1
|
Keuls RA, Ochsner SA, O'Neill MB, O'Day DR, Miyauchi A, Campbell KM, Lanners N, Goldstein JA, Yee C, McKenna NJ, Parchem RJ, Parchem JG. Single-nucleus transcriptional profiling of the placenta reveals the syncytiotrophoblast stress response to COVID-19. Am J Obstet Gynecol 2025; 232:S160-S175.e7. [PMID: 40253079 DOI: 10.1016/j.ajog.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND COVID-19 in pregnancy is associated with placental immune activation, inflammation, and vascular malperfusion, but its impact on syncytiotrophoblast biology and function is unclear. OBJECTIVE This study aimed to determine the effects of maternal COVID-19 on placental syncytiotrophoblasts using single-nucleus transcriptional profiling and to compare placental stress responses in COVID-19 and preeclampsia. STUDY DESIGN For transcriptional characterization of syncytiotrophoblasts, we used the single-nucleus RNA sequencing platform, single-cell combinatorial indexing RNA sequencing (sci-RNA-seq3), to profile placental villi and fetal membranes from unvaccinated patients with symptomatic COVID-19 at birth (n = 4), gestational age-matched controls (n = 4), and a case of critical COVID-19 in the second trimester with delivery at term (n = 1). Clustering of nuclei and differential gene expression analysis was performed in Seurat. Gene ontology analysis was conducted using Enrichr. High-confidence transcriptional target analysis was used to identify key transcription factor nodes governing the syncytiotrophoblast response to maternal SARS-CoV-2 infection. Bioinformatic approaches were further used to compare the COVID-19 dataset to published preeclampsia gene signatures. Tissue analysis, including immunofluorescence, was conducted to validate the transcriptional data and to compare COVID-19 and preeclampsia placental histology for an expanded cohort of placentas: controls (n = 6), asymptomatic COVID-19 (n = 3), symptomatic COVID-19 (n = 5), and preeclampsia with severe features (n = 7). RESULTS The analyzed dataset comprised 15 cell clusters and 47,889 nuclei. We identified 3 clusters of syncytiotrophoblasts representing fusing and mature nuclei with overlapping but distinct transcriptional responses to COVID-19. Bioinformatic analyses indicated that COVID-19 is associated with the following alterations in syncytiotrophoblasts: (1) endoplasmic reticulum stress and activation of stress signaling pathways, including the unfolded protein response and integrated stress response; (2) regulation of gene expression by CCAAT/enhancer-binding protein beta (CEBPB), a master transcription factor of the syncytiotrophoblast lineage; and (3) upregulation of preeclampsia-associated genes. Using complementary methods, we confirmed increased levels of stress response proteins (eg, BiP, G3BP1) in syncytiotrophoblasts, unfolded protein response signaling (spliced XBP1 mRNA), and CEBPB activation (phosphorylation) in COVID-19. Increased cytotrophoblast proliferation (Ki-67) was also detected in COVID-19, consistent with a trophoblast response to injury. Markers of stress detected in preeclampsia demonstrated similarities in the placental stress phenotype of COVID-19 and preeclampsia. CONCLUSION Maternal COVID-19 is associated with syncytiotrophoblast endoplasmic reticulum stress and activation of the syncytiotrophoblast lineage transcription factor, CEBPB. Similarities between syncytiotrophoblast stress in COVID-19 and preeclampsia provide insights into their clinical association.
Collapse
Affiliation(s)
- Rachel A Keuls
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Mary B O'Neill
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Diana R O'Day
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Akihiko Miyauchi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Kadeshia M Campbell
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Natalie Lanners
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Jeffery A Goldstein
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Connor Yee
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Larry C. Gilstrap MD Center for Perinatal and Women's Health Research, The University of Texas Health Science Center at Houston, Houston, TX
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX.
| | - Jacqueline G Parchem
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX.
| |
Collapse
|
2
|
Streeter J, Persaud L, Gao J, Manika D, Fairman W, García-Peña LM, Marti A, Manika C, Gaddi S, Schickling B, Pereira RO, Abel ED. ATF4-dependent and independent mitokine secretion from OPA1 deficient skeletal muscle in mice is sexually dimorphic. Front Endocrinol (Lausanne) 2024; 15:1325286. [PMID: 39381436 PMCID: PMC11458430 DOI: 10.3389/fendo.2024.1325286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Reducing Optic Atrophy 1 (OPA1) expression in skeletal muscle in male mice induces Activation Transcription Factor 4 (ATF4) and the integrated stress response (ISR). Additionally, skeletal muscle secretion of Fibroblast Growth Factor 21 (FGF21) is increased, which mediates metabolic adaptations including resistance to diet-induced obesity (DIO) and glucose intolerance in these mice. Although FGF21 induction in this model can be reversed with pharmacological attenuation of ER stress, it remains to be determined if ATF4 is responsible for FGF21 induction and its metabolic benefits in this model. Methods We generated mice with homozygous floxed Opa1 and Atf4 alleles and a tamoxifen-inducible Cre transgene controlled by the human skeletal actin promoter to enable simultaneous depletion of OPA1 and ATF4 in skeletal muscle (mAO DKO). Mice were fed high fat (HFD) or control diet and evaluated for ISR activation, body mass, fat mass, glucose tolerance, insulin tolerance and circulating concentrations of FGF21 and growth differentiation factor 15 (GDF15). Results In mAO DKO mice, ATF4 induction is absent. Other indices of ISR activation, including XBP1s, ATF6, and CHOP were induced in mAO DKO males, but not in mOPA1 or mAO DKO females. Resistance to diet-induced obesity was not reversed in mAO DKO mice of both sexes. Circulating FGF21 and GDF15 illustrated sexually dimorphic patterns. Loss of OPA1 in skeletal muscle increases circulating FGF21 in mOPA1 males, but not in mOPA1 females. Additional loss of ATF4 decreased circulating FGF21 in mAO DKO male mice, but increased circulating FGF21 in female mAO DKO mice. Conversely, circulating GDF15 was increased in mAO DKO males and mOPA1 females, but not in mAO DKO females. Conclusion Sex differences exist in the transcriptional outputs of the ISR following OPA deletion in skeletal muscle. Deletion of ATF4 in male and female OPA1 KO mice does not reverse the resistance to DIO. Induction of circulating FGF21 is ATF4 dependent in males, whereas induction of circulating GDF15 is ATF4 dependent in females. Elevated GDF15 in males and FGF21 in females could reflect activation by other transcriptional outputs of the ISR, that maintain mitokine-dependent metabolic protection in an ATF4-independent manner.
Collapse
Affiliation(s)
- Jennifer Streeter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Persaud
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jason Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Deeraj Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Will Fairman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Miguel García-Peña
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alex Marti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Chethan Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Shreya Gaddi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Brandon Schickling
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Renata O. Pereira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - E. Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
De Silva M, Tse BCY, Diakos CI, Clarke S, Molloy MP. Immunogenic cell death in colorectal cancer: a review of mechanisms and clinical utility. Cancer Immunol Immunother 2024; 73:53. [PMID: 38353760 PMCID: PMC10866783 DOI: 10.1007/s00262-024-03641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related morbidity and mortality worldwide. Despite several clinical advances the survival of patients with advanced colorectal cancer remains limited, demanding newer approaches. The immune system plays a central role in cancer development, propagation, and treatment response. Within the bowel, the colorectal mucosa is a key barrier and site of immune regulation that is generally immunosuppressive. Nonetheless, within this tumour microenvironment, it is evident that anti-neoplastic treatments which cause direct cytotoxic and cytostatic effects may also induce immunogenic cell death (ICD), a form of regulated cell death that leads to an anti-tumour immune response. Therefore, novel ICD inducers and molecular biomarkers of ICD action are urgently needed to advance treatment options for advanced CRC. This article reviews our knowledge of ICD in CRC.
