godau
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - M Raschid Hoda
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Evi Schmid
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Marcus V Cronauer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany.
| |
Collapse
|
43
|
Szafran AT, Stephan C, Bolt M, Mancini MG, Marcelli M, Mancini MA. High-Content Screening Identifies Src Family Kinases as Potential Regulators of AR-V7 Expression and Androgen-Independent Cell Growth. Prostate 2017; 77:82-93. [PMID: 27699828 PMCID: PMC5956900 DOI: 10.1002/pros.23251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/28/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. METHODS We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. RESULTS Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous-AR-V7-expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. CONCLUSIONS SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. Prostate 77:82-93, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Cliff Stephan
- Texas A&M University Health Science Center Institute for Bioscience and Technology, Houston, TX 77030
| | - Michael Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Marco Marcelli
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Department of Medicine, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 701304
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 701304
| |
Collapse
|
44
|
Cao S, Zhan Y, Dong Y. Emerging data on androgen receptor splice variants in prostate cancer. Endocr Relat Cancer 2016; 23:T199-T210. [PMID: 27702752 PMCID: PMC5107136 DOI: 10.1530/erc-16-0298] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022]
Abstract
Androgen receptor splice variants are alternatively spliced variants of androgen receptor, which are C-terminally truncated and lack the canonical ligand-binding domain. Accumulating evidence has indicated a significant role of androgen receptor splice variants in mediating resistance of castration-resistant prostate cancer to current therapies and in predicting therapeutic responses. As such, there is an urgent need to target androgen receptor splicing variants for more effective treatment of castration-resistant prostate cancer. Identification of precise and critical targeting points to deactivate androgen receptor splicing variants relies on a deep understanding of how they are generated and the mechanisms of their action. In this review, we will focus on the emerging data on their generation, clinical significance and mechanisms of action as well as the therapeutic influence of these findings.
Collapse
Affiliation(s)
- Subing Cao
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Yang Zhan
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Yan Dong
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| |
Collapse
|
45
|
Banuelos CA, Tavakoli I, Tien AH, Caley DP, Mawji NR, Li Z, Wang J, Yang YC, Imamura Y, Yan L, Wen JG, Andersen RJ, Sadar MD. Sintokamide A Is a Novel Antagonist of Androgen Receptor That Uniquely Binds Activation Function-1 in Its Amino-terminal Domain. J Biol Chem 2016; 291:22231-22243. [PMID: 27576691 PMCID: PMC5064002 DOI: 10.1074/jbc.m116.734475] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/12/2016] [Indexed: 12/17/2022] Open
Abstract
Androgen receptor (AR) is a validated drug target for all stages of prostate cancer including metastatic castration-resistant prostate cancer (CRPC). All current hormone therapies for CRPC target the C-terminal ligand-binding domain of AR and ultimately all fail with resumed AR transcriptional activity. Within the AR N-terminal domain (NTD) is activation function-1 (AF-1) that is essential for AR transcriptional activity. Inhibitors of AR AF-1 would potentially block most AR mechanisms of resistance including constitutively active AR splice variants that lack the ligand-binding domain. Here we provide evidence that sintokamide A (SINT1) binds AR AF-1 region to specifically inhibit transactivation of AR NTD. Consistent with SINT1 targeting AR AF-1, it attenuated transcriptional activities of both full-length AR and constitutively active AR splice variants, which correlated with inhibition of growth of enzalutamide-resistant prostate cancer cells expressing AR splice variants. In vivo, SINT1 caused regression of CRPC xenografts and reduced expression of prostate-specific antigen, a gene transcriptionally regulated by AR. Inhibition of AR activity by SINT1 was additive to EPI-002, a known AR AF-1 inhibitor that is in clinical trials (NCT02606123). This implies that SINT1 binds to a site on AF-1 that is unique from EPI. Consistent with this suggestion, these two compounds showed differences in blocking AR interaction with STAT3. This work provides evidence that the intrinsically disordered NTD of AR is druggable and that SINT1 analogs may provide a novel scaffold for drug development for the treatment of prostate cancer or other diseases of the AR axis.
