1
|
Song M, Liu Q, Sun W, Zhang H. Crosstalk between Thyroid Carcinoma and Tumor-Correlated Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2023; 15:2863. [PMID: 37345200 DOI: 10.3390/cancers15102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Thyroid cancer (TC) is the most common malignancy in the endocrine system. Although most TC can achieve a desirable prognosis, some refractory thyroid carcinomas, including radioiodine-refractory differentiated thyroid cancer, as well as anaplastic thyroid carcinoma, face a myriad of difficulties in clinical treatment. These types of tumors contribute to the majority of TC deaths due to limited initial therapy, recurrence, and metastasis of the tumor and tumor resistance to current clinically targeted drugs, which ultimately lead to treatment failure. At present, a growing number of studies have demonstrated crosstalk between TC and tumor-associated immune cells, which affects tumor deterioration and metastasis through distinct signal transduction or receptor activation. Current immunotherapy focuses primarily on cutting off the interaction between tumor cells and immune cells. Since the advent of immunotherapy, scholars have discovered targets for TC immunotherapy, which also provides new strategies for TC treatment. This review methodically and intensively summarizes the current understanding and mechanism of the crosstalk between distinct types of TC and immune cells, as well as potential immunotherapy strategies and clinical research results in the area of the tumor immune microenvironment. We aim to explore the current research advances to formulate better individualized treatment strategies for TC patients and to provide clues and references for the study of potential immune checkpoints and the development of immunotherapy technologies.
Collapse
Affiliation(s)
- Mingyuan Song
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Qi Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| |
Collapse
|
2
|
Gupta R, Jit BP, Kumar S, Mittan S, Tanwer P, Ray MD, Mathur S, Perumal V, Kumar L, Rath GK, Sharma A. Leveraging epigenetics to enhance the efficacy of cancer-testis antigen: a potential candidate for immunotherapy. Epigenomics 2022; 14:865-886. [DOI: 10.2217/epi-2021-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in women. The phenotype is characterized by delayed diagnosis, recurrence and drug resistance. Inherent immunogenicity potential, oncogenic function and expression of cancer-testis/germline antigen (CTA) in ovarian cancer render them a potential candidate for immunotherapy. Revolutionary clinical findings indicate that tumor antigen-mediated T-cell and dendritic cell-based immunotherapeutic approaches provide an excellent strategy for targeting tumors. Currently, dendritic cell vaccination for the treatment of B-cell lymphoma and CTA-based T-cell receptor transduced T-cell therapy involving MAGE-A4 and NY-ESO-1 are well documented and shown to be effective. This review highlighted the mechanical aspects of epigenetic drugs that can elicit a CTA-based humoral and cellular immune response and implicate T-cell and dendritic cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Rashmi Gupta
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Bimal Prasad Jit
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Santosh Kumar
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep Mittan
- Montefiore Medical Center, Albert Einstein College of Medicine, NY 10467, USA
| | - Pranay Tanwer
- Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - M D Ray
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vanamail Perumal
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - G K Rath
- Department of Radiotherapy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashok Sharma
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
3
|
Li C, Yuan Q, Xu G, Yang Q, Hou J, Zheng L, Wu G. A seven-autophagy-related gene signature for predicting the prognosis of differentiated thyroid carcinoma. World J Surg Oncol 2022; 20:129. [PMID: 35459137 PMCID: PMC9034603 DOI: 10.1186/s12957-022-02590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background Numerous studies have implicated autophagy in the pathogenesis of thyroid carcinoma. This investigation aimed to establish an autophagy-related gene model and nomogram that can help predict the overall survival (OS) of patients with differentiated thyroid carcinoma (DTHCA). Methods Clinical characteristics and RNA-seq expression data from TCGA (The Cancer Genome Atlas) were used in the study. We also downloaded autophagy-related genes (ARGs) from the Gene Set Enrichment Analysis website and the Human Autophagy Database. First, we assigned patients into training and testing groups. R software was applied to identify differentially expressed ARGs for further construction of a protein-protein interaction (PPI) network for gene functional analyses. A risk score-based prognostic risk model was subsequently developed using univariate Cox regression and LASSO-penalized Cox regression analyses. The model’s performance was verified using Kaplan-Meier (KM) survival analysis and ROC curve. Finally, a nomogram was constructed for clinical application in evaluating the patients with DTHCA. Finally, a 7-gene prognostic risk model was developed based on gene set enrichment analysis. Results Overall, we identified 54 differentially expressed ARGs in patients with DTHCA. A new gene risk model based on 7-ARGs (CDKN2A, FGF7, CTSB, HAP1, DAPK2, DNAJB1, and ITPR1) was developed in the training group and validated in the testing group. The predictive accuracy of the model was reflected by the area under the ROC curve (AUC) values. Univariate and multivariate Cox regression analysis indicated that the model could independently predict the prognosis of patients with THCA. The constrained nomogram derived from the risk score and age also showed high prediction accuracy. Conclusions Here, we developed a 7-ARG prognostic risk model and nomogram for differentiated thyroid carcinoma patients that can guide clinical decisions and individualized therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02590-6.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianqian Yuan
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaoran Xu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Yang
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinxuan Hou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lewei Zheng
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Li S, Shi X, Li J, Zhou X. Pathogenicity of the MAGE family. Oncol Lett 2021; 22:844. [PMID: 34733362 PMCID: PMC8561213 DOI: 10.3892/ol.2021.13105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The melanoma antigen gene (MAGE) protein family is a group of highly conserved proteins that share a common homology domain. Under normal circumstances, numerous MAGE proteins are only expressed in reproduction-related tissues; however, abnormal expression levels are observed in a variety of tumor tissues. The MAGE family consists of type I and II proteins, several of which are cancer-testis antigens that are highly expressed in cancer and serve a critical role in tumorigenesis. Therefore, this review will use the relationship between MAGEs and tumors as a starting point, focusing on the latest developments regarding the function of MAGEs as oncogenes, and preliminarily reveal their possible mechanisms.
Collapse
Affiliation(s)
- Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingping Li
- Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
5
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
6
|
Expression of fibroblast growth factor receptor 4 and clinical response to lenvatinib in patients with anaplastic thyroid carcinoma: a pilot study. Eur J Clin Pharmacol 2020; 76:703-709. [PMID: 32034430 DOI: 10.1007/s00228-020-02842-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Fibroblast growth factor receptor 4 (FGFR4) expression has association with tumor malignancy. In thyroid cancers, FGFR4 has been reported to be characteristically expressed in aggressive thyroid tumors, such as anaplastic thyroid carcinoma (ATC). METHODS We investigated FGFR4 expression in patients with ATC and analyzed their clinical responses to lenvatinib. Primary tumor samples were obtained from 12 patients with ATC who underwent surgery or core needle biopsy. FGFR4 protein expression in all ATC samples was analyzed via immunohistochemistry, and the treatment efficacy of lenvatinib was evaluated. RESULTS The proportion of FGFR4-positive cells in the samples ranged from 0 to 50%. Four patients had partial responses, and three patients had stable diseases as a best clinical response to lenvatinib. The median PFS durations of patients with none, weak, and moderate intensity were 0.5, 3.2 (95% CI 1.1-not estimable [NE]), and 4.6 (95% CI 1.1-NE) months, respectively (p = 0.003). CONCLUSIONS Because FGFR4 was expressed in ATC tissues, the FGFR4 expression might be associated with the treatment efficacy of lenvatinib in a part of ATC patients. To clarify whether FGFR4 can serve as a prognostic or predictive factor for lenvatinib therapy, more cases must be accumulated.
