1
|
Fatfat Z, Hussein M, Fatfat M, Gali-Muhtasib H. Omics technologies as powerful approaches to unravel colorectal cancer complexity and improve its management. Mol Cells 2025; 48:100200. [PMID: 40024318 PMCID: PMC11976254 DOI: 10.1016/j.mocell.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025] Open
Abstract
Colorectal cancer (CRC) continues to rank among the deadliest and most prevalent cancers worldwide, necessitating an innovative and comprehensive approach that addresses this serious health challenge at various stages, from screening and diagnosis to treatment and prognosis. As CRC research progresses, the adoption of an omics-centered approach holds transformative potential to revolutionize the management of this disease. Advances in omics technologies encompassing genomics, transcriptomics, proteomics, metabolomics, and epigenomics allow to unravel the oncogenic alterations at these levels, elucidating the intricacies and the heterogeneous nature of CRC. By providing a comprehensive molecular landscape of CRC, omics technologies enable the discovery of potential biomarkers for early non-invasive detection of CRC, definition of CRC subtypes, prediction of its staging, prognosis, and overall survival of CRC patients. They also allow the identification of potential therapeutic targets, prediction of drug response, tracking treatment efficacy, detection of residual disease and cancer relapse, and deciphering the mechanisms of drug resistance. Moreover, they allow the distinction of non-metastatic CRC patients from metastatic ones as well as the stratification of metastatic risk. Importantly, omics technologies open up new opportunities to establish molecular-based criteria to guide the selection of effective treatment paving the way for the personalization of therapy for CRC patients. This review consolidates current knowledge on the omics-based preclinical discoveries in CRC research emphasizing the significant potential of these technologies to improve CRC screening, diagnosis, and prognosis and promote the implementation of personalized medicine to ultimately reduce CRC prevalence and mortality.
Collapse
Affiliation(s)
- Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Marwa Hussein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Maamoun Fatfat
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
2
|
Wu X, Yang Q, Leng L, Yang P, Zhu Z. Altered metabolic profiles in colon and rectal cancer. Sci Rep 2025; 15:11310. [PMID: 40175601 PMCID: PMC11965280 DOI: 10.1038/s41598-025-96004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignant tumour in worldwide populations. Although colon cancer (CC) and rectal cancer (RC) are often discussed together, there is a global trend towards considering them as two separate disease entities. It is necessary to choice the appropriate treatment for CC and RC based on their own characteristics. Hence, it is a great importance to find effective biomarkers to distinguish CC from RC. In the present study, a total of 343 participants were recruited, including 132 healthy individuals, 101 patients with CC, and 110 patients with RC. The concentrations of 93 metabolites were determined by using a combination of dried blood spot sampling and direct infusion mass spectrometry technology. Multiple algorithms were applied to characterize altered metabolic profiles in CC and RC. Significantly altered metabolites were screened for distinguishing RC from CC in training set. A biomarker panel including Glu, C0, C8, C20, Gly/Ala, and C10:1 was tested with tenfold cross-validation and an independent test set, and showed the potential to distinguish between RC and CC. The metabolomics analysis makes contribution to summarize the metabolic differences in RC and CC, which might provide further guidance on novel clinical designs for the two diseases.
Collapse
Affiliation(s)
- Xue Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China
| | - Qi Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China
| | - Li Leng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China
| | - Peng Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China.
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China.
| | - Zhitu Zhu
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, China.
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
3
|
Bhattacharyya D, LeVatte MA, Singh U, Issac F, Karim M, Ali S, Sieben A, Huang S, Wishart DS. A novel colorimetric assay for the detection of urinary N 1, N 12-diacetylspermine, a known biomarker for colorectal cancer. Anal Biochem 2025; 697:115717. [PMID: 39536927 DOI: 10.1016/j.ab.2024.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Urinary N1, N12-diacetylspermine (DAS) is a known biomarker for colorectal cancer (CRC). However, DAS levels in both healthy and CRC patients' urine samples are extremely low and often challenging to quantify. Complex and expensive methods do exist to detect DAS in urine, but simpler, less expensive methods to detect DAS are needed, especially in low resource settings. Here we describe a highly efficient, fast, precise, and inexpensive colorimetric assay to detect low levels of DAS in human urine samples. We used recombinant diacetylspermine oxidase (rDAS Ox), expressed and extracted from E. coli, to oxidize DAS, producing three products including hydrogen peroxide (H2O2). The level of DAS present, which correlates with H2O2 levels, was measured using horseradish peroxidase (HRP), which together with H2O2, oxidized Amplex™ Red to produce the pink-colored resorufin. The concentration of resorufin is directly proportional to H2O2 (and DAS) levels. As urine contains metabolites which interfere with these oxidation reactions, we developed a simple two column-based protocol using ion exchange resins to remove these compounds and concentrate the DAS. With this novel cleaning and concentrating method, DAS was concentrated 15 times (confirmed by nuclear magnetic resonance (NMR) spectroscopy) and <1 μM DAS could be detected. Correlation graphs of urine samples spiked with known DAS concentrations versus assay-determined DAS concentrations had high coefficients of determination (R2) for 0-10 μM DAS (0.94) and for 0-1 μM DAS (0.91), clearly demonstrating the excellent performance of the two-column protocol with the rDAS Ox reaction mixture. To the best of our knowledge, this is first reported colorimetric enzymatic assay that quantitates DAS in urine.
Collapse
Affiliation(s)
| | - Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Upasana Singh
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Fleur Issac
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mahmoud Karim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Fisher Scientific, 10720 178 St Edmonton, AB, T5S 1J3, Canada
| | - Saira Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - August Sieben
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Suyenna Huang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Computer Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
4
|
Taunk K, Jajula S, Bhavsar PP, Choudhari M, Bhanuse S, Tamhankar A, Naiya T, Kalita B, Rapole S. The prowess of metabolomics in cancer research: current trends, challenges and future perspectives. Mol Cell Biochem 2025; 480:693-720. [PMID: 38814423 DOI: 10.1007/s11010-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Cancer due to its heterogeneous nature and large prevalence has tremendous socioeconomic impacts on populations across the world. Therefore, it is crucial to discover effective panels of biomarkers for diagnosing cancer at an early stage. Cancer leads to alterations in cell growth and differentiation at the molecular level, some of which are very unique. Therefore, comprehending these alterations can aid in a better understanding of the disease pathology and identification of the biomolecules that can serve as effective biomarkers for cancer diagnosis. Metabolites, among other biomolecules of interest, play a key role in the pathophysiology of cancer whose levels are significantly altered while 'reprogramming the energy metabolism', a cellular condition favored in cancer cells which is one of the hallmarks of cancer. Metabolomics, an emerging omics technology has tremendous potential to contribute towards the goal of investigating cancer metabolites or the metabolic alterations during the development of cancer. Diverse metabolites can be screened in a variety of biofluids, and tumor tissues sampled from cancer patients against healthy controls to capture the altered metabolism. In this review, we provide an overview of different metabolomics approaches employed in cancer research and the potential of metabolites as biomarkers for cancer diagnosis. In addition, we discuss the challenges associated with metabolomics-driven cancer research and gaze upon the prospects of this emerging field.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH12 Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Saikiran Jajula
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Praneeta Pradip Bhavsar
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Mahima Choudhari
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Sadanand Bhanuse
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Anup Tamhankar
- Department of Surgical Oncology, Deenanath Mangeshkar Hospital and Research Centre, Erandawne, Pune, Maharashtra, 411004, India
| | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH12 Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, 682041, India.
