1
|
Fernandes AS, Oliveira C, Reis RL, Martins A, Silva TH. Marine-Inspired Drugs and Biomaterials in the Perspective of Pancreatic Cancer Therapies. Mar Drugs 2022; 20:689. [PMID: 36355012 PMCID: PMC9698933 DOI: 10.3390/md20110689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 05/12/2024] Open
Abstract
Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.
Collapse
Affiliation(s)
- Andreia S. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| |
Collapse
|
2
|
Raghuvanshi R, Bharate SB. Preclinical and Clinical Studies on Bryostatins, A Class of Marine-Derived Protein Kinase C Modulators: A Mini-Review. Curr Top Med Chem 2021; 20:1124-1135. [PMID: 32209043 DOI: 10.2174/1568026620666200325110444] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Bryostatins are complex macrolactones isolated from marine organisms Bryozoan Bugula neritina. They are potent modulators of protein kinase C isozymes (PKCα: ki = 1.3-188 nM), and are one of the most extensively investigated marine natural products in clinical trials. Although ~21 natural bryostatins have been isolated, however only bryostatin-1 (1) has received much interest among medicinal chemists and clinicians. The structure-activity relationship of bryostatins has been well established, with the identification of key pharmacophoric features important for PKC modulation. The low natural abundance and the long synthetic route have prompted medicinal chemists to come-up with simplified analogs. Bryostatin skeleton comprises three pyran rings connected to each other to form a macrocyclic lactone. The simplest analog 27 contains only one pyran, which is also able to modulate the PKCα activity; however, the cyclic framework appears to be essential for the desired level of potency. Another simplified analog 17 ("picolog") exhibited potent and in-vivo efficacy against lymphoma. Bryostatin-1 (1) has shown an acceptable intravenous pharmacokinetic profile in mice and displayed promising in-vivo efficacy in mice models of various cancers and Alzheimer's disease. Bryostatin-1 was investigated in numerous Phase I/II oncology clinical trials; it has shown minimal effect as a single agent, however, provided encouraging results in combination with other chemotherapy agents. FDA has granted orphan drug status to bryostatin-1 in combination with paclitaxel for esophageal cancer. Bryostatin-1 has also received orphan drug status for fragile X syndrome. Bryostatin-1 was also investigated in clinical studies for Alzheimer's disease and HIV infection. In a nutshell, the natural as well as synthetic bryostatins have generated a strong hope to emerge as treatment for cancer along with many other diseases.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Nelson TJ, Sun MK, Lim C, Sen A, Khan T, Chirila FV, Alkon DL. Bryostatin Effects on Cognitive Function and PKCɛ in Alzheimer's Disease Phase IIa and Expanded Access Trials. J Alzheimers Dis 2018; 58:521-535. [PMID: 28482641 PMCID: PMC5438479 DOI: 10.3233/jad-170161] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bryostatin 1, a potent activator of protein kinase C epsilon (PKCɛ), has been shown to reverse synaptic loss and facilitate synaptic maturation in animal models of Alzheimer’s disease (AD), Fragile X, stroke, and other neurological disorders. In a single-dose (25 μg/m2) randomized double-blind Phase IIa clinical trial, bryostatin levels reached a maximum at 1-2 h after the start of infusion. In close parallel with peak blood levels of bryostatin, an increase of PBMC PKCɛ was measured (p = 0.0185) within 1 h from the onset of infusion. Of 9 patients with a clinical diagnosis of AD, of which 6 received drug and 3 received vehicle within a double-blind protocol, bryostatin increased the Mini-Mental State Examination (MMSE) score by +1.83±0.70 unit at 3 h versus –1.00±1.53 unit for placebo. Bryostatin was well tolerated in these AD patients and no drug-related adverse events were reported. The 25 μg/m2 administered dose was based on prior clinical experience with three Expanded Access advanced AD patients treated with bryostatin, in which return of major functions such as swallowing, vocalization, and word recognition were noted. In one Expanded Access patient trial, elevated PKCɛ levels closely tracked cognitive benefits in the first 24 weeks as measured by MMSE and ADCS-ADL psychometrics. Pre-clinical mouse studies showed effective activation of PKCɛ and increased levels of BDNF and PSD-95. Together, these Phase IIa, Expanded Access, and pre-clinical results provide initial encouragement for bryostatin 1 as a potential treatment for AD.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Chol Lim
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Abhik Sen
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Tapan Khan
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Florin V Chirila
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,Neurodiagnostics, LLC, Rockville, MD, USA
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,Neurotrope Biosciences, LLC, New York, NY, USA
| |
Collapse
|
4
|
Abstract