Collapse
Affiliation(s)
- Carmen A Banuelos
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Iran Tavakoli
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Amy H Tien
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Daniel P Caley
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nasrin R Mawji
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Zhenzhen Li
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada, Institute of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun Wang
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Yu Chi Yang
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Yusuke Imamura
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Luping Yan
- Chemistry and Earth and Ocean Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada, and
| | - Jian Guo Wen
- Urodynamic Center, First Affiliated Hospital of Zhengzhou, Zhengzhou University Hospital, Zhengzhou, Henan 450052, China
| | - Raymond J Andersen
- Chemistry and Earth and Ocean Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada, and
| | - Marianne D Sadar
- From the Department of Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada,
| |
Collapse
|
46
|
Qin Z, Li X, Zhang J, Tang J, Han P, Xu Z, Yu Y, Yang C, Wang C, Xu T, Xu Z, Zou Q. Chemotherapy with or without estramustine for treatment of castration-resistant prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2016; 95:e4801. [PMID: 27684806 PMCID: PMC5265899 DOI: 10.1097/md.0000000000004801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Recently, increasing relevant studies researched the efficacy of castration resistant prostate cancer (CRPC) patients using chemotherapy with or without estramustine, in order to assess the efficacy and toxicity of combining estramustine with chemotherapy for the treatment of CRPC. METHODS Relevant randomized clinical trials were systematically searched from the databases Pubmed, Embase, and Web of science up to April 1, 2016. Data were centrally extracted and analyzed from the previous studies by 2 independent reviewers. The primary endpoint was overall survival (OS) with pooled hazard ratios. Secondary endpoints were prostate-specific antigen (PSA) response and grade 3 or 4 toxicity using pooled odds ratios. Stata version 12.0 software was used for statistical analysis. RESULTS Overall, this meta-analysis identified 9 eligible articles, including a total of 956 patients, who had been accrued between January 1, 1993 and December 1, 2010 and randomly divided into chemotherapy with estramustine and without estramustine. Chemotherapy (with or without estramustine) consisted of docetaxel, paclitaxel, ixabepilone, epirubicin, and vinblastine. Patients who received chemotherapy with estramustine had a better improvement in PSA response rate, comparing those without estramustine (OR = 1.84, 95% CI = 1.20-2.80). However, OS between the 2 groups indicated no significant differences (HR = 0.90, 95% CI = 0.77-1.05). Besides, these results of meta-analysis showed no obvious differences between these 2 groups in grade 3 or 4 adverse effects, including anemia (OR = 0.78, 95% CI = 0.38-1.57), neutropenia (OR = 0.91, 95% CI = 0.59-1.43), thrombocytopenia (OR = 0.68, 95% CI = 0.19-2.42), nausea (OR = 2.34, 95% CI = 0.81-6.72), vomiting (OR = 2.43, 95% CI = 0.69-8.51), diarrhea (OR = 3.45, 95% CI = 0.93-12.76), fatigue (OR = 0.67, 95% CI = 0.32-1.41), neuropathy (OR = 0.54, 95% CI = 0.21-1.44), allergic reaction (OR = 1.60, 95% CI = 0.37-6.84), thromboembolic event (OR = 2.18, 95% CI = 0.86-5.51), and edema (OR = 1.02, 95% CI = 0.18-5.95). CONCLUSIONS This meta-analysis indicated chemotherapy with additional estramustine increased the PSA response rate. However, OS and grade 3 or 4 toxicity were not improved for these patients with CRPC.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University
| | - Jianzhong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyuan Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengdi Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengming Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Xu
- Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University
- Correspondence: Ting Xu, Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing 210009, China (e-mail: ); Zicheng Xu, Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing 210009, China (e-mail: )
| | - Zicheng Xu
- Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University
- Correspondence: Ting Xu, Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing 210009, China (e-mail: ); Zicheng Xu, Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing 210009, China (e-mail: )
| | - Qing Zou
- Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University
| |
Collapse
|
47
|
