1
|
Bora NR, Kumar R, Kumar S. Development of an apoptotic lentogenic Newcastle disease virus strain by incorporating the p30 protein of African swine fever virus. Virology 2025; 606:110477. [PMID: 40069016 DOI: 10.1016/j.virol.2025.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
Virotherapy is one of the emerging approaches for cancer treatment. Newcastle disease virus (NDV) is a well-studied avian paramyxovirus commonly isolated from birds. Typically, the virulent strains of NDV are acknowledged for their oncolytic properties. The anti-tumor effects of NDV rely on its capacity to trigger apoptosis in cancer cells and elicit inflammatory immune responses against the tumor. However, the virulent strains pose significant challenges for clinical application. This study investigated the development of an apoptotic lentogenic strain of NDV by incorporating the p30 protein gene of the African swine fever virus (ASFV). Previous studies have indicated that the p30 protein interacts with various cellular proteins, including PARP9 and DAB2, which suggests its potential for direct or indirect influence on apoptotic pathways. Our initial data confirmed the upregulation of caspase 3/9, PARP, and cytochrome c, suggesting the pro-apoptotic nature of the p30 protein. Further, a recombinant NDV (rNDV) expressing p30 protein (rNDV-p30) was developed, and its effects were evaluated on human breast cancer (MCF-7) cells. While rNDV alone can't show apoptosis, its variant, rNDV-p30 showed promising apoptotic features in MCF-7 cells. Overall, the results demonstrated the development of rNDV-p30 as an apoptotic virus that offered a novel virotherapy strategy for cancer treatment. Additional research is needed to investigate the underlying mechanisms, safety, and efficacy of the apoptotic activity of the rNDV-p30 and to evaluate the effectiveness of this approach in animal models.
Collapse
Affiliation(s)
- Nilave Ranjan Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Huberts M, de Graaf JF, Groeneveld D, van Nieuwkoop S, Fouchier RA, van den Hoogen BG. Cell-derived Newcastle disease virus variant with two amino acid substitutions near cleavage site of F shows favorable traits as oncolytic virus. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200915. [PMID: 39802675 PMCID: PMC11719830 DOI: 10.1016/j.omton.2024.200915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Newcastle disease virus (NDV) has shown encouraging effectiveness in in vitro, in vivo, and in early clinical trials as a viro-immunotherapy for pancreatic cancer. Previously, NDV used in clinical trials was produced in embryonated chicken eggs; however, egg-produced viruses are known to be partly neutralized by the human complement system when administered intravenously. Here, an NDV variant (NDV F0) was generated for production in mammalian cells, without passage in eggs. This was achieved by introducing the V-106-M and L-117-S amino acid substitutions upstream of the cleavage site in the F protein, resulting in rNDV F0-M, rNDV F0-S, and NDV F0-M/S. These viruses can be considered non-virulent as determined with in vivo pathogenicity testing and were neutralized less by the human complement system, which is explained by CD46 expression on the viral membrane. The inoculation of 10 pancreatic cancer cell lines demonstrated similar or enhanced replication and cell-killing efficacy of rNDV F0-M/S compared to rNDV F0 and rNDV F0-M. In conclusion, NDV F0 variants with M and S substitutions are non-virulent, effective oncolytic viruses that can be produced in mammalian cells, potentially resulting in a more effective treatment option for pancreatic cancer patients compared to rNDV F0.
Collapse
Affiliation(s)
- Marco Huberts
- Department of Viroscience, Erasmus Medical Centrum, Doctor Molewaterplein 40, 3015 CN Rotterdam, the Netherlands
| | - J. Fréderique de Graaf
- Department of Immunology, Leids Universitair Medisch Centrum, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Daphne Groeneveld
- Department of Viroscience, Erasmus Medical Centrum, Doctor Molewaterplein 40, 3015 CN Rotterdam, the Netherlands
| | - Stefan van Nieuwkoop
- Department of Viroscience, Erasmus Medical Centrum, Doctor Molewaterplein 40, 3015 CN Rotterdam, the Netherlands
| | - Ron A.M. Fouchier
- Department of Viroscience, Erasmus Medical Centrum, Doctor Molewaterplein 40, 3015 CN Rotterdam, the Netherlands
| | - Bernadette G. van den Hoogen
- Department of Viroscience, Erasmus Medical Centrum, Doctor Molewaterplein 40, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
3
|
Davar D, Carneiro BA, Dy GK, Sheth S, Borad MJ, Harrington KJ, Patel SP, Galanis E, Samson A, Agrawal S, Chen Z, Fan C, Gong M, Burton J, Tu E, Durham N, Laubscher K, Arnaldez F, Zamarin D. Phase I study of a recombinant attenuated oncolytic virus, MEDI5395 (NDV-GM-CSF), administered systemically in combination with durvalumab in patients with advanced solid tumors. J Immunother Cancer 2024; 12:e009336. [PMID: 39551600 PMCID: PMC11574399 DOI: 10.1136/jitc-2024-009336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/13/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND MEDI5395 is a recombinant attenuated Newcastle disease virus engineered to express a human granulocyte-macrophage colony-stimulating factor transgene. Preclinically, MEDI5395 demonstrated broad oncolytic activity, augmented by concomitant programmed cell death-1/programmed cell death ligand-1 (PD-L1) axis blockade. Durvalumab is an anti-PD-L1 immune checkpoint inhibitor approved for the treatment of various solid tumors. We describe the results of the first-in-human study combining intravenous MEDI5395 with durvalumab in patients with advanced solid tumors. METHODS This phase I, open-label, multicenter, dose-escalation, dose-expansion study recruited adult patients with advanced solid tumors, who had relapsed or were refractory or intolerant to ≥1 prior line of standard treatment. MEDI5395 was administered intravenously as six doses over 15-18 days. The dose-escalation phase assessed four-dose levels (108, 109, 1010, 1011 focus forming units (FFU)) of MEDI5395, with sequential or delayed durvalumab. Durvalumab 1500 mg was administered intravenously every 4 weeks up to 2 years. The dose-expansion phase was not initiated. The primary objectives were to evaluate safety and tolerability, dose-limiting toxicities (DLTs) and the dose and schedule of MEDI5395 plus durvalumab administration. Secondary objectives included the assessment of the efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of MEDI5395. RESULTS 39 patients were treated with MEDI5395; 36 patients also received durvalumab. All 39 patients experienced ≥1 treatment-emergent adverse event (TEAE), most commonly fatigue (61.5%), nausea (53.8%) and chills (51.3%). Grade 3-4 TEAEs occurred in 27 (69.2%) patients; these were deemed MEDI5395-related in 12 (30.8%) patients. Two patients experienced a DLT, and the maximum tolerated dose of MEDI5395 with sequential and delayed durvalumab at study termination was 1011 and 1010 FFU, respectively. Four patients (10.3%) achieved a partial response (PR). Patients with PR or stable disease tended to have higher baseline PD-L1 and CD8+ levels in their tumor tissue. A tendency to dose-dependent pharmacokinetics of the viral genome was observed in whole blood and a tendency to dose-dependent viral shedding was observed in saliva and urine. Neutralizing antibodies were observed in all patients but did not appear to impact efficacy negatively. CONCLUSION This study demonstrates the feasibility, safety and preliminary efficacy of MEDI5395 with durvalumab in patients with advanced solid tumors. TRIAL REGISTRATION NUMBER NCT03889275.
Collapse
Affiliation(s)
- Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Benedito A Carneiro
- Lifespan Cancer Institute, Legorreta Cancer Institute at Brown University, Providence, Rhode Island, USA
| | - Grace K Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Siddharth Sheth
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research / The Royal Marsden NIHR Biomedical Research Centre, London, UK
| | - Sandip P Patel
- University of California San Diego, La Jolla, California, USA
| | | | - Adel Samson
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Sonia Agrawal
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Zhongying Chen
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences (CPSS), BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Chunling Fan
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences (CPSS), BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Maozhen Gong
- AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Jenny Burton
- Oncology R&D, AstraZeneca PLC, Cambridge, Cambridgeshire, UK
| | - Eric Tu
- Translational Medicine, Cell Therapy and Oncolytic Viruses, BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Nicholas Durham
- Translational Medicine, Cell Therapy and Oncolytic Viruses, BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Kevin Laubscher
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Fernanda Arnaldez
- Clinical Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Dmitriy Zamarin
- Early Drug Development, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Robinson SI, Rochell RE, Penza V, Naik S. Translation of oncolytic viruses in sarcoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200822. [PMID: 39040851 PMCID: PMC11261849 DOI: 10.1016/j.omton.2024.200822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Sarcomas are a rare and highly diverse group of malignancies of mesenchymal origin. While sarcomas are generally considered resistant to immunotherapy, recent studies indicate subtype-specific differences in clinical response to checkpoint inhibitors (CPIs) that are associated with distinct immune phenotypes present in sarcoma subtypes. Oncolytic viruses (OVs) are designed to selectively infect and kill tumor cells and induce intratumoral immune infiltration, enhancing immunogenicity and thereby sensitizing tumors to immunotherapy. Herein we review the accumulated clinical data evaluating OVs in sarcoma. Small numbers of patients with sarcoma were enrolled in early-stage OV trials as part of larger solid tumor cohorts demonstrating safety but providing limited insight into the biological effects due to the low patient numbers and lack of histologic grouping. Several recent studies have investigated talimogene laherparepvec (T-VEC), an approved oncolytic herpes simplex virus (HSV-1), in combination therapy regimens in sarcoma patient cohorts. These studies have shown promising responses in heavily pre-treated and immunotherapy-resistant patients associated with increased intratumoral immune infiltration. As new and more potent OVs enter the clinical arena, prospective evaluation in subtype-specific cohorts with correlative studies to define biomarkers of response will be critical to advancing this promising approach for sarcoma therapy.