OBJECTIVE The protein kinase C (PKC) agonist bryostatin-1 has shown significant ex-vivo potency to revert HIV-1 latency, compared with other latency reversing agents (LRA). The safety of this candidate LRA remains to be proven in treated HIV-1-infected patients. METHODS In this pilot, double-blind phase I clinical-trial (NCT 02269605), we included aviraemic HIV-1-infected patients on triple antiretroviral therapy to evaluate the effects of two different single doses of bryostatin-1 (10 or 20 μg/m) compared with placebo. RESULTS Twelve patients were included, four in each arm. Bryostatin-1 was well tolerated in all participants. Two patients in the 20 μg/m arm developed grade 1 headache and myalgia. No detectable increases of cell-associated unspliced (CA-US) HIV-1-RNA were observed in any study arm, nor differences in HIV-1 mRNA dynamics between arms (P = 0.44). The frequency of samples with low-level viraemia did not differ between arms and low-level viraemia did not correlate with CA-US HIV-1-RNA levels (P = 0.676). No changes were detected on protein kinase C (PKC) activity and in biomarkers of inflammation (sCD14 and interleukin-6) in any study arm. After the single dose of bryostatin-1, plasma concentrations were under detection limits in all the patients in the 10 μg/m arm, and below 50 pg/ml (0.05 nmol/l) in those in the 20 μg/m arm. CONCLUSION Bryostatin-1 was safe at the single doses administered. However, the drug did not show any effect on PKC activity or on the transcription of latent HIV, probably due to low plasma concentrations. This study will inform next trials aimed at assessing higher doses, multiple dosing schedules or combination studies with synergistic drugs.
Collapse
|
5
|
Mikhail S, Albanese C, Pishvaian MJ. Cyclin-dependent kinase inhibitors and the treatment of gastrointestinal cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1185-97. [PMID: 25747534 DOI: 10.1016/j.ajpath.2015.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/13/2015] [Indexed: 01/14/2023]
Abstract
The cell cycle is a highly conserved and tightly regulated biological system that controls cellular proliferation and differentiation. The cell cycle regulatory proteins, which include the cyclins, the cyclin-dependent kinases (CDKs), and the CDK inhibitors, are critical for the proper temporal and spatial regulation of cellular proliferation. Conversely, alterations in cell cycle regulatory proteins, leading to the loss of normal cell-cycle control, are a hallmark of many cancers, including gastrointestinal cancers. Accordingly, overexpression of CDKs and cyclins and by contrast loss of CDK inhibitors, are all linked to gastrointestinal cancers and are often associated with less favorable prognoses and outcomes. Because of the importance that the cell cycle regulatory proteins play in tumorigenesis, currently there is a broad spectrum of cell-cycle inhibitors under development that, as a group, hold promise as effective cancer treatments. In support of this approach to cancer treatment, the growing availability of molecular diagnostics techniques may help in identifying patients who have driving abnormalities in the cell-cycle machinery and are thus more likely to respond to cell-cycle inhibitors. In this review, we discuss the prevalence of cell-cycle abnormalities in patients with gastrointestinal cancers and provide a preclinical and clinical overview of new agents that target cell-cycle abnormalities with a special emphasis on gastrointestinal cancers.
Collapse
Affiliation(s)
- Sameh Mikhail
- James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Christopher Albanese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
6
|
Abstract
Apoptosis is a natural process where cells that are no longer required can be eliminated in a highly regulated, controlled manner. Apoptosis is important in maintaining the mammalian immune system and plays a significant role in immune response, positive and negative T cell selection, and cytotoxic death of target cells. When the apoptotic pathways are impaired or are not tightly regulated, autoimmune diseases, inflammatory diseases, viral and bacterial infections and cancers ensue. An imbalance in the anti-apoptotic and pro-apoptotic factors has been implicated in these diseases. Moreover, current therapies directed towards these diseases focus on the modulation of the apoptotic death pathways to regulate the immune response. In this review, we will focus on the process of T cell activation and apoptosis in autoimmune reactions, in response to tumor progression as well as in response to bacterial and viral infections.
Collapse
Affiliation(s)
- Anuradha K Murali
- Departments of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | | |
Collapse
|
7
|
Sima P, Vetvicka V. Bioactive substances with anti-neoplastic efficacy from marine invertebrates: Bryozoa, Mollusca, Echinodermata and Urochordata. World J Clin Oncol 2011; 2:362-6. [PMID: 22087434 PMCID: PMC3212817 DOI: 10.5306/wjco.v2.i11.362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023] Open
Abstract
The marine environment provides a rich source of natural products with potential therapeutic application. This has resulted in an increased rate of pharmaceutical agents being discovered in marine animals, particularly invertebrates. Our objective is to summarize the most promising compounds which have the best potential and may lead to use in clinical practice, show their biological activities and highlight the compounds currently being tested in clinical trials. In this paper, we focused on Bryozoa, Mollusca, Echinodermata and Urochordata.