Collapse
Affiliation(s)
- M De Silva
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - B C Y Tse
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - C I Diakos
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - S Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - M P Molloy
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Gauthier-Coles G, Rahimi F, Bröer A, Bröer S. Inhibition of GCN2 Reveals Synergy with Cell-Cycle Regulation and Proteostasis. Metabolites 2023; 13:1064. [PMID: 37887389 PMCID: PMC10609202 DOI: 10.3390/metabo13101064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The integrated stress response is a signaling network comprising four branches, each sensing different cellular stressors, converging on the phosphorylation of eIF2α to downregulate global translation and initiate recovery. One of these branches includes GCN2, which senses cellular amino acid insufficiency and participates in maintaining amino acid homeostasis. Previous studies have shown that GCN2 is a viable cancer target when amino acid stress is induced by inhibiting an additional target. In this light, we screened numerous drugs for their potential to synergize with the GCN2 inhibitor TAP20. The drug sensitivity of six cancer cell lines to a panel of 25 compounds was assessed. Each compound was then combined with TAP20 at concentrations below their IC50, and the impact on cell growth was evaluated. The strongly synergistic combinations were further characterized using synergy analyses and matrix-dependent invasion assays. Inhibitors of proteostasis and the MEK-ERK pathway, as well as the pan-CDK inhibitors, flavopiridol, and seliciclib, were potently synergistic with TAP20 in two cell lines. Among their common CDK targets was CDK7, which was more selectively targeted by THZ-1 and synergized with TAP20. Moreover, these combinations were partially synergistic when assessed using matrix-dependent invasion assays. However, TAP20 alone was sufficient to restrict invasion at concentrations well below its growth-inhibitory IC50. We conclude that GCN2 inhibition can be further explored in vivo as a cancer target.
Collapse
Affiliation(s)
- Gregory Gauthier-Coles
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
- School of Medicine, Yale University, New Haven, CT 06504, USA
| | - Farid Rahimi
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| |
Collapse
|
5
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. Dual RNase activity of IRE1 as a target for anticancer therapies. J Cell Commun Signal 2023:10.1007/s12079-023-00784-5. [PMID: 37721642 DOI: 10.1007/s12079-023-00784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
The unfolded protein response (UPR) is a cellular mechanism that protects cells during stress conditions in which there is an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR activates three signaling pathways that function to alleviate stress conditions and promote cellular homeostasis and cell survival. During unmitigated stress conditions, however, UPR activation signaling changes to promote cell death through apoptosis. Interestingly, cancer cells take advantage of this pathway to facilitate survival and avoid apoptosis even during prolonged cell stress conditions. Here, we discuss different signaling pathways associated with UPR and focus specifically on one of the ER signaling pathways activated during UPR, inositol-requiring enzyme 1α (IRE1). The rationale is that the IRE1 pathway is associated with cell fate decisions and recognized as a promising target for cancer therapeutics. Here we discuss IRE1 inhibitors and how they might prove to be an effective cancer therapeutic.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a Street, 50-383, Wrocław, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a Street, 50-383, Wrocław, Poland.
| |
Collapse
|
6
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
7
|
Sallais J, Park C, Alahari S, Porter T, Liu R, Kurt M, Farrell A, Post M, Caniggia I. HIF1 inhibitor acriflavine rescues early-onset preeclampsia phenotype in mice lacking placental prolyl hydroxylase domain protein 2. JCI Insight 2022; 7:158908. [PMID: 36227697 PMCID: PMC9746916 DOI: 10.1172/jci.insight.158908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a serious pregnancy disorder that lacks effective treatments other than delivery. Improper sensing of oxygen changes during placentation by prolyl hydroxylases (PHDs), specifically PHD2, causes placental hypoxia-inducible factor-1 (HIF1) buildup and abnormal downstream signaling in early-onset preeclampsia, yet therapeutic targeting of HIF1 has never been attempted. Here we generated a conditional (placenta-specific) knockout of Phd2 in mice (Phd2-/- cKO) to reproduce HIF1 excess and to assess anti-HIF therapy. Conditional deletion of Phd2 in the junctional zone during pregnancy increased placental HIF1 content, resulting in abnormal placentation, impaired remodeling of the uterine spiral arteries, and fetal growth restriction. Pregnant dams developed new-onset hypertension at midgestation (E9.5) in addition to proteinuria and renal and cardiac pathology, hallmarks of severe preeclampsia in humans. Daily injection of acriflavine, a small molecule inhibitor of HIF1, to pregnant Phd2-/- cKO mice from E7.5 (prior to hypertension) or E10.5 (after hypertension had been established) to E14.5 corrected placental dysmorphologies and improved fetal growth. Moreover, it reduced maternal blood pressure and reverted renal and myocardial pathology. Thus, therapeutic targeting of the HIF pathway may improve placental development and function, as well as maternal and fetal health, in preeclampsia.
Collapse
Affiliation(s)
- Julien Sallais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ruizhe Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Merve Kurt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Martin Post
- Institute of Medical Sciences, and,Department of Physiology, University of Toronto, Ontario, Canada.,Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and,Department of Physiology, University of Toronto, Ontario, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Ontario, Canada
| |
Collapse
|
8
|
Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy. Acta Pharm Sin B 2021; 11:3567-3584. [PMID: 34900537 PMCID: PMC8642603 DOI: 10.1016/j.apsb.2021.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022] Open
Abstract
Protein neddylation is catalyzed by a three-enzyme cascade, namely an E1 NEDD8-activating enzyme (NAE), one of two E2 NEDD8 conjugation enzymes and one of several E3 NEDD8 ligases. The physiological substrates of neddylation are the family members of cullin, the scaffold component of cullin RING ligases (CRLs). Currently, a potent E1 inhibitor, MLN4924, also known as pevonedistat, is in several clinical trials for anti-cancer therapy. Here we report the discovery, through virtual screening and structural modifications, of a small molecule compound HA-1141 that directly binds to NAE in both in vitro and in vivo assays and effectively inhibits neddylation of cullins 1–5. Surprisingly, unlike MLN4924, HA-1141 also triggers non-canonical endoplasmic reticulum (ER) stress and PKR-mediated terminal integrated stress response (ISR) to activate ATF4 at an early stage, and to inhibit protein synthesis and mTORC1 activity at a later stage, eventually leading to autophagy induction. Biologically, HA-1141 suppresses growth and survival of cultured lung cancer cells and tumor growth in in vivo xenograft lung cancer models at a well-tolerated dose. Taken together, our study has identified a small molecule compound with the dual activities of blocking neddylation and triggering ER stress, leading to growth suppression of cancer cells.