Collapse
Affiliation(s)
- Steven I. Robinson
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Roya E. Rochell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Velia Penza
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Gong N, Alameh MG, El-Mayta R, Xue L, Weissman D, Mitchell MJ. Enhancing in situ cancer vaccines using delivery technologies. Nat Rev Drug Discov 2024; 23:607-625. [PMID: 38951662 DOI: 10.1038/s41573-024-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Rakan El-Mayta
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Nia GE, Nikpayam E, Farrokhi M, Bolhassani A, Meuwissen R. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200788. [PMID: 38596310 PMCID: PMC10976516 DOI: 10.1016/j.omton.2024.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Lung cancer's intractability is enhanced by its frequent resistance to (chemo)therapy and often high relapse rates that make it the leading cause of cancer death worldwide. Improvement of therapy efficacy is a crucial issue that might lead to a significant advance in the treatment of lung cancer. Oncolytic viruses are desirable combination partners in the developing field of cancer immunotherapy due to their direct cytotoxic effects and ability to elicit an immune response. Systemic oncolytic virus administration through intravenous injection should ideally lead to the highest efficacy in oncolytic activity. However, this is often hampered by the prevalence of host-specific, anti-viral immune responses. One way to achieve more efficient systemic oncolytic virus delivery is through better protection against neutralization by several components of the host immune system. Carrier cells, which can even have innate tumor tropism, have shown their appropriateness as effective vehicles for systemic oncolytic virus infection through circumventing restrictive features of the immune system and can warrant oncolytic virus delivery to tumors. In this overview, we summarize promising results from studies in which carrier cells have shown their usefulness for improved systemic oncolytic virus delivery and better oncolytic virus therapy against lung cancer.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Elahe Nikpayam
- Department of Regenerative and Cancer Biology, Albany Medical College, Albany, NY, USA
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ralph Meuwissen
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
- Ege University Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| |
Collapse
|
7
|
Sánchez D, Cesarman-Maus G, Romero L, Sánchez-Verin R, Vail D, Guadarrama M, Pelayo R, Sarmiento-Silva RE, Lizano M. The NDV-MLS as an Immunotherapeutic Strategy for Breast Cancer: Proof of Concept in Female Companion Dogs with Spontaneous Mammary Cancer. Viruses 2024; 16:372. [PMID: 38543739 PMCID: PMC10974497 DOI: 10.3390/v16030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 05/23/2024] Open
Abstract
The absence of tumor-infiltrating lymphocytes negatively impacts the response to chemotherapy and prognosis in all subtypes of breast cancer. Therapies that stimulate a proinflammatory environment may help improve the response to standard treatments and also to immunotherapies such as checkpoint inhibitors. Newcastle disease virus (NDV) shows oncolytic activity, as well as immune modulating potential, in the treatment of breast cancer in vitro and in vivo; however, its potential to enhance tumor-infiltrating immune cells in breast cancer has yet to be evaluated. Since spontaneous canine mammary tumors represent a translational model of human breast cancer, we conducted this proof-of-concept study, which could provide a rationale for further investigating NDV-MLS as immunotherapy for mammary cancer. Six female companion dogs with spontaneous mammary cancer received a single intravenous and intratumoral injection of oncolytic NDV-MLS. Immune cell infiltrates were evaluated by histology and immunohistochemistry in the stromal, intratumoral, and peritumoral compartments on day 6 after viral administration. Increasing numbers of immune cells were documented post-viral treatment, mainly in the peritumoral compartment, where plasma cells and CD3+ and CD3-/CD79- lymphocytes predominated. Viral administration was well tolerated, with no significant adverse events. These findings support additional research on the use of NDV-MLS immunotherapy for mammary cancer.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- NorthStar VETS, Veterinary Emergency Trauma & Specialty Centers, Robbinsville, NJ 08691, USA
| | - Gabriela Cesarman-Maus
- Departamento de Hematología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Laura Romero
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.R.); (M.G.)
| | | | - David Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA;
| | - Marina Guadarrama
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.R.); (M.G.)
| | - Rosana Pelayo
- Unidad de Educación e Investigación, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
- Centro de Investigación Biomédica de Oriente, CIBIOR, Instituto Mexicano del Seguro Social, Puebla 06720, Mexico
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
8
|
Sharifi N, Bouzari M, Keyvani H, Mehdi Ranjbar M. The effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia Patients-Clinical cohort study. Int Immunopharmacol 2024; 126:111296. [PMID: 38041958 DOI: 10.1016/j.intimp.2023.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Cervical cancer is one of the most common malignancies in women, and its treatment has many side effects. Therefore, in this research, the effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia (CIN) patients were investigated. METHODS 15 patients who met the inclusion criteria and diagnosed as CIN II and CIN III were included in the study. The vaccine was injected inside the cervix (neoplasia site) at increasing doses during 21 days, and they were evaluated for adverse events. NDV antibody titer was measured in 90 days and the levels of ki-67 and p16 proteins were studied by immunohistochemistry. Also, the levels of some important inflammatory cytokines in the serum of CIN patients were measured and finally the patients were evaluated according to the final outcomes and the reduction of tumor lesions. RESULTS Only in the first dose of vaccine some patients showed flu-like symptoms. The accumulation of NDV antibodies started on the 7th day of the study and increased until the 90th day. Administration of LaSota vaccine had no significant effect on the expressions of Ki-67 and p16 proteins. Nevertheless, a decrease in the serum levels of Il-1β was observed in patients after the administration of the vaccine, but the serum levels of both Il-2 and INF-γ upregulated significantly. Also, vaccine administration had no significant effect in reducing CIN grades and lesions. CONCLUSIONS In general, we concluded that LaSota strain of NDV vaccine has no therapeutic effectiveness in CIN patients.
Collapse
Affiliation(s)
- Neda Sharifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Majid Bouzari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
9
|
Onnockx S, Baldo A, Pauwels K. Oncolytic Viruses: An Inventory of Shedding Data from Clinical Trials and Elements for the Environmental Risk Assessment. Vaccines (Basel) 2023; 11:1448. [PMID: 37766125 PMCID: PMC10535390 DOI: 10.3390/vaccines11091448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Attenuated and/or genetically modified oncolytic viruses (OV) gain increasing interest as a promising approach for cancer therapy. Beside the assessment of subject safety, quality and efficacy aspects of medicinal products for human use, genetically modified viruses are also governed by EU regulatory frameworks requiring an environmental risk assessment (ERA). An important element to be assessed as part of the ERA is the incidence of exposure to OV of individuals, other than the trial subjects, and the environment. The evidence-based evaluation of shedding data is considered to be decisive in that context, as it may impact the OV capacity to be transmitted. This is particularly true for OV still able to (conditionally) replicate as opposed to replication-defective viral vectors commonly used in gene therapy or vaccination. To our knowledge, this article presents the most extensive and up-to-date review of shedding data reported with OV employed in clinics. Besides the identification of a topical need for improving the collection of shedding data, this article aims at providing an aid to the design of an appropriate shedding study, thereby relying on and further complementing principles described in existing guidelines issued by European and international institutions.
Collapse
Affiliation(s)
- Sheela Onnockx
- Sciensano, Service Biosafety and Biotechnology, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium; (A.B.); (K.P.)
| | | | | |
Collapse
|
10
|
Khalid Z, Coco S, Ullah N, Pulliero A, Cortese K, Varesano S, Orsi A, Izzotti A. Anticancer Activity of Measles-Mumps-Rubella MMR Vaccine Viruses against Glioblastoma. Cancers (Basel) 2023; 15:4304. [PMID: 37686579 PMCID: PMC10486717 DOI: 10.3390/cancers15174304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) have been utilized since 1990s for targeted cancer treatment. Our study examined the Measles-Mumps-Rubella (MMR) vaccine's cancer-killing potency against Glioblastoma (GBM), a therapy-resistant, aggressive cancer type. METHODOLOGY We used GBM cell lines, primary GBM cells, and normal mice microglial cells, to assess the MMR vaccine's efficacy through cell viability, cell cycle analysis, intracellular viral load via RT-PCR, and Transmission Electron Microscopy (TEM). RESULTS After 72 h of MMR treatment, GBM cell lines and primary GBM cells exhibited significant viability reduction compared to untreated cells. Conversely, normal microglial cells showed only minor changes in viability and morphology. Intracellular viral load tests indicated GBM cells' increased sensitivity to MMR viruses compared to normal cells. The cell cycle study also revealed measles and mumps viruses' crucial role in cytopathic effects, with the rubella virus causing cell cycle arrest. CONCLUSION Herein the reported results demonstrate the anti-cancer activity of the MMR vaccine against GBM cells. Accordingly, the MMR vaccine warrants further study as a potential new tool for GBM therapy and relapse prevention. Therapeutic potential of the MMR vaccine has been found to be promising in earlier studies as well.
Collapse
Affiliation(s)
- Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Simona Coco
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Nadir Ullah
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Serena Varesano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Andrea Orsi
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
11
|
Lovatt C, Parker AL. Oncolytic Viruses and Immune Checkpoint Inhibitors: The "Hot" New Power Couple. Cancers (Basel) 2023; 15:4178. [PMID: 37627206 PMCID: PMC10453115 DOI: 10.3390/cancers15164178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer care and shown remarkable efficacy clinically. This efficacy is, however, limited to subsets of patients with significant infiltration of lymphocytes into the tumour microenvironment. To extend their efficacy to patients who fail to respond or achieve durable responses, it is now becoming evident that complex combinations of immunomodulatory agents may be required to extend efficacy to patients with immunologically "cold" tumours. Oncolytic viruses (OVs) have the capacity to selectively replicate within and kill tumour cells, resulting in the induction of immunogenic cell death and the augmentation of anti-tumour immunity, and have emerged as a promising modality for combination therapy to overcome the limitations seen with ICIs. Pre-clinical and clinical data have demonstrated that OVs can increase immune cell infiltration into the tumour and induce anti-tumour immunity, thus changing a "cold" tumour microenvironment that is commonly associated with poor response to ICIs, to a "hot" microenvironment which can render patients more susceptible to ICIs. Here, we review the major viral vector platforms used in OV clinical trials, their success when used as a monotherapy and when combined with adjuvant ICIs, as well as pre-clinical studies looking at the effectiveness of encoding OVs to deliver ICIs locally to the tumour microenvironment through transgene expression.