Collapse
Affiliation(s)
- Peter Sima
- Peter Sima, Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague 15400, Czech Republic
| | | |
Collapse
|
8
|
Glycoglycerolipid analogues inhibit PKC translocation to the plasma membrane and downstream signaling pathways in PMA-treated fibroblasts and human glioblastoma cells, U87MG. Eur J Med Chem 2011; 46:1827-34. [DOI: 10.1016/j.ejmech.2011.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/03/2023]
|
9
|
Hale KJ, Manaviazar S. New approaches to the total synthesis of the bryostatin antitumor macrolides. Chem Asian J 2010; 5:704-54. [PMID: 20354984 DOI: 10.1002/asia.200900634] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this Focus Review, we give an overview of various bryostatin total syntheses. We also discuss the synthesis of various bryostatin analogues and their biological activity. Work reviewed includes that of Masamune, Evans, Nishiyama and Yamamura, Hale and Manaviazar, Trost, Wender, Keck, Burke, Thomas, and Krische. Our coverage is primarily for the period 2001-2009, since detailed reviews already exist on bryostatin total synthesis work and biology up to this time.
Collapse
Affiliation(s)
- Karl J Hale
- School of Chemistry & Chemical Engineering, Queen's Universty Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | | |
Collapse
|
10
|
Abstract
The cell cycle governs the transition from quiescence through cell growth to proliferation. The key parts of the cell cycle machinery are the cyclin-dependent kinases (CDKS) and the regulatory proteins called cyclins. The CDKS are rational targets for cancer therapy because their expression in cancer cells is often aberrant and their inhibition can induce cell death. Inhibitors of CDKS can also block transcription.Several drugs targeting the cell cycle have entered clinical trials. These agents include flavopiridol, indisulam, AZD5438, SNS-032, bryostatin-1, seliciclib, PD 0332991, and SCH 727965. Phase i studies have demonstrated that these drugs can generally be administered safely. Phase ii studies have shown little single-agent activity in solid tumors, but combination studies with cytotoxic chemotherapy have been more promising. In hematologic malignancies, reports have shown encouraging single-agent and combination activity. Pharmacodynamic studies show that the dose and schedule of these drugs are crucial to permit maximum therapeutic effect.
Collapse
Affiliation(s)
- M.A. Dickson
- Department of Medicine, Division of Solid Tumor Oncology, Melanoma and Sarcoma Service, and Laboratory of New Drug Development, Memorial Sloan–Kettering Cancer Center, New York, NY, U.S.A
| | - G.K. Schwartz
- Department of Medicine, Division of Solid Tumor Oncology, Melanoma and Sarcoma Service, and Laboratory of New Drug Development, Memorial Sloan–Kettering Cancer Center, New York, NY, U.S.A
| |
Collapse
|
11
|
Keck GE, Poudel YB, Welch DS, Kraft MB, Truong AP, Stephens JC, Kedei N, Lewin NE, Blumberg PM. Substitution on the A-ring confers to bryopyran analogues the unique biological activity characteristic of bryostatins and distinct from that of the phorbol esters. Org Lett 2009; 11:593-6. [PMID: 19113896 DOI: 10.1021/ol8027253] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A close structural analogue of bryostatin 1, which differs from bryostatin 1 only by the absence of the C(30) carbomethoxy group (on the C(13) enoate of the B-ring), has been prepared by total synthesis. Biological assays reveal a crucial role for substitution in the bryostatin 1 A-ring in conferring those responses which are characteristic of bryostatin 1 and distinct from those observed with PMA.
Collapse
Affiliation(s)
- Gary E Keck
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pavlick AC, Wu J, Roberts J, Rosenthal MA, Hamilton A, Wadler S, Farrell K, Carr M, Fry D, Murgo AJ, Oratz R, Hochster H, Liebes L, Muggia F. Phase I study of bryostatin 1, a protein kinase C modulator, preceding cisplatin in patients with refractory non-hematologic tumors. Cancer Chemother Pharmacol 2009; 64:803-10. [PMID: 19221754 DOI: 10.1007/s00280-009-0931-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
PURPOSE Preclinical data suggested that bryostatin-1 (bryo) could potentiate the cytotoxicity of cisplatin when given prior to this drug. We designed a phase I study to achieve tolerable doses and schedules of bryo and cisplatin in combination and in this sequence. METHODS Patients with non-hematologic malignancies received bryo followed by cisplatin in several schedules. Bryo was given as an 1 and a 24 h continuous infusion, while cisplatin was always given over 1 h at 50 and 75 mg/m(2); the combined regimen was repeated on an every 3-week and later on an every 2-week schedule. Bryo doses were escalated until recommended phase II doses were defined for each schedule. Patients were evaluated with computerized tomography every 2 cycles. RESULTS Fifty-three patients were entered. In an every 2-week schedule, the 1-h infusion of bryo became limited by myalgia that was clearly cumulative. With cisplatin 50 mg/m(2) its recommended phase II dose was 30 microg/m(2). In the 3-week schedule, dose-limiting toxicities were mostly related to cisplatin effects while myalgias were tolerable. Pharmacokinetics unfortunately proved to be unreliable due to bryo's erratic extraction. Consistent inhibition of PKC isoform eta (eta) in peripheral blood mononuclear cells was observed following bryo. CONCLUSIONS Bryo can be safely administered with cisplatin with minimal toxicity; however, only four patients achieved an objective response. Modulation of cisplatin cytotoxicity by bryo awaits further insight into the molecular pathways involved.