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
5
|
Navarro SL, Williamson BD, Huang Y, Nagana Gowda GA, Raftery D, Tinker LF, Zheng C, Beresford SAA, Purcell H, Djukovic D, Gu H, Strickler HD, Tabung FK, Prentice RL, Neuhouser ML, Lampe JW. Metabolite Predictors of Breast and Colorectal Cancer Risk in the Women's Health Initiative. Metabolites 2024; 14:463. [PMID: 39195559 DOI: 10.3390/metabo14080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolomics has been used extensively to capture the exposome. We investigated whether prospectively measured metabolites provided predictive power beyond well-established risk factors among 758 women with adjudicated cancers [n = 577 breast (BC) and n = 181 colorectal (CRC)] and n = 758 controls with available specimens (collected mean 7.2 years prior to diagnosis) in the Women's Health Initiative Bone Mineral Density subcohort. Fasting samples were analyzed by LC-MS/MS and lipidomics in serum, plus GC-MS and NMR in 24 h urine. For feature selection, we applied LASSO regression and Super Learner algorithms. Prediction models were subsequently derived using logistic regression and Super Learner procedures, with performance assessed using cross-validation (CV). For BC, metabolites did not increase predictive performance over established risk factors (CV-AUCs~0.57). For CRC, prediction increased with the addition of metabolites (median CV-AUC across platforms increased from ~0.54 to ~0.60). Metabolites related to energy metabolism: adenosine, 2-hydroxyglutarate, N-acetyl-glycine, taurine, threonine, LPC (FA20:3), acetate, and glycerate; protein metabolism: histidine, leucic acid, isoleucine, N-acetyl-glutamate, allantoin, N-acetyl-neuraminate, hydroxyproline, and uracil; and dietary/microbial metabolites: myo-inositol, trimethylamine-N-oxide, and 7-methylguanine, consistently contributed to CRC prediction. Energy metabolism may play a key role in the development of CRC and may be evident prior to disease development.
Collapse
Affiliation(s)
- Sandi L Navarro
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Brian D Williamson
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Biostatistics Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - G A Nagana Gowda
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lesley F Tinker
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cheng Zheng
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shirley A A Beresford
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Hayley Purcell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Haiwei Gu
- Center for Metabolic and Vascular Biology, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Howard D Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fred K Tabung
- Department of Internal Medicine, Division of Medical Oncology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ross L Prentice
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Marian L Neuhouser
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Johanna W Lampe
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Cassana A, Abedrapo M, Diaz M, Zamorano D, Zárate A. Tamizaje de cáncer colorrectal: pruebas emergentes no invasivas. REVISTA MÉDICA CLÍNICA LAS CONDES 2024; 35:82-87. [DOI: 10.1016/j.rmclc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
7
|
Dare AJ, Olatoke SA, Okereke CE, Abdulkareem FB, Adeyeye A, Badejo O, Du M, Fayenuwo OJ, Gali BM, Kahn R, Knapp G, Ntiamoah P, Olcese C, Oludara MA, Omisore A, Omoyiola OZ, Owoade IA, Brennan MF, Kingham TP, Alatise OI. The African Research Group for Oncology: A decade fostering colorectal cancer research in Nigeria. J Surg Oncol 2023; 128:1011-1020. [PMID: 37818907 PMCID: PMC11325740 DOI: 10.1002/jso.27444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
The African Research Group for Oncology (ARGO) was formed in 2013 to undertake methodologically rigorous cancer research in Nigeria, and to strengthen cancer research capacity in the country through training and mentorship of physicians, scientists, and other healthcare workers. Here, we describe how ARGO's work in colorectal cancer (CRC) has evolved over the past decade. This includes the consortium's scientific contributions to the understanding of CRC in Nigeria and globally and its research capacity-building program.
Collapse
Affiliation(s)
- Anna J. Dare
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Samuel A. Olatoke
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | | | - Fatimah B. Abdulkareem
- Department of Anatomic and Molecular Pathology, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| | - Ademola Adeyeye
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Olawale Badejo
- Department of Surgery, National Hospital Abuja, Abuja, Nigeria
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | | | - Bata M. Gali
- Department of Surgery, University of Maiduguri, Maiduguri, Nigeria
| | - Rivka Kahn
- Global Cancer Disparities Initiative, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Gregory Knapp
- Department of Surgery, Division of General Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Peter Ntiamoah
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Cristina Olcese
- Global Cancer Disparities Initiative, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Mobolaji A. Oludara
- Department of Surgery, Lagos State University Teaching Hospital, Ikeja, Lagos State, Nigeria
| | - Adeleye Omisore
- Department of Radiology, College of Health Sciences, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Oluwatosin Z. Omoyiola
- Department of Morbid Anatomy, College of Health Sciences, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Israel A. Owoade
- African Research Group for Oncology, Ile Ife, Osun State, Nigeria
| | - Murray F. Brennan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - T. Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Olusegun I. Alatise
- Department of Surgery, College of Health Sciences, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | | |
Collapse
|
8
|
Chen CJ, Lee DY, Yu J, Lin YN, Lin TM. Recent advances in LC-MS-based metabolomics for clinical biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:2349-2378. [PMID: 35645144 DOI: 10.1002/mas.21785] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 06/15/2023]
Abstract
The employment of liquid chromatography-mass spectrometry (LC-MS) untargeted and targeted metabolomics has led to the discovery of novel biomarkers and improved the understanding of various disease mechanisms. Numerous strategies have been reported to expand the metabolite coverage in LC-MS-untargeted and targeted metabolomics. To improve the sensitivity of low-abundance or poor-ionized metabolites for reducing the amount of clinical sample, chemical derivatization methods are used to target different functional groups. Proper sample preparation is beneficial for reducing the matrix effect, maintaining the stability of the LC-MS system, and increasing the metabolite coverage. Machine learning has recently been integrated into the workflow of LC-MS metabolomics to accelerate metabolite identification and data-processing automation, and increase the accuracy of disease classification and clinical outcome prediction. Due to the rapidly growing utility of LC-MS metabolomics in discovering disease markers, this review will address the recent advances in the field and offer perspectives on various strategies for expanding metabolite coverage, chemical derivatization, sample preparation, clinical disease markers, and machining learning for disease modeling.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jiaxin Yu
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Min Lin
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Vidman L, Zheng R, Bodén S, Ribbenstedt A, Gunter MJ, Palmqvist R, Harlid S, Brunius C, Van Guelpen B. Untargeted plasma metabolomics and risk of colorectal cancer-an analysis nested within a large-scale prospective cohort. Cancer Metab 2023; 11:17. [PMID: 37849011 PMCID: PMC10583301 DOI: 10.1186/s40170-023-00319-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, but if discovered at an early stage, the survival rate is high. The aim of this study was to identify novel markers predictive of future CRC risk using untargeted metabolomics. METHODS This study included prospectively collected plasma samples from 902 CRC cases and 902 matched cancer-free control participants from the population-based Northern Sweden Health and Disease Study (NSHDS), which were obtained up to 26 years prior to CRC diagnosis. Using reverse-phase liquid chromatography-mass spectrometry (LC-MS), data comprising 5015 metabolic features were obtained. Conditional logistic regression was applied to identify potentially important metabolic features associated with CRC risk. In addition, we investigated if previously reported metabolite biomarkers of CRC risk could be validated in this study population. RESULTS In the univariable analysis, seven metabolic features were associated with CRC risk (using a false discovery rate cutoff of 0.25). Two of these could be annotated, one as pyroglutamic acid (odds ratio per one standard deviation increase = 0.79, 95% confidence interval, 0.70-0.89) and another as hydroxytigecycline (odds ratio per one standard deviation increase = 0.77, 95% confidence interval, 0.67-0.89). Associations with CRC risk were also found for six previously reported metabolic biomarkers of prevalent and/or incident CRC: sebacic acid (inverse association) and L-tryptophan, 3-hydroxybutyric acid, 9,12,13-TriHOME, valine, and 13-OxoODE (positive associations). CONCLUSIONS These findings suggest that although the circulating metabolome may provide new etiological insights into the underlying causes of CRC development, its potential application for the identification of individuals at higher risk of developing CRC is limited.