Collapse
Affiliation(s)
- Charlotte Lovatt
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
- Systems Immunity University Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
12
|
Vannini A, Parenti F, Barboni C, Forghieri C, Leoni V, Sanapo M, Bressanin D, Zaghini A, Campadelli-Fiume G, Gianni T. Efficacy of Systemically Administered Retargeted Oncolytic Herpes Simplex Viruses-Clearance and Biodistribution in Naïve and HSV-Preimmune Mice. Cancers (Basel) 2023; 15:4042. [PMID: 37627072 PMCID: PMC10452237 DOI: 10.3390/cancers15164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
We investigated the anticancer efficacy, blood clearance, and tissue biodistribution of systemically administered retargeted oncolytic herpes simplex viruses (ReHVs) in HSV-naïve and HSV-preimmunized (HSV-IMM) mice. Efficacy was tested against lung tumors formed upon intravenous administration of cancer cells, a model of metastatic disease, and against subcutaneous distant tumors. In naïve mice, HER2- and hPSMA-retargeted viruses, both armed with mIL-12, were highly effective, even when administered to mice with well-developed tumors. Efficacy was higher for combination regimens with immune checkpoint inhibitors. A significant amount of infectious virus persisted in the blood for at least 1 h. Viral genomes, or fragments thereof, persisted in the blood and tissues for days. Remarkably, the only sites of viral replication were the lungs of tumor-positive mice and the subcutaneous tumors. No replication was detected in other tissues, strengthening the evidence of the high cancer specificity of ReHVs, a property that renders ReHVs suitable for systemic administration. In HSV-IMM mice, ReHVs administered at late times failed to exert anticancer efficacy, and the circulating virus was rapidly inactivated. Serum stability and in vivo whole blood stability assays highlighted neutralizing antibodies as the main factor in virus inactivation. Efforts to deplete mice of the neutralizing antibodies are ongoing.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federico Parenti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Cristina Forghieri
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Valerio Leoni
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Mara Sanapo
- Animal Facility Unit, Biogem, 83031 Ariano Irpino, Italy;
| | - Daniela Bressanin
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Gabriella Campadelli-Fiume
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Tatiana Gianni
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| |
Collapse
|
13
|
Kalafati E, Drakopoulou E, Anagnou NP, Pappa KI. Developing Oncolytic Viruses for the Treatment of Cervical Cancer. Cells 2023; 12:1838. [PMID: 37508503 PMCID: PMC10377776 DOI: 10.3390/cells12141838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cervical cancer represents one of the most important malignancies among women worldwide. Current therapeutic approaches for cervical cancer are reported not only to be inadequate for metastatic cervical cancer, but are also considered as cytotoxic for several patients leading to serious side effects, which can have negative implications on the quality of life of women. Therefore, there is an urgent need for the development of innovative and effective treatment options. Oncolytic viruses can eventually become effective biological agents, since they preferentially infect and kill cancer cells, while leaving the normal tissue unaffected. Moreover, they are also able to leverage the host immune system response to limit tumor growth. This review aims to systematically describe and discuss the different types of oncolytic viruses generated for targeting cervical cancer cells, as well as the outcome of the combination of virotherapy with conventional therapies. Although many preclinical studies have evaluated the therapeutic efficacy of oncolytic viruses in cervical cancer, the number of clinical trials so far is limited, while their oncolytic properties are currently being tested in clinical trials for the treatment of other malignancies.
Collapse
Affiliation(s)
- Eleni Kalafati
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Nicholas P Anagnou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Kalliopi I Pappa
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
14
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
15
|
Duan S, Wang S, Qiao L, Yu X, Wang N, Chen L, Zhang X, Zhao X, Liu H, Wang T, Wu Y, Li N, Liu F. Oncolytic Virus-Driven Biotherapies from Bench to Bedside. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206948. [PMID: 36879416 DOI: 10.1002/smll.202206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Indexed: 06/08/2023]
Abstract
With advances in cancer biology and an ever-deepening understanding of molecular virology, oncolytic virus (OV)-driven therapies have developed rapidly and become a promising alternative to traditional cancer therapies. In recent years, satisfactory results for oncolytic virus therapy (OVT) are achieved at both the cellular and organismal levels, and efforts are being increasingly directed toward clinical trials. Unfortunately, OVT remains ineffective in these trials, especially when performed using only a single OV reagent. In contrast, integrated approaches, such as using immunotherapy, chemotherapy, or radiotherapy, alongside OVT have demonstrated considerable efficacy. The challenges of OVT in clinical efficacy include the restricted scope of intratumoral injections and poor targeting of intravenous administration. Further optimization of OVT delivery is needed before OVs become a viable therapy for tumor treatment. In this review, the development process and antitumor mechanisms of OVs are introduced. The advances in OVT delivery routes to provide perspectives and directions for the improvement of OVT delivery are highlighted. This review also discusses the advantages and limitations of OVT monotherapy and combination therapy through the lens of recent clinical trials and aims to chart a course toward safer and more effective OVT strategies.
Collapse
Affiliation(s)
- Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Qiao
- Colorectal and Henia Minimally Invasive Surgery Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xu Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Wu
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Department of General Practice, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
16
|
Li SJ, Sun ZJ. Fueling immune checkpoint blockade with oncolytic viruses: Current paradigms and challenges ahead. Cancer Lett 2022; 550:215937. [DOI: 10.1016/j.canlet.2022.215937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
17
|
de Graaf JF, Huberts M, Groeneveld D, van Nieuwkoop S, van Eijck CHJ, Fouchier RAM, van den Hoogen BG. Comparison between intratumoral and intravenously administered oncolytic virus therapy with Newcastle disease virus in a xenograft murine model for pancreatic adenocarcinoma. Heliyon 2022; 8:e09915. [PMID: 35874055 PMCID: PMC9304737 DOI: 10.1016/j.heliyon.2022.e09915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor clinical prognosis and is usually a metastatic disease. In the last decades, oncolytic viro-immunotherapy has shown a promise as treatment strategy with encouraging results for a variety of tumors. Newcastle Disease Virus (NDV) is an oncolytic virus which selectively infects and damages tumors either by directly killing tumor cells or by promoting an anti-tumor immune response. Several studies have demonstrated that NDV strains with a multi-basic cleavage site (MBCS) in the fusion protein (F) have increased anti-tumor efficacy upon intratumoral injection in murine tumor models. However, intravenous injections, in which the oncolytic virus spreads systemically, could be more beneficial to treat metastasized PDAC in addition to the primary tumor. In this study, we compared the oncolytic efficacy and safety of intratumoral and intravenous injections with NDV containing an MBCS in F (NDV F3aa) in an immune deficient murine xenograft (BxPC3) model for PDAC. In this model, both intratumoral and intravenous injections with NDV F3aa induced anti-tumor efficacy as measured at 10 days after the first injection. Upon intravenous injection virus was detected in some of the tumors, indicating the systemic spread of the virus. Upon both treatments, mice did not display weight loss or abnormalities and treated mice did not secrete virus to the environment. These data demonstrate that intravenous injections of NDV F3aa can be applicable to treat metastasized cancers in immune deficient hosts without inflicting adverse effects.
Collapse
Affiliation(s)
| | - Marco Huberts
- Viroscience Department, Erasmus Medical Centrum, Rotterdam, the Netherlands
| | - Daphne Groeneveld
- Viroscience Department, Erasmus Medical Centrum, Rotterdam, the Netherlands
| | | | | | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Centrum, Rotterdam, the Netherlands
| | | |
Collapse
|
18
|
de Graaf J, van Nieuwkoop S, de Meulder D, Lexmond P, Kuiken T, Groeneveld D, Fouchier R, van den Hoogen B. Assessment of the virulence for chickens of Newcastle Disease virus with an engineered multi-basic cleavage site in the fusion protein and disrupted V protein gene. Vet Microbiol 2022; 269:109437. [DOI: 10.1016/j.vetmic.2022.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
19
|
Optimizing environmental safety and cell-killing potential of oncolytic Newcastle Disease virus with modifications of the V, F and HN genes. PLoS One 2022; 17:e0263707. [PMID: 35139115 PMCID: PMC8827430 DOI: 10.1371/journal.pone.0263707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its oncolytic efficacy in vitro and in vivo. However, NDV with a MBCS can be virulent in poultry. We aimed to develop an NDV with a MBCS but with reduced virulence for poultry while remaining effective in killing human tumour cells. To this end, the open reading frame of the V protein, an avian specific type I interferon antagonist, was disrupted by introducing multiple mutations. NDV with a mutated V gene was attenuated in avian cells and chicken and duck eggs. Although this virus still killed tumour cells, the efficacy was reduced compared to the virulent NDV. Introduction of various mutations in the fusion (F) and hemagglutinin-neuraminidase (HN) genes slightly improved this efficacy. Taken together, these data demonstrated that NDV with a MBCS but with abrogation of the V protein ORF and mutations in the F and HN genes can be safe for evaluation in oncolytic viral therapy.
