1
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
2
|
Wolfe AR, Cui T, Baie S, Corrales-Guerrero S, Webb A, Castro-Aceituno V, Shyu DL, Karasinska JM, Topham JT, Renouf DJ, Schaeffer DF, Halloran M, Packard R, Robb R, Chen W, Denko N, Lisanti M, Thompson TC, Frank P, Williams TM. Nutrient scavenging-fueled growth in pancreatic cancer depends on caveolae-mediated endocytosis under nutrient-deprived conditions. SCIENCE ADVANCES 2024; 10:eadj3551. [PMID: 38427741 PMCID: PMC10906919 DOI: 10.1126/sciadv.adj3551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its nutrient-scavenging ability, crucial for tumor progression. Here, we investigated the roles of caveolae-mediated endocytosis (CME) in PDAC progression. Analysis of patient data across diverse datasets revealed a strong association of high caveolin-1 (Cav-1) expression with higher histologic grade, the most aggressive PDAC molecular subtypes, and worse clinical outcomes. Cav-1 loss markedly promoted longer overall and tumor-free survival in a genetically engineered mouse model. Cav-1-deficient tumor cell lines exhibited significantly reduced proliferation, particularly under low nutrient conditions. Supplementing cells with albumin rescued the growth of Cav-1-proficient PDAC cells, but not in Cav-1-deficient PDAC cells under low glutamine conditions. In addition, Cav-1 depletion led to significant metabolic defects, including decreased glycolytic and mitochondrial metabolism, and downstream protein translation signaling pathways. These findings highlight the crucial role of Cav-1 and CME in fueling pancreatic tumorigenesis, sustaining tumor growth, and promoting survival through nutrient scavenging.
Collapse
Affiliation(s)
- Adam R. Wolfe
- Department of Radiation Oncology, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Sooin Baie
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Duan-Liang Shyu
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | | | - Daniel J. Renouf
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Megan Halloran
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Rebecca Packard
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ryan Robb
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Michael Lisanti
- Translational Medicine, University of Salford, Greater Manchester M5 4WT, UK
- Lunella Biotech, Inc., 145 Richmond Road, Ottawa, ON K1Z 1A1, Canada
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, USA
| | - Philippe Frank
- SGS France, Health & Nutrition, Saint-Benoît, France
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR, 1069 Tours, France
| | | |
Collapse
|
3
|
Bian Q, Li B, Zhang L, Sun Y, Zhao Z, Ding Y, Yu H. Molecular pathogenesis, mechanism and therapy of Cav1 in prostate cancer. Discov Oncol 2023; 14:196. [PMID: 37910338 PMCID: PMC10620365 DOI: 10.1007/s12672-023-00813-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Prostate cancer is the second incidence of malignant tumors in men worldwide. Its incidence and mortality are increasing year by year. Enhanced expression of Cav1 in prostate cancer has been linked to both proliferation and metastasis of cancer cells, influencing disease progression. Dysregulation of the Cav1 gene shows a notable association with prostate cancer. Nevertheless, there is no systematic review to report about molecular signal mechanism of Cav1 and drug treatment in prostate cancer. This article reviews the structure, physiological and pathological functions of Cav1, the pathogenic signaling pathways involved in prostate cancer, and the current drug treatment of prostate cancer. Cav1 mainly affects the occurrence of prostate cancer through AKT/mTOR, H-RAS/PLCε, CD147/MMPs and other pathways, as well as substance metabolism including lipid metabolism and aerobic glycolysis. Baicalein, simvastatin, triptolide and other drugs can effectively inhibit the growth of prostate cancer. As a biomarker of prostate cancer, Cav1 may provide a potential therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Qiang Bian
- Department of Pathophysiology, Weifang Medicine University, Weifang, 261053, Shandong, People's Republic of China
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China
| | - Bei Li
- Department of Radiological Image, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China
| | - Luting Zhang
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Yinuo Sun
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medicine University, Weifang, 261053, Shandong, People's Republic of China.
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China.
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
5
|
Li M, Zhang YJ, Liu DX, Liu Z, Fu M, Yang QR, Sun HS. Expression of caveolin family proteins in serum of patients with systemic lupus erythematosus. Lupus 2021; 30:1819-1828. [PMID: 34569384 DOI: 10.1177/09612033211035508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Caveolin family proteins, including caveolin-1 (Cav-1), caveolin-2 (Cav-2), and caveolin-3 (Cav-3), are identified as the principal protein components of caveolae in mammalian cells. Circulating form of caveolin family proteins can be used as a good potential biomarker for predicting disease. METHODS To investigate the clinical significance of the serological levels of caveolin family proteins in patients with systemic lupus erythematosus (SLE), we evaluated the soluble serum levels of caveolin family proteins in patients with SLE by enzyme-linked immunosorbent assay (ELISA) and assessed their associations with various known clinical variables. RESULTS The major findings of our study are as follows: Cav-2 was not detected in serum of SLE patients and normal controls (NCs). Serum Cav-1 and Cav-3 levels were higher in SLE patients compared with NCs. There were no significant correlations between serum Cav-1 and Cav-3 levels and SLE disease activity. Further analysis showed that serum Cav-3 may be more valuable as a marker than serum Cav-1 in SLE patients. CONCLUSION Serum levels of Cav-1 and Cav-3 might have a diagnostic role in patients with SLE. However, their predictive and prognostic value was not determined. Further studies are necessary to determine the potential clinical significance of these assays in SLE.
Collapse
Affiliation(s)
- Ming Li
- Department of Rheumatology and Immunology, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, P.R. China
| | - Yi-Jing Zhang
- Department of Geriatric Gastroenterology, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, P.R. China
| | - Dong-Xia Liu
- Department of Rheumatology and Immunology, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, P.R. China
| | - Zhi Liu
- Department of Clinical Laboratory, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, P.R. China
| | - Min Fu
- Department of Rheumatology and Immunology, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, P.R. China
| | - Qing-Rui Yang
- Department of Rheumatology and Immunology, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, P.R. China
| | - Hong-Sheng Sun
- Department of Rheumatology and Immunology, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, P.R. China
| |
Collapse
|
6
|
Panic A, Reis H, Wittka A, Darr C, Hadaschik B, Jendrossek V, Klein D. The Biomarker Potential of Caveolin-1 in Penile Cancer. Front Oncol 2021; 11:606122. [PMID: 33868995 PMCID: PMC8045968 DOI: 10.3389/fonc.2021.606122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023] Open
Abstract
Various types of human cancers were characterized by an altered expression of epithelial or stromal caveolin-1 (CAV1). However, the clinical significance of CAV1 expression in penile cancer remains largely unknown. Here the expression patterns of CAV1 were analyzed in a retrospective cohort (n=43) of penile squamous cell carcinomas (SCC). Upon penile cancer progression, significantly increased CAV1-levels were determined within the malignant epithelium, whereas within the tumor stroma, namely the fibroblastic tumor compartment harboring activated and/or cancer associated fibroblasts, CAV1 levels significantly decline. Concerning the clinicopathological significance of CAV1 expression in penile cancer as well as respective epithelial-stromal CAV1 distributions, high expression within the tumor cells as well as low expression of CAV1 within the stromal compartment were correlated with decreased overall survival of penile cancer patients. Herein, CAV1 expressions and distributions at advanced penile cancer stages were independent of the immunohistochemically proven tumor protein p53 status. In contrast, less differentiated p16-positive tumor epithelia (indicative for human papilloma virus infection) were characterized by significantly decreased CAV1 levels. Conclusively, we provide further and new evidence that the characteristic shift in stromal‐epithelial CAV1 being functionally relevant to tumor progression even occurs in penile SCC.
Collapse
Affiliation(s)
- Andrej Panic
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christopher Darr
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
7
|
Abstract
Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.
Collapse
|
8
|
Chen P, Zhang YL, Xue B, Xu GY. Association of Caveolin-1 Expression With Prostate Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 10:562774. [PMID: 33489874 PMCID: PMC7820696 DOI: 10.3389/fonc.2020.562774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose The prognostic value of caveolin-1 in prostate cancer remains uncertain. Hence, this meta-analysis was performed to evaluate the prognostic value of caveolin-1 in prostate cancer, as well as ascertain the relationship between caveolin-1 expression and clinicopathological characteristics of prostate cancer patients. Methods The PubMed, Embase, Chinese National Knowledge Infrastructure and Chinese Biology Medicine databases were electronically searched to retrieve published studies on caveolin-1 expression in prostate cancer. After study selection and data extraction, the meta-analysis was conducted using Review manager 5.3 software. Odds ratio (OR) with 95% confidence interval (CI) was used to estimate the pooled effect. Funnel plot was used to assess publication bias. Results A total of ten studies were enrolled, which included 3976 cases of prostate cancer, 72 cases of high-grade intraepithelial neoplasia (HGPIN), and 157 normal controls. Results of the meta-analysis showed that the positive rate of caveolin-1 expression in prostate cancer was 18.28 times higher than that in normal control (OR= 18.28, 95% CI: 9.02–37.04, p<0.01), and 4.73 times higher than that in HGPIN (OR= 4.73, 95% CI: 2.38–9.42, p<0.01). The relationship between caveolin-1 and clinicopathological characteristics of prostate cancer showed that the differences in caveolin-1 expression in patients with prostate-specific antigen (PSA) >10 vs. ≤ 10 (OR=2.09, 95% CI: 1.35–3.22, p<0.01), differentiation degree low vs. medium/high (OR=2.74, 95% CI: 1.84–4.08, p<0.01), TNM stage T3+T4 vs. T1+T2 (OR=2.77, 95% CI: 1.78–4.29, p<0.01), and lymph node metastasis present vs. absent (OR=2.61, 95% CI: 1.84–3.69, p<0.01) were statistically significant. The correlation analysis between caveolin-1 and the survival time of patients with prostate cancer demonstrated that caveolin-1 was closely related to the prognosis of prostate cancer patients (HR=1.50, 95% CI: 1.28–1.76, p<0.01). Conclusion Caveolin-1 is overexpressed in prostate cancer, which can serve as a risk factor and adverse clinicopathological feature of prostate cancer. Caveolin-1 can also predict poor survival in prostate cancer patients after radical prostatectomy.