Collapse
|
9
|
Ramachandran S, Ma TS, Griffin J, Ng N, Foskolou IP, Hwang MS, Victori P, Cheng WC, Buffa FM, Leszczynska KB, El-Khamisy SF, Gromak N, Hammond EM. Hypoxia-induced SETX links replication stress with the unfolded protein response. Nat Commun 2021; 12:3686. [PMID: 34140498 PMCID: PMC8211819 DOI: 10.1038/s41467-021-24066-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Tiffany S Ma
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jon Griffin
- Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Natalie Ng
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Iosifina P Foskolou
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Ming-Shih Hwang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Pedro Victori
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Wei-Chen Cheng
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Katarzyna B Leszczynska
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ester M Hammond
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem Soc Trans 2021; 49:1251-1263. [PMID: 34003246 PMCID: PMC8286837 DOI: 10.1042/bst20200861] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hypoxia is a feature of most solid tumours and predicts for poor prognosis. In radiobiological hypoxia (<0.1% O2) cells become up to three times more resistant to radiation. The biological response to radiobiological hypoxia is one of few physiologically relevant stresses that activates both the unfolded protein and DNA damage responses (UPR and DDR). Links between these pathways have been identified in studies carried out in normoxia. Based in part on these previous studies and recent work from our laboratory, we hypothesised that the biological response to hypoxia likely includes overlap between the DDR and UPR. While inhibition of the DDR is a recognised strategy for improving radiation response, the possibility of achieving this through targeting the UPR has not been realised. We carried out a systematic review to identify links between the DDR and UPR, in human cell lines exposed to <2% O2. Following PRISMA guidance, literature from January 2010 to October 2020 were retrieved via Ovid MEDLINE and evaluated. A total of 202 studies were included. LAMP3, ULK1, TRIB3, CHOP, NOXA, NORAD, SIAH1/2, DYRK2, HIPK2, CREB, NUPR1, JMJD2B, NRF2, GSK-3B, GADD45a, GADD45b, STAU1, C-SRC, HK2, CAV1, CypB, CLU, IGFBP-3 and SP1 were highlighted as potential links between the hypoxic DDR and UPR. Overall, we identified very few studies which demonstrate a molecular link between the DDR and UPR in hypoxia, however, it is clear that many of the molecules highlighted warrant further investigation under radiobiological hypoxia as these may include novel therapeutic targets to improve radiotherapy response.
Collapse
|
11
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
12
|
Korbelik M. Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers Surg Med 2018; 50:491-498. [DOI: 10.1002/lsm.22810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mladen Korbelik
- Department of Integrative OncologyBritish Columbia Cancer Agency VancouverBritish ColumbiaCanada
| |
Collapse
|
13
|
Shang W, Tang Z, Gao Y, Qi H, Su X, Zhang Y, Yang R. LncRNA RNCR3 promotes Chop expression by sponging miR-185-5p during MDSC differentiation. Oncotarget 2017; 8:111754-111769. [PMID: 29340089 PMCID: PMC5762357 DOI: 10.18632/oncotarget.22906] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/17/2017] [Indexed: 02/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in regulating immune responses in cancer and other pathological conditions. Mechanism(s) regulating MDSC differentiation and function is not completely clear, especially epigenetic regulation. In this study, we found that MDSCs express retinal non-coding RNA3 (RNCR3), and the expression in MDSCs is upregulated by inflammatory and tumor associated factors. RNCR3 may function as a competing endogenous RNA (ceRNA) to promote Chop expression by sponging miR-185-5p during MDSC differentiation. RNCR3 knockdown suppressed differentiation and function of MDSCs in vitro and in vivo. Quantitative RT-PCR showed that RNCR3 was negatively regulated by miR-185-5p in MDSCs. MiR-185-5p affected the expansion of MDSCs and reversed the effect of RNCR3 on MDSC differentiation and function through directly targeting Chop. Thus, our results suggest a RNCR3/miR-185-5p/Chop autologously strengthening network to promote MDSC differentiation and suppressive function in response to extracellular inflammatory and tumor-associated signals.
Collapse
Affiliation(s)
- Wencong Shang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zhenzhen Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yunhuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Houbao Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xiaomin Su
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Liu B, Chen P, Xi D, Zhu H, Gao Y. ATF4 regulates CCL2 expression to promote endometrial cancer growth by controlling macrophage infiltration. Exp Cell Res 2017; 360:105-112. [PMID: 28843961 DOI: 10.1016/j.yexcr.2017.08.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/25/2022]
Abstract
Activating transcription factor 4 (ATF4), an endoplasmic reticulum stress-inducible transcription factor, plays important roles in cancer progression and resistance to therapy. However, no report is available about its roles in endometrial cancer (EC). In this study, we found that ATF4 is commonly expressed in EC cell lines. Loss-of-function studies in two EC cell lines showed that ATF4 knockdown suppresses tumor growth of EC in vivo without influencing cell proliferation in vitro. And xenograft tumors derived from ATF4-knockdown cells had reduced M2 macrophage infiltration. In clinical specimens, ATF4-high expressing tumors indeed contained more macrophage infiltration compared to those with lower ATF4 expression. Moreover, we identified that ATF4-mediated chemokine CCL2 expression ultimately results in macrophage infiltration and tumor growth of EC. Taken together, our findings suggest that ATF4 contributes to tumor growth of EC by promoting CCL2 and subsequent recruitment of macrophage, and that ATF4/CCL2 axis might be a potential therapeutic target for EC.
Collapse
Affiliation(s)
- Bin Liu
- Departments of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Pingping Chen
- Departments of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Di Xi
- Departments of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Hong Zhu
- Departments of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Yuping Gao
- Departments of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China.
| |
Collapse
|
15
|
Dekervel J, Bulle A, Windmolders P, Lambrechts D, Van Cutsem E, Verslype C, van Pelt J. Acriflavine Inhibits Acquired Drug Resistance by Blocking the Epithelial-to-Mesenchymal Transition and the Unfolded Protein Response. Transl Oncol 2016; 10:59-69. [PMID: 27987431 PMCID: PMC5217771 DOI: 10.1016/j.tranon.2016.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is linked to tumor invasion, drug resistance and aggressive disease and this is largely dependent on the cell's microenvironment. Acriflavine (ACF) is an old antibacterial drug recently also suggested as anticancer agent and HIF inhibitor. We wanted to study the effect of acriflavine on EMT in different human cancer models. Pancreatic cancer cells (Panc-1) were exposed to TGF-β1 or cobalt chloride (to mimick severe hypoxia) to induce EMT. For our third model we exposed HepG2 liver cancer cells to sorafenib which resulted in development of acquired drug resistance with strong features of EMT and aggressive behavior. These models were morphologically and functionally (invasion assay) characterized. Markers of EMT were determined using qRT-PCR and Western blotting. Transcriptome analysis was performed following gene expression determination and combining the iRegulon tool and Gene Set Enrichment Analysis (GSEA). We made the following observations: (1) acriflavine inhibited EMT based on changes in cell morphology, invasive capacities and markers of EMT (at protein and gene expression level). (2) Transcriptome analysis revealed potent inhibition of ATF4 target genes and of the unfolded protein response. We showed that acriflavine blocked eIF2a phosphorylation and reduced ATF4 translation thereby inhibiting the PERK/eIF2a/ATF4 UPR pathway. (3) ACF restored drug sensitivity of cells that obtained acquired resistance. Conclusions: We identified acriflavine as a potent inhibitor of EMT and the UPR, thereby re-sensitizing the cancer cells to antineoplastic drugs.