Collapse
Affiliation(s)
- Anna C Pavlick
- New York University School of Medicine, New York University Cancer Institute, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ali AS, Ali S, El-Rayes BF, Philip PA, Sarkar FH. Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev 2008; 35:1-8. [PMID: 18778896 DOI: 10.1016/j.ctrv.2008.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 12/11/2022]
Abstract
Protein kinase C is a family of serine/threonine kinases. The PKC family is made up of at least 12 isozymes, which have a role in cell proliferation, differentiation, angiogenesis, and apoptosis. Activation of PKC isozyme is dependent on tyrosine-kinase receptors and G-protein-coupled receptors. PKC isozymes regulate multiple signaling pathways including PI3-K/Akt, MAPK, and GSK-3beta. PKC isozymes have variable roles in tumor biology which in part depend on the cell type and intracellular localization. PKC isozymes are commonly dysregulated in the cancer of the prostate, breast, colon, pancreatic, liver, and kidney. Currently, several classes of PKC inhibitors are being evaluated in clinical trials and several challenges in targeting PKC isozymes have been recently identified. In conclusion, PKC remains a promising target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Ashhar S Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
14
|
Mayer AMS, Gustafson KR. Marine pharmacology in 2005-2006: antitumour and cytotoxic compounds. Eur J Cancer 2008; 44:2357-87. [PMID: 18701274 DOI: 10.1016/j.ejca.2008.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023]
Abstract
During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines were reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom (UK) and the United States of America (USA). Finally, this 2005-2006 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | | |
Collapse
|
15
|
Banerjee S, Wang Z, Mohammad M, Sarkar FH, Mohammad RM. Efficacy of selected natural products as therapeutic agents against cancer. JOURNAL OF NATURAL PRODUCTS 2008; 71:492-496. [PMID: 18302335 DOI: 10.1021/np0705716] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
With emerging sophistication in the exploration of ocean environment, a number of marine bioactive products have been identified with promising anticancer activity. Many of these are in active phase I or phase II clinical trials or have been terminated because of adverse side effects, mainly hematological in nature. Nonetheless, the information derived has aided enormously in providing leads for laboratory synthesis with modifications in the parent structure affecting compound solubility, absorption, and toxicity, resulting in less severe toxicity while achieving maximum efficacy in smaller doses. We describe herein, a few of the compounds obtained from marine and terrestrial sources [bryostatin 1 ( 1), dolastatin 10 ( 2), auristatin PE ( 3), and combretastatin A4 ( 4)] that have been extensively investigated in our laboratory and continue to be investigated for their sensitization effects with other cytotoxic agents in several different site-specific tumors employing murine models or human subjects.
Collapse
Affiliation(s)
- Sanjeev Banerjee
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Protein kinase C (PKC) comprises a family of serine/threonine kinases that are involved in the transduction of signals for cell proliferation, differentiation, apoptosis and angiogenesis. Unsurprisingly, disruption of PKC regulation is implicated in tumorigenesis and drug resistance. PKC function is complex in this context owing to the differing roles of individual isozymes within the cell and across tumour types. Therapeutically targeting PKC isozymes is not new; however, with many of the early PKC inhibitor cytotoxic drug combinations being discarded at the phase II level, and recent phase III studies in non-small-cell lung cancer proving negative, what's going wrong?
Collapse
Affiliation(s)
- Helen J Mackay
- University of Toronto, Department of Medical Oncology and Hematology, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Trost BM, Yang H, Thiel OR, Frontier AJ, Brindle CS. Synthesis of a ring-expanded bryostatin analogue. J Am Chem Soc 2007; 129:2206-7. [PMID: 17279751 PMCID: PMC2533160 DOI: 10.1021/ja067305j] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|