Collapse
Affiliation(s)
- Pei Chen
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, China
| | - Yu-Ling Zhang
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, China
| | - Bai Xue
- Department of Medical Technology, Jiangsu College of Nursing, Huai'an, China
| | - Guo-Ying Xu
- Department of Medical Technology, Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
9
|
Ariotti N, Wu Y, Okano S, Gambin Y, Follett J, Rae J, Ferguson C, Teasdale RD, Alexandrov K, Meunier FA, Hill MM, Parton RG. An inverted CAV1 (caveolin 1) topology defines novel autophagy-dependent exosome secretion from prostate cancer cells. Autophagy 2020; 17:2200-2216. [DOI: 10.1080/15548627.2020.1820787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nicholas Ariotti
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Mark Wainwright Analytical Centre, Electron Microscope Unit, The University of New South Wales, Sydney, Australia
| | - Yeping Wu
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Satomi Okano
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yann Gambin
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jordan Follett
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - James Rae
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Charles Ferguson
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Rohan D. Teasdale
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Kirill Alexandrov
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frederic A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Michelle M. Hill
- UQ Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Caveolin-1-mediated sphingolipid oncometabolism underlies a metabolic vulnerability of prostate cancer. Nat Commun 2020; 11:4279. [PMID: 32855410 PMCID: PMC7453025 DOI: 10.1038/s41467-020-17645-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Plasma and tumor caveolin-1 (Cav-1) are linked with disease progression in prostate cancer. Here we report that metabolomic profiling of longitudinal plasmas from a prospective cohort of 491 active surveillance (AS) participants indicates prominent elevations in plasma sphingolipids in AS progressors that, together with plasma Cav-1, yield a prognostic signature for disease progression. Mechanistic studies of the underlying tumor supportive onco-metabolism reveal coordinated activities through which Cav-1 enables rewiring of cancer cell lipid metabolism towards a program of 1) exogenous sphingolipid scavenging independent of cholesterol, 2) increased cancer cell catabolism of sphingomyelins to ceramide derivatives and 3) altered ceramide metabolism that results in increased glycosphingolipid synthesis and efflux of Cav-1-sphingolipid particles containing mitochondrial proteins and lipids. We also demonstrate, using a prostate cancer syngeneic RM-9 mouse model and established cell lines, that this Cav-1-sphingolipid program evidences a metabolic vulnerability that is targetable to induce lethal mitophagy as an anti-tumor therapy.
Collapse
|
11
|
Lin CJ, Yun EJ, Lo UG, Tai YL, Deng S, Hernandez E, Dang A, Chen YA, Saha D, Mu P, Lin H, Li TK, Shen TL, Lai CH, Hsieh JT. The paracrine induction of prostate cancer progression by caveolin-1. Cell Death Dis 2019; 10:834. [PMID: 31685812 PMCID: PMC6828728 DOI: 10.1038/s41419-019-2066-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
A subpopulation of cancer stem cells (CSCs) plays a critical role of cancer progression, recurrence, and therapeutic resistance. Many studies have indicated that castration-resistant prostate cancer (CRPC) is associated with stem cell phenotypes, which could further promote neuroendocrine transdifferentiation. Although only a small subset of genetically pre-programmed cells in each organ has stem cell capability, CSCs appear to be inducible among a heterogeneous cancer cell population. However, the inductive mechanism(s) leading to the emergence of these CSCs are not fully understood in CRPC. Tumor cells actively produce, release, and utilize exosomes to promote cancer development and metastasis, cancer immune evasion as well as chemotherapeutic resistance; the impact of tumor-derived exosomes (TDE) and its cargo on prostate cancer (PCa) development is still unclear. In this study, we demonstrate that the presence of Cav-1 in TDE acts as a potent driver to induce CSC phenotypes and epithelial-mesenchymal transition in PCa undergoing neuroendocrine differentiation through NFκB signaling pathway. Furthermore, Cav-1 in mCRPC-derived exosomes is capable of inducing radio- and chemo-resistance in recipient cells. Collectively, these data support Cav-1 as a critical driver for mCRPC progression.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eun-Jin Yun
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Republic of Korea
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yu-Ling Tai
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Su Deng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ping Mu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Active surveillance for prostate and thyroid cancers: evolution in clinical paradigms and lessons learned. Nat Rev Clin Oncol 2019; 16:168-184. [PMID: 30413793 DOI: 10.1038/s41571-018-0116-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adverse effects of overdiagnosis and overtreatment observed in men with clinically insignificant prostate cancers after the introduction of prostate-specific antigen-based screening are now being observed in those with thyroid cancer, owing to the introduction of new imaging technologies. Thus, the evolving paradigm of active surveillance in prostate and thyroid cancers might be valuable in informing the development of future active surveillance protocols. The lessons learned from active surveillance and their implications include the need to minimize the use of broad, population-based screening programmes that do not incorporate patient education and the need for individualized or shared decision-making, which can decrease the extent of overtreatment. Furthermore, from the experience in patients with prostate cancer, we have learned that consensus is required regarding the optimal selection of patients for active surveillance, using more-specific evidence-based methods for stratifying patients by risk. In this Review, we describe the epidemiology, pathology and screening guidelines for the management of patients with prostate and thyroid cancers; the evidence of overdiagnosis and overtreatment; and provide overviews of existing international active surveillance protocols.
Collapse
|
13
|
Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, Reyes C, Díaz-Valdivia N, Varas-Godoy M, Lobos-González L, Quest AF. Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine (Lond) 2018; 13:2597-2609. [PMID: 30338706 DOI: 10.2217/nnm-2018-0094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1; possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo.
Collapse
Affiliation(s)
- America Campos
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | - Carlos Salomon
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Exosome Biology Laboratory, UQ Centre for Clinical Research, Brisbane, Australia
| | | | - Jorge Díaz
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | - Samuel Martínez
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | | | | | - Natalia Díaz-Valdivia
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | - Manuel Varas-Godoy
- Department of Clinical Biochemistry & Immunology, Faculty of Pharmacy, University of Concepción, Bío Bío Region, Chile
| | - Lorena Lobos-González
- Fundación Ciencia & Vida, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile.,Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, La Barnechea, Santiago, Chile
| | - Andrew Fg Quest
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| |
Collapse
|
14
|
Abstract
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Preventing clinical progression and need for treatment in patients on active surveillance for prostate cancer. Curr Opin Urol 2017; 28:46-54. [PMID: 29028765 DOI: 10.1097/mou.0000000000000455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Active surveillance is an established treatment option for men with localized, low-risk prostate cancer (CaP). It entails the postponement of immediate therapy with the option of delayed intervention upon disease progression. The rate of clinical progression and need for treatment on active surveillance is approximately 50% over 15 years. The present review summarizes recent data on current methods, attempting to prevent clinical progression. RECENT FINDINGS Patient selection for active surveillance is the first mandatory step required to lower progression. Adherence to active surveillance protocols is critical in making sure patients are monitored well and treated early when progression occurs. Before active surveillance allocation and during active surveillance follow-up, methods involving multiparametric MRI, prostate specific antigen derivatives, biopsy factors, urinary, tissue and genetic markers can be used to prevent clinical progression and/or identify those at risk for progression. Medications such as 5α-reductase inhibitors and others might inhibit disease progression in patients on active surveillance. SUMMARY Active surveillance is required because of overdiagnosis, along with our inability to accurately predict individual CaP behavior. Several methods can potentially reduce the risk of CaP progression in patients with active surveillance. However, a measure of uncertainty and fear of progression will always accompany patients with active surveillance and the physicians treating them.
Collapse
|
16
|
Chatterjee M, Ben-Josef E, Robb R, Vedaie M, Seum S, Thirumoorthy K, Palanichamy K, Harbrecht M, Chakravarti A, Williams TM. Caveolae-Mediated Endocytosis Is Critical for Albumin Cellular Uptake and Response to Albumin-Bound Chemotherapy. Cancer Res 2017; 77:5925-5937. [PMID: 28923854 DOI: 10.1158/0008-5472.can-17-0604] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 01/04/2023]
Abstract
Nab-paclitaxel, a nanoparticle conjugate of paclitaxel to human albumin, exhibits efficacy in pancreatic cancer, non-small cell lung cancer and breast cancer. However, there is a lack of predictive biomarkers to identify patients who might benefit most from its administration. This study addresses this gap in knowledge by identifying that caveolin-1 (Cav-1) is a candidate mechanism-based biomarker. Caveolae are small membrane invaginations important for transendothelial albumin uptake. Cav-1, the principal structural component of caveolae, is overexpressed in the cancers noted above that respond to nab-paclitaxel. Thus, we hypothesized that Cav-1 may be critical for albumin uptake in tumors and perhaps determine their response to this drug. Cav-1 protein levels correlated positively with nab-paclitaxel sensitivity. RNAi-mediated attenuation of Cav-1 expression reduced uptake of albumin and nab-paclitaxel in cancer cells and rendered them resistant to nab-paclitaxel-induced apoptosis. Conversely, Cav-1 overexpression enhanced sensitivity to nab-paclitaxel. Selection for cellular resistance to nab-paclitaxel in cell culture correlated with a loss of Cav-1 expression. In mouse xenograft models, cancer cells, where Cav-1 was attenuated, exhibited resistance to the antitumor effects of nab-paclitaxel therapy. Overall, our findings suggest Cav-1 as a predictive biomarker for the response to nab-paclitaxel and other albumin-based cancer therapeutic drugs. Cancer Res; 77(21); 5925-37. ©2017 AACR.