Collapse
Affiliation(s)
- Jeroen Dekervel
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven
| | - Ashenafi Bulle
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven; Unit of Clinical Digestive Oncology, Department of Oncology, KU Leuven and Department of Gastroenterology/Digestive Oncology, University Hospitals g Leuven
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium; Vesalius Research Center, VIB, Leuven, Belgium
| | - Eric Van Cutsem
- Unit of Clinical Digestive Oncology, Department of Oncology, KU Leuven and Department of Gastroenterology/Digestive Oncology, University Hospitals g Leuven; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Chris Verslype
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven; Unit of Clinical Digestive Oncology, Department of Oncology, KU Leuven and Department of Gastroenterology/Digestive Oncology, University Hospitals g Leuven; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jos van Pelt
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven; Unit of Clinical Digestive Oncology, Department of Oncology, KU Leuven and Department of Gastroenterology/Digestive Oncology, University Hospitals g Leuven; Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
16
|
Ko AR, Kim JY, Hyun HW, Kim JE. Endoplasmic reticulum (ER) stress protein responses in relation to spatio-temporal dynamics of astroglial responses to status epilepticus in rats. Neuroscience 2015; 307:199-214. [PMID: 26335380 DOI: 10.1016/j.neuroscience.2015.08.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022]
Abstract
In the present study, we investigated whether endoplasmic reticulum (ER) stress is associated with neuronal- and astroglial-death in the hippocampus using LiCl-pilocarpine-induced status epilepticus (SE) rat model. Glucose-related protein (GRP) 78 and protein disulfide isomerase (PDI) expressions were transiently increased in CA1 neurons and dentate granule cells, and subsequently decreased in these cells following SE. GRP94 and calnexin (CNX) expression was gradually reduced in CA1 neurons, not in dentate granule cells. Phospho-protein kinase RNA (PKR)-like ER kinase (pPERK), phospho-eukaryotic initiation factor 2α (peIF2A) and CCAAT/enhancer-binding protein homologous protein (CHOP) immunoreactivities were observed in 17%, 12% and 7% of degenerating CA1 neurons, respectively. GRP 78 and PDI expressions were also up-regulated in reactive astrocytes within the CA1-3 regions. In the molecular layer of the dentate gyrus, PDI-positive astrocytes showed TUNEL signal, nuclear apoptosis inducing factor translocation and pPERK/peIF2A/CHOP immunoreactivities. Four weeks after SE, clasmatodendritic astrocytes showed pPERK peIF2A and CNX immunoreactivities without CHOP expression. These findings indicate that SE-induced ER stress may be associated with astroglial apoptosis and autophagic astroglial death in the regional-specific pattern.
Collapse
Affiliation(s)
- A-R Ko
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - J Y Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - H-W Hyun
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - J-E Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea.
| |
Collapse
|
17
|
The switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals: A survival mechanism in methotrexate-resistant choriocarcinoma cells. Exp Cell Res 2015; 334:207-18. [PMID: 25912909 DOI: 10.1016/j.yexcr.2015.04.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/07/2015] [Accepted: 04/14/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human choriocarcinoma, a highly curable solid tumour, is exceptionally sensitive to methotrexate-based chemotherapy at the metastatic stage. The present study aimed to investigate the molecular basis for this resistance to methotrexate therapy occurs in some cases, and these patients subsequently die from progressive and advanced disease. METHODS The autophagy and apoptotic activity regulated by PERK/ATF4 axis in methotrexate-resistant JEG-3 and parental cells were evaluated with western blotting and chromatin immunoprecipitation (ChIP). The regulatory relationships among the reactive oxygen species (ROS), JNK/p62 axis, PERK/ATF4-mediated apoptosis and autophagy were assessed with western blotting, RT-PCR, fluorescence-activated cell sorting as well as ChIP. RESULTS The decreased apoptosis in methotrexate-resistant JEG-3 cells was observed with an up-regulation of protective autophagy, suggesting a switch from apoptosis to autophagy, which was regulated via the PERK/ATF4 pathway under condition of endoplasmic reticulum (ER) stress. Further experiments demonstrated that this cell death switch was regulated by ROS-mediated JNK/p62 pathway and subsequently lead to the resistance of choriocarcinoma cells to methotrexate treatment. CONCLUSIONS This study provides evidence to explain a survival mechanism of the switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals in methotrexate-resistant choriocarcinoma cells and may implicate the chemotherapy of methotrexate resistance in choriocarcinoma.
Collapse
|
18
|
Hypoxia influences expression profile of Pleckstrin homology-like domain, family A, member 2 in Indian catfish, Clarias batrachus (Linnaeus, 1758): a new candidate gene for hypoxia tolerance in fish. J Biosci 2015; 39:433-42. [PMID: 24845507 DOI: 10.1007/s12038-014-9426-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several physiologically important genes were found to be regulated by hypoxia at the transcriptional level. The Pleckstrin homology-like domain, family A, member 2 (PHLDA2) gene was previously identified as an imprinted gene. The present study was aimed to determine the structure of complete cDNA and the deduced protein of PHLDA2 along with analysing the changes in its mRNA expression in Clarias batrachus tissues under hypoxic conditions. The complete cDNA of CbPHLDA2 gene consisted of 1009 nucleotides with an open reading frame of 417 nucleotides. The deduced CbPHLDA2 protein of 139 amino acids shared high homology with PHLD2A of other fishes as well as that of vertebrates. Importantly, a single amino acid (asparagine/lysine) insertion was identified in the PH domain of CbPHLDA2 and other fishes, which was absent in other vertebrates studied. Furthermore, under normoxic conditions, CbPHLDA2 was constitutively expressed with varying levels in analysed tissues. Short- and long-term hypoxia exposure resulted in significant changes in the expression of CbPHLDA2 in liver, spleen, head kidney, brain and muscle in a time-dependent manner. The results suggested that CbPHLDA2 might play an important role for adaptive significance under hypoxia.
Collapse
|
19
|
Thevenot PT, Sierra RA, Raber PL, Al-Khami AA, Trillo-Tinoco J, Zarreii P, Ochoa AC, Cui Y, Del Valle L, Rodriguez PC. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 2014; 41:389-401. [PMID: 25238096 PMCID: PMC4171711 DOI: 10.1016/j.immuni.2014.08.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/06/2014] [Indexed: 12/18/2022]
Abstract
Adaptation of malignant cells to the hostile milieu present in tumors is an important determinant of their survival and growth. However, the interaction between tumor-linked stress and antitumor immunity remains poorly characterized. Here, we show the critical role of the cellular stress sensor C/EBP-homologous protein (Chop) in the accumulation and immune inhibitory activity of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). MDSCs lacking Chop had decreased immune-regulatory functions and showed the ability to prime T cell function and induce antitumor responses. Chop expression in MDSCs was induced by tumor-linked reactive oxygen and nitrogen species and regulated by the activating-transcription factor-4. Chop-deficient MDSCs displayed reduced signaling through CCAAT/enhancer-binding protein-β, leading to a decreased production of interleukin-6 (IL-6) and low expression of phospho-STAT3. IL-6 overexpression restored immune-suppressive activity of Chop-deficient MDSCs. These findings suggest the role of Chop in tumor-induced tolerance and the therapeutic potential of targeting Chop in MDSCs for cancer immunotherapy.