Collapse
Affiliation(s)
- Linda Vidman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.
| | - Rui Zheng
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Anton Ribbenstedt
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Gothenburg, Sweden
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Gothenburg, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Yu CT, Farhat Z, Livinski AA, Loftfield E, Zanetti KA. Characteristics of Cancer Epidemiology Studies That Employ Metabolomics: A Scoping Review. Cancer Epidemiol Biomarkers Prev 2023; 32:1130-1145. [PMID: 37410086 PMCID: PMC10472112 DOI: 10.1158/1055-9965.epi-23-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
An increasing number of cancer epidemiology studies use metabolomics assays. This scoping review characterizes trends in the literature in terms of study design, population characteristics, and metabolomics approaches and identifies opportunities for future growth and improvement. We searched PubMed/MEDLINE, Embase, Scopus, and Web of Science: Core Collection databases and included research articles that used metabolomics to primarily study cancer, contained a minimum of 100 cases in each main analysis stratum, used an epidemiologic study design, and were published in English from 1998 to June 2021. A total of 2,048 articles were screened, of which 314 full texts were further assessed resulting in 77 included articles. The most well-studied cancers were colorectal (19.5%), prostate (19.5%), and breast (19.5%). Most studies used a nested case-control design to estimate associations between individual metabolites and cancer risk and a liquid chromatography-tandem mass spectrometry untargeted or semi-targeted approach to measure metabolites in blood. Studies were geographically diverse, including countries in Asia, Europe, and North America; 27.3% of studies reported on participant race, the majority reporting White participants. Most studies (70.2%) included fewer than 300 cancer cases in their main analysis. This scoping review identified key areas for improvement, including needs for standardized race and ethnicity reporting, more diverse study populations, and larger studies.
Collapse
Affiliation(s)
- Catherine T. Yu
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland
| | - Zeinab Farhat
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Alicia A. Livinski
- National Institutes of Health Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Krista A. Zanetti
- Office of Nutrition Research, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Jordaens S, Zwaenepoel K, Tjalma W, Deben C, Beyers K, Vankerckhoven V, Pauwels P, Vorsters A. Urine biomarkers in cancer detection: A systematic review of preanalytical parameters and applied methods. Int J Cancer 2023; 152:2186-2205. [PMID: 36647333 DOI: 10.1002/ijc.34434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
The aim of this review was to explore the status of urine sampling as a liquid biopsy for noninvasive cancer research by reviewing used preanalytical parameters and protocols. We searched two main health sciences databases, PubMed and Web of Science. From all eligible publications (2010-2022), information was extracted regarding: (a) study population characteristics, (b) cancer type, (c) urine preanalytics, (d) analyte class, (e) isolation method, (f) detection method, (g) comparator used, (h) biomarker type, (i) conclusion and (j) sensitivity and specificity. The search query identified 7835 records, of which 924 unique publications remained after screening the title, abstract and full text. Our analysis demonstrated that many publications did not report information about the preanalytical parameters of their urine samples, even though several other studies have shown the importance of standardization of sample handling. Interestingly, it was noted that urine is used for many cancer types and not just cancers originating from the urogenital tract. Many different types of relevant analytes have been shown to be found in urine. Additionally, future considerations and recommendations are discussed: (a) the heterogeneous nature of urine, (b) the need for standardized practice protocols and (c) the road toward the clinic. Urine is an emerging liquid biopsy with broad applicability in different analytes and several cancer types. However, standard practice protocols for sample handling and processing would help to elaborate the clinical utility of urine in cancer research, detection and disease monitoring.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Novosanis NV, Wijnegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Wiebren Tjalma
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Breast Clinic, Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | | | - Vanessa Vankerckhoven
- Novosanis NV, Wijnegem, Belgium.,Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Alex Vorsters
- Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
12
|
Ameen S, Wong MC, Turner P, Yee KC. Improving colorectal cancer screening - consumer-centred technological interventions to enhance engagement and participation amongst diverse cohorts. Clin Res Hepatol Gastroenterol 2023; 47:102064. [PMID: 36494072 DOI: 10.1016/j.clinre.2022.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The current "Gold Standard" colorectal cancer (CRC) screening approach of faecal occult blood test (FOBT) with follow-up colonoscopy has been shown to significantly improve morbidity and mortality, by enabling the early detection of disease. However, its efficacy is predicated on high levels of population participation in screening. Several international studies have shown continued low rates of screening participation, especially amongst highly vulnerable lower socio-economic cohorts, with minimal improvement using current recruitment strategies. Research suggests that a complex of dynamic factors (patient, clinician, and the broader health system) contribute to low citizen engagement. This paper argues that the challenges of screening participation can be better addressed by (1) developing dynamic multifaceted technological interventions collaboratively across stakeholders using human-centered design; (2) integrating consumer-centred artificial intelligence (AI) technologies to maximise ease of use for CRC screening; and (3) tailored strategies that maximise population screening engagement, especially amongst the most vulnerable.
Collapse
Affiliation(s)
- Saleem Ameen
- College of Health and Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia.
| | - Ming Chao Wong
- College of Sciences and Engineering, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Paul Turner
- College of Sciences and Engineering, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Kwang Chien Yee
- College of Health and Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| |
Collapse
|
13
|
Zhang L, Zheng J, Ismond KP, MacKay S, LeVatte M, Constable J, Alatise OI, Kingham TP, Wishart DS. Identification of urinary biomarkers of colorectal cancer: Towards the development of a colorectal screening test in limited resource settings. Cancer Biomark 2023; 36:17-30. [PMID: 35871322 PMCID: PMC10627333 DOI: 10.3233/cbm-220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND African colorectal cancer (CRC) rates are rising rapidly. A low-cost CRC screening approach is needed to identify CRC from non-CRC patients who should be sent for colonoscopy (a scarcity in Africa). OBJECTIVE To identify urinary metabolite biomarkers that, combined with easy-to-measure clinical variables, would identify patients that should be further screened for CRC by colonoscopy. Ideal metabolites would be water-soluble and easily translated into a sensitive, low-cost point-of-care (POC) test. METHODS Liquid-chromatography mass spectrometry (LC-MS/MS) was used to quantify 142 metabolites in spot urine samples from 514 Nigerian CRC patients and healthy controls. Metabolite concentration data and clinical characteristics were used to determine optimal sets of biomarkers for identifying CRC from non-CRC subjects. RESULTS Our statistical analysis identified N1, N12-diacetylspermine, hippurate, p-hydroxyhippurate, and glutamate as the best metabolites to discriminate CRC patients via POC screening. Logistic regression modeling using these metabolites plus clinical data achieved an area under the receiver-operator characteristic (AUCs) curves of 89.2% for the discovery set, and 89.7% for a separate validation set. CONCLUSIONS Effective urinary biomarkers for CRC screening do exist. These results could be transferred into a simple, POC urinary test for screening CRC patients in Africa.
