1
|
IgG Fc Affinity Ligands and Their Applications in Antibody-Involved Drug Delivery: A Brief Review. Pharmaceutics 2023; 15:pharmaceutics15010187. [PMID: 36678816 PMCID: PMC9862274 DOI: 10.3390/pharmaceutics15010187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Antibodies are not only an important class of biotherapeutic drugs, but also are targeting moieties for achieving active targeting drug delivery. Meanwhile, the rapidly increasing application of antibodies and Fc-fusion proteins has inspired the emerging development of downstream processing technologies. Thus, IgG Fc affinity ligands have come into being and have been widely exploited in antibody purification strategies. Given the high binding affinity and specificity to IgGs, binding stability in physiological medium conditions, and favorable toxicity and immunogenicity profiles, Fc affinity ligands are gradually applied to antibody delivery, non-covalent antibody-drug conjugates or antibody-mediated active-targeted drug delivery systems. In this review, we will briefly introduce IgG affinity ligands that are widely used at present and summarize their diverse applications in the field of antibody-involved drug delivery. The challenges and outlook of these systems are also discussed.
Collapse
|
2
|
Wang J, Du L, Chen X. Oncolytic virus: A catalyst for the treatment of gastric cancer. Front Oncol 2022; 12:1017692. [PMID: 36505792 PMCID: PMC9731121 DOI: 10.3389/fonc.2022.1017692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. According to the GLOBOCAN 2020 estimates of incidence and mortality for 36 cancers in 185 countries produced by the International Agency for Research on Cancer (IARC), GC ranks fifth and fourth, respectively, and seriously threatens the survival and health of people all over the world. Therefore, how to effectively treat GC has become an urgent problem for medical personnel and scientific workers at this stage. Due to the unobvious early symptoms and the influence of some adverse factors such as tumor heterogeneity and low immunogenicity, patients with advanced gastric cancer (AGC) cannot benefit significantly from treatments such as radical surgical resection, radiotherapy, chemotherapy, and targeted therapy. As an emerging cancer immunotherapy, oncolytic virotherapies (OVTs) can not only selectively lyse cancer cells, but also induce a systemic antitumor immune response. This unique ability to turn unresponsive 'cold' tumors into responsive 'hot' tumors gives them great potential in GC therapy. This review integrates most experimental studies and clinical trials of various oncolytic viruses (OVs) in the diagnosis and treatment of GC. It also exhaustively introduces the concrete mechanism of invading GC cells and the viral genome composition of adenovirus and herpes simplex virus type 1 (HSV-1). At the end of the article, some prospects are put forward to determine the developmental directions of OVTs for GC in the future.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
3
|
Li X, Ai S, Lu X, Liu S, Guan W. Nanotechnology-based strategies for gastric cancer imaging and treatment. RSC Adv 2021; 11:35392-35407. [PMID: 35493171 PMCID: PMC9043273 DOI: 10.1039/d1ra01947c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is the second biggest cause of cancer-related deaths worldwide. Despite the improvement in deciphering molecular mechanisms, advances of detection and imaging, implementation of prevention programs, and personalized treatment, the overall curative rate remains low. In particular, with the emergence of nanomaterials, different imaging modalities can be integrated into one single platform, and combined therapies with synergetic effects against gastric cancer were established. Moreover, the development of theranostic strategies with simultaneous diagnostic and therapeutic ability was boosted by multifunctional nanoparticles. Herein, we present a comprehensive review of major nanotechnology-based breakthroughs for gastric cancer imaging and treatment. We will describe the superiority of nanomaterials used in gastric cancer and summarize nanotechnology applications for the improvement of cancer imaging and therapeutic efficacy.
Collapse
Affiliation(s)
- Xianghui Li
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| | - Shichao Ai
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| | - Xiaofeng Lu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| | - Song Liu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| | - Wenxian Guan
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| |
Collapse
|
4
|
Molecular targeted treatment and drug delivery system for gastric cancer. J Cancer Res Clin Oncol 2021; 147:973-986. [PMID: 33550445 DOI: 10.1007/s00432-021-03520-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer is still a major cancer worldwide. The early diagnosis rate of gastric cancer in most high incidence countries is low. At present, the overall treatment effect of gastric cancer is poor, and the median overall survival remains low. Most of the patients with gastric cancer are in an advanced stage when diagnosed, and drug treatment has become the main means. Thus, new targeted drugs and therapeutic strategies are the hope of improving the therapeutic effect of gastric cancer. In this review, we summarize the new methods and advances of targeted therapy for gastric cancer, including novel molecular targeted therapeutic agents and drug delivery systems, with a major focus on the development of drug delivery systems (drug carriers and targeting peptides). Elaborating these new methods and advances will contribute to the management of gastric cancer.
Collapse
|
5
|
Sato-Dahlman M, Yamamoto M. The Development of Oncolytic Adenovirus Therapy in the Past and Future - For the Case of Pancreatic Cancer. Curr Cancer Drug Targets 2019; 18:153-161. [PMID: 28228084 DOI: 10.2174/1568009617666170222123925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is an aggressive malignant disease and the efficacy of current treatments for unresectable diseases is quite limited despite recent advances. Gene therapy /virotherapy strategies may provide new options for the treatment of various cancers including pancreatic cancer. Oncolytic adenovirus shows an antitumoral effect via its intratumoral amplification and strong cytocidal effect in a variety of cancers and it has been employed for the development of potent oncolytic virotherapy agents for pancreatic cancer. Our ultimate goal is to develop an oncolytic adenovirus enabling the treatment of patients with advanced or spread diseases by systemic injection. Systemic application of oncolytic therapy mandates more efficient and selective gene delivery and needs to embody sufficient antitumor effect even with limited initial delivery to the tumor location. In this review, the current status of oncolytic adenoviruses from the viewpoints of vector design and potential strategies to overcome current obstacles for its clinical application will be described. We will also discuss the efforts to improve the antitumor activity of oncolytic adenovirus, in in vivo animal models, and the combination therapy of oncolytic adenovirus with radiation and chemotherapy.