Collapse
Affiliation(s)
- Paul T Thevenot
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Rosa A Sierra
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick L Raber
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Amir A Al-Khami
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jimena Trillo-Tinoco
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Parisa Zarreii
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yan Cui
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Luis Del Valle
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Paulo C Rodriguez
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
20
|
Hammond EM, Asselin MC, Forster D, O'Connor JPB, Senra JM, Williams KJ. The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol) 2014; 26:277-88. [PMID: 24602562 DOI: 10.1016/j.clon.2014.02.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/23/2014] [Accepted: 02/04/2014] [Indexed: 01/12/2023]
Abstract
Hypoxia was identified as a microenvironmental component of solid tumours over 60 years ago and was immediately recognised as a potential barrier to therapy through the reliance of radiotherapy on oxygen to elicit maximal cytotoxicity. Over the last two decades both clinical and experimental studies have markedly enhanced our understanding of how hypoxia influences cellular behaviour and therapy response. Furthermore, they have confirmed early assumptions that low oxygenation status in tumours is an exploitable target in cancer therapy. Generally such approaches will be more beneficial to patients with hypoxic tumours, necessitating the use of biomarkers that reflect oxygenation status. Tissue biomarkers have shown utility in many studies. Further significant advances have been made in the non-invasive measurement of tumour hypoxia with positron emission tomography, magnetic resonance imaging and other imaging modalities. Here, we describe the complexities of defining and measuring tumour hypoxia and highlight the therapeutic approaches to combat it.
Collapse
Affiliation(s)
- E M Hammond
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | - M-C Asselin
- Wolfson Molecular Imaging Centre, Manchester, UK
| | - D Forster
- Wolfson Molecular Imaging Centre, Manchester, UK
| | - J P B O'Connor
- Centre for Imaging Sciences, Institute of Population Health, Manchester, UK
| | - J M Senra
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | - K J Williams
- Manchester Pharmacy School, Cambridge-Manchester Cancer Research UK Comprehensive Imaging Centre, Manchester Academic Health Sciences Centre, The University Manchester, Manchester, UK.
| |
Collapse
|
21
|
Jiang X, Kanda T, Nakamoto S, Miyamura T, Wu S, Yokosuka O. Involvement of androgen receptor and glucose-regulated protein 78 kDa in human hepatocarcinogenesis. Exp Cell Res 2014; 323:326-336. [PMID: 24583399 DOI: 10.1016/j.yexcr.2014.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 02/07/2023]
Abstract
Previous studies demonstrated that androgen receptor (AR) is expressed in human hepatocellular carcinoma (HCC), one of the male-dominant diseases. Glucose-regulated protein 78 kDa (GRP78/Bip), which has a role in cancer development, is one of the androgen response genes in prostate cell lines. The aim of this study was to investigate the impact of AR on endoplasmic reticulum (ER)-stress signaling in human hepatoma. AR and GRP78 expressions were examined in human liver tissue panels. Human hepatoma cells stably expressing short hairpin RNA targeting AR and cells over-expressing AR were generated. The expressions of ER-stress molecules and AR were measured by real-time RT-PCR and Western blotting. The effect of AR on ER-stress responsive gene expression was examined by reporter assay. Strong positive correlation between AR mRNA and GRP78 mRNA was observed in stage I/II-HCCs. AR enhanced ER-stress responsive element activities and GRP78 expression, and regulated ER-stress response in hepatocytes. Sorafenib strongly induced significant apoptosis in HepG2 cells by the inhibition of AR and inhibition of the downstream GRP78. AR seems a co-regulator of GRP78 especially in earlier-stage HCC. AR plays a critical role in controlling ER-stress, providing new therapeutic options against HCC.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Molecular Virology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuo Miyamura
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
22
|
Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators Inflamm 2014; 2014:708193. [PMID: 24523573 PMCID: PMC3910075 DOI: 10.1155/2014/708193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 12/30/2022] Open
Abstract
Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study, ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions.
Collapse
|
23
|
Scott B, Sun CL, Mao X, Yu C, Vohra BPS, Milbrandt J, Crowder CM. Role of oxygen consumption in hypoxia protection by translation factor depletion. J Exp Biol 2013; 216:2283-92. [PMID: 23531825 PMCID: PMC3667128 DOI: 10.1242/jeb.082263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
Abstract
The reduction of protein synthesis has been associated with resistance to hypoxic cell death. Which components of the translation machinery control hypoxic sensitivity and the precise mechanism has not been systematically investigated, although a reduction in oxygen consumption has been widely assumed to be the mechanism. Using genetic reagents in Caenorhabditis elegans, we examined the effect on organismal survival after hypoxia of knockdown of 10 factors functioning at the three principal steps in translation. Reduction-of-function of all 10 translation factors significantly increased hypoxic survival to varying degrees, not fully accounted for by the level of translational suppression. Measurement of oxygen consumption showed that strong hypoxia resistance was possible without a significant decrease in oxygen consumption. Hypoxic sensitivity had no correlation with lifespan or reactive oxygen species sensitivity, two phenotypes associated with reduced translation. Resistance to tunicamycin, which produces misfolded protein toxicity, was the only phenotype that significantly correlated with hypoxic sensitivity. Translation factor knockdown was also hypoxia protective for mouse primary neurons. These data show that translation factor knockdown is hypoxia protective in both C. elegans and mouse neurons and that oxygen consumption does not necessarily determine survival; rather, mitigation of misfolded protein toxicity is more strongly associated with hypoxic protection.
Collapse
Affiliation(s)
- Barbara Scott
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Chun-Ling Sun
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xianrong Mao
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Cong Yu
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bhupinder P. S. Vohra
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - C. Michael Crowder
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
24
|
Abstract
Hypoxia in the microenvironment of many solid tumours is an important determinant of malignant progression. The ISR (integrated stress response) protects cells from the ER (endoplasmic reticulum) stress caused by severe hypoxia. Likewise, autophagy is a mechanism by which cancer cells can evade hypoxic cell death. In the present paper we report that the autophagy-initiating kinase ULK1 (UNC51-like kinase 1) is a direct transcriptional target of ATF4 (activating transcription factor 4), which drives the expression of ULK1 mRNA and protein in severe hypoxia and ER stress. We demonstrate that ULK1 is required for autophagy in severe hypoxia and that ablation of ULK1 causes caspase-3/7-independent cell death. Furthermore, we report that ULK1 expression is associated with a poor prognosis in breast cancer. Collectively, the findings of the present study identify transcriptional up-regulation of ULK1 as a novel arm of the ISR, and suggest ULK1 as a potentially effective target for cancer therapy.
Collapse
|
25
|
Storey KB, Lant B, Anozie OO, Storey JM. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:448-59. [PMID: 23507570 DOI: 10.1016/j.cbpa.2013.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/20/2022]
Abstract
The gastropod mollusk, Littorina littorea L., is a common inhabitant of the intertidal zone along rocky coastlines of the north Atlantic. This species has well-developed anoxia tolerance and freeze tolerance and is extensively used as a model for exploring the biochemical adaptations that support these tolerances as well as for toxicological studies aimed at identifying effective biomarkers of aquatic pollution. This article highlights our current understanding of the molecular mechanisms involved in anaerobiosis and freezing survival of periwinkles, particularly with respect to anoxia-induced metabolic rate depression. Analysis of foot muscle and hepatopancreas metabolism includes anoxia-responsive changes in enzyme regulation, signal transduction, gene expression, post-transcriptional regulation of mRNA, control of translation, and cytoprotective strategies including chaperones and antioxidant defenses. New studies describe the regulation of glucose-6-phosphate dehydrogenase by reversible protein phosphorylation, the role of microRNAs in suppressing mRNA translation in the hypometabolic state, modulation of glutathione S-transferase isozyme patterns, and the regulation of the unfolded protein response.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | | | | | | |
Collapse
|
26
|
Park SH, Moon Y. Integrated stress response-altered pro-inflammatory signals in mucosal immune-related cells. Immunopharmacol Immunotoxicol 2012; 35:205-14. [PMID: 23237490 DOI: 10.3109/08923973.2012.742535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various cells are associated with the integrated stress response (ISR) that leads to translation arrest via phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Pathogenic insults or nutritional imbalance in the mucosal tissues including the intestinal, airway, and genitourinary epithelia can cause ISRs, which have been linked to different mucosal inflammatory responses and subsequent systemic diseases. In particular, translational arrest caused by the early recognition of luminal microbes as well as nutritional status allows the human body to mount appropriate responses and maintain homeostasis both at the cellular and systemic levels. However, an over- or reduced ISR can create pathogenic conditions such as inflammation and carcinogenesis. This present review explores the association between eIF2α kinase-linked pathways and mucosal or systemic pro-inflammatory signals activated by xenobiotic insults (such as ones caused by microbes or nutritional abnormalities). Understanding ISR-modulated cellular alterations will provide progressive insights into approaches for treating human mucosal inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
| | | |
Collapse
|
27
|
Soto-Pantoja DR, Miller TW, Pendrak ML, DeGraff WG, Sullivan C, Ridnour LA, Abu-Asab M, Wink DA, Tsokos M, Roberts DD. CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy 2012; 8:1628-42. [PMID: 22874555 PMCID: PMC3494592 DOI: 10.4161/auto.21562] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double-membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B(+) puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury.