Collapse
Affiliation(s)
- Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Scott MacKay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marcia LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Constable
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olusegun Isaac Alatise
- Department of Surgery, Obafemi Awolowo University and Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - T. Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Teränen V, Nissinen S, Roine A, Antila A, Siiki A, Vaalavuo Y, Kumpulainen P, Oksala N, Laukkarinen J. Bile-volatile organic compounds in the diagnostics of pancreatic cancer and biliary obstruction: A prospective proof-of-concept study. Front Oncol 2022; 12:918539. [PMID: 36479080 PMCID: PMC9720309 DOI: 10.3389/fonc.2022.918539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/31/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVES Detection of volatile organic compounds (VOCs) from bodily fluids with field asymmetric waveform ion mobility spectrometry (FAIMS) and related methods has been studied in various settings. Preliminary results suggest that it is possible to detect prostate, colorectal, ovarian and pancreatic cancer from urine samples. In this study, our primary aim was to differentiate pancreatic cancer from pancreatitis and benign tumours of the pancreas by using bile samples obtained during endoscopic retrograde cholangiopancreatography (ERCP). Secondarily, we aimed to differentiate all pancreatic region malignancies from all other kinds of benign causes of biliary obstruction. METHODS A bile sample was successfully aspirated from 94 patients during ERCP in Tampere University Hospital. Hospital and patient records were prospectively followed up for at least two years after ERCP. Bile samples were analysed using a Lonestar chemical analyser (Owlstone, UK) using an ATLAS sampling system and a split-flow box. Diagnoses and corresponding data from the analyses were matched and divided into two subcategories for comparison. Statistical analysis was performed using linear discriminant analysis, support vector machines, and 5-fold cross-validation. RESULTS Pancreatic cancers (n=8) were differentiated from benign pancreatic lesions (n=9) with a sensitivity of 100%, specificity of 77.8%, and correct rate of 88%. All pancreatic region cancers (n=19) were differentiated from all other kinds of benign causes of biliary obstruction (n=75) with corresponding values of 21.1%, 94.7%, and 80.7%. The sample size was too small to try to differentiate pancreatic cancers from adjacent cancers. CONCLUSION Analysing bile VOCs using FAIMS shows promising capability in detecting pancreatic cancer and other cancers in the pancreatic area.
Collapse
Affiliation(s)
- Ville Teränen
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuli Nissinen
- Department of Internal Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Antti Roine
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Antila
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Antti Siiki
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Yrjö Vaalavuo
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Pekka Kumpulainen
- Department of Internal Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Niku Oksala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Johanna Laukkarinen
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
15
|
Leong SX, Leong YX, Koh CSL, Tan EX, Nguyen LBT, Chen JRT, Chong C, Pang DWC, Sim HYF, Liang X, Tan NS, Ling XY. Emerging nanosensor platforms and machine learning strategies toward rapid, point-of-need small-molecule metabolite detection and monitoring. Chem Sci 2022; 13:11009-11029. [PMID: 36320477 PMCID: PMC9516957 DOI: 10.1039/d2sc02981b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Speedy, point-of-need detection and monitoring of small-molecule metabolites are vital across diverse applications ranging from biomedicine to agri-food and environmental surveillance. Nanomaterial-based sensor (nanosensor) platforms are rapidly emerging as excellent candidates for versatile and ultrasensitive detection owing to their highly configurable optical, electrical and electrochemical properties, fast readout, as well as portability and ease of use. To translate nanosensor technologies for real-world applications, key challenges to overcome include ultralow analyte concentration down to ppb or nM levels, complex sample matrices with numerous interfering species, difficulty in differentiating isomers and structural analogues, as well as complex, multidimensional datasets of high sample variability. In this Perspective, we focus on contemporary and emerging strategies to address the aforementioned challenges and enhance nanosensor detection performance in terms of sensitivity, selectivity and multiplexing capability. We outline 3 main concepts: (1) customization of designer nanosensor platform configurations via chemical- and physical-based modification strategies, (2) development of hybrid techniques including multimodal and hyphenated techniques, and (3) synergistic use of machine learning such as clustering, classification and regression algorithms for data exploration and predictions. These concepts can be further integrated as multifaceted strategies to further boost nanosensor performances. Finally, we present a critical outlook that explores future opportunities toward the design of next-generation nanosensor platforms for rapid, point-of-need detection of various small-molecule metabolites.
Collapse
Affiliation(s)
- Shi Xuan Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Emily Xi Tan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Lam Bang Thanh Nguyen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Jaslyn Ru Ting Chen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Desmond Wei Cheng Pang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Howard Yi Fan Sim
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Xiaochen Liang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
- School of Biological Sciences, Nanyang Technological University Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
| |
Collapse
|
16
|
A Comprehensive 2D-LC/MS/MS Profile of the Normal Human Urinary Metabolome. Diagnostics (Basel) 2022; 12:diagnostics12092184. [PMID: 36140585 PMCID: PMC9497905 DOI: 10.3390/diagnostics12092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Profiling bodily fluids is crucial for monitoring and discovering metabolic markers of disease. In this study, a comprehensive analysis approach based on 1D-LC-MS/MS and 2D-LC-MS/MS was applied to profile normal human urine metabolites from 348 children and 315 adults. A total of 2357 metabolites were identified, including 1831 endogenous metabolites and 526 exogenous ones. In total, 1005 metabolites were identified in urine for the first time. The urinary metabolites were mainly involved in amino acid metabolism, small molecule biochemistry, lipid metabolism and cellular compromise. The comparison of adult’s and children’s urine metabolomes showed adults urine had more metabolites involved in immune response than children’s, but the function of binding of melatonin, which belongs to the endocrine system, showed a higher expression in children. The urine metabolites detected by the 1D-LC-MS/MS method were mainly related to amino acid metabolism and lipid metabolism, and the 2D-LC-MS/MS method not only explored metabolites from 1D-LC-MS/MS but also metabolites related to cell signaling, cell function and maintenance, etc. Our analysis comprehensively profiled and functionally annotated the metabolome of normal human urine, which would benefit the application of urinary metabolome to clinical research.
Collapse
|
17
|
|
18
|
Jain S, Maque J, Galoosian A, Osuna-Garcia A, May FP. Optimal Strategies for Colorectal Cancer Screening. Curr Treat Options Oncol 2022; 23:474-493. [PMID: 35316477 PMCID: PMC8989803 DOI: 10.1007/s11864-022-00962-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Colorectal cancer (CRC) imposes significant morbidity and mortality, yet it is also largely preventable with evidence-based screening strategies. In May 2021, the US Preventive Services Task Force updated guidance, recommending screening begin at age 45 for average-risk individuals to reduce CRC incidence and mortality in the United States (US). The Task Force recommends screening with one of several screening strategies: high-sensitivity guaiac fecal occult blood test (HSgFOBT), fecal immunochemical test (FIT), multi-target stool DNA (mt-sDNA) test, computed tomographic (CT) colonography (virtual colonoscopy), flexible sigmoidoscopy, flexible sigmoidoscopy with FIT, or traditional colonoscopy. In addition to these recommended options, there are several emerging and novel CRC screening modalities that are not yet approved for first-line screening in average-risk individuals. These include blood-based screening or "liquid biopsy," colon capsule endoscopy, urinary metabolomics, and stool-based microbiome testing for the detection of colorectal polyps and/or CRC. In order to maximize CRC screening uptake in the US, patients and providers should engage in informed decision-making about the benefits and limitations of recommended screening options to determine the most appropriate screening test. Factors to consider include the invasiveness of the test, test performance, screening interval, accessibility, and cost. In addition, health systems should have a programmatic approach to CRC screening, which may include evidence-based strategies such as patient education, provider education, mailed screening outreach, and/or patient navigation, to maximize screening participation.