Yang YC, Banuelos CA, Mawji NR, Wang J, Kato M, Haile S, McEwan IJ, Plymate S, Sadar MD. Targeting Androgen Receptor Activation Function-1 with EPI to Overcome Resistance Mechanisms in Castration-Resistant Prostate Cancer. Clin Cancer Res 2016; 22:4466-77. [PMID: 27140928 PMCID: PMC5010454 DOI: 10.1158/1078-0432.ccr-15-2901] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Persistent androgen receptor (AR) transcriptional activity is clinically evident in castration-resistant prostate cancer (CRPC). Therefore, AR remains as a viable therapeutic target for CRPC. All current hormonal therapies target the C-terminus ligand-binding domain (LBD) of AR. By using EPI to target AR activation function-1 (AF-1), in the N-terminal domain that is essential for AR transactivation, we evaluate the ability of EPI to overcome several clinically relevant AR-related mechanisms of resistance. EXPERIMENTAL DESIGN To study the effect of EPI on AR transcriptional activity against overexpressed coactivators, such as SRC1-3 and p300, luciferase reporter assays were performed using LNCaP cells. AR-negative COS-1 cells were employed for reporter assays to examine whether the length of polyglutamine tract affects inhibition by EPI. The effect of EPI on constitutively active AR splice variants was studied in LNCaP95 cells, which express AR-V7 variant. To evaluate the effect of EPI on the proliferation of LNCaP95 cells, we performed in vitro BrdUrd incorporation assay and in vivo studies using xenografts in mice. RESULTS EPI effectively overcame several molecular alterations underlying aberrant AR activity, including overexpressed coactivators, AR gain-of-function mutations, and constitutively active AR-V7. EPI inhibited AR transcriptional activity regardless of the length of polyglutamine tract. Importantly, EPI significantly inhibited the in vitro and in vivo proliferation of LNCaP95 prostate cancer cells, which are androgen independent and enzalutamide resistant. CONCLUSIONS These findings support EPI as a promising therapeutic agent to treat CRPC, particularly against tumors driven by constitutively active AR splice variants that are resistant to LBD-targeting drugs. Clin Cancer Res; 22(17); 4466-77. ©2016 AACRSee related commentary by Sharp et al., p. 4280.
Collapse
Affiliation(s)
- Yu Chi Yang
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Nasrin R Mawji
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Jun Wang
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Minoru Kato
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Simon Haile
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Iain J McEwan
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Stephen Plymate
- Department of Medicine, University of Washington, Harborview Medical Center, Seattle, Washington
| | - Marianne D Sadar
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada.
| |
Collapse
|
48
|
Anantharaman A, Friedlander TW. Targeting the androgen receptor in metastatic castrate-resistant prostate cancer: A review. Urol Oncol 2016; 34:356-67. [DOI: 10.1016/j.urolonc.2015.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023]
|
49
|
Biron E, Bédard F. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer. J Steroid Biochem Mol Biol 2016. [PMID: 26196120 DOI: 10.1016/j.jsbmb.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Eric Biron
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada.
| | - François Bédard
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada
| |
Collapse
|
50
|
Imamura Y, Sadar MD. Androgen receptor targeted therapies in castration-resistant prostate cancer: Bench to clinic. Int J Urol 2016; 23:654-65. [PMID: 27302572 PMCID: PMC6680212 DOI: 10.1111/iju.13137] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
The androgen receptor is a transcription factor and validated therapeutic target for prostate cancer. Androgen deprivation therapy remains the gold standard treatment, but it is not curative, and eventually the disease will return as lethal castration‐resistant prostate cancer. There have been improvements in the therapeutic landscape with new agents approved, such as abiraterone acetate, enzalutamide, sipuleucel‐T, cabazitaxel and Ra‐223, in the past 5 years. New insight into the mechanisms of resistance to treatments in advanced disease is being and has been elucidated. All current androgen receptor‐targeting therapies inhibit the growth of prostate cancer by blocking the ligand‐binding domain, where androgen binds to activate the receptor. Persuasive evidence supports the concept that constitutively active androgen receptor splice variants lacking the ligand‐binding domain are one of the resistant mechanisms underlying advanced disease. Transcriptional activity of the androgen receptor requires a functional AF‐1 region in its N‐terminal domain. Preclinical evidence proved that this domain is a druggable target to forecast a potential paradigm shift in the management of advanced prostate cancer. This review presents an overview of androgen receptor‐related mechanisms of resistance as well as novel therapeutic agents to overcome resistance that is linked to the expression of androgen receptor splice variants in castration‐resistant prostate cancer.
Collapse
Affiliation(s)
- Yusuke Imamura
- Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marianne D Sadar
- Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|