Collapse
Affiliation(s)
- Moumita Chatterjee
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Edgar Ben-Josef
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Robb
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Marall Vedaie
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Star Seum
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Krishnan Thirumoorthy
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Kamalakannan Palanichamy
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Matthew Harbrecht
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Arnab Chakravarti
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio.
| |
Collapse
|
17
|
Basourakos SP, Davis JW, Chapin BF, Ward JF, Pettaway CA, Pisters LL, Navai N, Achim MF, Wang X, Chen HC, Choi S, Kuban D, Troncoso P, Hanash S, Thompson TC, Kim J. Baseline and longitudinal plasma caveolin-1 level as a biomarker in active surveillance for early-stage prostate cancer. BJU Int 2017; 121:69-76. [PMID: 28710901 DOI: 10.1111/bju.13963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To evaluate the role of caveolin-1 (Cav-1) as a predictor of disease reclassification (DR) in men with early prostate cancer undergoing active surveillance (AS). PATIENTS AND METHODS We analysed archived plasma samples prospectively collected from patients with early prostate cancer in a single-institution AS study. Of 825 patients enrolled, 542 had ≥1 year of follow-up. Baseline and longitudinal plasma Cav-1 levels were measured using an enzyme-linked immunosorbent assay. Tumour volume or Gleason grade increases were criteria for DR. Logistic regression analyses were used to assess associations between clinicopathological characteristics and reclassification risk. RESULTS In 542 patients, 480 (88.6%) had stage cT1c disease, 542 (100.0%) had a median prostate-specific antigen level of 4.1 ng/mL, and 531 (98.0%) had a median Cancer of the Prostate Risk Assessment score of 1. In all, 473 (87.3%) had a Gleason score of 3+3. After a median of 3.1 years of follow-up, disease was reclassified in 163 patients (30.1%). The mean baseline Cav-1 level was 2.2 ± 8.5 ng/mL and the median 0.2 ng/mL (range, 0-85.5 ng/mL). In univariate analysis, baseline Cav-1 was a significant predictor for risk of DR (odds ratio [OR] 1.82, 95% confidence interval [CI] 1.24-2.65; P = 0.002). In multivariate analysis, with adjustments for age, tumour length, group risk stratification and number of positive cores, reclassification risk associated with Cav-1 remained significant (OR 1.91, 95% CI 1.28-2.84; P = 0.001). CONCLUSION Baseline plasma Cav-1 level was an independent predictor of disease classification. New methods for refining AS and intervention may result.
Collapse
Affiliation(s)
- Spyridon P Basourakos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John W Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian F Chapin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John F Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Louis L Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary F Achim
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hsiang-Chun Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seungtaek Choi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deborah Kuban
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Demirci NS, Dogan M, Erdem GU, Kacar S, Turhan T, Kilickap S, Cigirgan LC, Kayacetin E, Bozkaya Y, Zengin N. Is plasma caveolin-1 level a prognostic biomarker in metastatic pancreatic cancer? Saudi J Gastroenterol 2017; 23:183-189. [PMID: 28611342 PMCID: PMC5470378 DOI: 10.4103/sjg.sjg_483_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS To evaluate the prognostic significance of plasma caveolin (CAV)-1 and its association with survival and treatment response rates in metastatic pancreatic cancer (MPC). PATIENTS AND METHODS Plasma samples were prospectively collected from 41 patients with newly diagnosed MPC. Moreover, plasma samples were collected from 48 patients with chronic pancreatitis and 41 healthy individuals (control groups) for assessing Cav-1 levels. Plasma Cav-1 levels were evaluated at baseline and after three cycles of chemotherapy in the patients with MPC. RESULTS The median Cav-1 level was 13.8 ng/mL for the patients with MPC and 12.2 ng/mL for healthy individuals (P = 0.009). The Cav-1 cut-off level was calculated as 11.6 ng/mL by using the receiver operating characteristic curve. The median overall survival and progression-free survival rates were 5 and 2.4 months, respectively, for participants with a high basal plasma Cav-1 level; the corresponding values were 10.5 and 9.4 months for participants with a low plasma Cav-1 level (P = 0.011 and P= 0.003, respectively). Of the 41 patients with MPC, 23 completed at least three cycles of chemotherapy. The median Cav-1 level was 13 ng/mL for post-treatment MPC (r2: 0.917; P= 0.001). High basal plasma caveolin-1 level have continued to remain at high levels even after chemotherapy, showing a trend toward worse response rates (P = 0.086). CONCLUSION High basal plasma Cav-1 levels seem to be associated with poor survival and tend to yield worse therapeutic outcomes in patients with MPC. This study is the first to evaluate the prognostic significance of plasma Cav-1 levels as a prognostic factor in patients with MPC. However, larger prospective clinical trials are warranted.
Collapse
Affiliation(s)
- Nebi S. Demirci
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey,Address for correspondence: Dr. Nebi S. Demirci, Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey. E-mail:
| | - Mutlu Dogan
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Gokmen U. Erdem
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Sabite Kacar
- Department of Gastroenterology, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Turan Turhan
- Department of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Saadettin Kilickap
- Department of Medical Oncology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Lutfi C. Cigirgan
- Department of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Ertugrul Kayacetin
- Department of Gastroenterology, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Yakup Bozkaya
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Nurullah Zengin
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
19
|
Matsui T, Ojima A, Higashimoto Y, Taira J, Fukami K, Yamagishi SI. Pigment epithelium-derived factor inhibits caveolin-induced interleukin-8 gene expression and proliferation of human prostate cancer cells. Oncol Lett 2015; 10:2644-2648. [PMID: 26622904 DOI: 10.3892/ol.2015.3568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 07/07/2015] [Indexed: 11/05/2022] Open
Abstract
Caveolin-1 (Cav), a primary protein component of caveolae, is overexpressed in prostate cancer, thereby promoting growth and metastasis of this tumor. By contrast, pigment epithelium-derived factor (PEDF) has been shown to inhibit tumor growth and metastasis, including that of prostate cancer, via its anti-angiogenic and anti-inflammatory effects. Although it was recently demonstrated that PEDF binds to Cav and blocks its pro-inflammatory actions in endothelial cells, it remains unclear whether PEDF also inhibits the tumor-promoting effects of Cav in cultured prostate cancer cells. The present study examined the effects of PEDF on cell growth, in addition to the gene expression of interleukin-8 (IL-8), which is involved in prostate cancer progression, in the PC-3 human prostate cancer cell line. Exogenous Cav led to a dose-dependent upregulation of the mRNA expression of IL-8 in PC-3 cells, which was blocked by treatment with 1 or 10 nM PEDF, or following the overexpression of small interfering RNAs directed against Cav. Cav (10 nM) increased DNA synthesis in PC-3 cells, which was again suppressed by the administration of 10 nM PEDF. The results of the present study indicated that PEDF may inhibit Cav-induced increases in IL-8 gene expression and proliferation of PC-3 cells. Therefore, the suppressive effects of PEDF in prostate cancer may, in part, be ascribed to its inhibitory actions on Cav.
Collapse
Affiliation(s)
- Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ayako Ojima
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yuichiro Higashimoto
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Junichi Taira
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei Fukami
- Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
20
|
Mathieu R, Klatte T, Lucca I, Mbeutcha A, Seitz C, Karakiewicz PI, Fajkovic H, Sun M, Lotan Y, Scherr DS, Montorsi F, Briganti A, Rouprêt M, Margulis V, Rink M, Kluth LA, Rieken M, Kenner L, Susani M, Robinson BD, Xylinas E, Loidl W, Shariat SF. Prognostic value of Caveolin-1 in patients treated with radical prostatectomy: a multicentric validation study. BJU Int 2015; 118:243-9. [PMID: 26189876 DOI: 10.1111/bju.13224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To validate Caveolin-1 as an independent prognostic marker of biochemical recurrence (BCR) in a large multi-institutional cohort of patients with prostate cancer treated with radical prostatectomy (RP). PATIENTS AND METHODS Caveolin-1 expression was evaluated by immunochemistry on a tissue microarray in 3 117 patients treated with RP for prostate cancer at five institutions. Univariable and multivariable Cox proportional hazards regression models assessed the association of Caveolin-1 status with BCR. Harrell's c-index quantified prognostic accuracy. RESULTS Caveolin-1 was overexpressed in 644 (20.6%) patients and was associated with higher pathological Gleason sum (P = 0.002) and lymph node metastases (P = 0.05). Within a median (interquartile range) follow-up of 38 (21-66) months, 617 (19.8%) patients experienced BCR. Patients with overexpression of Caveolin-1 had worse BCR-free survival than those with normal expression (log-rank test, P = 0.004). Caveolin-1 was an independent predictor of BCR in multivariable analyses that adjusted for the effects of standard clinicopathological features (hazard ratio 1.21, P = 0.037). Addition of Caveolin-1 in a model for prediction of BCR based on these standard prognosticators did not significantly improve the predictive accuracy of the model. In subgroup analyses, Caveolin-1 was associated with BCR in patients with favourable pathological features (pT2pN0 and Gleason score = 6; P = 0.021). CONCLUSIONS We confirmed that overexpression of Caveolin-1 is associated with adverse pathological features in prostate cancer and independently predicts BCR after RP, especially in patients with favourable pathological features. However, it did not add prognostically relevant information to established predictors of BCR, limiting its use in clinical practice.