Collapse
Affiliation(s)
- Shailavi Jain
- Department of Medicine, David Geffen School of Medicine, UCLA Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Jetrina Maque
- Department of Medicine, David Geffen School of Medicine, UCLA Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Artin Galoosian
- Department of Medicine, David Geffen School of Medicine, UCLA Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095 USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 650 S. Charles E Young Drive, Center for Health Sciences, Suite A2-125, Los Angeles, CA 90095-6900 USA
| | - Antonia Osuna-Garcia
- Louise M. Darling Biomedical Library, University of California, Los Angeles, Center for Health Sciences, 12-077, Los Angeles, CA 90095-1798 USA
| | - Folasade P. May
- Department of Medicine, David Geffen School of Medicine, UCLA Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095 USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 650 S. Charles E Young Drive, Center for Health Sciences, Suite A2-125, Los Angeles, CA 90095-6900 USA
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA USA
- UCLA Kaiser Permanente Center for Health Equity, Jonsson Comprehensive Cancer Center, 650 S. Charles E Young Drive, Center for Health Sciences, Suite A2-125, Los Angeles, CA 90095-6900 USA
| |
Collapse
|
19
|
Nissinen SI, Venäläinen M, Kumpulainen P, Roine A, Häkkinen MR, Vepsäläinen J, Oksala N, Rantanen T. Discrimination between Pancreatic Cancer, Pancreatitis and Healthy Controls Using Urinary Polyamine Panel. Cancer Control 2022; 28:10732748211039762. [PMID: 35135363 PMCID: PMC8832577 DOI: 10.1177/10732748211039762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKROUND Polyamines play an important role in cellular proliferation, and the change in polyamine metabolism is reported in various cancers. We searched for urinary polyamine signature for distinguishing between pancreatic cancer, premalignant lesions of the pancreas (PLP), acute and chronic pancreatitis, and controls. METHODS Patients and controls were prospectively recruited in three Finnish hospitals between October 2013 and June 2016. The patients provided a urine sample at the time of the diagnosis. The panel of 14 polyamines was obtained in a single run with mass spectrometry. The polyamine concentrations were analysed with quadratic discriminant analysis and cross-validated with leave-one-out cross-validation. RESULTS Sixty-eight patients with pancreatic cancer, 36 with acute pancreatitis, 18 with chronic pancreatitis and 7 with PLP were recruited, as were 53 controls. The combination of 4 polyamines - acetylputrescine, diacetylspermidine, N8-acetylspermidine and diacetylputrescine - distinguished pancreatic cancer and PLP from controls (sensitivity = 94%, specificity = 68% and AUC = 0.88). The combination of diacetylspermidine, N8-acetylspermidine and diacetylspermine distinguished acute pancreatitis from controls (sensitivity = 94%, specificity = 92%, AUC = 0.98). The combination of acetylputrescine, diacetylspermidine and diacetylputrescine distinguished chronic pancreatitis from controls (sensitivity = 98%, specificity = 71%, AUC = 0.93). CONCLUSIONS Optimally selected urinary polyamine panels discriminate between pancreatic cancer and controls, as well as between acute and chronic pancreatitis and controls.
Collapse
Affiliation(s)
- Samuli I Nissinen
- Department of Internal Medicine, School of Medicine, 205537University of Eastern Finland, Kuopio, Finland.,Department of Internal Medicine, 3701Kanta-Häme Central Hospital, Hämeenlinna, Finland
| | - Markus Venäläinen
- Department of Internal Medicine, School of Medicine, 205537University of Eastern Finland, Kuopio, Finland
| | | | - Antti Roine
- Faculty of Medicine and Health Technology, 7840Tampere University, Tampere, Finland
| | - Merja R Häkkinen
- School of Pharmacy, Biocenter Kuopio, 205537University of Eastern Finland, Kuopio, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, Biocenter Kuopio, 205537University of Eastern Finland, Kuopio, Finland
| | - Niku Oksala
- Faculty of Medicine and Health Technology, 7840Tampere University, Tampere, Finland.,Centre for Vascular Surgery and Interventional Radiology, 60670Tampere University Hospital, Tampere, Finland
| | - Tuomo Rantanen
- Department of Surgery, School of Medicine, 205537University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
The Application of Metabolomics in Recent Colorectal Cancer Studies: A State-of-the-Art Review. Cancers (Basel) 2022; 14:cancers14030725. [PMID: 35158992 PMCID: PMC8833341 DOI: 10.3390/cancers14030725] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Colorectal Cancer (CRC) is one of the leading causes of cancer-related death in the United States. Current diagnosis techniques are either highly invasive or lack sensitivity, suggesting the need for alternative techniques for biomarker detection. Metabolomics represents one such technique with great promise in identifying CRC biomarkers with high sensitivity and specificity, but thus far is rarely employed in a clinical setting. In order to provide a framework for future clinical usage, we characterized dysregulated metabolites across recent literature, identifying metabolites dysregulated across a variety of biospecimens. We additionally put special focus on the interplay of the gut microbiome and perturbed metabolites in CRC. We were able to identify many metabolites showing consistent dysregulation in CRC, demonstrating the value of metabolomics as a promising diagnostic technique. Abstract Colorectal cancer (CRC) is a highly prevalent disease with poor prognostic outcomes if not diagnosed in early stages. Current diagnosis techniques are either highly invasive or lack sufficient sensitivity. Thus, identifying diagnostic biomarkers of CRC with high sensitivity and specificity is desirable. Metabolomics represents an analytical profiling technique with great promise in identifying such biomarkers and typically represents a close tie with the phenotype of a specific disease. We thus conducted a systematic review of studies reported from January 2012 to July 2021 relating to the detection of CRC biomarkers through metabolomics to provide a collection of knowledge for future diagnostic development. We identified thirty-seven metabolomics studies characterizing CRC, many of which provided metabolites/metabolic profile-based diagnostic models with high sensitivity and specificity. These studies demonstrated that a great number of metabolites can be differentially regulated in CRC patients compared to healthy controls, adenomatous polyps, or across stages of CRC. Among these metabolite biomarkers, especially dysregulated were certain amino acids, fatty acids, and lysophosphatidylcholines. Additionally, we discussed the contribution of the gut bacterial population to pathogenesis of CRC through their modulation to fecal metabolite pools and summarized the established links in the literature between certain microbial genera and altered metabolite levels in CRC patients. Taken together, we conclude that metabolomics presents itself as a promising and effective method of CRC biomarker detection.
Collapse
|
21
|
Biomarkers to Detect Early-Stage Colorectal Cancer. Biomedicines 2022; 10:biomedicines10020255. [PMID: 35203465 PMCID: PMC8869393 DOI: 10.3390/biomedicines10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a leading cause of mortality worldwide. The high incidence and the acceleration of incidence in younger people reinforces the need for better techniques of early detection. The use of noninvasive biomarkers has potential to more accurately inform how patients are prioritised for clinical investigation, which, in turn, may ultimately translate into improved survival for those subsequently found to have curable-stage CRC. This review surveys a wide range of CRC biomarkers that may (alone or in combination) identify symptomatic patients presenting in primary care who should be progressed for clinical investigation.