Collapse
|
7
|
Aberrantly enhanced melanoma-associated antigen (MAGE)-A3 expression facilitates cervical cancer cell proliferation and metastasis via actuating Wnt signaling pathway. Biomed Pharmacother 2019; 122:109710. [PMID: 31918280 DOI: 10.1016/j.biopha.2019.109710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The over-expression of melanoma-associated antigen (MAGE)-A3 in cervical cancer (CC) has been observed in our previous study, suggesting that it possibly take a vital role during the development and metastasis of CC. The present study aimed to investigate the biological function of MAGE-A3 in the progression of CC and explore how it executes its roles. METHODS The mRNA expression of MAGE-A3 in End1/E6E7 and CC cell lines (HeLa, SiHa and C33A) was measured by real-time quantitative reverse transcription PCR (qRT-PCR). Loss- and gain-of-function methods were used to assess the effect of MAGE-A3 on the proliferative, migratory and invasive abilities of HeLa and SiHa cells. Western blot was performed to measure the expression levels of proteins related to epithelial-mesenchymal transition (EMT) and proteins in the Wnt signaling pathway. In vivo tumorigenesis assay was conducted to evaluate the effect of MAGE-A3 on tumor growth. RESULTS MAGE-A3 expression was significantly up-regulated in CC cell lines (HeLa, SiHa and C33A) compared with that in End1/E6E7 cell line. Knockdown of MAGE-A3 could significantly suppress migration, invasion and proliferation in HeLa cells; whereas, overexpression of MAGE-A3 in SiHa cells presented the opposite results. Moreover, knockdown of MAGE-A3 presented a suppressive effect on the activation of EMT and Wnt signaling pathway in HeLa cells, whilst up-regulation of MAGE-A3 exhibited the opponent outcomes in SiHa cells. Through in vivo tumorigenesis assay, we further verified that MAGE-A3 acted as a facilitator in tumor growth. CONCLUSIONS MAGE-A3 is overexpressed in CC cells and possibly facilitates the viability and motility of CC cells via modulating EMT and Wnt signaling. This study implied that MAGE-A3 might be a potential therapeutic target as well as a prognosis predictor for patients with CC.
Collapse
|
8
|
Das B, Senapati S. Functional and mechanistic studies reveal MAGEA3 as a pro-survival factor in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:294. [PMID: 31287009 PMCID: PMC6615156 DOI: 10.1186/s13046-019-1272-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Background In the era of personalized therapy, functional annotation of less frequent genetic aberrations will be instrumental in adapting effective therapeutic in clinic. Overexpression of Melanoma associated antigen A3 (MAGEA3) is reported in certain pancreatic cancer (PCA) patients. The major objective of the current study was to investigate the functional role of MAGEA3 in pancreatic cancer cells (PCCs) growth and survival. Methods Using overexpression (tet-on regulated system and constitutive expression system) and knockdown (by siRNA and shRNA) approach, we dissected the mechanistic role of MAGEA3 in pancreatic cancer pathogenesis. We generated MAGEA3 expressing stable PCA cell lines and mouse primary pancreatic epithelial cells. MAGEA3 was also depleted in certain MAGEA3 positive PCCs by siRNA or shRNA. The stable cells were subjected to in vitro assays like proliferation and survival assays under growth factor deprivation or in the presence of cytotoxic drugs. The MAGEA3 overexpressing or depleted stable PCCs were evaluated in vivo using xenograft model to check the role of MAGEA3 in tumor progression. We also dissected the mechanism behind the MAGEA3 role in tumor progression using western blot analysis and CCL2 neutralization. Results MAGEA3 overexpression in PCA cells did not alter the cell proliferation but protected the cells during growth factor deprivation and also in the presence of cytotoxic drugs. However, depletion of MAGEA3 in MAGEA3 positive cells resulted in reduced cell proliferation and increased apoptosis upon growth factor deprivation and also in response to cytotoxic drugs. The in vivo xenograft study revealed that overexpression of MAGEA3 promoted tumor growth however depleting the same hindered the tumor progression. Mechanistically, our in vitro and in vivo study revealed that MAGEA3 has tumor-promoting role by reducing macro-autophagy and overexpressing pro-survival molecules like CCL2 and survivin. Conclusion Our data proves tumor-promoting role of MAGEA3 and provides the rationale to target MAGEA3 and/or its functional mediators like CCL2 for PCA, which may have a better impact in PCA therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1272-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
9
|
Epigenetic regulation of MAGE family in human cancer progression-DNA methylation, histone modification, and non-coding RNAs. Clin Epigenetics 2018; 10:115. [PMID: 30185218 PMCID: PMC6126015 DOI: 10.1186/s13148-018-0550-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
The melanoma antigen gene (MAGE) proteins are a group of highly conserved family members that contain a common MAGE homology domain. Type I MAGEs are relevant cancer-testis antigens (CTAs), and originally considered as attractive targets for cancer immunotherapy due to their typically high expression in tumor tissues but restricted expression in normal adult tissues. Here, we reviewed the recent discoveries and ideas that illustrate the biological functions of MAGE family in cancer progression. Furthermore, we also highlighted the current understanding of the epigenetic mechanism of MAGE family expression in human cancers.