Collapse
Affiliation(s)
- Romain Mathieu
- Department of Urology, General Hospital, Vienna, Austria.,Department of Urology, Rennes University Hospital, Rennes, France
| | - Tobias Klatte
- Department of Urology, General Hospital, Vienna, Austria
| | - Ilaria Lucca
- Department of Urology, General Hospital, Vienna, Austria.,Department of Urology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
| | | | | | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre, Montreal, QC, Canada
| | - Harun Fajkovic
- Department of Urology, General Hospital, Vienna, Austria
| | - Maxine Sun
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre, Montreal, QC, Canada
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Douglas S Scherr
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Francesco Montorsi
- Department of Urology, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Briganti
- Department of Urology, Vita-Salute San Raffaele University, Milan, Italy
| | - Morgan Rouprêt
- Academic Department of Urology, La Pitié-Salpetrière Hospital, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Pierre et Marie Curie, University Paris 6, Paris, France
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luis A Kluth
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Rieken
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Kenner
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Susani
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Brian D Robinson
- Department of Urology, Weill Cornell Medical College, New York, NY, USA.,Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Evanguelos Xylinas
- Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris, France
| | - Wolgang Loidl
- Department of Urology, Krankenhaus der Barmherzigen Schwestern, Linz, Austria
| | - Shahrokh F Shariat
- Department of Urology, General Hospital, Vienna, Austria.,Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.,Department of Urology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Nassar ZD, Hill MM, Parton RG, Francois M, Parat MO. Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis. Oncoscience 2015; 2:635-45. [PMID: 26328273 PMCID: PMC4549361 DOI: 10.18632/oncoscience.180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022] Open
Abstract
Lymphangiogenesis allows prostate cancer (PCa) lymphatic metastasis, which is associated with poor prognosis and short survival rates. Caveolin-1 (Cav-1) is a membrane protein localized in caveolae, but also exists in non-caveolar, cellular or extracellular forms. Cav-1 is overexpressed in PCa, promotes prostate tumour progression and metastasis. We investigated the effect of caveolar and non-caveolar Cav-1 on PCa lymphangiogenic potential. Cav-1 was down-regulated in PC3 and DU145, and ectopically expressed in LNCaP cells. The effect of PCa cell conditioned media on lymphatic endothelial cell (LEC) viability, chemotaxis, chemokinesis and differentiation was assessed. The effect of Cav-1 on PCa cell expression of lymphangiogenesis-modulators VEGF-A and VEGF-C was assessed using qPCR and ELISA of the conditioned medium. Non-caveolar Cav-1, whether exogenous or endogenous (in LNCaP and PC3 cells, respectively) enhanced LEC proliferation, migration and differentiation. In contrast, caveolar Cav-1 (in DU145 cells) did not significantly affect PCa cell lymphangiogenic potential. The effect of non-caveolar Cav-1 on LECs was mediated by increased expression of VEGF-A as demonstrated by neutralization by anti-VEGF-A antibody. This study unveils for the first time a crucial role for non-caveolar Cav-1 in modulating PCa cell expression of VEGF-A and subsequent LEC proliferation, migration and tube formation.
Collapse
Affiliation(s)
- Zeyad D Nassar
- The University of Queensland, School of Pharmacy, QLD, Australia
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, QLD, Australia
| | - Mathias Francois
- The University of Queensland, Institute for Molecular Bioscience, QLD, Australia
| | | |
Collapse
|
22
|
Nassar ZD, Moon H, Duong T, Neo L, Hill MM, Francois M, Parton RG, Parat MO. PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget 2014; 4:1844-55. [PMID: 24123650 PMCID: PMC3858569 DOI: 10.18632/oncotarget.1300] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caveolae are specialized plasma membrane subdomains implicated in cellular functions such as migration, signalling and trafficking. Caveolin-1 and polymerase I and transcript release factor (PTRF)/cavin-1 are essential for caveola formation. Caveolin-1 is overexpressed and secreted in prostate tumors and promotes aggressiveness and angiogenesis. In contrast, a lack of PTRF expression is reported in prostate cancer, and ectopic PTRF expression in prostate cancer cells inhibits tumor growth and metastasis. We experimentally manipulated PTRF expression in three prostate cancer cell lines, namely the caveolin-1 positive cells PC3 and DU145 and the caveolin-1-negative LNCaP cells, to evaluate angiogenesis- and lymphangiogenesis-regulating functions of PTRF. We show that the conditioned medium of PTRF-expressing prostate cancer cells decreases ECs proliferation, migration and differentiation in vitro and ex vivo. This can occur independently from caveolin-1 expression and secretion or caveola formation, since the anti-angiogenic effects of PTRF were detected in caveolin-1-negative LNCaP cells. Additionally, PTRF expression in PC3 cells significantly decreased blood and lymphatic vessel densities in orthotopic tumors in mice. Our results suggest that the absence of PTRF in prostate cancer cells contributes significantly to tumour progression and metastasis by promoting the angiogenesis and lymphangiogenesis potential of the cancer cells, and this could be exploited for therapy.
Collapse
Affiliation(s)
- Zeyad D Nassar
- The University of Queensland, School of Pharmacy, QLD, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Moon H, Lee CS, Inder KL, Sharma S, Choi E, Black DM, Lê Cao KA, Winterford C, Coward JI, Ling MT, Craik DJ, Parton RG, Russell PJ, Hill MM. PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene 2014; 33:3561-70. [PMID: 23934189 DOI: 10.1038/onc.2013.315] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 12/15/2022]
Abstract
Caveolin-1 has a complex role in prostate cancer and has been suggested to be a potential biomarker and therapeutic target. As mature caveolin-1 resides in caveolae, invaginated lipid raft domains at the plasma membrane, caveolae have been suggested as a tumor-promoting signaling platform in prostate cancer. However, caveola formation requires both caveolin-1 and cavin-1 (also known as PTRF; polymerase I and transcript release factor). Here, we examined the expression of cavin-1 in prostate epithelia and stroma using tissue microarray including normal, non-malignant and malignant prostate tissues. We found that caveolin-1 was induced without the presence of cavin-1 in advanced prostate carcinoma, an expression pattern mirrored in the PC-3 cell line. In contrast, normal prostate epithelia expressed neither caveolin-1 nor cavin-1, while prostate stroma highly expressed both caveolin-1 and cavin-1. Utilizing PC-3 cells as a suitable model for caveolin-1-positive advanced prostate cancer, we found that cavin-1 expression in PC-3 cells inhibits anchorage-independent growth, and reduces in vivo tumor growth and metastasis in an orthotopic prostate cancer xenograft mouse model. The expression of α-smooth muscle actin in stroma along with interleukin-6 (IL-6) in cancer cells was also decreased in tumors of mice bearing PC-3-cavin-1 tumor cells. To determine whether cavin-1 acts by neutralizing caveolin-1, we expressed cavin-1 in caveolin-1-negative prostate cancer LNCaP and 22Rv1 cells. Caveolin-1 but not cavin-1 expression increased anchorage-independent growth in LNCaP and 22Rv1 cells. Cavin-1 co-expression reversed caveolin-1 effects in caveolin-1-positive LNCaP cells. Taken together, these results suggest that caveolin-1 in advanced prostate cancer is present outside of caveolae, because of the lack of cavin-1 expression. Cavin-1 expression attenuates the effects of non-caveolar caveolin-1 microdomains partly via reduced IL-6 microenvironmental function. With circulating caveolin-1 as a potential biomarker for advanced prostate cancer, identification of the molecular pathways affected by cavin-1 could provide novel therapeutic targets.
Collapse
Affiliation(s)
- H Moon
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - C S Lee
- 1] Discipline of Pathology, School of Medicine and Molecular Medicine Research Group, University of Western Sydney, Sydney, New South Wales, Australia [2] Department of Anatomical Pathology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - K L Inder
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - S Sharma
- 1] Discipline of Pathology, School of Medicine and Molecular Medicine Research Group, University of Western Sydney, Sydney, New South Wales, Australia [2] Department of Anatomical Pathology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - E Choi
- 1] The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia [2] School of Veterinary Science, The University of Queensland, Brisbane, Queensland, Australia
| | - D M Black
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - K-A Lê Cao
- Queensland Facility for Advanced Bioinformatics, The University of Queensland, Brisbane, Queensland, Australia
| | - C Winterford
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - J I Coward
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia
| | - M T Ling
- Australian Prostate Cancer Research Centre-Queensland and Institute for Biomedical Health & Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - D J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - R G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - P J Russell
- Australian Prostate Cancer Research Centre-Queensland and Institute for Biomedical Health & Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - M M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Takizawa N, Sawada S, Chosa N, Ishisaki A, Naruishi K. Secreted caveolin-1 enhances periodontal inflammation by targeting gingival fibroblasts. Biomed Res 2013; 34:1-11. [PMID: 23428975 DOI: 10.2220/biomedres.34.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caveolin-1 (Cav-1) is a membrane protein. Recently, it has been reported that secreted Cav-1 induces angiogenesis in inflammatory microenvironment. However, it is unclear that Cav-1 regulates gingival inflammation. Therefore, we investigated the Cav-1 function to periodontal cells. Expression of Cav-1 in human periodontitis tissues was examined pathologically. Secretion of Cav-1 from human gingival fibroblasts (HGFs) or human periodontal ligament cells (HPLFs) treated with IL-1β and TNF-α was examined using Western blotting. Likewise, intracellular signals induced by Cav-1 were examined. Finally, we examined whether the secreted Cav-1 induces production of inflammatory mediators in HGFs using ELISA or qRT-PCR. Pathologically, high expression of Cav-1 was observed in human periodontitis tissues. Cav-1 secretion increased in both cultured HGFs and HPLFs treated with IL-1β and TNF-α. Cav-1 induced phosphorylation of JNK and ERK, but not Stat3 in HGFs. Furthermore, Cav-1 increased proMMP-1 and VEGF secretion in HGFs, and the VEGF secretion was statistically suppressed by JNK inhibitor SP600125, but not ERK inhibitor PD98059. ProMMP-1 secretion was suppressed statistically by both SP600125 and PD98059. In addition, Cav-1 increased significantly MMP-1, -10 and -14 mRNA expressions, whereas no increase of TIMPs mRNA was observed in HGFs treated with Cav-1. These data suggest that secreted Cav-1 derived from periodontal fibroblastic cells enhances inflammation-related several proteases and VEGF secretion in HGFs via MAPKs pathway, resulting in progression of periodontitis through induction of tissue degradation or angiogenesis.