Collapse
|
22
|
Syed Soffian SS, Safian N, Nawi AM, Ahmad SB, Chan HK, Abu Hassan MR. Rate and associated factors of refusal to perform immunochemical Faecal Occult Blood Test (iFOBT) among semi-urban communities. PLoS One 2021; 16:e0258129. [PMID: 34618854 PMCID: PMC8496834 DOI: 10.1371/journal.pone.0258129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
The uptake of the immunochemical faecal occult blood test (iFOBT) in many countries with an opportunistic colorectal cancer (CRC) screening programme remains suboptimal. This study aimed to determine the rate, associated factors and reasons of refusal to perform the iFOBT test offered under an opportunistic CRC screening programme in semi-urban communities. This cross-sectional study was conducted among the average-risk individuals living in semi-urban areas, who sought care from public primary care centres across Kedah state, Malaysia. The information regarding the sociodemographic and clinical characteristics of individuals who were offered the iFOBT between January and April 2019, along with their willingness to perform the test, was gathered. The factors associated with the refusal were further explored using the logistic regression analysis. The individuals offered the iFOBT (n = 920) were mainly female (52.4%) and had a mean age of 58.7±10.6 years. The refusal rate of the iFOBT was 32.2%. Patients who did not have hypertension (adjusted OR: 3.33; 95% CI: 2.44, 4.54), did not have CRC symptoms (adjusted OR: 3.15; 95% CI:1.26, 7.89), had the test offered by either medical assistants (adjusted OR: 2.44; 95% CI: 1.71, 3.49) or nurses (adjusted OR: 2.41; 95% CI 1.65, 3.51), did not have diabetes (adjusted OR: 1.99; 95% CI: 1.42, 2.77),and were not active smokers (adjusted OR: 1.74; 95% CI: 1.22, 2.47), were more likely to refuse the iFOBT. The common reasons of refusing the test included "feeling not ready for the test" (21.6%) and "feeling healthy" (14.9%). The iFOBT was refused by one-third of the average-risk individuals from semi-urban communities. The associated factors and reasons of refusal found in this study could guide policymakers in developing targeted interventions to boost the uptake of CRC screening in Malaysia.
Collapse
Affiliation(s)
| | - Nazarudin Safian
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azmawati Mohammed Nawi
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Huan-Keat Chan
- Clinical Research Center, Sultanah Bahiyah Hospital, Kedah, Malaysia
| | | |
Collapse
|
23
|
Deibel A, Deng L, Cheng CY, Schlander M, Ran T, Lang B, Krupka N, Beerenwinkel N, Rogler G, Wiest R, Sonnenberg A, Poleszczuk J, Misselwitz B. Evaluating key characteristics of ideal colorectal cancer screening modalities: the microsimulation approach. Gastrointest Endosc 2021; 94:379-390.e7. [PMID: 33600806 DOI: 10.1016/j.gie.2021.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Screening for colorectal cancer (CRC) can effectively reduce CRC incidence and mortality. Besides colonoscopy, tests for the detection of biomarkers in stool, blood, or serum, including the fecal immunochemical test (FIT), ColoGuard, Epi proColon, and PolypDx, have recently been advanced. We aimed to identify the characteristics of theoretic, highly efficient screening tests and calculated the effectiveness and cost effectiveness of available screening tests. METHODS Using the microsimulation-based colon modeling open-source tool (CMOST), we simulated 142,501 theoretic screening tests with variable assumptions for adenoma and carcinoma sensitivity, specificity, test frequency, and adherence, and we identified highly efficient tests outperforming colonoscopy. For available screening tests, we simulated 10 replicates of a virtual population of 2 million individuals, using epidemiologic characteristics and costs assumptions of the United States. RESULTS Highly efficient theoretic screening tests were characterized by high sensitivity for advanced adenoma and carcinoma and high patient adherence. All simulated available screening tests were effective at 100% adherence to screening and at expected real-world adherence rates. All tests were cost effective below the threshold of 100,000 U.S. dollars per life year gained. With perfect adherence, FIT was the most effective and cost-efficient intervention, whereas Epi proColon was the most effective at expected real-world adherence rates. In our sensitivity analysis, assumptions for patient adherence had the strongest impact on effectiveness of screening. CONCLUSIONS Our microsimulation study identified characteristics of highly efficient theoretic screening tests and confirmed the effectiveness and cost-effectiveness of colonoscopy and available urine-, blood-, and stool-based tests. Better patient adherence results in superior effectiveness for CRC prevention in the whole population.
Collapse
Affiliation(s)
- Ansgar Deibel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - Lu Deng
- Metabolomic Technologies, Inc
| | - Chih-Yuan Cheng
- Division of Health Economics, German Cancer Research Center, Heidelberg, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Schlander
- Division of Health Economics, German Cancer Research Center, Heidelberg, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tao Ran
- Division of Health Economics, German Cancer Research Center, Heidelberg, Germany
| | - Brian Lang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | | | - Jan Poleszczuk
- Department of Computational Oncology, Maria Skłodowska-Curie Institute-Oncology Center, Warsaw, Poland; Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| |
Collapse
|
24
|
Ning W, Qiao N, Zhang X, Pei D, Wang W. Metabolic profiling analysis for clinical urine of colorectal cancer. Asia Pac J Clin Oncol 2021; 17:403-413. [PMID: 34164923 DOI: 10.1111/ajco.13591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
AIM To demonstrate the little-known metabolic changes and pathways in patients with colorectal cancer (CRC). METHODS We used gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) to perform metabolic profiling of urine samples from 163 consecutive patients with CRC and 111 healthy controls without history of gastrointestinal tumors. The metabolic profiles were assayed using multivariate statistical analysis and one-way analysis of variance, and further analyzed to identify potential marker metabolites related to CRC. The GC-TOF/MS-derived models showed clear discriminations in metabolic profiles between the CRC group and healthy control group. RESULTS We demonstrated that 15 metabolites contributed to the differences. Among them, eleven metabolites were significantly upregulated, while other four metabolites were downregulated in the urine samples of CRC patients compared with healthy controls. Pathway analysis revealed changes in energy metabolism of patients with CRC, which are reflected in the upregulation of glycolysis and amino acid metabolism and the downregulation of lipid metabolism. Our study revealed the metabolic profile of urine from CRC patients and indicated that GC-TOF/MS-based methods can distinguish CRC from healthy controls. CONCLUSION GC-TOF/MS-based metabolomics has the potential to be developed into a novel, non-invasive, and painless clinical tool for CRC diagnosis, and may contribute to an improved understanding of disease mechanisms.
Collapse
Affiliation(s)
- Wu Ning
- China-Japan Friendship Hospital, Beijing, China
| | - Nan Qiao
- China-Japan Friendship Hospital, Beijing, China
| | - Xiyin Zhang
- China-Japan Friendship Hospital, Beijing, China
| | - Dongpo Pei
- China-Japan Friendship Hospital, Beijing, China
| | - Wenyue Wang
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
25
|
Mallafré-Muro C, Llambrich M, Cumeras R, Pardo A, Brezmes J, Marco S, Gumà J. Comprehensive Volatilome and Metabolome Signatures of Colorectal Cancer in Urine: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:2534. [PMID: 34064065 PMCID: PMC8196698 DOI: 10.3390/cancers13112534] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023] Open
Abstract
To increase compliance with colorectal cancer screening programs and to reduce the recommended screening age, cheaper and easy non-invasiveness alternatives to the fecal immunochemical test should be provided. Following the PRISMA procedure of studies that evaluated the metabolome and volatilome signatures of colorectal cancer in human urine samples, an exhaustive search in PubMed, Web of Science, and Scopus found 28 studies that met the required criteria. There were no restrictions on the query for the type of study, leading to not only colorectal cancer samples versus control comparison but also polyps versus control and prospective studies of surgical effects, CRC staging and comparisons of CRC with other cancers. With this systematic review, we identified up to 244 compounds in urine samples (3 shared compounds between the volatilome and metabolome), and 10 of them were relevant in more than three articles. In the meta-analysis, nine studies met the criteria for inclusion, and the results combining the case-control and the pre-/post-surgery groups, eleven compounds were found to be relevant. Four upregulated metabolites were identified, 3-hydroxybutyric acid, L-dopa, L-histidinol, and N1, N12-diacetylspermine and seven downregulated compounds were identified, pyruvic acid, hydroquinone, tartaric acid, and hippuric acid as metabolites and butyraldehyde, ether, and 1,1,6-trimethyl-1,2-dihydronaphthalene as volatiles.