Collapse
|
10
|
Maghathe T, Miller WK, Mugge L, Mansour TR, Schroeder J. Immunotherapy and potential molecular targets for the treatment of pituitary adenomas resistant to standard therapy: a critical review of potential therapeutic targets and current developments. J Neurosurg Sci 2018; 64:71-83. [PMID: 30014686 DOI: 10.23736/s0390-5616.18.04419-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Pituitary adenomas (PAs) are primary central nervous system (CNS) tumors, accounting for as much as 25% of intracranial neoplasms. Although existing remedies show success in treating most PAs, treatment of invasive and non-functioning PAs, in addition to functioning PAs unresponsive to standard therapy, remains challenging. With the continually increasing understanding of biochemical pathways involved in tumorigenesis, immunotherapy stands as a promising alternative therapy for pituitary tumors that are resistant to standard therapy. EVIDENCE ACQUISITION A literature search was conducted of the PubMed database for immunotherapies of PAs. The search yielded a total of 2621 articles, 26 of which were included in our discussion. EVIDENCE SYNTHESIS Several pathologically expressed molecules could potentially serve as promising targets of current or future immunotherapies for PAs. Programmed death ligand-1, matrix metalloproteinases, EpCAM (Trop1) and Trop2, cancer-testis antigen MAGE-A3, epidermal growth factor receptor (EGFR), folate receptor alpha, vascular endothelial growth factor, and galectin-3 have all been implicated as crucial factors involved with tumor survival and invasion. Inhibition of these pathways may prove efficacious in the management of invasive and treatment-resistant PAs. CONCLUSIONS Rapid advancements in tumor immunology may increase the probability of successful treatment of PAs by exploitation of the normal immune response or by targeting novel proteins. Current research on many of the targets reviewed in this article are successfully being utilized to manage various neoplastic disease including CNS tumors. These therapies may eventually play a key role in the treatment of PAs that do not respond to standard therapy.
Collapse
Affiliation(s)
- Tamara Maghathe
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - William K Miller
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - Luke Mugge
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - Tarek R Mansour
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - Jason Schroeder
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA -
| |
Collapse
|
11
|
Asa SL, Ezzat S. The epigenetic landscape of differentiated thyroid cancer. Mol Cell Endocrinol 2018; 469:3-10. [PMID: 28711609 DOI: 10.1016/j.mce.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Differentiated thyroid carcinoma of follicular cell-derivation is the most common endocrine neoplasm with a rapidly increasing incidence. The majority represent papillary carcinomas; more rarely, they are follicular carcinomas. The vast majority have indolent behavior, however a significant proportion progress to develop lymph node metastases and a smaller proportion disseminate systemically. While common and frequent genetic events have been described to underlie the development of these neoplasms, the factors contributing to differing behaviors among tumors with similar genetic alterations remain unclear. This review focuses on epigenetic mechanisms targeting major signaling pathways that underlie the spectrum of biological behaviors and that may have potential diagnostic, prognostic and therapeutic value.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Shereen Ezzat
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Wei Y, Wang Y, Gong J, Rao L, Wu Z, Nie T, Shi D, Zhang L. High expression of MAGE-A9 contributes to stemness and malignancy of human hepatocellular carcinoma. Int J Oncol 2017; 52:219-230. [PMID: 29138811 DOI: 10.3892/ijo.2017.4198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/23/2017] [Indexed: 01/30/2023] Open
Abstract