Collapse
|
20
|
Batalla-Covello J, Ngai HW, Flores L, McDonald M, Hyde C, Gonzaga J, Hammad M, Gutova M, Portnow J, Synold T, Curiel DT, Lesniak MS, Aboody KS, Mooney R. Multiple Treatment Cycles of Neural Stem Cell Delivered Oncolytic Adenovirus for the Treatment of Glioblastoma. Cancers (Basel) 2021; 13:6320. [PMID: 34944938 PMCID: PMC8699772 DOI: 10.3390/cancers13246320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor tropic neural stem cells (NSCs) can improve the anti-tumor efficacy of oncovirotherapy agents by protecting them from rapid clearance by the immune system and delivering them to multiple distant tumor sites. We recently completed a first-in-human trial assessing the safety of a single intracerebral dose of NSC-delivered CRAd-Survivin-pk7 (NSC.CRAd-S-pk7) combined with radiation and chemotherapy in newly diagnosed high-grade glioma patients. The maximum feasible dose was determined to be 150 million NSC.CRAd-Sp-k7 (1.875 × 1011 viral particles). Higher doses were not assessed due to volume limitations for intracerebral administration and the inability to further concentrate the study agent. It is possible that therapeutic efficacy could be maximized by administering even higher doses. Here, we report IND-enabling studies in which an improvement in treatment efficacy is achieved in immunocompetent mice by administering multiple treatment cycles intracerebrally. The results imply that pre-existing immunity does not preclude therapeutic benefits attainable by administering multiple rounds of an oncolytic adenovirus directly into the brain.
Collapse
Affiliation(s)
- Jennifer Batalla-Covello
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Hoi Wa Ngai
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Linda Flores
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Marisa McDonald
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Caitlyn Hyde
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Joanna Gonzaga
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Mohamed Hammad
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Margarita Gutova
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Jana Portnow
- Department of Medical Oncology, City of Hope, Duarte, CA 91010, USA;
| | - Tim Synold
- Department of Cancer Biology, City of Hope, Duarte, CA 91010, USA;
| | - David T. Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA;
| | - Karen S. Aboody
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| | - Rachael Mooney
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA; (J.B.-C.); (H.W.N.); (L.F.); (M.M.); (C.H.); (J.G.); (M.H.); (M.G.)
| |
Collapse
|
21
|
Abd-Aziz N, Poh CL. Development of oncolytic viruses for cancer therapy. Transl Res 2021; 237:98-123. [PMID: 33905949 DOI: 10.1016/j.trsl.2021.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is a therapeutic approach that uses replication-competent viruses to kill cancers. The ability of oncolytic viruses to selectively replicate in cancer cells leads to direct cell lysis and induction of anticancer immune response. Like other anticancer therapies, oncolytic virotherapy has several limitations such as viral delivery to the target, penetration into the tumor mass, and antiviral immune responses. This review provides an insight into the different characteristics of oncolytic viruses (natural and genetically modified) that contribute to effective applications of oncolytic virotherapy in preclinical and clinical trials, and strategies to overcome the limitations. The potential of oncolytic virotherapy combining with other conventional treatments or cancer immunotherapies involving immune checkpoint inhibitors and CAR-T therapy could form part of future multimodality treatment strategies.
Collapse
Affiliation(s)
- Noraini Abd-Aziz
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
22
|
Lu SY, Hua J, Xu J, Wei MY, Liang C, Meng QC, Liu J, Zhang B, Wang W, Yu XJ, Shi S. Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. Int J Biol Sci 2021; 17:2666-2682. [PMID: 34326701 PMCID: PMC8315022 DOI: 10.7150/ijbs.59117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system with a very high mortality rate. While gemcitabine-based chemotherapy is the predominant treatment for terminal pancreatic cancer, its therapeutic effect is not satisfactory. Recently, many studies have found that microorganisms not only play a consequential role in the occurrence and progression of pancreatic cancer but also modulate the effect of chemotherapy to some extent. Moreover, microorganisms may become an important biomarker for predicting pancreatic carcinogenesis and detecting the prognosis of pancreatic cancer. However, the existing experimental literature is not sufficient or convincing. Therefore, further exploration and experiments are imperative to understanding the mechanism underlying the interaction between microorganisms and pancreatic cancer. In this review, we primarily summarize and discuss the influences of oncolytic viruses and bacteria on pancreatic cancer chemotherapy because these are the two types of microorganisms that are most often studied. We focus on some potential methods specific to these two types of microorganisms that can be used to improve the efficacy of chemotherapy in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Deng S, Iscaro A, Zambito G, Mijiti Y, Minicucci M, Essand M, Lowik C, Muthana M, Censi R, Mezzanotte L, Di Martino P. Development of a New Hyaluronic Acid Based Redox-Responsive Nanohydrogel for the Encapsulation of Oncolytic Viruses for Cancer Immunotherapy. NANOMATERIALS 2021; 11:nano11010144. [PMID: 33435600 PMCID: PMC7827853 DOI: 10.3390/nano11010144] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses (OVs) are emerging as promising and potential anti-cancer therapeutic agents, not only able to kill cancer cells directly by selective intracellular viral replication, but also to promote an immune response against tumor. Unfortunately, the bioavailability under systemic administration of OVs is limited because of undesired inactivation caused by host immune system and neutralizing antibodies in the bloodstream. To address this issue, a novel hyaluronic acid based redox responsive nanohydrogel was developed in this study as delivery system for OVs, with the aim to protect the OVs following systemic administration. The nanohydrogel was formulated by water in oil (W/O) nanoemulsion method and cross-linked by disulfide bonds derived from the thiol groups of synthesized thiolated hyaluronic acid. One DNA OV Ad[I/PPT-E1A] and one RNA OV Rigvir® ECHO-7 were encapsulated into the developed nanohydrogel, respectively, in view of their potential of immunovirotherapy to treat cancers. The nanohydrogels showed particle size of approximately 300–400 nm and negative zeta potential of around −13 mV by dynamic light scattering (DLS). A uniform spherical shape of the nanohydrogel was observed under the scanning electron microscope (SEM) and transmission electron microscope (TEM), especially, the successfully loading of OV into nanohydrogel was revealed by TEM. The crosslinking between the hyaluronic acid chains was confirmed by the appearance of new peak assigned to disulfide bond in Raman spectrum. Furthermore, the redox responsive ability of the nanohydrogel was determined by incubating the nanohydrogel into phosphate buffered saline (PBS) pH 7.4 with 10 μM or 10 mM glutathione at 37 °C which stimulate the normal physiological environment (extracellular) or reductive environment (intracellular or tumoral). The relative turbidity of the sample was real time monitored by DLS which indicated that the nanohydrogel could rapidly degrade within 10 h in the reductive environment due to the cleavage of disulfide bonds, while maintaining the stability in the normal physiological environment after 5 days. Additionally, in vitro cytotoxicity assays demonstrated a good oncolytic activity of OVs-loaded nanohydrogel against the specific cancer cell lines. Overall, the results indicated that the developed nanohydrogel is a delivery system appropriate for viral drugs, due to its hydrophilic and porous nature, and also thanks to its capacity to maintain the stability and activity of encapsulated viruses. Thus, nanohydrogel can be considered as a promising candidate carrier for systemic administration of oncolytic immunovirotherapy.
Collapse
Affiliation(s)
- Siyuan Deng
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (R.C.)
| | - Alessandra Iscaro
- Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (A.I.); (M.M.)
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (C.L.); (L.M.)
- Department of Molecular Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Yimin Mijiti
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (Y.M.); (M.M.)
| | - Marco Minicucci
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (Y.M.); (M.M.)
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden;
| | - Clemens Lowik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (C.L.); (L.M.)
- Department of Molecular Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Munitta Muthana
- Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (A.I.); (M.M.)
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (R.C.)
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (C.L.); (L.M.)
- Department of Molecular Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (R.C.)
- Correspondence: ; Tel.: +39-0737-40-2215
| |
Collapse
|
24
|
Meng Q, He J, Zhong L, Zhao Y. Advances in the Study of Antitumour Immunotherapy for Newcastle Disease Virus. Int J Med Sci 2021; 18:2294-2302. [PMID: 33967605 PMCID: PMC8100649 DOI: 10.7150/ijms.59185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/21/2021] [Indexed: 01/08/2023] Open
Abstract
This article reviews the preclinical research, clinical application and development of Newcastle disease virus (NDV) in the field of cancer therapy. Based on the distinctive antitumour properties of NDV and its positive interaction with the patient's immune system, this biologic could be considered a major breakthrough in cancer treatment. On one hand, NDV infection creates an inflammatory environment in the tumour microenvironment, which can directly activate NK cells, monocytes, macrophages and dendritic cells and promote the recruitment of immune cells. On the other hand, NDV can induce the upregulation of immune checkpoint molecules, which may break immune tolerance and immune checkpoint blockade resistance. In fact, clinical data have shown that NDV combined with immune checkpoint blockade can effectively enhance the antitumour response, leading to the regression of local tumours and distant tumours when injected, and this effect is further enhanced by targeted manipulation and modification of the NDV genome. At present, recombinant NDV and recombinant NDV combined with immune checkpoint blockers have entered different stages of clinical trials. Based on these studies, further research on NDV is warranted.
Collapse
Affiliation(s)
- Qiuxing Meng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Burman B, Pesci G, Zamarin D. Newcastle Disease Virus at the Forefront of Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12123552. [PMID: 33260685 PMCID: PMC7761210 DOI: 10.3390/cancers12123552] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Preclinical and clinical studies dating back to the 1950s have demonstrated that Newcastle disease virus (NDV) has oncolytic properties and can potently stimulate antitumor immune responses. NDV selectively infects, replicates within, and lyses cancer cells by exploiting defective antiviral defenses in cancer cells. Inflammation within the tumor microenvironment in response to NDV leads to the recruitment of innate and adaptive immune effector cells, presentation of tumor antigens, and induction of immune checkpoints. In animal models, intratumoral injection of NDV results in T cell infiltration of both local and distant non-injected tumors, demonstrating the potential of NDV to activate systemic adaptive antitumor immunity. The combination of intratumoral NDV with systemic immune checkpoint blockade leads to regression of both injected and distant tumors, an effect further potentiated by introduction of immunomodulatory transgenes into the viral genome. Clinical trials with naturally occurring NDV administered intravenously demonstrated durable responses across numerous cancer types. Based on these studies, further exploration of NDV is warranted, and clinical studies using recombinant NDV in combination with immune checkpoint blockade have been initiated.