Collapse
Affiliation(s)
- David R. Soto-Pantoja
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Thomas W. Miller
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Michael L. Pendrak
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - William G. DeGraff
- Radiation Biology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Camille Sullivan
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Lisa A. Ridnour
- Radiation Biology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Mones Abu-Asab
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
- Section of Immunopathology; Laboratory of Immunology; National Eye Institute; National Institutes of Health; Bethesda, MD USA
| | - David A. Wink
- Radiation Biology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Maria Tsokos
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - David D. Roberts
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| |
Collapse
|
28
|
ATF4 orchestrates a program of BH3-only protein expression in severe hypoxia. Mol Biol Rep 2012; 39:10811-22. [PMID: 23090478 DOI: 10.1007/s11033-012-1975-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/01/2012] [Indexed: 01/08/2023]
Abstract
Intratumoral hypoxia is associated with poor prognosis, regardless of the mode of therapy. Cancer cells survive this condition through activating several adaptive signaling pathways, including the integrated stress response (ISR) and autophagy. Activating transcription factor 4 (ATF4) is the major transcriptional mediator of the ISR, which we have shown to be involved in autophagy regulation to protect cells from severe hypoxia. Here we demonstrate that ATF4 orchestrates a program of BH3-only protein expression in severe hypoxia. We find that the BH3-only proteins HRK, PUMA, and NOXA are transcriptionally induced in severe hypoxia and that their expression is abrogated by RNA interference against ATF4. In particular, we show that the BH3-only protein harakiri (HRK) is transactivated by ATF4 in severe hypoxia through direct binding of ATF4 to the promoter region. Furthermore, we demonstrate through siRNA knockdown that HRK induces autophagy and promotes cancer cell survival in severe hypoxia.
Collapse
|
29
|
Liang C, Li H, Zhou H, Zhang S, Liu Z, Zhou Q, Sun F. Recombinant Lz-8 from Ganoderma lucidum induces endoplasmic reticulum stress-mediated autophagic cell death in SGC-7901 human gastric cancer cells. Oncol Rep 2011; 27:1079-89. [PMID: 22179718 PMCID: PMC3583434 DOI: 10.3892/or.2011.1593] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/15/2011] [Indexed: 12/11/2022] Open
Abstract
In Asia, the mushroom of the fungus Ganoderma lucidum has been widely used as a traditional medicine for the past two millennia. The aim of this study was to investigate the anticancer activity of recombinant Lz-8 (rLz-8), a protein belonging to a family of fungal immunomodulatory proteins. We report that rLz-8 induces endoplasmic reticulum (ER) stress-mediated autophagic cell death in the human gastric cancer cell line SGC-7901. Our results show that rLz-8 induces autophagic cell death by aggregating in the ER, triggering ER stress and the ATF4-CHOP pathway. A foreign protein, in the ER rLz-8 causes the activation of the ubiquitine/proteasome ER-associated degradation (ERAD) system. The autophagic arm of this system is then overstimulated by an excessive abundance of rLz-8 and causes the cell’s death through an over-autophagic response. We also found that caspase inhibitors do not prevent rLz-8-induced cell death, and therefore the autophagic response induced by rLz-8 is independent of caspase activation.
Collapse
Affiliation(s)
- Chongyang Liang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene 2011; 31:3621-34. [DOI: 10.1038/onc.2011.522] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Moon Y. Mucosal injuries due to ribosome-inactivating stress and the compensatory responses of the intestinal epithelial barrier. Toxins (Basel) 2011; 3:1263-77. [PMID: 22069695 PMCID: PMC3210458 DOI: 10.3390/toxins3101263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 12/14/2022] Open
Abstract
Ribosome-inactivating (ribotoxic) xenobiotics are capable of using cleavage and modification to damage 28S ribosomal RNA, which leads to translational arrest. The blockage of global protein synthesis predisposes rapidly dividing tissues, including gut epithelia, to damage from various pathogenic processes, including epithelial inflammation and carcinogenesis. In particular, mucosal exposure to ribotoxic stress triggers integrated processes that are important for barrier regulation and re-constitution to maintain gut homeostasis. In the present study, various experimental models of the mucosal barrier were evaluated for their response to acute and chronic exposure to ribotoxic agents. Specifically, this review focuses on the regulation of epithelial junctions, epithelial transporting systems, epithelial cytotoxicity, and compensatory responses to mucosal insults. The primary aim is to characterize the mechanisms associated with the intestinal epithelial responses induced by ribotoxic stress and to discuss the implications of ribotoxic stressors as chemical modulators of mucosa-associated diseases such as ulcerative colitis and epithelial cancers.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Korea.
| |
Collapse
|
32
|
Berardi DE, Campodónico PB, Díaz Bessone MI, Urtreger AJ, Todaro LB. Autophagy: friend or foe in breast cancer development, progression, and treatment. Int J Breast Cancer 2011; 2011:595092. [PMID: 22295229 PMCID: PMC3262577 DOI: 10.4061/2011/595092] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic process responsible for the degradation and recycling of long-lived proteins and organelles by lysosomes. This degradative pathway sustains cell survival during nutrient deprivation, but in some circumstances, autophagy leads to cell death. Thereby, autophagy can serve as tumor suppressor, as the reduction in autophagic capacity causes malignant transformation and spontaneous tumors. On the other hand, this process also functions as a protective cell-survival mechanism against environmental stress causing resistance to antineoplastic therapies. Although autophagy inhibition, combined with anticancer agents, could be therapeutically beneficial in some cases, autophagy induction by itself could lead to cell death in some apoptosis-resistant cancers, indicating that autophagy induction may also be used as a therapy. This paper summarizes the most important findings described in the literature about autophagy and also discusses the importance of this process in clinical settings.