Collapse
Affiliation(s)
- Naoki Takizawa
- Division of Periodontics, Department of Conservative Dentistry and Oral Rehabilitation, Iwate Medical University School of Dentistry, Morioka, Iwate, Japan
| | | | | | | | | |
Collapse
|
25
|
Nassar ZD, Hill MM, Parton RG, Parat MO. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol 2013; 10:529-36. [PMID: 23938946 DOI: 10.1038/nrurol.2013.168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expression of caveola-forming proteins is dysregulated in prostate cancer. Caveolae are flask-shaped invaginations of the plasma membrane that have roles in membrane trafficking and cell signalling. Members of two families of proteins--caveolins and cavins--are known to be required for the formation and functions of caveolae. Caveolin-1, the major structural protein of caveolae, is overexpresssed in prostate cancer and has been demonstrated to be involved in prostate cancer angiogenesis, growth and metastasis. Polymerase I and transcript release factor (PTRF) is the only cavin family member necessary for caveola formation. When exogenously expressed in prostate cancer cells, PTRF reduces aggressive potential, probably via both caveola-mediated and caveola-independent mechanisms. In addition, stromal PTRF expression decreases with progression of the disease. Evaluation of caveolin-1 antibodies in the clinical setting is underway and it is hoped that future studies will reveal the mechanisms of PTRF action, allowing its targeting for therapeutic purposes.
Collapse
Affiliation(s)
- Zeyad D Nassar
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | | | | |
Collapse
|
26
|
Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013; 32:5501-11. [PMID: 23752182 DOI: 10.1038/onc.2013.206] [Citation(s) in RCA: 609] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the second-leading cause of cancer-related mortality in men in Western societies. Androgen receptor (AR) signaling is a critical survival pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. Although a majority of patients initially respond to ADT, most will eventually develop castrate resistance, defined as disease progression despite serum testosterone levels of <20 ng/dl. The recent discovery that AR signaling persists during systemic castration via intratumoral production of androgens led to the development of novel anti-androgen therapies including abiraterone acetate and enzalutamide. Although these agents effectively palliate symptoms and prolong life, metastatic castration-resistant prostate cancer remains incurable. An increased understanding of the mechanisms that underlie the pathogenesis of castrate resistance is therefore needed to develop novel therapeutic approaches for this disease. The aim of this review is to summarize the current literature on the biology and treatment of castrate-resistant prostate cancer.
Collapse
|
27
|
Tahir SA, Kurosaka S, Tanimoto R, Goltsov AA, Park S, Thompson TC. Serum caveolin-1, a biomarker of drug response and therapeutic target in prostate cancer models. Cancer Biol Ther 2012; 14:117-26. [PMID: 23114714 DOI: 10.4161/cbt.22633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated the effect of dasatinib and sunitinib on tyrosine kinase (TK) signaling, caveolin-1 (Cav-1) expression and secretion and proliferation of PC-3 and DU145 prostate cancer cells in vitro and in vivo. Treatment of both cell lines with either dasatinib or sunitinib reduced phosphorylation of PDGFR, VEGFR2, Akt, FAK, Src (dasatinib only) and Cav-1, and reduced cellular and secreted levels of Cav-1. Both agents dose-dependently inhibited proliferation of these cells. In PC-3 and DU145 subcutaneous xenografts, treatment with dasatinib, sunitinib or anti-Cav-1 antibody (Ab) alone produced significant tumor regression compared with that by vehicle or IgG alone. Combined dasatinib and anti-Cav-1 Ab treatment or sunitinib and anti-Cav-1 Ab produced greater tumor regression than either treatment alone. Serum Cav-1 levels were lower in dasatinib- and sunitinib-treated mice than they were in vehicle-treated mice, and correlated positively with tumor growth in dasatinib- and sunitinib-treated groups (r = 0.48, p = 0.031; r = 0.554, p = 0.0065, respectively), compared with vehicle controls. Cav-1 knockdown, in combination with dasatinib or sunitinib treatment in PC-3 cells, caused a greater reduction in the phosphorylation of PDGFR-β and VEGFR2, and expression and secretion of PDGF-B and VEGF-A than that in PC-3 cells treated with dasatinib or sunitinib alone in control siRNA cells, suggesting that Cav-1 is involved in an autocrine pathway that is affected by these drugs. Overall, our results suggest a role for Cav-1 as a biomarker of response to both dasatinib and sunitinib treatment and as a therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Salahaldin A Tahir
- Department of Genitourinary Medical Oncology-Research; The University of Texas MD Anderson Cancer Center; Houston, Texas USA
| | | | | | | | | | | |
Collapse
|
28
|
Kuo SR, Tahir SA, Park S, Thompson TC, Coffield S, Frankel AE, Liu JS. Anti-caveolin-1 antibodies as anti-prostate cancer therapeutics. Hybridoma (Larchmt) 2012; 31:77-86. [PMID: 22509911 DOI: 10.1089/hyb.2011.0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Caveolae are critical cell surface structures important in coordinated cell signaling and endocytosis. One of the major proteins of caveolae is caveolin 1 (Cav-1). Cellular levels of Cav-1 are associated with cancer progression. In prostate cancer cells, levels of Cav-1 are positively correlated with tumor progression and metastasis. Cav-1 can be secreted by prostate cancer cells into the microenvironment and triggers proliferation and anti-apoptosis of the tumor and tumor endothelial cells. Clinical studies have shown increased serum Cav-1 levels in patients with poor prognosis. In tissue culture and animal model experiments, blocking secreted Cav-1 by polyclonal antibodies inhibits tumor cell growth. Cav-1 is therefore a potential therapeutic target for prostate cancer treatment. In this study, we used Cav-1 knock-out mice as hosts to produce monoclonal anti-Cav-1 antibodies. A total of 11 hybridoma cell lines were selected for their ability to produce antibodies that bound GST-Cav-1 but not GST on glutathione-coated ELISA plates. Further screening with ELISAs using GST-Cav-1 fragments on GSH-coated plates classified these antibodies into four groups: N1-31 with five antibodies binds the far N-terminus between amino acids 1 and 31; N32-80 with three antibodies binds between amino acids 32 and 80; CSD with two antibodies potentially bind the scaffolding domain (amino acids 80-101); and Cav-1-C with 1 antibody binds parts of the C-terminal half. Binding affinities (Kd) of these antibodies to soluble Cav-1 ranged from 10(-11) to 10(-8) M. Binding competition experiments revealed that these antibodies recognized a total of six different epitopes on Cav-1. Potency of these antibodies to neutralize Cav-1-mediated signaling pathways in cultured cells and in animal models will be tested. A selected monoclonal antibody will then be humanized and be further developed into a potential anti-prostate cancer therapeutic.
Collapse
Affiliation(s)
- Shu-Ru Kuo
- Cancer Research Institute, Department of Medicine, Scott & White Hospital, Texas A&M University Health Science Center, Temple, Texas 76502, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Li SC, Vu LT, Ho HW, Yin HZ, Keschrumrus V, Lu Q, Wang J, Zhang H, Ma Z, Stover A, Weiss JH, Schwartz PH, Loudon WG. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Cancer Cell Int 2012; 12:41. [PMID: 22995409 PMCID: PMC3546918 DOI: 10.1186/1475-2867-12-41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cancer stem cell (CSC) hypothesis posits that deregulated neural stem cells (NSCs) form the basis of brain tumors such as glioblastoma multiforme (GBM). GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. METHODS We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. RESULTS The patient's MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and -2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. CONCLUSIONS This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer stem cells, which are likely the driving force for the rapid recurrence of the tumor in the patient.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA
- Department of Neurology, University of California Irvine, Orange, CA 92862, USA
- Department of Biological Science, California State University, Fullerton, CA, 92834, USA
| | - Long T Vu
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA
- Department of Biological Science, California State University, Fullerton, CA, 92834, USA
| | - Hector W Ho
- Department of Neurological Surgery, Saint Joseph Hospital, Orange, CA, 92868, USA
- Department of Neurological Surgery, University of California Irvine, Orange, CA, 92862, USA
| | - Hong Zhen Yin
- Department of Neurology, University of California Irvine, Orange, CA 92862, USA
| | - Vic Keschrumrus
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA
| | - Qiang Lu
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Jun Wang
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Heying Zhang
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zhiwei Ma
- Department of Pathology and Laboratory Medicine, Good Samaritan Hospital Medical Center, 1000 Montauk Highway, West Islip, NY, 11795, USA
| | - Alexander Stover
- National Human Neural Stem Cell Resource, Center for Neuroscience and Stem Cell Research, CHOC Children's Hospital Research Institute, 455 South Main Street, Orange, CA, 92868, USA
| | - John H Weiss
- Department of Neurology, University of California Irvine, Orange, CA 92862, USA
| | - Philip H Schwartz
- National Human Neural Stem Cell Resource, Center for Neuroscience and Stem Cell Research, CHOC Children's Hospital Research Institute, 455 South Main Street, Orange, CA, 92868, USA
- Developmental Biology Center, University of California Irvine, Irvine, CA, 92612, USA
| | - William G Loudon
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA
- Department of Neurological Surgery, Saint Joseph Hospital, Orange, CA, 92868, USA
- Department of Neurological Surgery, University of California Irvine, Orange, CA, 92862, USA
| |
Collapse
|
30
|
Freeman MR, Yang W, Di Vizio D. Caveolin-1 and prostate cancer progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:95-110. [PMID: 22411316 DOI: 10.1007/978-1-4614-1222-9_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Caveolin-1 was identified in the 1990s as a marker of aggressive prostate cancer. The caveolin-1 protein localizes to vesicular structures called caveolae and has been shown to bind and regulate many signaling proteins involved in oncogenesis. Caveolin-1 also has lipid binding properties and mediates aspects of cholesterol and fatty acid metabolism and can elicit biological responses in a paracrine manner when secreted. Caveolin-1 is also present in the serum of prostate cancer patients and circulating levels correlate with extent of disease. Current evidence indicates that increased expression of caveolin-1 in prostate adenocarcinoma cells and commensurate downregulation of the protein in prostate stroma, mediate progression to the castration-resistant phase of prostate cancer through diverse pathways. This chapter summarizes the current state of our understanding of the cellular and physiologic mechanisms in which caveolin-1 participates in the evolution of prostate cancer cell phenotypes.