MAGE-A9, a well-characterized cancer testis antigen (CTA), belongs to a member of melanoma antigen gene (MAGE) family. In human malignancies, aberrant expression of MAGE genes correlated with poor clinical prognosis, increased tumor growth, metastases, and enrichment in stem cell populations of certain cancers. Cancer stem cells (CSCs) have been proposed to contribute to the major malignant phenotypes of liver cancer, including recurrence, metastasis and chemoresistance. However, expression and potential role of MAGE-A9 in liver cancer stem cells (LCSCs) still remain unclear. In the present study, we first analyzed the expression profiling of MAGE family genes in EpCAM+ and EpCAM- human hepatocellular carcinoma (HCC), based on public Gene Expression Omnibus (GEO) database. Among these examined MAGE members, MAGE-A9 is the only one with significantly higher expression in EpCAM+ HCC specimens as compared with EpCAM- HCC. Quantitative PCR analysis further confirmed that MAGE-A9 expression significantly elevated in a subtype of HCC patients that had features of hepatic stem/progenitor cells with high-level expression of EpCAM and α-fetoprotein (AFP). Moreover, MAGE-A9 displayed remarkably enriched expression in EpCAM+ HCC cells that were sorted by fluorescence-activated cell sorting and cultured HCC cell spheroids with characteristics of stem/progenitor cells. Functional experiments further revealed that MAGE-A9 overexpression promoted cell proliferation, colony formation, migration, chemoresistance, and tumorigenicity in the context of EpCAM+ HCC cells, whereas MAGE-A9 knockdown significantly inhibited anchorage-dependent and spheroid colony formation and in vivo tumorigenicity. Collectively, these data demonstrate that MAGE-A9 functions as an important regulator of LCSCs, and MAGE-A9 may serve as a potential therapeutic target against HCC stem/progenitor cells.
Collapse
Affiliation(s)
- Youping Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Yanqin Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Jing Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Lihua Rao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Zhiwei Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Teng Nie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Dongling Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Liming Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|
13
|
Lee AK, Potts PR. A Comprehensive Guide to the MAGE Family of Ubiquitin Ligases. J Mol Biol 2017; 429:1114-1142. [PMID: 28300603 DOI: 10.1016/j.jmb.2017.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Melanoma antigen (MAGE) genes are conserved in all eukaryotes and encode for proteins sharing a common MAGE homology domain. Although only a single MAGE gene exists in lower eukaryotes, the MAGE family rapidly expanded in eutherians and consists of more than 50 highly conserved genes in humans. A subset of MAGEs initially garnered interest as cancer biomarkers and immunotherapeutic targets due to their antigenic properties and unique expression pattern that is primary restricted to germ cells and aberrantly reactivated in various cancers. However, further investigation revealed that MAGEs not only drive tumorigenesis but also regulate pathways essential for diverse cellular and developmental processes. Therefore, MAGEs are implicated in a broad range of diseases including neurodevelopmental, renal, and lung disorders, and cancer. Recent biochemical and biophysical studies indicate that MAGEs assemble with E3 RING ubiquitin ligases to form MAGE-RING ligases (MRLs) and act as regulators of ubiquitination by modulating ligase activity, substrate specification, and subcellular localization. Here, we present a comprehensive guide to MAGEs highlighting the molecular mechanisms of MRLs and their physiological roles in germ cell and neural development, oncogenic functions in cancer, and potential as therapeutic targets in disease.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
14
|
Salmaninejad A, Zamani MR, Pourvahedi M, Golchehre Z, Hosseini Bereshneh A, Rezaei N. Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers. Immunol Invest 2016; 45:619-40. [DOI: 10.1080/08820139.2016.1197241] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Oishi N, Kondo T, Vuong HG, Nakazawa T, Mochizuki K, Kasai K, Inoue T, Tahara I, Hirokawa M, Miyauchi A, Katoh R. Immunohistochemical detection of NRASQ61R protein in follicular-patterned thyroid tumors. Hum Pathol 2016; 53:51-7. [DOI: 10.1016/j.humpath.2016.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 12/31/2022]
|
16
|
Weon JL, Potts PR. The MAGE protein family and cancer. Curr Opin Cell Biol 2015; 37:1-8. [PMID: 26342994 DOI: 10.1016/j.ceb.2015.08.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
The Melanoma Antigen Gene (MAGE) protein family is a large, highly conserved group of proteins that share a common MAGE homology domain. Intriguingly, many MAGE proteins are restricted in expression to reproductive tissues, but are aberrantly expressed in a wide variety of cancer types. Originally discovered as antigens on tumor cells and developed as cancer immunotherapy targets, recent literature suggests a more prominent role for MAGEs in driving tumorigenesis. This review will highlight recent developments into the function of MAGEs as oncogenes, their mechanisms of action in regulation of ubiquitin ligases, and outstanding questions in the field.