Collapse
Affiliation(s)
- Bharat Burman
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giulio Pesci
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
26
|
Cook M, Chauhan A. Clinical Application of Oncolytic Viruses: A Systematic Review. Int J Mol Sci 2020; 21:ijms21207505. [PMID: 33053757 PMCID: PMC7589713 DOI: 10.3390/ijms21207505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Leveraging the immune system to thwart cancer is not a novel strategy and has been explored via cancer vaccines and use of immunomodulators like interferons. However, it was not until the introduction of immune checkpoint inhibitors that we realized the true potential of immunotherapy in combating cancer. Oncolytic viruses are one such immunotherapeutic tool that is currently being explored in cancer therapeutics. We present the most comprehensive systematic review of all oncolytic viruses in Phase 1, 2, and 3 clinical trials published to date. We performed a systematic review of all published clinical trials indexed in PubMed that utilized oncolytic viruses. Trials were reviewed for type of oncolytic virus used, method of administration, study design, disease type, primary outcome, and relevant adverse effects. A total of 120 trials were found; 86 trials were available for our review. Included were 60 phase I trials, five phase I/II combination trials, 19 phase II trials, and two phase III clinical trials. Oncolytic viruses are feverously being evaluated in oncology with over 30 different types of oncolytic viruses being explored either as a single agent or in combination with other antitumor agents. To date, only one oncolytic virus therapy has received an FDA approval but advances in bioengineering techniques and our understanding of immunomodulation to heighten oncolytic virus replication and improve tumor kill raises optimism for its future drug development.
Collapse
Affiliation(s)
- Mary Cook
- Department of Internal Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD 21201, USA;
| | - Aman Chauhan
- Department of Internal Medicine-Medical Oncology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +504-278-0134
| |
Collapse
|
27
|
Shan P, Tang B, Xie S, Zhang Z, Fan J, Wei Z, Song C. NDV-D90 inhibits 17β-estradiol-mediated resistance to apoptosis by differentially modulating classic and nonclassic estrogen receptors in breast cancer cells. J Cell Biochem 2020; 122:3-15. [PMID: 32985706 DOI: 10.1002/jcb.28118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023]
Abstract
Newcastle disease virus (NDV) is endowed with the oncolytic ability to kill tumor cells, while rarely causing side effects in normal cells. Both estrogen receptor α (ERα) and the G protein estrogen receptor (GPER) modulate multiple biological activities in response to estrogen, including apoptosis in breast cancer (BC) cells. Here, we investigated whether NDV-D90, a novel strain isolated from natural sources in China, promoted apoptosis by modulating the expression of ERα or the GPER in BC cells exposed to 17β-estradiol (E2). We found that NDV-D90 significantly killed the tumor cell lines MCF-7 and BT549 in a time- and dose-dependent manner. We also found that NDV-D90 exerted its effects on the two cell lines mainly by inducing apoptosis but not necrosis. NDV-D90 induced apoptosis via the intrinsic and extrinsic signaling pathways in MCF-7 cells (ER-positive cells) during E2 exposure not only by disrupting the E2/ERα axis and enhancing GPER expression but also by modulating the expression of several apoptosis-related proteins through ERα-and GPER-independent processes. NDV-D90 promoted apoptosis via the intrinsic signaling pathway in BT549 cells (ER-negative cells), possibly by impairing E2-mediated GPER expression. Furthermore, NDV-D90 exerted its antitumor effects in vivo by inducing apoptosis. Overall, these results demonstrated that NDV-D90 promotes apoptosis by differentially modulating the expression of ERα and the GPER in ER-positive and negative BC cells exposed to estrogen, respectively, and can be utilized as an effective approach to treating BC.
Collapse
Affiliation(s)
- Peng Shan
- Department of General Surgery, The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Tang
- Department of General Surgery, The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanshan Xie
- Department of Thyroid Gland and Breast Surgery, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei, China
| | - Zengling Zhang
- Department of General Surgery, Central Hospital of Pukou District, Nanjing, China
| | - Jiehou Fan
- Department of Breast Surgery, The Second People's Hospital of Dezhou, Dezhou, China
| | - Zheng Wei
- Department of General Surgery, The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun Song
- The Key Laboratory of Cell Transplantation of Ministry of Health and Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
de Graaf JF, Huberts M, Fouchier RAM, van den Hoogen BG. Determinants of the efficacy of viro-immunotherapy: A review. Cytokine Growth Factor Rev 2020; 56:124-132. [PMID: 32919831 DOI: 10.1016/j.cytogfr.2020.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Oncolytic virus immunotherapy is rapidly gaining interest in the field of immunotherapy against cancer. The minimal toxicity upon treatment and the dual activity of direct oncolysis and immune activation make therapy with oncolytic viruses (OVs) an interesting treatment modality. The safety and efficacy of several OVs have been assessed in clinical trials and, so far, the Food and Drug Administration (FDA) has approved one OV. Unfortunately, most treatments with OVs have shown suboptimal responses in clinical trials, while they appeared more promising in preclinical studies, with tumours reducing after immune cell influx. In several clinical trials with OVs, parameters such as virus replication, virus-specific antibodies, systemic immune responses, immune cell influx into tumours and tumour-specific antibodies have been studied as predictors or correlates of therapy efficacy. In this review, these studies are summarized to improve our understanding of the determinants of the efficacy of OV therapies in humans and to provide insights for future developments in the viro-immunotherapy treatment field.
Collapse
Affiliation(s)
- J F de Graaf
- Viroscience Department, Erasmus Medical Centrum, Rotterdam, The Netherlands
| | - M Huberts
- Viroscience Department, Erasmus Medical Centrum, Rotterdam, The Netherlands
| | - R A M Fouchier
- Viroscience Department, Erasmus Medical Centrum, Rotterdam, The Netherlands
| | - B G van den Hoogen
- Viroscience Department, Erasmus Medical Centrum, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Santry LA, Jacquemart R, Vandersluis M, Zhao M, Domm JM, McAusland TM, Shang X, Major PM, Stout JG, Wootton SK. Interference chromatography: a novel approach to optimizing chromatographic selectivity and separation performance for virus purification. BMC Biotechnol 2020; 20:32. [PMID: 32552807 PMCID: PMC7301511 DOI: 10.1186/s12896-020-00627-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Oncolytic viruses are playing an increasingly important role in cancer immunotherapy applications. Given the preclinical and clinical efficacy of these virus-based therapeutics, there is a need for fast, simple, and inexpensive downstream processing methodologies to purify biologically active viral agents that meet the increasingly higher safety standards stipulated by regulatory authorities like the Food and Drug Administration and the European Agency for the Evaluation of Medicinal Products. However, the production of virus materials for clinical dosing of oncolytic virotherapies is currently limited—in quantity, quality, and timeliness—by current purification technologies. Adsorption of virus particles to solid phases provides a convenient and practical choice for large-scale fractionation and recovery of viruses from cell and media contaminants. Indeed, chromatography has been deemed the most promising technology for large-scale purification of viruses for biomedical applications. The implementation of new chromatography media has improved process performance, but low yields and long processing times required to reach the desired purity are still limiting. Results Here we report the development of an interference chromatography-based process for purifying high titer, clinical grade oncolytic Newcastle disease virus using NatriFlo® HD-Q membrane technology. This novel approach to optimizing chromatographic performance utilizes differences in molecular bonding interactions to achieve high purity in a single ion exchange step. Conclusions When used in conjunction with membrane chromatography, this high yield method based on interference chromatography has the potential to deliver efficient, scalable processes to enable viable production of oncolytic virotherapies.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Renaud Jacquemart
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada.,Present Address: BioVectra Inc., 24 Ivey Lane, PO Box 766, Windsor, Nova Scotia, B0N 2T0, Canada
| | | | - Mochao Zhao
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada
| | - Jake M Domm
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Xiaojiao Shang
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada
| | - Pierre M Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - James G Stout
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada.,Present Address: BioVectra Inc., 24 Ivey Lane, PO Box 766, Windsor, Nova Scotia, B0N 2T0, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
30
|
Burke S, Shergold A, Elder MJ, Whitworth J, Cheng X, Jin H, Wilkinson RW, Harper J, Carroll DK. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol Immunother 2020; 69:1015-1027. [PMID: 32088771 PMCID: PMC7230062 DOI: 10.1007/s00262-020-02495-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Oncolytic virus (OV) therapy is an emerging approach with the potential to redefine treatment options across a range of cancer indications and in patients who remain resistant to existing standards of care, including immuno-oncology (IO) drugs. MEDI5395, a recombinant Newcastle disease virus (NDV), engineered to express granulocyte–macrophage colony-stimulating factor (GM-CSF), exhibits potent oncolytic activity. It was hypothesized that activation of immune cells by MEDI5395, coupled with its oncolytic activity, would enhance the priming of antitumor immunity. Using MEDI5395 and recombinant NDVs encoding fluorescent reporter genes, we demonstrated preferential virus uptake and non-productive infection in myeloid cells, including monocytes, macrophages, and dendritic cells (DCs). Infection resulted in immune-cell activation, with upregulation of cell surface activation markers (e.g., CD80, PD-L1, HLA-DR) and secretion of proinflammatory cytokines (IFN-α2a, IL-6, IL-8, TNF-α). Interestingly, in vitro M2-polarized macrophages were more permissive to virus infection than were M1-polarized macrophages. In a co-culture system, infected myeloid cells were effective virus vectors and mediated the transfer of infectious NDV particles to tumor cells, resulting in cell death. Furthermore, NDV-infected DCs stimulated greater proliferation of allogeneic T cells than uninfected DCs. Antigens released after NDV-induced tumor cell lysis were cross-presented by DCs and drove activation of tumor antigen-specific autologous T cells. MEDI5395 therefore exhibited potent immunostimulatory activity and an ability to enhance antigen-specific T-cell priming. This, coupled with its tumor-selective oncolytic capacity, underscores the promise of MEDI5395 as a multimodal therapeutic, with potential to both enhance current responding patient populations and elicit de novo responses in resistant patients.