Collapse
|
31
|
Steffens S, Schrader AJ, Blasig H, Vetter G, Eggers H, Tränkenschuh W, Kuczyk MA, Serth J. Caveolin 1 protein expression in renal cell carcinoma predicts survival. BMC Urol 2011; 11:25. [PMID: 22152020 PMCID: PMC3266190 DOI: 10.1186/1471-2490-11-25] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 12/07/2011] [Indexed: 12/30/2022] Open
Abstract
Background Caveolae play a significant role in disease phenotypes such as cancer, diabetes, bladder dysfunction, and muscular dystrophy. The aim of this study was to elucidate the caveolin-1 (CAV1) protein expression in renal cell cancer (RCC) and to determine its potential prognostic relevance. Methods 289 clear cell RCC tissue specimens were collected from patients undergoing surgery for renal tumors. Both cytoplasmic and membranous CAV1 expression were determined by immunohistochemistry and correlated with clinical variables. Survival analysis was carried out for 169 evaluable patients with a median follow up of 80.5 months (interquartile range (IQR), 24.5 - 131.7 months). Results A high CAV1 expression in the tumor cell cytoplasm was significantly associated with male sex (p = 0.04), a positive nodal status (p = 0.04), and poor tumor differentiation (p = 0.04). In contrast, a higher than average (i.e. > median) CAV1 expression in tumor cell membranes was only linked to male sex (p = 0.03). Kaplan-Meier analysis disclosed significant differences in 5-year overall (51.4 vs. 75.2%, p = 0.001) and tumor specific survival (55.3 vs. 80.1%, p = 0.001) for patients with higher and lower than average cytoplasmic CAV1 expression levels, respectively. Applying multivariable Cox regression analysis a high CAV1 protein expression level in the tumor cell cytoplasm could be identified as an independent poor prognostic marker of both overall (p = 0.02) and tumor specific survival (p = 0.03) in clear cell RCC patients. Conclusion Over expression of caveolin-1 in the tumour cell cytoplasm predicts a poor prognosis of patients with clear cell RCC. CAV1 is likely to be a useful prognostic marker and may play an important role in tumour progression. Therefore, our data encourage further investigations to enlighten the role of CAV1 and its function as diagnostic and prognostic marker in serum and/or urine of RCC patients.
Collapse
Affiliation(s)
- Sandra Steffens
- Department of Urology, Hannover Medical School, (Carl-Neuberg-Strasse 1), Hannover, (30625), Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, DeMayo FJ, Troncoso P, Blando J, DiGiovanni J, Thompson TC. Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer. Mol Cancer Res 2011; 10:218-29. [PMID: 22144662 DOI: 10.1158/1541-7786.mcr-11-0451] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously we reported caveolin-1 (Cav-1) overexpression in prostate cancer cells and showed that it promotes prostate cancer progression. Here, we report that Cav-1 was overexpressed in 41.7% (15 of 36) of human high-grade prostatic intraepithelial neoplasia (HGPIN) specimens obtained during radical prostatectomies. Positive correlations exist between Cav-1-positive (Cav-1(+)) HGPIN and Cav-1(+) primary prostate cancer (rho = 0.655, P < 0.0001) and between Cav-1 and c-Myc expression in HGPIN (rho = 0.41, P = 0.032). To determine whether Cav-1 cooperates with c-Myc in development of premalignant lesions and prostate cancer in vivo, we generated transgenic mice with c-Myc overexpression driven by the ARR(2)PB promoter. In this ARR(2)PB-c-myc model, Cav-1 overexpression was found in mouse PIN (mPIN) lesions and prostate cancer cells and was associated with a significantly higher ratio of proliferative to apoptotic labeling in mPIN lesions than in the Cav-1-negative epithelia adjacent to those lesions (10.02 vs. 4.34; P = 0.007). Cav-1 overexpression was also associated with increased levels of P-Akt and VEGF-A, which were previously associated with Cav-1-induced prostate cancer cell survival and positive feedback regulation of cellular Cav-1 levels, respectively. In multiple prostate cancer cell lines, Cav-1 protein (but not mRNA) was induced by c-Myc transfection, whereas VEGF siRNA transfection abrogated c-Myc-induced Cav-1 overexpression, suggesting a c-Myc-VEGF-Cav-1 signaling axis. Overall, our results suggest that Cav-1 is associated with c-Myc in the development of HGPIN and prostate cancer. Furthermore, Cav-1 overexpression in HGPIN is potentially a biomarker for early identification of patients who tend to develop Cav-1(+) primary prostate cancer.
Collapse
Affiliation(s)
- Guang Yang
- Department of Genitourinary Medical Oncology-Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A genetic polymorphism in the CAV1 gene associates with the development of bronchiolitis obliterans syndrome after lung transplantation. FIBROGENESIS & TISSUE REPAIR 2011; 4:24. [PMID: 22040717 PMCID: PMC3215956 DOI: 10.1186/1755-1536-4-24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/01/2011] [Indexed: 01/06/2023]
Abstract
Background Caveolin 1 (Cav-1) is the primary structural component of cell membrane invaginations called 'caveolae'. Expression of Cav-1 is implicated in the pathogenesis of pulmonary fibrosis. Genetic polymorphisms in the CAV1 gene influence the function of Cav-1 in malignancies and associate with renal allograft fibrosis. Chronic allograft rejection after lung transplantation, called 'bronchiolitis obliterans syndrome' (BOS), is also characterised by the development of fibrosis. In this study, we investigated whether CAV1 genotypes associate with BOS and whether Cav-1 serum levels are influenced by the CAV1 genotype and can be used as a biomarker to predict the development of BOS. Methods Twenty lung transplant recipients with BOS (BOSpos), ninety without BOS (BOSneg) and four hundred twenty-two healthy individuals donated DNA samples. Four SNPs in CAV1 were genotyped. Serial Cav-1 serum levels were measured in a matched cohort of 10 BOSpos patients and 10 BOSneg patients. Furthermore, single-time point Cav-1 serum levels were measured in 33 unmatched BOSneg patients and 60 healthy controls. Results Homozygosity of the minor allele of rs3807989 was associated with an increased risk for BOS (odds ratio: 6.13; P = 0.0013). The median Cav-1 serum level was significantly higher in the BOSpos patients than in the matched BOSneg patients (P = 0.026). Longitudinal analysis did not show changes in Cav-1 serum levels over time in both groups. The median Cav-1 serum level in the group of 43 BOSneg patients was lower than that in the healthy control group (P = 0.046). In lung transplant recipients, homozygosity of the minor allele of rs3807989 and rs3807994 was associated with increased Cav-1 serum levels. Conclusion In lung transplant recipients, the CAV1 SNP rs3807989 was associated with the development of BOS and Cav-1 serum levels were influenced by the CAV1 genotype.
Collapse
|
34
|
Temozolomide modifies caveolin-1 expression in experimental malignant gliomas in vitro and in vivo. Transl Oncol 2011; 4:92-100. [PMID: 21461172 DOI: 10.1593/tlo.10205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Caveolin-1 is a protein that displays promotive versus preventive roles in cancer progression according to circumstances. Temozolomide (TMZ) is the standard chemotherapeutic to treat glioma patients. The present work aims to characterizeTMZ-induced effects on caveolin-1 expression in glioma cells. METHODS Human astroglioma (U373 and T98G) and oligodendroglioma (Hs683) cell lines were used in vitro as well as in vivo orthotopic xenografts (Hs683 and U373) into the brains of immunocompromisedmice. In vitro TMZ-induced effects on protein expression and cellular localization were determined by Western blot analysis and on the actin cytoskeleton organization by means of immunofluorescence approaches. In vivo TMZ-induced effects in caveolin-1 expression in human glioma xenografts were monitored by means of immunohistochemistry. RESULTS TMZ modified caveolin-1 expression and localization in vitro and in vivo after an administration schedule that slightly, if at all, impaired cell growth characteristics in vitro. Caveolin-1 by itself (at a 100-ng/ml concentration) was able to significantly reduce invasiveness (Boyden chambers) of the three human glioma cell lines. The TMZ-inducedmodification in caveolin-1 expression in flotation/raft compartments was paralleled by altered Cyr61 and β(1) integrin expression, two elements that have already been reported to collaborate with caveolin-1 in regulating glioma cell biology, and all these features led to profound reorganization of the actin cytoskeleton. An experimental Src kinase inhibitor, AZD0530, almost completely antagonized the TMZ-induced modulation in caveolin-1 expression. CONCLUSION TMZ modifies caveolin-1 expression in vitro and in vivo in glioma cells, a feature that directly affects glioma cell migration properties.