Collapse
Affiliation(s)
- Mizuho Sato-Dahlman
- Division of Basic and Translational Medicine, Department of Surgery, University of Minnesota, MN, United States
| | - Masato Yamamoto
- Division of Basic and Translational Medicine, Department of Surgery, University of Minnesota, MN, United States
| |
Collapse
|
6
|
Sato-Dahlman M, Wirth K, Yamamoto M. Role of Gene Therapy in Pancreatic Cancer-A Review. Cancers (Basel) 2018; 10:E103. [PMID: 29614005 PMCID: PMC5923358 DOI: 10.3390/cancers10040103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/05/2023] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) has remained essentially unchanged for decades and its relative contribution to overall cancer death is projected to only increase in the coming years. Current treatment for PDAC includes aggressive chemotherapy and surgical resection in a limited number of patients, with median survival of optimal treatment rather dismal. Recent advances in gene therapies offer novel opportunities for treatment, even in those with locally advanced disease. In this review, we summarize emerging techniques to the design and administration of virotherapy, synthetic vectors, and gene-editing technology. Despite these promising advances, shortcomings continue to exist and here will also be highlighted those approaches to overcoming obstacles in current laboratory and clinical research.
Collapse
Affiliation(s)
| | - Keith Wirth
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Surgery BTR, MMC 195, 8195F, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
A novel immunotoxin reveals a new role for CD321 in endothelial cells. PLoS One 2017; 12:e0181502. [PMID: 29028806 PMCID: PMC5640210 DOI: 10.1371/journal.pone.0181502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
There are currently several antibody therapies that directly target tumors, and antibody-drug conjugates represent a novel moiety as next generation therapeutics. Here, we used a unique screening probe, DT3C, to identify functional antibodies that recognized surface molecules and functional epitopes, and which provided toxin delivery capability. Accordingly, we generated the 90G4 antibody, which induced DT3C-dependent cytotoxicity in endothelial cells. Molecular analysis revealed that 90G4 recognized CD321, a protein localized at tight junctions. Although CD321 plays a pivotal role in inflammation and lymphocyte trans-endothelial migration, little is known about its mechanism of action in endothelial cells. Targeting of CD321 by the 90G4 immunotoxin induced cell death. Moreover, 90G4 immunotoxin caused cytotoxicity primarily in migratory endothelial cells, but not in those forming sheets, suggesting a critical role for CD321 in tumor angiogenesis. We also found that hypoxia triggered redistribution of CD321 to a punctate localization on the basal side of cells, resulting in functional impairment of tight junctions and increased motility. Thus, our findings raise the intriguing possibility that endothelial CD321 presented cellular localization in tight junction as well as multifunctional dynamics in several conditions, leading to illuminate the importance of widely-expressed CD321 as a potential target for antitumor therapy.
Collapse
|
8
|
Tanaka T, Yamada H, Kuroki M, Kodama S, Tamura K, Takamatsu Y. A Modified Adenovirus Vector-Mediated Antibody Screening Method Identifies EphA2 as a Cancer Target. Transl Oncol 2017; 10:476-484. [PMID: 28505517 PMCID: PMC5430157 DOI: 10.1016/j.tranon.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND: We constructed a genetically modified adenovirus vector incorporating an IgG Fc-binding motif from staphylococcal protein A, Z33 (Adv-FZ33). Adv-FZ33 allows an antibody to redirect the vector to a target molecule on the cell surface. We attempted to search for target antigen candidates and antibodies that allowed highly selective gene transduction into malignant tumors. METHODS: Hybridoma libraries producing monoclonal antibodies (mAbs) were screened that increased transduction efficiency in cancer cell lines after cross-linking with Adv-FZ33. Target antigens of the mAbs were identified by immunoprecipitation and mass spectrometry. Of these mAbs, we noted a clone, F2-27, that recognized the receptor tyrosine kinase EphA2. Next, we generated an adenovirus vector, Ax3CMTK-FZ33, that expressed a herpes simplex virus thymidine kinase (HSV-TK). The therapeutic efficacy of F2-27–mediated HSV-TK gene transduction, followed by ganciclovir (GCV) administration, was studied in vitro. The inhibitory effect of F2-27 on cancer cell invasion was investigated by a three-dimensional spheroid formation assay. RESULTS: In vitro reporter gene expression after Adv-FZ33 infection via F2-27 was 146 times higher than with control mAb in EphA2-expressing cancer cell lines. F2-27–mediated Ax3CMTK-FZ33 infection induced the HSV-TK gene in an F2-27–dependent manner and had a highly effective cytotoxic effect in a GCV-dependent manner. Additionally, F2-27 independently inhibited migration of EphA2-positive breast cancer cell lines in three-dimensional culture. CONCLUSION: Our modified adenovirus and hybridoma screening system is useful for the development of targeted cancer therapy, and F2-27 has the potential to be an antibody-based therapy for various EphA2-positive cancers.
Collapse
Affiliation(s)
- Toshihiro Tanaka
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Hiromi Yamada
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Masahide Kuroki
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kazuo Tamura
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yasushi Takamatsu
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
9
|
Telomerase-specific oncolytic adenovirus expressing TRAIL suppresses peritoneal dissemination of gastric cancer. Gene Ther 2017; 24:199-207. [PMID: 28075429 DOI: 10.1038/gt.2017.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/18/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022]
Abstract
Peritoneal dissemination is the most common condition of metastasis in gastric cancer. The survival duration of a patient with advanced stage gastric cancer, may be improved by gene therapy. In this study, we used an oncolytic adenovirus vector (Ad/TRAIL-E1) that expresses both the TRAIL and E1A genes under the control of a tumor-specific promoter. We evaluated the anti-tumor effect of Ad/TRAIL-E1 on gastric cancer cells in vitro, as well as in vivo in a xenograft peritoneal carcinomatosis mouse model. Our data showed that Ad/TRAIL-E1 induced TRAIL-mediated apoptosis in gastric cancer cell lines, but not in the normal cell lines. In addition, Ad/TRAIL-E1 significantly inhibited peritoneal metastasis and prolonged the survival of mice without treatment-related toxicity. Therefore, tumor-specific TRAIL expression from an oncolytic adenovirus vector may provide a novel therapeutic approach for the treatment of advance stage gastric cancer with peritoneal dissemination.