Collapse
Affiliation(s)
- Jenny L Weon
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Patrick Ryan Potts
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
17
|
CD8+ TIL recruitment may revert the association of MAGE A3 with aggressive features in thyroid tumors. J Immunol Res 2014; 2014:921864. [PMID: 25825704 PMCID: PMC4235601 DOI: 10.1155/2014/921864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/09/2014] [Indexed: 12/20/2022] Open
Abstract
Background. We aimed to investigate a possible role of MAGE A3 and its associations with infiltrated immune cells in thyroid malignancy, analyzing their utility as a diagnostic and prognostic marker. Materials and Methods. We studied 195 malignant tissues: 154 PTCs and 41 FTCs; 102 benign tissues: 51 follicular adenomas and 51 goiter and 17 normal thyroid tissues. MAGE A3 and immune cell markers (CD4 and CD8) were evaluated using immunohistochemistry and compared with clinical pathological features. Results. The semiquantitative analysis and ACIS III analysis showed similar results. MAGE A3 was expressed in more malignant than in benign lesions (P < 0.0001), also helping to discriminate follicular-patterned lesions. It was also higher in tumors in which there was extrathyroidal invasion (P = 0.0206) and in patients with stage II disease (P = 0.0107). MAGE A3+ tumors were more likely to present CD8+ TIL (P = 0.0346), and these tumors were associated with less aggressive features, that is, extrathyroidal invasion and small size. There was a trend of MAGE A3+ CD8+ tumors to evolve free of disease. Conclusion. We demonstrated that MAGE A3 and CD8+ TIL infiltration may play an important role in malignant thyroid nodules, presenting an interesting perspective for new researches on DTC immunotherapy.
Collapse
|
18
|
Daudi S, Eng KH, Mhawech-Fauceglia P, Morrison C, Miliotto A, Beck A, Matsuzaki J, Tsuji T, Groman A, Gnjatic S, Spagnoli G, Lele S, Odunsi K. Expression and immune responses to MAGE antigens predict survival in epithelial ovarian cancer. PLoS One 2014; 9:e104099. [PMID: 25101620 PMCID: PMC4125181 DOI: 10.1371/journal.pone.0104099] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022] Open
Abstract
The MAGE cancer-testis antigens (CTA) are attractive candidates for immunotherapy. The aim of this study was to determine the frequency of expression, humoral immunity and prognostic significance of MAGE CTA in human epithelial ovarian cancer (EOC). mRNA or protein expression frequencies were determined for MAGE-A1, -A3, -A4, -A10 and -C1 (CT7) in tissue samples obtained from 400 patients with EOC. The presence of autologous antibodies against the MAGE antigens was determined from 285 serum samples. The relationships between MAGE expression, humoral immunity to MAGE antigens, and clinico-pathologic characteristics were studied. The individual frequencies of expression were as follows: A1: 15% (42/281), A3: 36% (131/390), A4: 47% (186/399), A10: 52% (204/395), C1: 16% (42/267). Strong concordant expression was noted with MAGE-A1:–A4, MAGE-A1:–C1 and MAGE-A4:–A10 (p<0.0005). Expression of MAGE-A1 or -A10 antigens resulted in poor progression free survival (PFS) (OR 1.44, CI 1.01–2.04, p = 0.044 and OR 1.3, CI 1.03–1.64, p = 0.03, respectively); whereas, MAGE-C1 expression was associated with improved PFS (OR 0.62, CI 0.42–0.92, p = 0.016). The improved PFS observed for MAGE-C1 expression, was diminished by co-expression of MAGE-A1 or -A10. Spontaneous humoral immunity to the MAGE antigens was present in 9% (27/285) of patients, and this predicted poor overall survival (log-rank test p = 0.0137). These findings indicate that MAGE-A1, MAGE-A4, MAGE-A3, and MAGE-A10 are priority attractive targets for polyvalent immunotherapy in ovarian cancer patients.