Collapse
Affiliation(s)
- Shannon Burke
- Oncology R&D, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK.
| | - Amy Shergold
- Oncology R&D, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Matthew J Elder
- Oncology R&D, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Justine Whitworth
- Oncology R&D, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Xing Cheng
- BioPharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, AstraZeneca, South San Francisco, CA, USA
- Meissa Vaccines, JLABS, 329 Oyster Point Boulevard, 3rd Floor, South San Francisco, CA, USA
| | - Hong Jin
- BioPharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, AstraZeneca, South San Francisco, CA, USA
| | - Robert W Wilkinson
- Oncology R&D, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK
| | - James Harper
- Oncology R&D, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Danielle K Carroll
- Oncology R&D, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK
| |
Collapse
|
31
|
Song H, Zhong LP, He J, Huang Y, Zhao YX. Application of Newcastle disease virus in the treatment of colorectal cancer. World J Clin Cases 2019; 7:2143-2154. [PMID: 31531310 PMCID: PMC6718777 DOI: 10.12998/wjcc.v7.i16.2143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the main reasons of tumor-related deaths worldwide. At present, the main treatment is surgery, but the results are unsatisfactory, and the prognosis is poor. The majority of patients die due to liver or lung metastasis or recurrence. In recent years, great progress has been made in the field of tumor gene therapy, providing a new treatment for combating CRC. As oncolytic viruses selectively replicate almost exclusively in the cytoplasm of tumor cells and do not require integration into the host genome, they are safer, more effective and more attractive as oncolytic agents. Newcastle disease virus (NDV) is a natural RNA oncolytic virus. After NDV selectively infects tumor cells, the immune response induced by NDV’s envelope protein and intracellular factors can effectively kill the tumor without affecting normal cells. Reverse genetic techniques make NDV a vector for gene therapy. Arming the virus by inserting various exogenous genes or using NDV in combination with immunotherapy can also improve the anti-CRC capacity of NDV, and good results have been achieved in animal models and clinical treatment trials. This article reviews the molecular biological characteristics and oncolytic mechanism of NDV and discusses in vitro and in vivo experiments on NDV anti-CRC capacity and clinical treatment. In conclusion, NDV is an excellent candidate for cancer treatment, but more preclinical studies and clinical trials are needed to ensure its safety and efficacy.
Collapse
Affiliation(s)
- Hui Song
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Xiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
32
|
Zainutdinov SS, Kochneva GV, Netesov SV, Chumakov PM, Matveeva OV. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother 2019; 8:9-26. [PMID: 31372363 PMCID: PMC6636189 DOI: 10.2147/ov.s176523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Viruses have some characteristics in common with cell-based life. They can evolve and adapt to environmental conditions. Directed evolution can be used by researchers to produce viral strains with desirable phenotypes. Through bioselection, improved strains of oncolytic viruses can be obtained that have better safety profiles, increased specificity for malignant cells, and more efficient spread among tumor cells. It is also possible to select strains capable of killing a broader spectrum of cancer cell variants, so as to achieve a higher frequency of therapeutic responses. This review describes and analyses virus adaptation studies performed with members of four RNA virus families that are used for viral oncolysis: reoviruses, paramyxoviruses, enteroviruses, and rhabdoviruses.
Collapse
Affiliation(s)
- Sergei S Zainutdinov
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Galina V Kochneva
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Sergei V Netesov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk630090, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology
, Moscow119991, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products
, Moscow108819, Russia
| | | |
Collapse
|
33
|
Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 2019; 18:689-706. [PMID: 31292532 DOI: 10.1038/s41573-019-0029-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
In the wake of the success of modern immunotherapy, oncolytic viruses (OVs) are currently seen as a potential therapeutic option for patients with cancer who do not respond or fail to achieve durable responses following treatment with immune checkpoint inhibitors. OVs offer a multifaceted therapeutic platform because they preferentially replicate in tumour cells, can be engineered to express transgenes that augment their cytotoxic and immunostimulatory activities, and modulate the tumour microenvironment to optimize immune-mediated tumour eradication, both at locoregional and systemic sites of disease. Lysis of tumour cells releases tumour-specific antigens that trigger both the innate and adaptive immune systems. OVs also represent attractive combination partners with other systemically delivered agents by virtue of their highly favourable safety profiles. Rational combinations of OVs with different immune modifiers and/or antitumour agents, based on mechanisms of tumour resistance to immune-mediated attack, may benefit the large, currently underserved, population of patients who respond poorly to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | | | - Beth Kelly
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Jean-Charles Soria
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA.,Department of Medicine and Medical Oncology, Université Paris-Sud, Orsay, France
| |
Collapse
|
34
|
Chu Z, Gao X, Liu H, Ma J, Wang C, Lu K, Han Q, Wang Y, Wang C, Adam FEA, Wang X, Xiao S, Yang Z. Newcastle disease virus selectively infects dividing cells and promotes viral proliferation. Vet Res 2019; 50:27. [PMID: 30999941 PMCID: PMC6472075 DOI: 10.1186/s13567-019-0644-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Newcastle disease virus (NDV) can select cells to infect, but the mechanism of its cell selectivity has not been comprehensively investigated. Here, we use HeLa cells to establish that NDV can selectively infect cells at the single-cell level. We labeled proliferating cells with 5′-bromo-2-deoxyuridine (BrdU) and examined the colocalization of BrdU with NDV in cells to clarify the relationships between NDV infection and cell proliferation. Receptors at the plasma membrane mediate NDV entry into host cells. We labeled sialic acid receptor isoforms, compared their densities between different cell types and measured the sialic acid receptor densities in different cell phases. Our results suggest that NDV displays host tropism to HeLa cells compared to BHK cells and that the differences in the receptor isoform expression patterns between cell types contribute to the selection of HeLa by NDV. At the single-cell level, the dynamics of receptor expression changes during different cell phases contributing to the selection of cells in S/G2 phase for NDV infection. Furthermore, cell proliferation benefits viral replication, and enhanced virus replication leads to increased damage to cells. The elucidation of the mechanisms underlying host cell selection by NDV may help in the screening and characterizing of additional candidate oncolytic virus strains.
Collapse
Affiliation(s)
- Zhili Chu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Xiaolong Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiangang Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Caiying Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingsong Han
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yanhong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chongyang Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fathalrhman E A Adam
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.,Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, P.O Box: 155, Nyala, Sudan
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
35
|
Russell L, Peng KW. The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol 2018; 7:16. [PMID: 29764161 DOI: 10.21037/cco.2018.04.04] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
This review discusses current clinical advancements in oncolytic viral therapy, with a focus on the viral platforms approved for clinical use and highlights the benefits each platform provides. Three oncolytic viruses (OVs), an echovirus, an adenovirus, and a herpes simplex-1 virus, have passed governmental regulatory approval in Latvia, China, and the USA and EU. Numerous other recombinant viruses from diverse families are in clinical testing in cancer patients and we highlight the design features of selected examples, including adenovirus, herpes simplex virus, measles virus, retrovirus, reovirus, vaccinia virus, vesicular stomatitis virus. Lastly, we provide thoughts on the path forward for this rapidly expanding field especially in combination with immune modulating drugs.
Collapse
|
36
|
Matuszewska K, Santry LA, van Vloten JP, AuYeung AWK, Major PP, Lawler J, Wootton SK, Bridle BW, Petrik J. Combining Vascular Normalization with an Oncolytic Virus Enhances Immunotherapy in a Preclinical Model of Advanced-Stage Ovarian Cancer. Clin Cancer Res 2018; 25:1624-1638. [PMID: 30206160 DOI: 10.1158/1078-0432.ccr-18-0220] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/03/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Intravenous delivery of oncolytic viruses often leads to tumor vascular shutdown, resulting in decreased tumor perfusion and elevated tumor hypoxia. We hypothesized that using 3TSR to normalize tumor vasculature prior to administration of an oncolytic Newcastle disease virus (NDV) would enhance virus delivery and trafficking of immunologic cell subsets to the tumor core, resulting in systemically enhanced immunotherapy and regression of advanced-stage epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN Using an orthotopic, syngeneic mouse model of advanced-stage EOC, we pretreated mice with 3TSR (4 mg/kg per day) alone or followed by combination with fusogenic NDV(F3aa) (1.0 × 108 plaque-forming units). RESULTS Treatment with 3TSR normalized tumor vasculature, enhanced blood perfusion of primary EOC tumors, and induced disease regression. Animals treated with combination therapy had the greatest reduction in primary tumor mass, ascites accumulation, and secondary lesions (50% of mice were completely devoid of peritoneal metastases). Combining 3TSR + NDV(F3aa) led to enhanced trafficking of immunologic cells into the primary tumor core. CONCLUSIONS We have shown, for the first time, that NDV, like other oncolytic viruses, is a potent mediator of acute vascular shutdown and that preventing this through vascular normalization can promote regression in a preclinical model of advanced-stage ovarian cancer. This challenges the current focus on induction of intravascular thrombosis as a requisite for successful oncolytic virotherapy.See related commentary by Bykov and Zamarin, p. 1446.