Collapse
|
10
|
Abraham A, Natraj U, Karande AA, Gulati A, Murthy MRN, Murugesan S, Mukunda P, Savithri HS. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci Rep 2016; 6:21803. [PMID: 26905902 PMCID: PMC4764859 DOI: 10.1038/srep21803] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.
Collapse
Affiliation(s)
- Ambily Abraham
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Usha Natraj
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Ashutosh Gulati
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | - Mathur R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | | | | | | |
Collapse
|
11
|
Vasiljevic S, Beale EV, Bonomelli C, Easthope IS, Pritchard LK, Seabright GE, Caputo AT, Scanlan CN, Dalziel M, Crispin M. Redirecting adenoviruses to tumour cells using therapeutic antibodies: Generation of a versatile human bispecific adaptor. Mol Immunol 2015; 68:234-43. [PMID: 26391350 DOI: 10.1016/j.molimm.2015.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Effective use of adenovirus-5 (Ad5) in cancer therapy is heavily dependent on the degree to which the virus's natural tropism can be subverted to one that favours tumour cells. This is normally achieved through either engineering of the viral fiber knob or the use of bispecific adaptors that display both adenovirus and tumour antigen receptors. One of the main limitations of these strategies is the need to tailor each engineering event to any given tumour antigen. Here, we explore bispecific adaptors that can utilise established anti-cancer therapeutic antibodies. Conjugates containing bacterially derived antibody binding motifs are efficient at retargeting virus to antibody targets. Here, we develop a humanized strategy whereby we synthesise a re-targeting adaptor based on a chimeric Ad5 ligand/antibody receptor construct. This adaptor acts as a molecular bridge analogous to therapeutic antibody mediated cross-linking of cytotoxic effector and tumour cells during immunotherapy. As a proof or principle, we demonstrate how this adaptor allows efficient viral recognition and entry into carcinoma cells through the therapeutic monoclonal antibodies Herceptin/trastuzumab and bavituximab. We show that targeting can be augmented by use of contemporary antibody enhancement strategies such as the selective elimination of competing serum IgG using "receptor refocusing" enzymes and we envisage that further improvements are achievable by enhancing the affinities between the adaptor and its ligands. Humanized bispecific adaptors offer the promise of a versatile retargeting technology that can exploit both clinically approved adenovirus and therapeutic antibodies.
Collapse
Affiliation(s)
- Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Emma V Beale
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Camille Bonomelli
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Iona S Easthope
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Alessandro T Caputo
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Christopher N Scanlan
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
12
|
Shirasu N, Yamada H, Shibaguchi H, Kuroki M, Kuroki M. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int J Cancer 2014; 135:2697-710. [PMID: 24740257 DOI: 10.1002/ijc.28907] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022]
Abstract
Conventional photodynamic therapy (PDT) for cancer is limited by the insufficient efficacy and specificity of photosensitizers. We herein describe a highly effective and selective tumor-targeted PDT using a near-infrared (NIR) photosensitizer, IRDye700DX, conjugated to a human monoclonal antibody (Ab) specific for carcinoembryonic antigen (CEA). The antitumor effects of this Ab-assisted PDT, called photoimmunotherapy (PIT), were investigated in vitro and in vivo. The Ab-IRDye conjugate induced potent cytotoxicity against CEA-positive tumor cells after NIR-irradiation, whereas CEA-negative cells were not affected at all, even in the presence of excess photoimmunoconjugate. We found an equivalent phototoxicity and a predominant plasma membrane localization of Ab-IRDye after both one and six hours of incubation. Either no or little caspase activation and membrane peroxidation were observed in PIT-treated cells and a panel of scavengers for reactive oxygen species showed only partial inhibition of the phototoxic effect. Strikingly, Ab-IRDye retained significant phototoxicity even under hypoxia. We established a xenograft model, which allowed us to sensitively investigate the therapeutic efficacy of PIT by non-invasive bioluminescence imaging. Luciferase-expressing MKN-45-luc human gastric carcinoma cells were subcutaneously implanted into both flanks of nude mice. NIR-irradiation was performed for only the tumor on one side. In vivo imaging and measurement of the tumor size revealed that a single PIT treatment, with intraperitoneal administration of Ab-IRDye and subsequent NIR-irradiation, caused rapid cell death and significant inhibition of tumor growth, but only on the irradiated side. Together, these data suggest that Ab-IRDye-mediated PIT has great potential as an anticancer therapeutics targeting CEA-positive tumors.
Collapse
Affiliation(s)
- Naoto Shirasu
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Japan
| | | | | | | | | |
Collapse
|
13
|
Kato K. [A novel screening method to establish tumor-targeting antibodies reliable for drug delivery system]. YAKUGAKU ZASSHI 2014; 133:931-8. [PMID: 23995800 DOI: 10.1248/yakushi.13-00190-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Establishment of a system that allows selective drug delivery and gene silencing to a tumor is expected to enable targeted therapy. We constructed a genetically modified adenovirus incorporating an IgG Fc-binding motif from the Staphylococcus protein A, Z33 (Adv-FZ33). By cross-linking the Adv-FZ33 virus and the surface antigen molecules with the targeting monoclonal antibodies (mAbs), we attained highly enhanced gene deliveries into the respective antigen-positive cancer cells. Therefore, we aimed to establish a systematic screening method to search for antibody and cell surface target candidates that would provide highly selective anti-cancer reagents to malignant tumors. Using an Adv-FZ33, hybridoma libraries producing a variety of mAbs for human pancreatic, prostate, lung or ovarian carcinoma cells were screened, and we were able to selectively obtain several mAbs which had potent high affinity and recognized antigens of high structure. Within these mAbs, we have identified tumor cell target molecules including not only carcinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM), epidermal growth factor receptor (EGFR), prostate specific membrane antigen (PSMA) but also novel tumor surface target molecules such as phosphatidic acid phosphatase type 2a (PAP2a) and interleukin-13 receptor variant α2 (IL-13Rα2) as tumor antigens. Overall, these results indicate that this type of inductive method approach is a reliable strategy for screening in antibody therapy on par with antibody-dependent drug-delivery system.