Collapse
Affiliation(s)
- Celia Mallafré-Muro
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain; (C.M.-M.); (A.P.); (S.M.)
- Signal and Information Processing for Sensing Systems Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Maria Llambrich
- Metabolomics Interdisciplinary Group (MiL@b), Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, CERCA, 43007 Tarragona, Spain; (M.L.); (J.B.)
| | - Raquel Cumeras
- Metabolomics Interdisciplinary Group (MiL@b), Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, CERCA, 43007 Tarragona, Spain; (M.L.); (J.B.)
- Biomedical Research Centre, Diabetes and Associated Metabolic Disorders (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Fiehn Lab, NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Antonio Pardo
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain; (C.M.-M.); (A.P.); (S.M.)
| | - Jesús Brezmes
- Metabolomics Interdisciplinary Group (MiL@b), Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, CERCA, 43007 Tarragona, Spain; (M.L.); (J.B.)
- Biomedical Research Centre, Diabetes and Associated Metabolic Disorders (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Santiago Marco
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain; (C.M.-M.); (A.P.); (S.M.)
- Signal and Information Processing for Sensing Systems Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Josep Gumà
- Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain;
| |
Collapse
|
26
|
Bach S, Paulis I, Sluiter NR, Tibbesma M, Martin I, van de Wiel MA, Tuynman JB, Bahce I, Kazemier G, Steenbergen RDM. Detection of colorectal cancer in urine using DNA methylation analysis. Sci Rep 2021; 11:2363. [PMID: 33504902 PMCID: PMC7840909 DOI: 10.1038/s41598-021-81900-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause for cancer-related death globally. Clinically, there is an urgent need for non-invasive CRC detection. This study assessed the feasibility of CRC detection by analysis of tumor-derived methylated DNA fragments in urine. Urine samples, including both unfractioned and supernatant urine fractions, of 92 CRC patients and 63 healthy volunteers were analyzed for DNA methylation levels of 6 CRC-associated markers (SEPT9, TMEFF2, SDC2, NDRG4, VIM and ALX4). Optimal marker panels were determined by two statistical approaches. Methylation levels of SEPT9 were significantly increased in urine supernatant of CRC patients compared to controls (p < 0.0001). Methylation analysis in unfractioned urine appeared inaccurate. Following multivariate logistic regression and classification and regression tree analysis, a marker panel consisting of SEPT9 and SDC2 was able to detect up to 70% of CRC cases in urine supernatant at 86% specificity. First evidence is provided for CRC detection in urine by SEPT9 methylation analysis, which combined with SDC2 allows for an optimal differentiation between CRC patients and controls. Urine therefore provides a promising liquid biopsy for non-invasive CRC detection.
Collapse
Affiliation(s)
- S Bach
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - I Paulis
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - N R Sluiter
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - M Tibbesma
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - I Martin
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1089a, Amsterdam, The Netherlands
| | - M A van de Wiel
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1089a, Amsterdam, The Netherlands
| | - J B Tuynman
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - I Bahce
- Department of Pulmonary Diseases, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - G Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - R D M Steenbergen
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Urinary charged metabolite profiling of colorectal cancer using capillary electrophoresis-mass spectrometry. Sci Rep 2020; 10:21057. [PMID: 33273632 PMCID: PMC7713069 DOI: 10.1038/s41598-020-78038-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) has increasing global prevalence and poor prognostic outcomes, and the development of low- or less invasive screening tests is urgently required. Urine is an ideal biofluid that can be collected non-invasively and contains various metabolite biomarkers. To understand the metabolomic profiles of different stages of CRC, we conducted metabolomic profiling of urinary samples. Capillary electrophoresis-time-of-flight mass spectrometry was used to quantify hydrophilic metabolites in 247 subjects with stage 0 to IV CRC or polyps, and healthy controls. The 154 identified and quantified metabolites included metabolites of glycolysis, TCA cycle, amino acids, urea cycle, and polyamine pathways. The concentrations of these metabolites gradually increased with the stage, and samples of CRC stage IV especially showed a large difference compared to other stages. Polyps and CRC also showed different concentration patterns. We also assessed the differentiation ability of these metabolites. A multiple logistic regression model using three metabolites was developed with a randomly designated training dataset and validated using the remaining data to differentiate CRC and polys from healthy controls based on a panel of urinary metabolites. These data highlight the changes in metabolites from early to late stage of CRC and also the differences between CRC and polyps.
Collapse
|
28
|
Urinary 1H-NMR Metabolic Signature in Subjects Undergoing Colonoscopy for Colon Cancer Diagnosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolomics represents a promising non-invasive approach that can be applied to identify biochemical changes in colorectal cancer patients (CRC) and is potentially useful for diagnosis and follow-up. Despite the literature regarding metabolomics CRC-specific profiles, discrimination between metabolic changes specifically related to CRC and intra-individual variability is still a problem to be solved. This was a preliminary case-control study, in which 1H-NMR spectroscopy combined with multivariate statistical analysis was used to profile urine metabolites in subjects undergoing colonoscopy for colon cancer diagnosis. To reduce intra-individual variability, metabolic profiles were evaluated in participants’ urine samples, collected just before the colonoscopy and after a short-term dietary regimen required for the endoscopy procedure. Data obtained highlighted different urinary metabolic profiles between CRC and unaffected subjects (C). The metabolites altered in the CRC urine (acetoacetate, creatine, creatinine, histamine, phenylacetylglycine, and tryptophan) significantly correlated with colon cancer and discriminated with accuracy CRC patients from C patients (receiver operator characteristic (ROC) curve with an area under the curve (AUC) of 0.875; 95% CI: 0.667–1). These results confirm that urinary metabolomic analysis can be a valid tool to improve CRC diagnosis, prognosis, and response to therapy, representing a noninvasive approach that could precede more invasive tests.
Collapse
|
29
|
Tolstikov V, Moser AJ, Sarangarajan R, Narain NR, Kiebish MA. Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics. Metabolites 2020; 10:metabo10060224. [PMID: 32485899 PMCID: PMC7345110 DOI: 10.3390/metabo10060224] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Widespread application of omic technologies is evolving our understanding of population health and holds promise in providing precise guidance for selection of therapeutic interventions based on patient biology. The opportunity to use hundreds of analytes for diagnostic assessment of human health compared to the current use of 10–20 analytes will provide greater accuracy in deconstructing the complexity of human biology in disease states. Conventional biochemical measurements like cholesterol, creatinine, and urea nitrogen are currently used to assess health status; however, metabolomics captures a comprehensive set of analytes characterizing the human phenotype and its complex metabolic processes in real-time. Unlike conventional clinical analytes, metabolomic profiles are dramatically influenced by demographic and environmental factors that affect the range of normal values and increase the risk of false biomarker discovery. This review addresses the challenges and opportunities created by the evolving field of clinical metabolomics and highlights features of study design and bioinformatics necessary to maximize the utility of metabolomics data across demographic groups.