Collapse
Affiliation(s)
- Sayeema Daudi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Kevin H. Eng
- Department of Biostatisticsm, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Paulette Mhawech-Fauceglia
- Department of Pathology, University Southern California, Los Angeles, California, United States of America
| | - Carl Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Anthony Miliotto
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Amy Beck
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Adrienne Groman
- Department of Biostatisticsm, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Sacha Gnjatic
- Department of Medicine, Mount Sinai Hospital, New York, New York, United States of America
| | - Guillo Spagnoli
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mechanisms of pituitary tumorigenesis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Caballero OL, Cohen T, Gurung S, Chua R, Lee P, Chen YT, Jat P, Simpson AJG. Effects of CT-Xp gene knock down in melanoma cell lines. Oncotarget 2013; 4:531-41. [PMID: 23625514 PMCID: PMC3720601 DOI: 10.18632/oncotarget.921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cancer/testis (CT) genes are encoded by genes that are normally expressed only in the human germ line but which are activated in various malignancies. CT proteins are frequently immunogenic in cancer patients and their expression is highly restricted to tumors. They are thus important targets for anticancer immunotherapy. In several different tumor types, the expression of CT-X genes is associated with advanced disease and poor outcome, indicating that their expression might contribute to tumorigenesis. CT-X genes encoding members of the MAGE protein family on Xq28 have been shown to potentially influence the tumorigenic phenotype. We used small interfering RNA (siRNA) to investigate whether CT-X mapping to the short arm of the X-chromosome might also have tumorigenic properties and therefore be potentially targeted by functional inhibitors in a therapeutic setting. siRNAs specific to GAGE, SSX and XAGE1 were used in cell proliferation, migration and cell survival assays using cell lines derived from melanoma, a tumor type known to present high frequencies of expression of CT antigens. We found that of these, those specific to GAGE and XAGE1 most significantly impeded melanoma cell migration and invasion and those specific to SSX4 and XAGE1 decreased the clonogenic survival of melanoma cells. Our results suggest that GAGE, XAGE1 and SSX4 might each have a role in tumor progression and are possible therapeutic targets for the treatment of melanoma and other malignancies.
Collapse
Affiliation(s)
- Otavia L Caballero
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Redler A, Di Rocco G, Giannotti D, Frezzotti F, Bernieri MG, Ceccarelli S, D’Amici S, Vescarelli E, Mitterhofer AP, Angeloni A, Marchese C. Fibroblast growth factor receptor-2 expression in thyroid tumor progression: potential diagnostic application. PLoS One 2013; 8:e72224. [PMID: 23977259 PMCID: PMC3747152 DOI: 10.1371/journal.pone.0072224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factor receptor-2 (FGFR-2) plays an important role in tumorigenesis. In thyroid cancer it has been observed a FGFR-2 down-modulation, but the role of this receptor has not been yet clarified. Therefore, we decided to examine the expression of both FGFR-2 isoform, FGFR-2-IIIb and FGFR-2-IIIc, in different histological thyroid variants such as hyperplasia, follicular adenoma and papillary carcinoma. Immunohistochemistry and quantitative Real-Time PCR analyses were performed on samples of hyperplasia, follicular adenoma and papillary carcinoma, compared with normal thyroid tissue. Thyroid hyperplasia did not show statistically significant reduction in FGFR-2 protein and mRNA levels. Interestingly, in both follicular adenoma and papillary carcinoma samples we observed a strongly reduced expression of both FGFR-2 isoforms. We speculate that FGFR-2 down-modulation might be an early event in thyroid carcinogenesis. Furthermore, we suggest the potential use of FGFR-2 as an early marker for thyroid cancer diagnosis.