Collapse
Affiliation(s)
- Kazunori Kato
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitoma, Japan.
| |
Collapse
|
14
|
Pille J, Cardinale D, Carette N, Di Primo C, Besong-Ndika J, Walter J, Lecoq H, van Eldijk MB, Smits FCM, Schoffelen S, van Hest JCM, Mäkinen K, Michon T. General Strategy for Ordered Noncovalent Protein Assembly on Well-Defined Nanoscaffolds. Biomacromolecules 2013; 14:4351-9. [DOI: 10.1021/bm401291u] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jan Pille
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela Cardinale
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
| | - Noëlle Carette
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
| | | | - Jane Besong-Ndika
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
- Department
of Food and Environmental Sciences, Latokartanonkaari 11, FI-00014 University of Helsinki, Finland
| | - Jocelyne Walter
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
- CNRS, Délégation Aquitaine, esplanade des Arts et Métiers, F-33402
Talence Cedex, France
| | - Hervé Lecoq
- UR
407 pathologie Végétale, INRA, F-84140 Montfavet, France
| | - Mark B. van Eldijk
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ferdinanda C. M. Smits
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sanne Schoffelen
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. M. van Hest
- Institute
for Molecules and Materials, Radboud University Nijmegen, Huygens Building,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kristiina Mäkinen
- Department
of Food and Environmental Sciences, Latokartanonkaari 11, FI-00014 University of Helsinki, Finland
| | - Thierry Michon
- UMR
1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71, av. Edouard
Bourlaux, CS 20032-33882 Villenave d’Ornon Cedex, France
| |
Collapse
|
15
|
Goldufsky J, Sivendran S, Harcharik S, Pan M, Bernardo S, Stern RH, Friedlander P, Ruby CE, Saenger Y, Kaufman HL. Oncolytic virus therapy for cancer. Oncolytic Virother 2013; 2:31-46. [PMID: 27512656 DOI: 10.2147/ov.s38901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of oncolytic viruses to treat cancer is based on the selection of tropic tumor viruses or the generation of replication selective vectors that can either directly kill infected tumor cells or increase their susceptibility to cell death and apoptosis through additional exposure to radiation or chemotherapy. In addition, viral vectors can be modified to promote more potent tumor cell death, improve the toxicity profile, and/or generate host antitumor immunity. A variety of viruses have been developed as oncolytic therapeutics, including adenovirus, vaccinia virus, herpesvirus, coxsackie A virus, Newcastle disease virus, and reovirus. The clinical development of oncolytic viral therapy has accelerated in the last few years, with several vectors entering clinical trials for a variety of cancers. In this review, current strategies to optimize the therapeutic effectiveness and safety of the major oncolytic viruses are discussed, and a summary of current clinical trials is provided. Further investigation is needed to characterize better the clinical impact of oncolytic viruses, but there are increasing data demonstrating the potential promise of this approach for the treatment of human and animal cancers.
Collapse
Affiliation(s)
- Joe Goldufsky
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA
| | - Shanthi Sivendran
- Department of Hematology/Oncology Medical Specialists, Lancaster General Health, Lancaster, PA, USA
| | - Sara Harcharik
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Michael Pan
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Sebastian Bernardo
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Richard H Stern
- Department of Radiology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Philip Friedlander
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Carl E Ruby
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA; Department of Surgery, Rush University Medical Center, Chicago IL, USA
| | - Yvonne Saenger
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Howard L Kaufman
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA; Department of Surgery, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
16
|
Mohit E, Rafati S. Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity. Mol Immunol 2013; 56:599-611. [PMID: 23911418 DOI: 10.1016/j.molimm.2013.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/20/2022]
Abstract
Nowadays many therapeutic agents such as suicide genes, anti-angiogenesis agents, cytokines, chemokines and other therapeutic genes were delivered to cancer cells. Various biological delivery systems have been applied for directing therapeutic gene to target cells. Some of these successful preclinical studies, steps forward to clinical trials and a few are examined in phase III clinical trials. In this review, the biological gene delivery systems were categorized into microorganism and cell based delivery systems. Viral, bacterial, yeast and parasite are among microorganism based delivery systems which are expanded in this review. In cell based approach, different strategies such as tumor cells, stem cells, dendritic cells and sertoli cells will be discussed. Different drawbacks are associated with each delivery system; therefore, many strategies have been improved and potentiated their direction toward specific target cells. Herein, further to the principle of each delivery system, the progresses of these approaches for development of newer generation are discussed.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
17
|
Chen ZH, Wu YS, Chen MJ, Hou JY, Ren ZQ, Sun D, Liu TC. A novel homogeneous time-resolved fluoroimmunoassay for carcinoembryonic antigen based on water-soluble quantum dots. J Fluoresc 2013; 23:649-57. [PMID: 23471623 DOI: 10.1007/s10895-013-1175-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
Abstract
Quantum dots are not widely used in clinical diagnosis. However, the homogeneous time-resolved fluorescence assay possesses many advantages over current methods for the detection of carcinoembryonic antigen (CEA), a primary marker for many cancers and diseases. Therefore, a novel luminescent terbium chelates- (LTCs) and quantum dots-based homogeneous time-resolved fluorescence assay was developed to detect CEA. Glutathione-capped quantum dots (QDs) were prepared from oil-soluble QDs with a 565 nm emission peak. Conjugates (QDs-6 F11) were prepared with QDs and anti-CEA monoclonal antibody. LTCs were prepared and conjugates (LTCs-S001) were prepared with another anti-CEA monoclonal antibody. The fluorescence lifetime of QDs was optimized for sequential analysis. The Förster distance (R0) was calculated as 61.9 Å based on the overlap of the spectra of QDs-6 F11 and LTCs-S001. Using a double-antibody sandwich approach, the above antibody conjugates were used as energy acceptor and donor, respectively. The signals from QDs were collected in time-resolved mode and analyzed for the detection of CEA. The results show that the QDs were suitable for time-resolved fluoroassays. The spatial distance of the donor-acceptor pair was calculated to be 61.9 Å. The signals from QDs were proportional to CEA concentration. The standard curve was LogY = 2.75566 + 0.94457 LogX (R = 0.998) using the fluorescence counts (Y) of QDs and the concentrations of CEA (X). The calculated sensitivity was 0.4 ng/mL. The results indicate that water-soluble QDs are suitable for the homogenous immunoassay. This work has expanded future applications of QDs in homogeneous clinical bioassays. Furthermore, a QDs-based homogeneous multiplex immunoassay will be investigated as a biomarker for infectious diseases in future research.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2012; 21:561-9. [PMID: 23070115 DOI: 10.1038/mt.2012.211] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains an untreatable human brain malignancy. Despite promising preclinical studies using oncolytic herpes simplex virus (oHSV) vectors, efficacy in patients has been limited by inefficient virus replication in tumor cells. This disappointing outcome can be attributed in part to attenuating mutations engineered into these viruses to prevent replication in normal cells. Alternatively, retargeting of fully replication-competent HSV to tumor-associated receptors has the potential to achieve tumor specificity without impairment of oncolytic activity. Here, we report the establishment of an HSV retargeting system that relies on the combination of two engineered viral glycoproteins, gD and gB, to mediate highly efficient HSV infection exclusively through recognition of the abundantly expressed epidermal growth factor receptor (EGFR) on glioblastoma cells. We demonstrate efficacy in vitro and in a heterotopic tumor model in mice. Evidence for systemically administered virus homing to the tumor mass is presented. Treatment of orthotopic primary human GBM xenografts demonstrated prolonged survival with up to 73% of animals showing a complete response as confirmed by magnetic resonance imaging. Our study describes an approach to HSV retargeting that is effective in a glioma model and may be applicable to the treatment of a broad range of tumor types.