Collapse
Affiliation(s)
- Damian E Berardi
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, C1417DTB Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
33
|
Larade K, Storey KB. Living without Oxygen: Anoxia-Responsive Gene Expression and Regulation. Curr Genomics 2011; 10:76-85. [PMID: 19794879 PMCID: PMC2699829 DOI: 10.2174/138920209787847032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/15/2009] [Accepted: 02/18/2009] [Indexed: 02/05/2023] Open
Abstract
Many species of marine mollusks demonstrate exceptional capacities for long term survival without oxygen. Analysis of gene expression under anoxic conditions, including the subsequent translational responses, allows examination of the functional mechanisms that support and regulate natural anaerobiosis and permit noninjurious transitions between aerobic and anoxic states. Identification of stress-specific gene expression can provide important insights into the metabolic adaptations that are needed for anoxia tolerance, with potential applications to anoxia-intolerant systems. Various methods are available to do this, including high throughput microarray screening and construction and screening of cDNA libraries. Anoxia-responsive genes have been identified in mollusks; some have known functions in other organisms but were not previously linked with anoxia survival. In other cases, completely novel anoxia-responsive genes have been discovered, some that show known motifs or domains that hint at function. Selected genes are expressed at different times over an anoxia-recovery time course with their transcription and translation being actively regulated to ensure protein expression at the optimal time. An examination of transcript status over the course of anoxia exposure and subsequent aerobic recovery identifies genes, and the proteins that they encode, that enhance cell survival under oxygen-limited conditions. Analysis of data generated from non-mainstream model systems allows for insight into the response by cells to anoxia stress.
Collapse
Affiliation(s)
- Kevin Larade
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | | |
Collapse
|
34
|
Abstract
Hypoxia is a feature of most tumours, albeit with variable incidence and severity within a given patient population. It is a negative prognostic and predictive factor owing to its multiple contributions to chemoresistance, radioresistance, angiogenesis, vasculogenesis, invasiveness, metastasis, resistance to cell death, altered metabolism and genomic instability. Given its central role in tumour progression and resistance to therapy, tumour hypoxia might well be considered the best validated target that has yet to be exploited in oncology. However, despite an explosion of information on hypoxia, there are still major questions to be addressed if the long-standing goal of exploiting tumour hypoxia is to be realized. Here, we review the two main approaches, namely bioreductive prodrugs and inhibitors of molecular targets upon which hypoxic cell survival depends. We address the particular challenges and opportunities these overlapping strategies present, and discuss the central importance of emerging diagnostic tools for patient stratification in targeting hypoxia.
Collapse
Affiliation(s)
- William R Wilson
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
35
|
Bartkowiak K, Riethdorf S, Pantel K. The interrelating dynamics of hypoxic tumor microenvironments and cancer cell phenotypes in cancer metastasis. CANCER MICROENVIRONMENT 2011; 5:59-72. [PMID: 21626313 DOI: 10.1007/s12307-011-0067-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/18/2011] [Indexed: 02/04/2023]
Abstract
The interrelating dynamics of the primary tumor cells and their surrounding microenvironment might determine phenotypic characteristics of disseminated tumor cells and contribute to cancer metastasis. Cytoprotective mechanisms (e.g., energy metabolism control, DNA damage response, global translation control and unfolded protein response) exert selective pressure in the tumor microenvironment. In particular, adaptation to hypoxia is vital for survival of malignant cells in the tumor and at distant sites such as the bone marrow. In addition to the stress response, the ability of tumor cells to undergo certain cellular re-differentiation programmes like the epithelial-mesenchymal transition (EMT), which is linked to cancer stemness, appears to be important for successful cancer cell spread. Here we will discuss the selection pressures that eventually lead to the formation of overt metastases. We will focus the properties of the microenvironment including (i) metabolic and cytoprotective programs that ensure survival of disseminated tumor cells, (ii) blood vessel structure, and (iii) the hypoxia-normoxia switch as well as intrinsic factors affecting the evolvement of novel tumor cell populations.
Collapse
Affiliation(s)
- Kai Bartkowiak
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | |
Collapse
|
36
|
Abstract
Exposure to hypoxia-induced replication arrest initiates a DNA damage response that includes both ATR- and ATM-mediated signaling. DNA fiber analysis was used to show that these conditions lead to a replication arrest during both the initiation and elongation phases, and that this correlated with decreased levels of nucleotides. The DNA damage response induced by hypoxia is distinct from the classical pathways induced by damaging agents, primarily due to the lack of detectable DNA damage, but also due to the coincident repression of DNA repair in hypoxic conditions. The principle aims of the hypoxia-induced DNA damage response seem to be the induction of p53-dependent apoptosis or the preservation of replication fork integrity. The latter is of particular importance should reoxygenation occur. Tumor reoxygenation occurs as a result of spontaneous changes in blood flow and also therapy. Cells experiencing hypoxia and/or reoxygenation are, therefore, sensitive to loss or inhibition of components of the DNA damage response, including Chk1, ATM, ATR, and poly(ADP-ribose) polymerase (PARP). In addition, restoration of hypoxia-induced p53-mediated signaling may well be effective in the targeting of hypoxic cells. The DNA damage response is also induced in endothelial cells at moderate levels of hypoxia, which do not induce replication arrest. In this situation, phosphorylation of H2AX has been shown to be required for proliferation and angiogenesis and is, therefore, an attractive potential therapeutic target.
Collapse
Affiliation(s)
- Monica Olcina
- The Cancer Research UK/MRC Gray Institute for Radiation Oncology and Biology, The University of Oxford, OX3 7DQ, UK
| | - Philip S. Lecane
- The Cancer Research UK/MRC Gray Institute for Radiation Oncology and Biology, The University of Oxford, OX3 7DQ, UK
| | - Ester M. Hammond
- The Cancer Research UK/MRC Gray Institute for Radiation Oncology and Biology, The University of Oxford, OX3 7DQ, UK
| |
Collapse
|
37
|
Protein misfolding induces hypoxic preconditioning via a subset of the unfolded protein response machinery. Mol Cell Biol 2010; 30:5033-42. [PMID: 20733002 DOI: 10.1128/mcb.00922-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prolonged cellular hypoxia results in energy failure and ultimately cell death. However, less-severe hypoxia can induce a cytoprotective response termed hypoxic preconditioning (HP). The unfolded protein response pathway (UPR) has been known for some time to respond to hypoxia and regulate hypoxic sensitivity; however, the role of the UPR, if any, in HP essentially has been unexplored. We have shown previously that a sublethal hypoxic exposure of the nematode Caenorhabditis elegans induces a protein chaperone component of the UPR (L. L. Anderson, X. Mao, B. A. Scott, and C. M. Crowder, Science 323:630-633, 2009). Here, we show that HP induces the UPR and that the pharmacological induction of misfolded proteins is itself sufficient to stimulate a delayed protective response to hypoxic injury that requires the UPR pathway proteins IRE-1, XBP-1, and ATF-6. HP also required IRE-1 but not XBP-1 or ATF-6; instead, GCN-2, which is known to suppress translation and induce an adaptive transcriptional response under conditions of UPR activation or amino acid deprivation, was required for HP. The phosphorylation of the translation factor eIF2α, an established mechanism of GCN-2-mediated translational suppression, was not necessary for HP. These data suggest a model where hypoxia-induced misfolded proteins trigger the activation of IRE-1, which along with GCN-2 controls an adaptive response that is essential to HP.