Collapse
Affiliation(s)
- Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Amanda W K AuYeung
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Pierre P Major
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
37
|
Oseledchyk A, Ricca JM, Gigoux M, Ko B, Redelman-Sidi G, Walther T, Liu C, Iyer G, Merghoub T, Wolchok JD, Zamarin D. Lysis-independent potentiation of immune checkpoint blockade by oncolytic virus. Oncotarget 2018; 9:28702-28716. [PMID: 29983890 PMCID: PMC6033351 DOI: 10.18632/oncotarget.25614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Intratumoral therapy with oncolytic viruses is increasingly being explored as a strategy to potentiate an immune response against cancer, but it remains unknown whether such therapy should be restricted to cancers sensitive to virus-mediated lysis. Using Newcastle Disease Virus (NDV) as a model, we explore immunogenic potential of an oncolytic virus in bladder cancer, where existing immunotherapy with PD-1 and PD-L1-targeting antibodies to date has shown suboptimal response rates. Infection of human and mouse bladder cancer cells with NDV resulted in immunogenic cell death, activation of innate immune pathways, and upregulation of MHC and PD-L1 in all tested cell lines, including the cell lines completely resistant to NDV-mediated lysis. In a bilateral flank NDV-lysis-resistant syngeneic murine bladder cancer model, intratumoral therapy with NDV led to an increase of immune infiltration in both treated and distant tumors and a shift from an inhibitory to effector T cell phenotype. Consequently, combination of intratumoral NDV with systemic PD-1 or CTLA-4 blockade led to improved local and abscopal tumor control and overall survival. These findings encourage future clinical trials combining intratumoral NDV therapy with systemic immunomodulatory agents and underscore the rationale for such treatments irrespective of tumor cell sensitivity to NDV-mediated lysis.
Collapse
Affiliation(s)
- Anton Oseledchyk
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob M Ricca
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathieu Gigoux
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Ko
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gil Redelman-Sidi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Tyler Walther
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cailian Liu
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
38
|
Matveeva OV, Kochneva GV, Zainutdinov SS, Ilyinskaya GV, Chumakov PM. Oncolytic Paramyxoviruses: Mechanism of Action, Preclinical and Clinical Studies. Mol Biol 2018. [DOI: 10.1134/s002689331803010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Zamarin D, Ricca JM, Sadekova S, Oseledchyk A, Yu Y, Blumenschein WM, Wong J, Gigoux M, Merghoub T, Wolchok JD. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J Clin Invest 2018; 128:1413-1428. [PMID: 29504948 DOI: 10.1172/jci98047] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Intralesional therapy with oncolytic viruses (OVs) leads to the activation of local and systemic immune pathways, which may present targets for further combinatorial therapies. Here, we used human tumor histocultures as well as syngeneic tumor models treated with Newcastle disease virus (NDV) to identify a range of immune targets upregulated with OV treatment. Despite tumor infiltration of effector T lymphocytes in response to NDV, there was ongoing inhibition through programmed death ligand 1 (PD-L1), acting as a mechanism of early and late adaptive immune resistance to the type I IFN response and T cell infiltration, respectively. Systemic therapeutic targeting of programmed cell death receptor 1 (PD-1) or PD-L1 in combination with intratumoral NDV resulted in the rejection of both treated and distant tumors. These findings have implications for the timing of PD-1/PD-L1 blockade in conjunction with OV therapy and highlight the importance of understanding the adaptive mechanisms of immune resistance to specific OVs for the rational design of combinatorial approaches using these agents.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA.,Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and.,Parker Institute for Cancer Immunotherapy, MSKCC, New York, New York, USA
| | - Jacob M Ricca
- Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and
| | | | - Anton Oseledchyk
- Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and
| | - Ying Yu
- Merck Research Labs (MRL), Palo Alto, California, USA
| | | | - Jerelyn Wong
- Merck Research Labs (MRL), Palo Alto, California, USA
| | - Mathieu Gigoux
- Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and
| | - Taha Merghoub
- Weill Cornell Medical College, New York, New York, USA.,Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and.,Parker Institute for Cancer Immunotherapy, MSKCC, New York, New York, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA.,Ludwig Collaborative Laboratory.,Swim Across America Laboratory, and.,Parker Institute for Cancer Immunotherapy, MSKCC, New York, New York, USA
| |
Collapse
|
40
|
Ricca JM, Oseledchyk A, Walther T, Liu C, Mangarin L, Merghoub T, Wolchok JD, Zamarin D. Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Mol Ther 2018; 26:1008-1019. [PMID: 29478729 PMCID: PMC6079372 DOI: 10.1016/j.ymthe.2018.01.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/18/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022] Open
Abstract
Anti-viral immunity presents a major hurdle for systemically administered oncolytic viruses (OV). Intratumoral OV therapy has a potential to overcome this problem through activation of anti-tumor immune response, with local and abscopal effects. However, the effects of anti-viral immunity in such a setting are still not well defined. Using Newcastle Disease Virus (NDV) as a model, we explore the effects of pre-existing anti-viral immunity on therapeutic efficacy in syngeneic mouse tumor models. Unexpectedly, we find that while pre-existing immunity to NDV limits its replication in tumors, tumor clearance, abscopal anti-tumor immune effects, and survival are not compromised and, on the contrary, are superior in NDV-immunized mice. These findings demonstrate that pre-existing immunity to NDV may increase its therapeutic efficacy through potentiation of systemic anti-tumor immunity, which provides clinical rationale for repeated therapeutic dosing and prompts investigation of such effects with other OVs.
Collapse
Affiliation(s)
- Jacob M Ricca
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anton Oseledchyk
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tyler Walther
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cailian Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Levi Mangarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Taha Merghoub
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Swim Across America-Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
41
|
Santry LA, McAusland TM, Susta L, Wood GA, Major PP, Petrik JJ, Bridle BW, Wootton SK. Production and Purification of High-Titer Newcastle Disease Virus for Use in Preclinical Mouse Models of Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 9:181-191. [PMID: 29556508 PMCID: PMC5854916 DOI: 10.1016/j.omtm.2017.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus in the Paramyxoviridae family. Although primarily an avian pathogen, NDV is a potent oncolytic virus that has been shown to be safe and effective in a variety of preclinical cancer models and human clinical trials. To produce virus for oncolytic trials, NDV is commonly amplified in embryonated chicken eggs and purified from the allantoic fluid. Conventional methods for purifying virus from allantoic fluid often result in relatively low-titer preparations containing high levels of impurities, including immunogenic chicken host cell proteins from allantoic fluid. However, large quantities of virus need to be delivered intravenously to administer oncolytic NDV systemically to mice. This route of administration requires virus preparations that are both highly concentrated (to enable delivery of small volumes) and highly pure (to limit toxic effects from contaminants). Given the accumulation of promising preclinical and clinical data demonstrating the efficacy of NDV as an oncolytic agent, strategies for increasing the titer and purity of NDV preparations are sorely needed to allow for effective intravenous administration in mice. Here, we describe an optimized protocol for the rescue, production, and purification of high-titer in vivo-grade NDV for preclinical studies in mouse models.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Pierre P Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada
| | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
42
|
Masemann D, Boergeling Y, Ludwig S. Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy. Biol Chem 2017; 398:891-909. [DOI: 10.1515/hsz-2017-0103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Within recent decades, viruses that specifically target tumor cells have emerged as novel therapeutic agents against cancer. These viruses do not only act via their cell-lytic properties, but also harbor immunostimulatory features to re-direct the tumor microenvironment and stimulate tumor-directed immune responses. Furthermore, oncolytic viruses are considered to be superior to classical cancer therapies due to higher selectivity towards tumor cell destruction and, consequently, less collateral damage of non-transformed healthy tissue. In particular, the field of oncolytic RNA viruses is rapidly developing since these agents possess alternative tumor-targeting strategies compared to established oncolytic DNA viruses. Thus, oncolytic RNA viruses have broadened the field of virotherapy facilitating new strategies to fight cancer. In addition to several naturally occurring oncolytic viruses, genetically modified RNA viruses that are armed to express foreign factors such as immunostimulatory molecules have been successfully tested in early clinical trials showing promising efficacy. This review aims to provide an overview of the most promising RNA viruses in clinical development, to summarize the current knowledge of clinical trials using these viral agents, and to discuss the main issues as well as future perspectives of clinical approaches using oncolytic RNA viruses.
Collapse
|
43
|
Evaluation of the oncolytic potential of R 2B Mukteshwar vaccine strain of Newcastle disease virus (NDV) in a colon cancer cell line (SW-620). Arch Virol 2017; 162:2705-2713. [PMID: 28578522 DOI: 10.1007/s00705-017-3411-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 04/06/2017] [Indexed: 01/21/2023]
Abstract
Virotherapy is emerging as an alternative treatment of cancer. Among the candidate oncolytic viruses (OVs), Newcastle disease virus (NDV) has emerged as a promising non-engineered OV. In the present communication, we explored the oncolytic potential of R2B Mukteshwar strain of NDV using SW-620 colon cancer cells. SW-620 cells were xenografted in nude mice and after evaluation of the safety profile, 1 x 107 plaque forming units (PFU) of NDV were inoculated as virotherapeutic agent via the intratumoral (I/T) and intravenous (I/V) route. Tumor growth inhibition was compared with their respective control groups by gross volume and histopathological evaluation. Antibody titer and virus survival were measured by hemagglutination inhibition (HI)/serum neutralization test (SNT) and real-time PCR, respectively. During the safety trial, the test strain did not produce any abnormal symptoms nor weight loss in BALB/c mice. Significant tumor lytic activity was evident when viruses were injected via the I/T route. There was a 43 and 57% tumor growth inhibition on absolute and relative tumor volume basis, respectively, compared with mock control. On the same basis, the I/V route treatment resulted in 40 and 16% of inhibition, respectively. Histopathological examination revealed that the virus caused apoptosis, followed by necrosis, but immune cell infiltration was not remarkable. The virus survived in 2/2 mice until day 10 and in 3/6 mice by day 19, with both routes of administration. Anti-NDV antibodies were generated at moderate level and the titer reached a maximum of 1:32 and 1:64 via the I/T and I/V routes, respectively. In conclusion, the test NDV strain was found to be safe and showed oncolytic activity against the SW-620 cell line in mice.