Collapse
|
19
|
Miyamoto H, Baba S, Nakajima S, Mine T, Yoshikawa N, Fumoto S, Nishida K. Pretreatment with epidermal growth factor enhances naked plasmid DNA transfer onto gastric serosal surface in mice. Biol Pharm Bull 2012; 35:903-8. [PMID: 22687482 DOI: 10.1248/bpb.35.903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a simple administration method, which is gastric serosal surface instillation of naked plasmid DNA (pDNA) in experimental animals. The purpose of this study was to improve gastric gene transfer efficiency by pre-treatment with a macropinocytosis enhancer, such as fetuin or epidermal growth factor (EGF), in mice. A series of concentrations of fetuin were instilled onto gastric serosal surface prior to instillation of naked pDNA in mice; however, fetuin did not improve transgene expression in the stomach 6 h after administration of pDNA. EGF also did not affect transgene expression in the stomach when pDNA was instilled immediately after EGF instillation. On the other hand, when pDNA was instilled onto gastric serosal surface 24 h after EGF treatment, transgene expression in the stomach was significantly improved by 2.6-fold. In addition, transgene-positive cells were increased 5.3-fold by EGF pre-treatment. High transgene expression in the stomach lasted for 48 h in the EGF pre-treatment group in comparison with that in the no pre-treatment group. These findings are valuable to develop an effective method of in vivo gene transfer to the stomach.
Collapse
|
20
|
Koyama T, Shimura M, Minemoto Y, Nohara S, Shibata S, Iida Y, Iwashita S, Hasegawa M, Kurabayashi T, Hamada H, Kono K, Honda E, Aoki I, Ishizaka Y. Evaluation of selective tumor detection by clinical magnetic resonance imaging using antibody-conjugated superparamagnetic iron oxide. J Control Release 2012; 159:413-8. [DOI: 10.1016/j.jconrel.2012.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 01/23/2023]
|
21
|
Mao W, Zhu X, Tang D, Zhao Y, Zhao B, Ma G, Zhang X, An G, Li Y. TNF-α expression in the UCB-MSCs as stable source inhibits gastric cancers growth in nude mice. Cancer Invest 2012; 30:463-72. [PMID: 22536934 DOI: 10.3109/07357907.2012.675385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are potentially vehicles for therapy of malignant diseases. In our study, we investigated whether UCB-MSCs are capable to carry TNF-α to target tumor cells in vivo. The human gastric cancer cells SGC-7901 were subcutaneously injected into the abdomen near groins of 15 nude mice to establish experiment tumor models. MSC-TNF-α demonstrated a strong suppressive effect on the tumor growth compared with MSC and NaCl. Thus, MSC-TNF-α can obviously inhibit Gastric cancers growth in nude mice, indicating that UCB-MSCs may have the potential to become a prevention approach against gastric cancer.
Collapse
Affiliation(s)
- Weizheng Mao
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mine T, Ishii H, Nakajima S, Yoshikawa N, Miyamoto H, Nakashima M, Nakamura J, Fumoto S, Nishida K. Rubbing gastric serosal surface enhances naked plasmid DNA transfer in rats and mice. Biol Pharm Bull 2011; 34:1514-7. [PMID: 21881243 DOI: 10.1248/bpb.34.1514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed in vivo gene transfer to mesothelial cells on the peritoneal organs, including the stomach. Simple instillation of naked plasmid DNA onto the gastric serosal surface in mice resulted in effective but transient transgene expression. Here, we developed a simple method to improve not only the transfection efficiency but also the duration of transgene expression. Rubbing the gastric serosal surface using a medical spoon immediately after instillation of naked plasmid DNA onto the gastric serosal surface resulted in 59-fold higher transgene expression 24 h after administration in rats. Without rubbing, transgene expression decreased under the detection limit 7 d after administration. On the other hand, rubbing the gastric serosal surface with a medical spoon after instillation of plasmid DNA prolonged transgene expression for one month. Mechanistic study in mice revealed that improved transfection should not be due to stimulation of cell function such as macropinocytosis by rubbing because rubbing before instillation of plasmid DNA did not improve transfection. Plasmid DNA should enter effectively into cells during rubbing. These findings are valuable to develop an effective method of in vivo gene transfer into peritoneal organs.