Collapse
Affiliation(s)
- Vladimir Tolstikov
- BERG, Precision Medicine Division, Framingham, MA 01701, USA; (V.T.); (R.S.); (N.R.N.)
| | - A. James Moser
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA;
| | | | - Niven R. Narain
- BERG, Precision Medicine Division, Framingham, MA 01701, USA; (V.T.); (R.S.); (N.R.N.)
| | - Michael A. Kiebish
- BERG, Precision Medicine Division, Framingham, MA 01701, USA; (V.T.); (R.S.); (N.R.N.)
- Correspondence: ; Tel.: +1-617-588-2245
| |
Collapse
|
30
|
Zhang W, Zhang XJ, Chao SY, Chen SJ, Zhang ZJ, Zhao J, Lv YN, Yao JJ, Bai YY. Update on urine as a biomarker in cancer: a necessary review of an old story. Expert Rev Mol Diagn 2020; 20:477-488. [PMID: 32212972 DOI: 10.1080/14737159.2020.1743687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Cancer causes thousands of deaths worldwide each year. Therefore, monitoring of health status and the early diagnosis of cancer using noninvasive assays, such as the analysis of molecular biomarkers in urine, is essential. However, effective biomarkers for early diagnosis of cancer have not been established in many types of cancer.Areas covered: In this review, we discuss recent findings with regard to the use of urine composition as a biomarker in eleven types of cancer. We also highlight the use of urine biomarkers for improving early diagnosis.Expert opinion: Urinary biomarkers have been applied for clinical application of early diagnosis. The main limitation is a lack of integrated approaches for identification of new biomarkers in most cancer. The utilization of urinary biomarker detection will be promoted by improved detection methods and new data from different types of cancers. With the development of precision medicine, urinary biomarkers will play an increasingly important clinical role. Future early diagnosis would benefit from changes in the utilization of urinary biomarkers.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao Jian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shen Yan Chao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Su Juan Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Sciences and Technology, Xinxiang Medical University, Henan, China
| | - Zi Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China
| | - Jian Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ya Nan Lv
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jing Jie Yao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yue Yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, PR China
| |
Collapse
|
31
|
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol 2020; 12:124-148. [PMID: 32104546 PMCID: PMC7031146 DOI: 10.4251/wjgo.v12.i2.124] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global problem affecting millions of people worldwide. This disease is unique because of its slow progress that makes it preventable and often curable. CRC symptoms usually emerge only at advanced stages of the disease, consequently its early detection can be achieved only through active population screening, which markedly reduces mortality due to this cancer. CRC screening tests that employ non-invasively detectable biomarkers are currently being actively developed and, in most cases, samples of either stool or blood are used. However, alternative biological substances that can be collected non-invasively (colorectal mucus, urine, saliva, exhaled air) have now emerged as new sources of diagnostic biomarkers. The main categories of currently explored CRC biomarkers are: (1) Proteins (comprising widely used haemoglobin); (2) DNA (including mutations and methylation markers); (3) RNA (in particular microRNAs); (4) Low molecular weight metabolites (comprising volatile organic compounds) detectable by metabolomic techniques; and (5) Shifts in gut microbiome composition. Numerous tests for early CRC detection employing such non-invasive biomarkers have been proposed and clinically studied. While some of these studies generated promising early results, very few of the proposed tests have been transformed into clinically validated diagnostic/screening techniques. Such DNA-based tests as Food and Drug Administration-approved multitarget stool test (marketed as Cologuard®) or blood test for methylated septin 9 (marketed as Epi proColon® 2.0 CE) show good diagnostic performance but remain too expensive and technically complex to become effective CRC screening tools. It can be concluded that, despite its deficiencies, the protein (haemoglobin) detection-based faecal immunochemical test (FIT) today presents the most cost-effective option for non-invasive CRC screening. The combination of non-invasive FIT and confirmatory invasive colonoscopy is the current strategy of choice for CRC screening. However, continuing intense research in the area promises the emergence of new superior non-invasive CRC screening tests that will allow the development of improved disease prevention strategies.
Collapse
|
32
|
Barichello S, Deng L, Ismond KP, Loomes DE, Kirwin EM, Wang H, Chang D, Svenson LW, Thanh NX. Comparative effectiveness and cost-effectiveness analysis of a urine metabolomics test vs. alternative colorectal cancer screening strategies. Int J Colorectal Dis 2019; 34:1953-1962. [PMID: 31673772 DOI: 10.1007/s00384-019-03419-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 02/04/2023]
Abstract
PURPOSE Despite the success of provincial screening programs, colorectal cancer (CRC) is still the third most common cancer in Canada and the second most common cause of cancer-related death. Fecal-based tests, such as fecal occult blood test (FOBT) and fecal immunochemical test (FIT), form the foundation of the provincial CRC screening programs in Canada. However, those tests have low sensitivity for CRC precursors, adenomatous polyps and have low adherence. This study evaluated the effectiveness and cost-effectiveness of a new urine metabolomic-based test (UMT) that detects adenomatous polyps and CRC. METHODS A Markov model was designed using data from the literature and provincial healthcare databases for Canadian at average risk for CRC; calibration was performed against statistics data. Screening strategies included the following: FOBT every year, FIT every year, colonoscopy every 10 years, and UMT every year. The costs, quality adjusted life years (QALY) gained, and incremental cost-effectiveness ratios (ICERs) for each strategy were estimated and compared. RESULTS Compared with no screening, a UMT strategy reduced CRC mortality by 49.9% and gained 0.15 life years per person at $42,325/life year gained in the base case analysis. FOBT reduced CRC mortality by 14.9% and gained 0.04 life years per person at $25,011/life year gained. FIT reduced CRC mortality by 35.8% and gained 0.11 life years per person at $25,500/life year while colonoscopy reduced CRC mortality by 24.7% and gained 0.08 life years per person at $50,875/life year. CONCLUSIONS A UMT strategy might be a cost-effective strategy when used in programmatic CRC screening programs.
Collapse
Affiliation(s)
- Scott Barichello
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lu Deng
- Metabolomic Technologies Inc., Suite 132, 9650 20 Avenue, Edmonton, AB, T6R 3T2, Canada.
| | - Kathleen P Ismond
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Metabolomic Technologies Inc., Suite 132, 9650 20 Avenue, Edmonton, AB, T6R 3T2, Canada
| | - Dustin E Loomes
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Haili Wang
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Metabolomic Technologies Inc., Suite 132, 9650 20 Avenue, Edmonton, AB, T6R 3T2, Canada
| | - David Chang
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Metabolomic Technologies Inc., Suite 132, 9650 20 Avenue, Edmonton, AB, T6R 3T2, Canada
| | - Lawrence W Svenson
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Government of Alberta, Edmonton, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Nguyen Xuan Thanh
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Iwasaki H, Shimura T, Kataoka H. Current status of urinary diagnostic biomarkers for colorectal cancer. Clin Chim Acta 2019; 498:76-83. [PMID: 31421118 DOI: 10.1016/j.cca.2019.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Fecal occult blood test (FOBT) and flexible sigmoidoscopy are the currently using screening methods for colorectal cancer (CRC). However, these methods still have problems of high false positive rates in FOBT and increased invasiveness and cost associated with endoscopy. The development of non-invasive biomarkers is thus important for the diagnosis of CRC. Urine is one of the most commonly used samples for mass screening owing to its non-invasive and simple process of collection; however, the discovery of urinary diagnostic biomarkers for malignancies is still challenging and developing. Since urine contains abundant substances reflecting systemic body condition, urinary biomarker might contribute to detect CRC in a completely non-invasive manner. In this review, we describe the current utility of urinary diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Hiroyasu Iwasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|