Collapse
|
44
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
45
|
Al-Shammari AM, Salman MI, Saihood YD, Yaseen NY, Raed K, Shaker HK, Ahmed A, Khalid A, Duiach A. In Vitro Synergistic Enhancement of Newcastle Disease Virus to 5-Fluorouracil Cytotoxicity against Tumor Cells. Biomedicines 2016; 4:E3. [PMID: 28536371 PMCID: PMC5344244 DOI: 10.3390/biomedicines4010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/04/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chemotherapy is one of the antitumor therapies used worldwide in spite of its serious side effects and unsatisfactory results. Many attempts have been made to increase its activity and reduce its toxicity. 5-Fluorouracil (5-FU) is still a widely-used chemotherapeutic agent, especially in combination with other chemotherapies. Combination therapy seems to be the best option for targeting tumor cells by different mechanisms. Virotherapy is a promising agent for fighting cancer because of its safety and selectivity. Newcastle disease virus is safe, and it selectively targets tumor cells. We previously demonstrated that Newcastle disease virus (NDV) could be used to augment other chemotherapeutic agents and reduce their toxicity by halving the administered dose and replacing the eliminated chemotherapeutic agents with the Newcastle disease virus; the same antitumor activity was maintained. METHODS In the current work, we tested this hypothesis on different tumor cell lines. We used the non-virulent LaSota strain of NDV in combination with 5-FU, and we measured the cytotoxicity effect. We evaluated this combination using Chou-Talalay analysis. RESULTS NDV was synergistic with 5-FU at low doses when used as a combination therapy on different cancer cells, and there were very mild effects on non-cancer cells. CONCLUSION The combination of a virulent, non-pathogenic NDV-LaSota strain with a standard chemotherapeutic agent, 5-FU, has a synergistic effect on different tumor cells in vitro, suggesting this combination could be an important new adjuvant therapy for treating cancer.
Collapse
Affiliation(s)
- Ahmed M Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| | - Marwa I Salman
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| | - Yahya D Saihood
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| | - Nahi Y Yaseen
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| | - Khansaa Raed
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| | - Hiba Kareem Shaker
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| | - Aesar Ahmed
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| | - Aseel Khalid
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| | - Ahlam Duiach
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Baghdad 1001, Iraq.
| |
Collapse
|
46
|
Newcastle Disease Virus: Potential Therapeutic Application for Human and Canine Lymphoma. Viruses 2015; 8:v8010003. [PMID: 26703717 PMCID: PMC4728563 DOI: 10.3390/v8010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Research on oncolytic viruses has mostly been directed towards the treatment of solid tumors, which has yielded limited information regarding their activity in hematological cancer. It has also been directed towards the treatment of humans, yet veterinary medicine may also benefit. Several strains of the Newcastle disease virus (NDV) have been used as oncolytics in vitro and in a number of in vivo experiments. We studied the cytolytic effect of NDV-MLS, a low virulence attenuated lentogenic strain, on a human large B-cell lymphoma cell line (SU-DHL-4), as well as on primary canine-derived B-cell lymphoma cells, and compared them to healthy peripheral blood mononuclear cells (PBMC) from both humans and dogs. NDV-MLS reduced cell survival in both human (42% ± 5%) and dog (34% ± 12%) lymphoma cells as compared to untreated controls. No significant effect on PBMC was seen. Cell death involved apoptosis as documented by flow-cytometry. NDV-MLS infections of malignant lymphoma tumors in vivo in dogs were confirmed by electron microscopy. Early (24 h) biodistribution of intravenous injection of 1 × 1012 TCID50 (tissue culture infective dose) in a dog with T-cell lymphoma showed viral localization only in the kidney, the salivary gland, the lung and the stomach by immunohistochemistry and/or endpoint PCR. We conclude that NDV-MLS may be a promising agent for the treatment of lymphomas. Future research is needed to elucidate the optimal therapeutic regimen and establish appropriate biosafety measures.
Collapse
|
47
|
Oncolysis by paramyxoviruses: preclinical and clinical studies. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30019-5. [PMID: 26640815 PMCID: PMC4667943 DOI: 10.1038/mto.2015.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical studies demonstrate that a broad spectrum of human malignant cells can be killed by oncolytic paramyxoviruses, which include cells of ecto-, endo-, and mesodermal origin. In clinical trials, significant reduction in size or even complete elimination of primary tumors and established metastases are reported. Different routes of viral administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural), and single- versus multiple-dose administration schemes have been explored. The reported side effects are grade 1 and 2, with the most common among them being mild fever. Some advantages in using paramyxoviruses as oncolytic agents versus representatives of other viral families exist. The cytoplasmic replication results in a lack of host genome integration and recombination, which makes paramyxoviruses safer and more attractive candidates for widely used therapeutic oncolysis in comparison with retroviruses or some DNA viruses. The list of oncolytic paramyxovirus representatives includes attenuated measles virus (MV), mumps virus (MuV), low pathogenic Newcastle disease (NDV), and Sendai (SeV) viruses. Metastatic cancer cells frequently overexpress on their surface some molecules that can serve as receptors for MV, MuV, NDV, and SeV. This promotes specific viral attachment to the malignant cell, which is frequently followed by specific viral replication. The paramyxoviruses are capable of inducing efficient syncytium-mediated lyses of cancer cells and elicit strong immunomodulatory effects that dramatically enforce anticancer immune surveillance. In general, preclinical studies and phase 1–3 clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.
Collapse
|
48
|
Schirrmacher V. Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biologic agent with potential to break therapy resistance. Expert Opin Biol Ther 2015; 15:1757-71. [PMID: 26436571 DOI: 10.1517/14712598.2015.1088000] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) selectively replicate in tumor cells and cause cancer cell death. Most OVs in clinical studies are genetically engineered. In contrast, the avian Newcastle disease virus (NDV) is a naturally oncolytic RNA virus. While anti-viral immunity is considered a major problem in achieving maximal tumor cell killing by OVs, this review discusses the importance of NDV immunogenic cell death (ICD) and how anti-viral immune responses can be integrated to induce maximal post-oncolytic T-cell-mediated anti-tumor immunity. Since replication of NDV is independent of host cell DNA replication (which is the target of many cytostatic drugs and radiotherapy) and because of other findings, oncolytic NDV is a candidate agent to break therapy resistance of tumor cells. AREAS COVERED Properties of this avian paramyxovirus are summarized with special emphasis to its anti-neoplastic and immune-stimulatory properties. The review then discusses prospective anti-cancer therapies, including treatments with NDV alone, and combinations with an autologous NDV-modified tumor cell vaccine or with a viral oncolysate pulsed dendritic cell vaccine. Various combinatorial approaches between these and with other modalities are also reviewed. EXPERT OPINION Post-oncolytic anti-tumor immunity based on ICD is in the expert's opinion of greater importance for long-term therapeutic effects than maximal tumor cell killing. Of the various combinatorial approaches discussed, the most promising and feasible for clinical practice appears to be the combination of systemic NDV pre-treatment with anti-tumor vaccination.
Collapse
Affiliation(s)
- Volker Schirrmacher
- a Immunological and Oncological Center (IOZK), Tumor Immunology , Hohenstaufenring 30-32, D-50674 Köln, Cologne, Germany
| |
Collapse
|
49
|
Zhang CX, Ye LW, Liu Y, Xu XY, Li DR, Yang YQ, Sun LL, Yuan J. Antineoplastic activity of Newcastle disease virus strain D90 in oral squamous cell carcinoma. Tumour Biol 2015; 36:7121-31. [PMID: 25877754 DOI: 10.1007/s13277-015-3433-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 01/27/2023] Open
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, possesses the ability to kill tumor cells. Here, we report the effects of NDV strain D90, which was isolated in China, against oral squamous cell carcinoma (OSCC) cells. In this study, we showed that the cell death induced by D90 was apoptotic. Furthermore, the apoptosis induced by D90 was dependent on the mitochondrial pathway, and the death receptor pathway may be not involved. Bax and Bcl-2 also played a role in the apoptosis induced by D90. Lymph node metastasis is a serious problem for oral cancer; we therefore evaluated the impact of D90 on the migration and invasion of OSCC cells. NDV D90 affected microtubules and microfilaments to inhibit the motility of OSCC prior to apoptosis. The effects of D90 on the migration and invasion rates of OSCC cells were evaluated by migration and invasion assays. Subsequently, the changes in sp1, RECK, MMP-2, and MMP-9 induced by a low concentration of D90 were detected by western blot and gelatin zymography. D90 significantly inhibited the invasion and metastasis of OSCC cells by decreasing the expression of sp1 and increasing the expression of RECK to suppress the expression and activity of MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Chun-Xiao Zhang
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Long-Wei Ye
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ying Liu
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xiao-Ya Xu
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Dan-Rui Li
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yan-Qing Yang
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Lu-Lu Sun
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jie Yuan
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
50
|
Cancer therapy with Newcastle disease virus: rationale for new immunotherapeutic combinations. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/cli.14.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|