Collapse
Affiliation(s)
- Toyoharu Mine
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Viral delivery for gene therapy against cell movement in cancer. Adv Drug Deliv Rev 2011; 63:671-7. [PMID: 21616108 DOI: 10.1016/j.addr.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/15/2011] [Accepted: 05/07/2011] [Indexed: 12/17/2022]
Abstract
Viral delivery for cancer gene therapy is a promising approach, where traditional radiotherapy or chemotherapy to limit proliferation and movement of cancer cells has met resistance. Based on the new understanding of the biology of the viral vectors, therapeutic viral vectors for cancer gene therapy have been improved for greater safety and efficacy as well as transitioned from being non-replicating to replication-competent. Traditional oncolytic vectors have focused on eliminating tumor growth, while novel vectors simultaneously target epithelial-to-mesenchymal transition (EMT) in cancer cells, which could further prevent and reverse the aggressive tumor progression. In this review, we highlight the illustrative examples of cancer gene therapy in clinical trials as well as preclinical data and include proposals on methods to further enhance the safety and efficacy of oncolytic viral vectors in cancer gene therapy.
Collapse
|
24
|
Baek H, Uchida H, Jun K, Kim JH, Kuroki M, Cohen JB, Glorioso JC, Kwon H. Bispecific adapter-mediated retargeting of a receptor-restricted HSV-1 vector to CEA-bearing tumor cells. Mol Ther 2011; 19:507-14. [PMID: 20924362 PMCID: PMC3048173 DOI: 10.1038/mt.2010.207] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023] Open
Abstract
The safety and efficacy of viral therapies for solid tumors can be enhanced by redirecting the virus infection to tumor-specific cell-surface markers. Successful retargeting of herpes simplex virus type 1 (HSV-1) has been achieved using vectors that carry a modified envelope glycoprotein D (gD) engineered to interact directly with novel receptors. In addition, soluble bridging molecules (adapters) have been used to link gD indirectly to cell-specific receptors. Here, we describe the development of an adapter connecting gD to the common tumor antigen carcinoembryonic antigen (CEA). The adapter consisted of a CEA-specific single-chain antibody fused to the gD-binding region of the gD receptor, herpes virus entry mediator (HVEM). We used this adapter in combination with a vector that is detargeted for recognition of the widely expressed gD receptor nectin-1, but retains an intact binding region for the less common HVEM. We show that the adapter enabled infection of HSV-resistant Chinese hamster ovary (CHO) cells expressing ectopic CEA and nectin-1/CEA-bearing human gastric carcinoma cells that are resistant to the vector alone. We observed cell-to-cell spread following adapter-mediated infection in vitro and reduced tumor growth in vivo, indicating that this method of vector retargeting may provide a novel strategy for tumor-specific delivery of tumoricidal HSV.
Collapse
Affiliation(s)
- Hyunjung Baek
- Division of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Takenouchi M, Hirai S, Sakuragi N, Yagita H, Hamada H, Kato K. Epigenetic modulation enhances the therapeutic effect of anti-IL-13R(alpha)2 antibody in human mesothelioma xenografts. Clin Cancer Res 2011; 17:2819-29. [PMID: 21357681 DOI: 10.1158/1078-0432.ccr-10-2986] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The interleukin-13 receptor α2 (IL-13Rα2) is expressed by a variety of human malignant cells. Here, we have examined the constitutive surface expression and the epigenetic regulation of IL-13Rα2 by human mesothelioma. We have also investigated the therapeutic effect of the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) and anti-IL-13Rα2 monoclonal antibody on mesothelioma xenografts. EXPERIMENTAL DESIGN Cell surface expression of IL-13Rα2 by various lung carcinomas was analyzed using flow cytometry. Therapeutic effects of anti-IL-13Rα2 and 5-aza-dC were investigated using antibody-dependent cellular cytotoxicity and proliferation assays and by monitoring the survival of mesothelioma-bearing mice. RESULTS We found that human malignant mesotheliomas expressed surface IL-13Rα2 on their surface and that it was upregulated by treatment with 5-aza-dC. This augmented expression of IL-13Rα2 resulted in growth inhibition of the mesothelioma cells when cocultured with anti-IL-13Rα2 and effector cells, such as splenocytes and peritoneal exudate cells. The growth inhibition of mesothelioma cells was mediated by IFN-γ that was only detected in the supernatant when effector cells were exposed to 5-aza-dC-treated tumors in the presence of anti-IL-13Rα2. Compared with the control or either regimen alone, in vivo administration of anti-IL-13Rα2 in combination with 5-aza-dC significantly prolonged the survival of mice with mesothelioma xenografts. CONCLUSIONS These observations indicate a promising role for IL-13Rα2 as a target for antibody treatment in malignant mesothelioma, and, in combination with epigenetic regulation by a DNA methylation inhibitor, suggest the potential for a novel strategy to enhance therapeutic potency.
Collapse
Affiliation(s)
- Makoto Takenouchi
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Takahashi S, Kato K, Nakamura K, Nakano R, Kubota K, Hamada H. Neural cell adhesion molecule 2 as a target molecule for prostate and breast cancer gene therapy. Cancer Sci 2011; 102:808-14. [DOI: 10.1111/j.1349-7006.2011.01855.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Kawashima R, Abei M, Fukuda K, Nakamura K, Murata T, Wakayama M, Seo E, Hasegawa N, Mizuguchi H, Obata Y, Hyodo I, Hamada H, Yokoyama KK. EpCAM- and EGFR-targeted selective gene therapy for biliary cancers using Z33-fiber-modified adenovirus. Int J Cancer 2011; 129:1244-53. [PMID: 21710497 DOI: 10.1002/ijc.25758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 09/08/2010] [Indexed: 12/14/2022]
Abstract
A critical issue in adenovirus (Ad)-based cancer gene therapy is to improve the specificity of gene delivery to cancer cells for better efficacy and safety. We explored methods of retargeting Ad vectors for selective gene therapy of human biliary cancers using the Ad incorporating an IgG Fc-binding motif (Z33) from the Staphylococcus protein A (Ad-FZ33) combined with tumor-specific antibodies. Flow cytometry analysis revealed high-expression levels of epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR) on human biliary cancer cells. Ad-FZ33 expressing LacZ combined with antibodies against EpCAM or EGFR, followed by β-gal assay, demonstrated highly efficient gene transduction in these biliary cancer cells, compared to the treatment with control antibody or without antibody. Ad-FZ33 expressing uracil phosphoribosyl transferase (UPRT), an enzyme which greatly enhances the toxicity of 5-fluorouracil (FU), combined with antibodies against EpCAM or EGFR, remarkably enhanced the sensitivity of biliary cancer cells to 5-FU. By contrast, the treatment did not affect the 5-FU sensitivity of the cells not expressing EpCAM or EGFR including normal hepatocytes. Finally, treatments with the UPRT-expressing Ad-FZ33 with antibodies against EpCAM or EGFR, followed by 5-FU administration, significantly suppressed the growth of biliary cancer xenografts in nude mice. These results indicate that the gene therapy mediated by the Z33 fiber modified Ad with anti-EpCAM or anti-EGFR antibodies offers a potentially effective therapeutic modality against biliary cancers.