Collapse
|
35
|
Sharma S, Shin JS, Grimshaw M, Clarke RA, Lee CS. The senescence pathway in prostatic carcinogenesis. Pathology 2010; 42:507-11. [DOI: 10.3109/00313025.2010.508791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Aung CS, Hill MM, Bastiani M, Parton RG, Parat MO. PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. Eur J Cell Biol 2010; 90:136-42. [PMID: 20732728 DOI: 10.1016/j.ejcb.2010.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/28/2010] [Accepted: 06/22/2010] [Indexed: 12/15/2022] Open
Abstract
Caveolae are specialized plasma membrane subdomains with a distinct lipid and protein composition, which play an essential role in cell physiology by performing trafficking and signalling functions. The structure and functions of caveolae have been shown to require caveolin-1, a major protein component of caveolae. Caveolin-1 expression and secretion are increased in metastatic prostate cancer, and caveolin-1 seems to contribute to prostate cancer growth and metastasis. Recently, a cytoplasmic protein named PTRF (Polymerase I and Transcript Release Factor) or cavin-1 was found to be required, in concert with caveolin-1, for the formation and functions of caveolae. Genetic ablation of PTRF results in loss of caveolae while caveolin-1 is still expressed, albeit at reduced level, but associates with flat plasma membrane. In metastatic PC3 prostate cancer cells that express abundant caveolin-1 but no PTRF, heterologous PTRF expression restores caveola formation and caveolin-1 distribution (Hill et al., 2008; Cell 132, 113-124). We now show that PTRF/cavin-1-expressing PC3 cells exhibit decreased migration, and that this effect is mediated by reduced MMP9 production. PTRF/cavin-1, and to a lesser extent, cavin-2, -3, and -4 all decreased MMP9. We further show that the PTRF/cavin-1-mediated reduction of MMP9 production is independent of caveola formation. Taken together, our results suggest that PTRF/cavin-1 expression alters prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Cho Sanda Aung
- University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | | | | | | |
Collapse
|
37
|
Langeberg WJ, Tahir SA, Feng Z, Kwon EM, Ostrander EA, Thompson TC, Stanford JL. Association of caveolin-1 and -2 genetic variants and post-treatment serum caveolin-1 with prostate cancer risk and outcomes. Prostate 2010; 70:1020-35. [PMID: 20209490 PMCID: PMC2875326 DOI: 10.1002/pros.21137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Caveolin-1 (cav-1) is overexpressed by metastatic prostate cancer (PC) cells. Pre-operative serum cav-1 levels have been shown to be a prognostic marker for PC recurrence. This study evaluated the relationship between post-treatment serum cav-1 levels and single nucleotide polymorphisms (SNPs) in the cav-1 and -2 genes with risk of PC, aggressive PC, PC recurrence or death. METHODS Two case-control studies of PC among men in Washington State were combined for this analysis. Cases (n = 1,458) were diagnosed in 1993-1996 or 2002-2005 and identified via a SEER cancer registry. Age-matched controls (n = 1,351) were identified via random digit dialing. Logistic regression was used to assess the relationship between exposures (19 haplotype-tagging SNPs from all subjects and post-treatment serum cav-1 levels from a sample of 202 cases and 226 controls) and PC risk and aggressive PC. Cox proportional hazards regression was used to assess the relationship between exposures and PC recurrence and death. RESULTS Rs9920 in cav-1 was associated with an increased relative risk of overall PC (OR(CT + CC) = 1.37, 95% CI = 1.12, 1.68) and aggressive PC (OR(CT + CC) = 1.57, 95% CI = 1.20, 2.06), but not with PC recurrence or death. High post-treatment serum cav-1 levels were not associated with PC risk, aggressive PC, or PC-specific death, but approached a significant inverse association with PC recurrence (hazard ratio = 0.69, 95% CI = 0.47, 1.00). CONCLUSIONS We found modest evidence for an association with a variant in the cav-1 gene and risk of overall PC and aggressive PC, which merits further study. We found no evidence that higher post-treatment serum cav-1 is associated with risk of aggressive PC or adverse PC outcomes.
Collapse
Affiliation(s)
- Wendy J. Langeberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Salahaldin A. Tahir
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ziding Feng
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Erika M. Kwon
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| |
Collapse
|
38
|
Corn PG, Thompson TC. Identification of a novel prostate cancer biomarker, caveolin-1: Implications and potential clinical benefit. Cancer Manag Res 2010. [PMID: 21188102 DOI: 10.2147/cmr.s9835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
While prostate cancer is a common disease in men, it is uncommonly life-threatening. To better understand this phenomenon, tumor biologists have sought to elucidate the mechanisms that contribute to the development of virulent prostate cancer. The recent discovery that caveolin-1 (Cav-1) functions as an important oncogene involved in prostate cancer progression reflects the success of this effort. Cav-1 is a major structural coat protein of caveolae, specialized plasma membrane invaginations involved in multiple cellular functions, including molecular transport, cell adhesion, and signal transduction. Cav-1 is aberrantly overexpressed in human prostate cancer, with higher levels evident in metastatic versus primary sites. Intracellular Cav-1 promotes cell survival through activation of Akt and enhancement of additional growth factor pro-survival pathways. Cav-1 is also secreted as a biologically active molecule that promotes cell survival and angiogenesis within the tumor microenvironment. Secreted Cav-1 can be reproducibly detected in peripheral blood using a sensitive and specific immunoassay. Cav-1 levels distinguish men with prostate cancer from normal controls, and preoperative Cav-1 levels predict which patients are at highest risk for relapse following radical prostatectomy for localized disease. Thus, secreted Cav-1 is a promising biomarker in identifying clinically significant prostate cancer.
Collapse
Affiliation(s)
- Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
39
|
Corn PG, Thompson TC. Identification of a novel prostate cancer biomarker, caveolin-1: Implications and potential clinical benefit. Cancer Manag Res 2010; 2:111-22. [PMID: 21188102 PMCID: PMC3004586 DOI: 10.2147/cmar.s9835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Indexed: 12/21/2022] Open
Abstract
While prostate cancer is a common disease in men, it is uncommonly life-threatening. To better understand this phenomenon, tumor biologists have sought to elucidate the mechanisms that contribute to the development of virulent prostate cancer. The recent discovery that caveolin-1 (Cav-1) functions as an important oncogene involved in prostate cancer progression reflects the success of this effort. Cav-1 is a major structural coat protein of caveolae, specialized plasma membrane invaginations involved in multiple cellular functions, including molecular transport, cell adhesion, and signal transduction. Cav-1 is aberrantly overexpressed in human prostate cancer, with higher levels evident in metastatic versus primary sites. Intracellular Cav-1 promotes cell survival through activation of Akt and enhancement of additional growth factor pro-survival pathways. Cav-1 is also secreted as a biologically active molecule that promotes cell survival and angiogenesis within the tumor microenvironment. Secreted Cav-1 can be reproducibly detected in peripheral blood using a sensitive and specific immunoassay. Cav-1 levels distinguish men with prostate cancer from normal controls, and preoperative Cav-1 levels predict which patients are at highest risk for relapse following radical prostatectomy for localized disease. Thus, secreted Cav-1 is a promising biomarker in identifying clinically significant prostate cancer.
Collapse
Affiliation(s)
- Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
40
|
Li L, Ren C, Yang G, Goltsov AA, Tabata KI, Thompson TC. Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Mol Cancer Res 2009; 7:1781-91. [PMID: 19903767 DOI: 10.1158/1541-7786.mcr-09-0255] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Caveolin-1 (cav-1) and the cancer-promoting growth factors vascular endothelial growth factor (VEGF), transforming growth factor beta1 (TGF-beta1), and fibroblast growth factor 2 (FGF2) are often found to be upregulated in advanced prostate cancer and other malignancies. However, the relationship between cav-1 overexpression and growth factor upregulation remains unclear. This report presents, to our knowledge, the first evidence that in prostate cancer cells, a positive autoregulatory feedback loop is established in which VEGF, TGF-beta1, and FGF2 upregulate cav-1, and cav-1 expression, in turn, leads to increased levels of VEGF, TGF-beta1, and FGF2 mRNA and protein, resulting in enhanced invasive activities of prostate cancer cells, i.e., migration and motility. Our results further show that cav-1-enhanced mRNA stability is a major mechanism underlying the upregulation of these cancer-promoting growth factors, and that PI3-K-Akt signaling is required for forming this positive autoregulatory feedback loop.
Collapse
Affiliation(s)
- Likun Li
- Department of Genitourinary Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | |
Collapse
|
41
|
Watanabe M, Yang G, Cao G, Tahir SA, Naruishi K, Tabata KI, Fattah EA, Rajagopalan K, Timme TL, Park S, Kurosaka S, Edamura K, Tanimoto R, Demayo FJ, Goltsov AA, Thompson TC. Functional analysis of secreted caveolin-1 in mouse models of prostate cancer progression. Mol Cancer Res 2009; 7:1446-55. [PMID: 19737975 DOI: 10.1158/1541-7786.mcr-09-0071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we reported that caveolin-1 (cav-1) is overexpressed in metastatic prostate cancer and that virulent prostate cancer cells secrete biologically active cav-1. We also showed that cav-1 expression leads to prosurvival activities through maintenance of activated Akt and that cav-1 is taken up by other cav-1-negative tumor cells and/or endothelial cells, leading to stimulation of angiogenic activities through PI-3-K-Akt-eNOS signaling. To analyze the functional consequences of cav-1 overexpression on the development and progression of prostate cancer in vivo, we generated PBcav-1 transgenic mice. Adult male PBcav-1 mice showed significantly increased prostatic wet weight and higher incidence of epithelial hyperplasia compared with nontransgenic littermates. Increased immunostaining for cav-1, proliferative cell nuclear antigen, P-Akt, and reduced nuclear p27(Kip1) staining occurred in PBcav-1 hyperplastic prostatic lesions. PBcav-1 mice showed increased resistance to castration-induced prostatic regression and elevated serum cav-1 levels compared with nontransgenic littermates. Intraprostatic injection of androgen-sensitive, cav-1-secreting RM-9 mouse prostate cancer cells resulted in tumors that were larger in PBcav-1 mice than in nontransgenic littermates (P = 0.04). Tail vein inoculation of RM-9 cells produced significantly more experimental lung metastases in PBcav-1 males than in nontransgenic male littermates (P = 0.001), and in cav-1(+/+) mice than in cav-1(-/-) mice (P = 0.041). Combination treatment with surgical castration and systemic cav-1 antibody dramatically reduced the number of experimental metastases. These experimental data suggest a causal association of secreted cav-1 and prostate cancer growth and progression.