Collapse
|
38
|
Wu WK, Sakamoto KM, Milani M, Aldana-Masankgay G, Fan D, Wu K, Lee CW, Cho CH, Yu J, Sung JJ. Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist Updat 2010; 13:87-92. [DOI: 10.1016/j.drup.2010.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/20/2010] [Accepted: 04/20/2010] [Indexed: 12/09/2022]
|
39
|
Roman J, Rangasamy T, Guo J, Sugunan S, Meednu N, Packirisamy G, Shimoda LA, Golding A, Semenza G, Georas SN. T-cell activation under hypoxic conditions enhances IFN-gamma secretion. Am J Respir Cell Mol Biol 2010; 42:123-8. [PMID: 19372249 PMCID: PMC2809218 DOI: 10.1165/rcmb.2008-0139oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 03/05/2009] [Indexed: 01/30/2023] Open
Abstract
Secondary lymphoid organs and peripheral tissues are characterized by hypoxic microenvironments, both in the steady state and during inflammation. Although hypoxia regulates T-cell metabolism and survival, very little is known about whether or how hypoxia influences T-cell activation. We stimulated mouse CD4(+) T cells in vitro with antibodies directed against the T-cell receptor (CD3) and CD28 under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions. Here we report that stimulation under hypoxic conditions augments the secretion of effector CD4(+) T-cell cytokines, especially IFN-gamma. The enhancing effects of hypoxia on IFN-gamma secretion were independent of mouse strain, and were also unaffected using CD4(+) T cells from mice lacking one copy of the gene encoding hypoxia-inducible factor-1alpha. Using T cells from IFN-gamma receptor-deficient mice and promoter reporter studies in transiently transfected Jurkat T cells, we found that the enhancing effects of hypoxia on IFN-gamma expression were not due to effects on IFN-gamma consumption or proximal promoter activity. In contrast, deletion of the transcription factor, nuclear erythroid 2 p45-related factor 2 attenuated the enhancing effect of hypoxia on IFN-gamma secretion and other cytokines. We conclude that hypoxia is a previously underappreciated modulator of effector cytokine secretion in CD4(+) T cells.
Collapse
Affiliation(s)
- Jessica Roman
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tirumalai Rangasamy
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jia Guo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Siva Sugunan
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nida Meednu
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gopinath Packirisamy
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amit Golding
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gregg Semenza
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steve N. Georas
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York; Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland; and Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Milani M, Rzymski T, Mellor HR, Pike L, Bottini A, Generali D, Harris AL. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res 2009; 69:4415-23. [PMID: 19417138 DOI: 10.1158/0008-5472.can-08-2839] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome system plays a key regulatory role in cellular homeostasis. The inhibition of the 26S proteasome by Bortezomib leads to the accumulation of misfolded proteins, resulting in endoplasmic reticulum stress followed by a coordinated cellular response called unfolded protein response (UPR). Endoplasmic reticulum stress is also a potent inducer of macroautophagy. Bortezomib is a selective and potent inhibitor of the 26S proteasome and is approved for the treatment of multiple myeloma. Clinical trials with Bortezomib have shown promising results for some types of cancers, but not for some others, including those of the breast. In this study, we show that Bortezomib induces the UPR and autophagy in MCF7 breast cancer cells. Surprisingly, Bortezomib did not induce phosphorylation of PERK, a key initial step of the UPR. We show that induction of autophagy by Bortezomib is dependent on the proteasomal stabilisation of ATF4 and up-regulation of LC3B by ATF4. We show that ATF4 and LC3B play a critical role in activating autophagy and protecting cells from Bortezomib-induced cell death. Our experiments also reveal that HDAC6 knockdown results in decreased LC3B protein and reduced autophagy. Our work shows that the induction of autophagy through ATF4 may be an important resistance mechanism to Bortezomib treatment in breast cancer, and targeting autophagy may represent a novel approach to sensitize breast cancers to Bortezomib.
Collapse
Affiliation(s)
- Manuela Milani
- Growth Factor Group, Cancer Research UK, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Bartkowiak K, Wieczorek M, Buck F, Harder S, Moldenhauer J, Effenberger KE, Pantel K, Peter-Katalinic J, Brandt BH. Two-Dimensional Differential Gel Electrophoresis of a Cell Line Derived from a Breast Cancer Micrometastasis Revealed a Stem/Progenitor Cell Protein Profile. J Proteome Res 2009; 8:2004-14. [DOI: 10.1021/pr8009758] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Bartkowiak
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| | - Marek Wieczorek
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| | - Friedrich Buck
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| | - Sönke Harder
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| | - Jennifer Moldenhauer
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| | - Katharina E. Effenberger
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| | - Jasna Peter-Katalinic
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| | - Burkhard H. Brandt
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany, Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm’s-University Münster, Hindenburgplatz 55, 48143 Münster, Germany, and Institute of Medical Physics and Biophysics, Westphalian Wilhelm’s-University Münster, Robert-Koch Str. 31, D-48149 Münster, Germany
| |
Collapse
|
42
|
Milani M, Harris AL. Targeting tumour hypoxia in breast cancer. Eur J Cancer 2008; 44:2766-73. [PMID: 18990559 DOI: 10.1016/j.ejca.2008.09.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/23/2008] [Indexed: 12/28/2022]
|
43
|
Abstract
Hypoxia induces profound changes in the cellular gene expression profile. The discovery of a major transcription factor family activated by hypoxia, HIF (hypoxia-inducible factor), and the factors that contribute to HIF regulation have greatly enhanced our knowledge of the molecular aspects of the hypoxic response. However, in addition to HIF, other transcription factors and cellular pathways are activated by exposure to reduced oxygen. In the present review, we summarize the current knowledge of how additional hypoxia-responsive transcription factors integrate with HIF and how other cellular pathways such as chromatin remodelling, translation regulation and microRNA induction, contribute to the co-ordinated cellular response observed following hypoxic stress.
Collapse
Affiliation(s)
- Niall Steven Kenneth
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|
44
|
Belmont PJ, Tadimalla A, Chen WJ, Martindale JJ, Thuerauf DJ, Marcinko M, Gude N, Sussman MA, Glembotski CC. Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene. J Biol Chem 2008; 283:14012-21. [PMID: 18319259 DOI: 10.1074/jbc.m709776200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Exposing cells to conditions that modulate growth can impair endoplasmic reticulum (ER) protein folding, leading to ER stress and activation of the transcription factor, ATF6. ATF6 binds to ER stress response elements in target genes, inducing expression of proteins that enhance the ER protein folding capacity, which helps overcome the stress and foster survival. To examine the mechanism of ATF6-mediated survival in vivo, we developed a transgenic mouse model that expresses a novel conditionally activated form of ATF6. We previously showed that activating ATF6 protected the hearts of ATF6 transgenic mice from ER stresses. In the present study, transcript profiling identified modulatory calcineurin interacting protein-1 (MCIP1), also known as regulator of calcineurin 1 (RCAN1), as a novel ATF6-inducible gene that encodes a known regulator of calcineurin/nuclear factor of activated T cells (NFAT)-mediated growth and development in many tissues. The ability of ATF6 to induce RCAN1 in vivo was replicated in cultured cardiac myocytes, where adenoviral (AdV)-mediated overexpression of activated ATF6 induced the RCAN1 promoter, up-regulated RCAN1 mRNA, inhibited calcineurin phosphatase activity, and exerted a striking growth modulating effect that was inhibited by RCAN1-targeted small interfering RNA. These results demonstrate that RCAN1 is a novel ATF6 target gene that may coordinate growth and ER stress signaling pathways. By modulating growth, RCAN1 may reduce the need for ER protein folding, thus helping to overcome the stress and enhance survival. Moreover, these results suggest that RCAN1 may also be a novel integrator of growth and ER stress signaling in many other tissues that depend on calcineurin/NFAT signaling for optimal growth and development.
Collapse
Affiliation(s)
- Peter J Belmont
- San Diego State University Heart Institute, San Diego State University, San Diego, California 92182, USA
| | | | | | | | | | | | | | | | | |
Collapse
|