Collapse
Affiliation(s)
- Rei Kawashima
- Division of Gastroenterology, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Imamura Y, Ishikawa S, Sato N, Karashima R, Hirashima K, Hiyoshi Y, Nagai Y, Koga Y, Hayashi N, Watanabe M, Yamada G, Baba H. Adenoviral oncolytic suicide gene therapy for a peritoneal dissemination model of gastric cancer in mice. Ann Surg Oncol 2009; 17:643-52. [PMID: 20012217 DOI: 10.1245/s10434-009-0852-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND Peritoneal dissemination of gastric cancer is often refractory to systemic therapies. Although adenoviral gene therapy has been reported to be a potentially useful therapeutic modality, the adenovirus itself has a dose-limiting toxicity. A novel system was constructed using adenoviral oncolytic suicide gene therapy targeting carcinoembryonic antigen (CEA), and its therapeutic effect and the possibility to reduce the total viral dose while still preserving the antitumor effect were assessed. METHODS Three types of adenoviruses were prepared for this novel system: (A) Ad/CEA-Cre, (B) Ad/lox-CD::UPRT for a Cre/loxP system, and (C) Ad/CEA-E1 for conditionally replicating adenovirus. The antitumor effect of the oncolytic suicide gene therapy (A + B + C) was then evaluated in vitro. Mice bearing peritoneal dissemination of human gastric cancer were treated with either this system (A + B + C) or with a tenfold viral dose of suicide gene therapy (A + B). The adverse effects in terms of hepatotoxicity were then evaluated between the two groups. RESULTS The current system (A + B + C) demonstrated significantly better cytotoxic effect for CEA-producing cell lines than did suicide gene therapy (A + B) at the same viral dose in vitro. The effect of oncolytic suicide gene therapy was almost equal to that of the tenfold viral dose of suicide gene therapy in vivo. The hepatotoxicity of the two treated groups was also found to be equivalent. CONCLUSION It was possible to reduce the total adenoviral dose of oncolytic suicide gene therapy while still preserving the antitumor effect.
Collapse
Affiliation(s)
- Yu Imamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto-City, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Oncolytic adenoviruses (Ads) constitute a promising new class of anticancer agent. They are based on the well-studied adenoviral vector system, which lends itself to concept-driven design to generate oncolytic variants. The first oncolytic Ad was approved as a drug in China in 2005, although clinical efficacy observed in human trials has failed to reach the high expectations that were based on studies in animal models. Current obstacles to the full realization of efficacy of this class of anticancer agent include (i) limited efficiency of infection and specific replication in tumor cells, (ii) limited vector spread within the tumor, (iii) imperfect animal models and methods of in vivo imaging, and (iv) an incomplete understanding of the interaction of these agents with the host. In this review, we discuss recent advances in the field of oncolytic Ads and potential ways to overcome current obstacles to their clinical application and efficacy.
Collapse
|
30
|
Nishi J, Fumoto S, Ishii H, Kodama Y, Nakashima M, Sasaki H, Nakamura J, Nishida K. Highly stomach-selective gene transfer following gastric serosal surface instillation of naked plasmid DNA in rats. J Gastroenterol 2009; 43:912-9. [PMID: 19107334 DOI: 10.1007/s00535-008-2301-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/13/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND The purpose of this study was to achieve stomach-selective gene transfer in rats by our simple and novel administration method, which is gastric serosal surface instillation of naked plasmid DNA (pDNA). METHODS Naked pDNA encoding firefly luciferase as a reporter gene was instilled onto the gastric serosal surface in male Wistar rats. As controls, we performed intraperitoneal, intragastric and intravenous administration of naked pDNA. At appropriate time intervals, we measured luciferase activities in the stomach and other tissues. RESULTS Gene expression in the stomach 6 h after gastric serosal surface instillation of naked pDNA (5 microg) was significantly higher than that after using other administration methods. The present study is the first report on stomach-selective gene transfer following instillation of naked pDNA onto the gastric serosal surface in rats. Also, the gene expression level in the stomach 6 h after gastric serosal surface instillation of naked pDNA was markedly higher than that in other tissues. In a dose-dependent study, the gene expression level was saturated over 5 microg. Gene expression in the stomach was detected 3 h after gastric serosal surface instillation of naked pDNA. The gene expression level peaked 12-24 h after instillation of naked pDNA, then decreased to a level similar to 3 h at 48 h. CONCLUSIONS Gastric serosal surface in stillation of naked pDNA can be a highly stomach-selective gene transfer method in rats.
Collapse
Affiliation(s)
- Junya Nishi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nishi J, Fumoto S, Ishii H, Kodama Y, Nakashima M, Sasaki H, Nakamura J, Nishida K. Improved stomach selectivity of gene expression following microinstillation of plasmid DNA onto the gastric serosal surface in mice. Eur J Pharm Biopharm 2008; 69:633-9. [DOI: 10.1016/j.ejpb.2007.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 09/01/2007] [Accepted: 12/19/2007] [Indexed: 12/11/2022]
|
32
|
Khalighinejad N, Hariri H, Behnamfar O, Yousefi A, Momeni A. Adenoviral gene therapy in gastric cancer: A review. World J Gastroenterol 2008; 14:180-4. [PMID: 18186552 PMCID: PMC2675111 DOI: 10.3748/wjg.14.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors. Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.