Collapse
Affiliation(s)
- Masami Watanabe
- Scott Department of Urology, Baylor College of Medicine, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Felicetti F, Parolini I, Bottero L, Fecchi K, Errico MC, Raggi C, Biffoni M, Spadaro F, Lisanti MP, Sargiacomo M, Carè A. Caveolin-1 tumor-promoting role in human melanoma. Int J Cancer 2009; 125:1514-22. [PMID: 19521982 DOI: 10.1002/ijc.24451] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caveolin-1 (Cav-1), a member of the caveolin family, regulates caveolae-associated signaling proteins, which are involved in many biological processes, including cancer development. Cav-1 was found to exert a complex and ambiguous role as oncogene or tumor suppressor depending on the cellular microenvironment. Here we investigated Cav-1 expression and function in a panel of melanomas, finding its expression in all the cell lines. The exception was the primary vertical melanoma cell line, WM983A, characterized by the lack of Cav-1, and then utilized as a recipient for Cav-1 gene transduction to address a series of functional studies. The alleged yet controversial role of phospho (Ph)-Cav-1 on cell regulation was also tested by transducing the nonphosphorylatable Cav-1Y14A mutant. Wild-type Cav-1, but not mutated Cav-1Y14A, increased tumorigenicity as indicated by enhanced proliferation, migration, invasion and capacity of forming foci in semisolid medium. Accordingly, Cav-1 silencing inhibited melanoma cell growth reducing some of the typical traits of malignancy. Finally, we detected a secreted fraction of Cav-1 associated with cell released microvesicular particles able to stimulate in vitro anchorage independence, migration and invasion in a paracrine/autocrine fashion and, more important, competent to convey metastatic asset from the donor melanoma to the less aggressive recipient cell line. A direct correlation between Cav-1 levels, the amount of microvesicles released in the culture medium and MMP-9 expression was also observed.
Collapse
Affiliation(s)
- Federica Felicetti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Di Vizio D, Morello M, Sotgia F, Pestell RG, Freeman MR, Lisanti MP. An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle 2009; 8:2420-4. [PMID: 19556867 DOI: 10.4161/cc.8.15.9116] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Here, we examined the status of stromal Cav-1 expression in patients with benign prostatic hypertrophy (BPH), primary prostate cancers (PCa), and prostate-cancer metastases (Mets). Interestingly, an absence of stromal Cav-1 directly correlated with prostate cancer disease progression. For example, virtually all BPH samples showed abundant stromal Cav-1 immunostaining. In contrast, in a subset of patients with primary prostate cancer, the stromal levels of Cav-1 were significantly decreased, and this correlated with a high Gleason score, indicative of a worse prognosis and poor clinical outcome. Remarkably, all metastatic tumors (either from lymph node or bone) were completely negative for stromal Cav-1 staining. Thus, stromal Cav-1 expression may be considered as a new biomarker of prostate cancer disease progression and metastasis. Mechanistically, stromal Cav-1 levels were inversely correlated with the epithelial expression levels of Cav-1 and epithelial phospho-Akt. Thus, loss of stromal Cav-1 is predictive of elevated levels of epithelial Cav-1 and epithelial Akt-activation. This provides important new clinical evidence for paracrine signaling between prostate cancer epithelial cells and the tumor stromal micro-environment, especially related to disease progression and metastasis.
Collapse
Affiliation(s)
- Dolores Di Vizio
- Urological Diseases Research Center, Children's Hospital Boston and Department of Surgery, Harvard Medical School, Enders Research Laboratories, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Caveolin-1 (cav-1) is reportedly overexpressed in prostate cancer cells and is associated with disease progression. Specific oncogenic activities of cav-1 associated with Akt activation also occur in prostate cancer. A membrane-associated protein, cav-1, is nonetheless secreted by prostate cancer cells; results of recent studies showed that secreted cav-1 can stimulate cell survival and angiogenic activities, defining a role for cav-1 in the prostate cancer microenvironment. Serum cav-1 levels were also higher in prostate cancer patients than in control men without prostate cancer, and the preoperative serum cav-1 concentration had prognostic potential in men undergoing radical prostatectomy. Secreted cav-1 is therefore a potential biomarker and therapeutic target for prostate cancer.
Collapse
|
45
|
Becher EF, Toblli JE, Castronuovo C, Nolazco C, Rosenfeld C, Grosman H, Vazquez E, Mazza ON. Expression of caveolin-1 in penile cavernosal tissue in a denervated animal model after treatment with sildenafil citrate. J Sex Med 2009; 6:1587-1593. [PMID: 19473465 DOI: 10.1111/j.1743-6109.2009.01239.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Radical pelvic surgery is a major cause of erectile dysfunction due to iatrogenic cavernous nerve damage. Endothelial nitric oxide synthase, which generates nitric oxide (NO) in the cavernosal tissues, localizes to specialized plasma membrane invaginations known as caveolae. Growing evidence suggests that caveolae are major components of signal trafficking and that stimuli that affect the concentration of the main structural protein of caveolae, caveolin-1 influence NO signaling. AIM To evaluate caveolin-1 expression as a marker of cavernous tissue damage and determine the impact of early sildenafil administration on caveolin-1 expression in animal models of partial and total surgical penile denervation. METHODS Thirty-six rats were divided into six groups (N = 6 per group) that received bilateral or unilateral penile denervation or sham surgery, with and without sildenafil 10 mg daily for 7 weeks. MAIN OUTCOME MEASURES Sections were taken from the proximal middle portion of the penis of all animals. Cavernous tissue was delineated by the tunica albuginea, then the extent of immunostaining for the following parameters was quantitated to determine (i) cavernous smooth muscle layer in the cavernous space expressed as the percentage of alpha-smooth muscle actin (alpha-SMA) positive immunostaining per area and (ii) caveolin-1 expressed as a percentage of area. RESULTS A marked decrease in both caveolin-1 and alpha-SMA expression in cavernous smooth muscle tissue and in the endothelium of rats was noted after a bilateral and unilateral neurotomy. Specimens from animals receiving sildenafil exhibited higher mean immunostaining values for both proteins in cavernous tissue. The differences were statistically significant compared with groups receiving the same surgical treatment without sildenafil. CONCLUSION Caveolin-1 and alpha-SMA expression in cavernous tissue is significantly reduced by pelvic nerve injury, and the loss is related to the extent of the neural damage. Early administration of sildenafil elicits caveolin-1 expression, which appears to preserve cavernous tissue.
Collapse
Affiliation(s)
- Edgardo F Becher
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina;.
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - Cynthia Castronuovo
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina
| | - Carlos Nolazco
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina
| | - Claudio Rosenfeld
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina
| | - Halina Grosman
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Elba Vazquez
- Department of Biologic Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina-CONICET
| | - Osvaldo N Mazza
- Division of Urology, Hospital de Clínicas "José de San Martín," University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
46
|
Chapter 4 The Biology of Caveolae. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:117-62. [DOI: 10.1016/s1937-6448(08)01804-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Tan SH, Nevalainen MT. Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr Relat Cancer 2008; 15:367-90. [PMID: 18508994 PMCID: PMC6036917 DOI: 10.1677/erc-08-0013] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase signaling pathways, such as Janus kinase 2-Signal transducer and activator of transcription 5A/B (JAK2-STAT5A/B), are of significant interest in the search for new therapeutic strategies in both breast and prostate cancers. In prostate cancer, the components of the JAK2-STAT5A/B signaling pathway provide molecular targets for small-molecule inhibition of survival and growth signals of the cells. At the same time, new evidence suggests that the STAT5A/B signaling pathway is involved in the transition of organ-confined prostate cancer to hormone-refractory disease. This implies that the active JAK2-STAT5A/B signaling pathway potentially provides the means for pharmacological intervention of clinical prostate cancer progression. In addition, active STAT5A/B may serve as a prognostic marker for identification of those primary prostate cancers that are likely to progress to aggressive disease. In breast cancer, the role of STAT5A/B is more complex. STAT5A/B may have a dual role in the regulation of malignant mammary epithelium. Data accumulated from mouse models of breast cancer suggest that in early stages of breast cancer STAT5A/B may promote malignant transformation and enhance growth of the tumor. This is in contrast to established breast cancer, where STAT5A/B may mediate the critical cues for maintaining the differentiation of mammary epithelium. In addition, present data suggest that activation of STAT5A/B in breast cancer predicts favorable clinical outcome. The dual nature of STAT5A/B action in breast cancer makes the therapeutic use of STAT5 A/B more complex.
Collapse
Affiliation(s)
- Shyh-Han Tan
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 309, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
48
|
Abstract
PURPOSE Caveolae are non-clathrin, flask-shaped invaginations of the plasma membrane. Caveolin-1 is an essential constituent of caveolae and as such acts as a regulator of caveolae-dependent lipid trafficking and endocytosis. Caveolin-1 interacts with a variety of cellular proteins and regulates cell-signaling events. Caveolin-1 appears to act as a tumor suppressor protein at early stages of cancer progression. However, a growing body of evidence indicates that caveolin-1 is up-regulated in several multidrug-resistant and metastatic cancer cell lines and human tumor specimens. Furthermore, caveolin-1 levels are positively correlated with tumor stage and grade in numerous cancer types. CONCLUSION The available experimental data support the tumor-promoting role of caveolin-1 in advanced-stage cancer.
Collapse
Affiliation(s)
- Maria Shatz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
49
|
Burgermeister E, Liscovitch M, Röcken C, Schmid RM, Ebert MPA. Caveats of caveolin-1 in cancer progression. Cancer Lett 2008; 268:187-201. [PMID: 18482795 DOI: 10.1016/j.canlet.2008.03.055] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
Caveolin-1, an essential scaffold protein of caveolae and cellular transport processes, lately gained recognition as a stage- and tissue-specific tumor modulator in vivo. Patient studies and rodent models corroborated its janus-faced role as a tumor suppressor in non-neoplastic tissue, its down-regulation (loss of function) upon transformation and its re-expression (regain of function) in advanced-stage metastatic and multidrug resistant tumors. This review is focussed on the role of caveolin-1 in metastasis and angiogenesis and its clinical implications as a prognostic marker in cancer progression.
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Klinikum Rechts der Isar, Technical University of München, München, Germany.
| | | | | | | | | |
Collapse
|
50
|
Tamaskar I, Zhou M. Clinical implications of caveolins in malignancy and their potential as therapeutic targets. Curr Oncol Rep 2008; 10:101-6. [DOI: 10.1007/s11912-008-0017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|