Collapse
|
33
|
Ishii K, Nakamura K, Kawaguchi S, Li R, Hirai S, Sakuragi N, Wada T, Kato K, Yamashita T, Hamada H. Selective gene transfer into neurons via Na,K-ATPase β1. Targeting gene transfer with monoclonal antibody and adenovirus vector. J Gene Med 2008; 10:597-609. [DOI: 10.1002/jgm.1164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Masuta Y, Kato K, Tomihara K, Nakamura K, Sasaki K, Takahashi S, Hamada H. Gene transfer of noncleavable cell surface mutants of human CD154 induces the immune response and diminishes systemic inflammatory reactions. J Immunother 2007; 30:694-704. [PMID: 17893562 DOI: 10.1097/cji.0b013e31811a5c51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD154 (CD40-ligand) is a critical transmembrane molecule with potent immune-stimulatory properties that is used in clinical applications of gene therapy for leukemia and lymphoma. However, CD154 is cleaved into a soluble form, and high levels of sCD154 contribute to systemic inflammatory and cardiovascular diseases, suggesting a deleterious side effect of CD154 gene therapy. In this study, we engineered noncleavable mutants of human CD154 with point mutations to develop a potentially less toxic molecule in vivo. In contrast to wild-type CD154 (CD154-WT) subsequently released as sCD154, both mutants CD154-M3 and CD154-M4 were resistant to cleavage in tumor cells. Also, CD40-expressing leukemia B cells transfected with CD154-M3 mutant were highly effective stimulators in a mixed lymphocyte-leukemia reaction, indicating that CD154-M3 mutant did not lose biologic activity. In mice transplanted with tumors expressing CD154-WT, we found increased plasma levels of human sCD154 followed by various systemic inflammatory reactions such as glomerulonephritis and an increased number of infiltrating mononuclear cells in the liver. However, CD154-M3 mutant did not induce any systemic inflammatory effects in vivo. As such, the noncleavable mutant of CD154 is fully capable of inducing the immune response with less toxic properties and is a useful tool for CD154 immune gene therapy.
Collapse
Affiliation(s)
- Yukari Masuta
- Department of Molecular Medicine, Sapporo Medical University, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Suzuki K, Nakamura K, Kato K, Hamada H, Tsukamoto T. Exploration of target molecules for prostate cancer gene therapy. Prostate 2007; 67:1163-73. [PMID: 17516570 DOI: 10.1002/pros.20613] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Focusing on Adv-FZ33, a modified adenovirus in which a synthetic 33-amino-acid immunoglobulin G-binding domain was inserted into the adenoviral fiber protein, we tried to identify suitable target molecules for prostate cancer-specific gene therapy. METHODS Hybridomas were established from mice immunized with prostate cancer cell lines. The hybridomas were screened using Adv-FZ33 to create monoclonal antibodies (mAbs) that induced high gene transfer efficiency for PC-3 cells. Furthermore, we identified target antigens of the mAbs by immunoprecipitation and mass spectrometry, and investigated the expression of target molecules by flow cytometry and immunocytochemistry. RESULTS Using Adv-FZ33, we established four different mouse mAbs that increased transduction efficiency for PC-3. The target antigens identified were Ep-CAM, CD155, HAI-1, and Na,K-ATPase beta1. These antigens were expressed in several cancer cell lines, including prostate cancer. Human prostatic myofibroblast cells lacked expression of Ep-CAM and HAI-1. CONCLUSIONS We established anti-Ep-CAM mAb and anti- HAI-1 mAbs. Gene transduction via Ep-CAM and HAI-1 may be a novel strategy for treatment of prostate cancer.
Collapse
Affiliation(s)
- Kazuhiro Suzuki
- Department of Molecular Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
36
|
Pereboeva L, Komarova S, Roth J, Ponnazhagan S, Curiel DT. Targeting EGFR with metabolically biotinylated fiber-mosaic adenovirus. Gene Ther 2007; 14:627-37. [PMID: 17251987 PMCID: PMC2203207 DOI: 10.1038/sj.gt.3302916] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenovirus (Ad)-based vectors are useful gene delivery vehicles for a variety of applications. Despite their attractive properties, many in vivo applications require modulation of the viral tropism. Targeting approaches applied to adenoviral vectors included genetic modification of the viral capsid, controlled expression of the transgene and combinatorial approaches that combine two or more targeting elements in single vectors. Most of these studies confirmed successful retargeting in cell cultures, however, in vivo gains of targeted adenoviral vectors have not been widely demonstrated. We have developed a combinatorial retargeting approach utilizing metabolically biotinylated Ad, where the biotin acceptor peptide was incorporated in one of the fibers in a dual fiber viral particle resulting in metabolically biotinylated fiber-mosaic Ad (mBfMAd). We have utilized this vector in complex with epidermal growth factor (EGF)-Streptavidin to retarget fiber-mosaic virus to EGF receptor (EGFR) expressing cells in vitro and confirmed an increased infectivity of the retargeting complex. Most importantly, the utility of this strategy was demonstrated in vivo in two distinct animal models. In both models tested, retargeted mBfMAd demonstrated an increased ratio of gene expression in target tissues compared to the liver expression profile. Thus, metabolically biotinylated fiber-mosaic virus in combination with appropriate adapters can be successfully exploited for adenoviral retargeting strategies.
Collapse
Affiliation(s)
- L Pereboeva
- Division of Human Gene Therapy, Departments of Medicine, Obstetric and Gynecology, Pathology and Surgery, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Komarova
- Division of Human Gene Therapy, Departments of Medicine, Obstetric and Gynecology, Pathology and Surgery, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Roth
- Division of Human Gene Therapy, Departments of Medicine, Obstetric and Gynecology, Pathology and Surgery, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Ponnazhagan
- Department of Pathology, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - DT Curiel
- Division of Human Gene Therapy, Departments of Medicine, Obstetric and Gynecology, Pathology and Surgery, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|