Collapse
MESH Headings
- Adenoma/diagnosis
- Adenoma/genetics
- Adenoma/metabolism
- Adenoma/pathology
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Papillary/diagnosis
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hyperplasia/diagnosis
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Male
- Middle Aged
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Adriano Redler
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giorgio Di Rocco
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Giannotti
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Maria Giulia Bernieri
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- * E-mail:
| | - Sirio D’Amici
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Angeloni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
De Smet C, Loriot A. DNA hypomethylation and activation of germline-specific genes in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:149-66. [PMID: 22956500 DOI: 10.1007/978-1-4419-9967-2_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA methylation, occurring at cytosines in CpG dinucleotides, is a potent mechanism of transcriptional repression. Proper genomic methylation -patterns become profoundly altered in cancer cells: both gains (hypermethylation) and losses (hypomethylation) of methylated sites are observed. Although DNA hypomethylation is detected in a vast majority of human tumors and affects many genomic regions, its role in tumor biology remains elusive. Surprisingly, DNA hypomethylation in cancer was found to cause the aberrant activation of only a limited group of genes. Most of these are normally expressed exclusively in germline cells and were grouped under the term "cancer-germline" (CG) genes. CG genes represent unique examples of genes that rely primarily on DNA methylation for their tissue-specific expression. They are also being exploited to uncover the mechanisms that lead to DNA hypomethylation in tumors. Moreover, as CG genes encode tumor-specific antigens, their activation in cancer highlights a direct link between epigenetic alterations and tumor immunity. As a result, clinical trials combining epigenetic drugs with anti-CG antigen vaccines are being considered.
Collapse
Affiliation(s)
- Charles De Smet
- Laboratory of Genetics and Epigenetics, de Duve Institute, Catholic University of Louvain, Brussels, Belgium.
| | | |
Collapse
|
23
|
Wavelet analysis of DNA walks on the human and chimpanzee MAGE/CSAG-palindromes. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:230-6. [PMID: 23084779 PMCID: PMC5054716 DOI: 10.1016/j.gpb.2012.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/18/2012] [Accepted: 03/02/2012] [Indexed: 11/22/2022]
Abstract
The palindrome is one class of symmetrical duplications with reverse complementary characters, which is widely distributed in many organisms. Graphical representation of DNA sequence provides a simple way of viewing and comparing various genomic structures. Through 3-D DNA walk analysis, the similarity and differences in nucleotide composition, as well as the evolutionary relationship between human and chimpanzee MAGE/CSAG-palindromes, can be clearly revealed. Further wavelet analysis indicated that duplicated segments have irregular patterns compared to their surrounding sequences. However, sequence similarity analysis suggests that there is possible common ancestor between human and chimpanzee MAGE/CSAG-palindromes. Based on the specific distribution and orientation of the repeated sequences, a simple possible evolutionary model of the palindromes is suggested, which may help us to better understand the evolutionary course of the genes and the symmetrical sequences.
Collapse
|
24
|
Rousseaux S, Khochbin S. New hypotheses for large-scale epigenome alterations in somatic cancer cells: a role for male germ-cell-specific regulators. Epigenomics 2012; 1:153-61. [PMID: 22122641 DOI: 10.2217/epi.09.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oncogenic cell transformation is consistently associated with alterations of the cell epigenome leading to aberrant gene repression and activation. Some of these events, such as the DNA-methylation-based silencing of tumor suppressor genes, are considered to be oncogenic themselves. A much less-studied consequence of these epigenetic misregulations is the abnormal activation of tissue-specific genes in precancerous and transformed cells. Here, we explore the idea that the aberrant expression of germ-cell-specific genes in somatic cancer cells could contribute to malignant cell transformation and cancer progression. Indeed, a significant number of papers have reported the abnormal activation of germ cell-specific genes in various somatic cancers (known as cancer testis [C/T] antigens or factors). Although in most cases the physiological function of these genes remains unknown, functional investigations suggest that they can act as potent genome, epigenome and cellular reorganizers. Hence, in view of the existing literature, we discuss the hypothesis that C/T activation in somatic cells is not only a consequence of global epigenetic deregulation, but also a cause of further large-scale alterations of the epigenome, which themselves have direct oncogenic consequences for the affected cells. Finally, we highlight the fact that C/T factors have the potential to serve as valuable markers for cancer detection, as well as provide promising targets for developing new therapeutical strategies.
Collapse
Affiliation(s)
- Sophie Rousseaux
- INSERM U823, Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France.
| | | |
Collapse
|
25
|
Meek DW, Marcar L. MAGE-A antigens as targets in tumour therapy. Cancer Lett 2012; 324:126-32. [PMID: 22634429 DOI: 10.1016/j.canlet.2012.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
MAGE-A proteins constitute a sub-family of Cancer-Testis Antigens which are expressed mainly, but not exclusively, in germ cells. They are also expressed in various human cancers where they are associated with, and may drive, malignancy. MAGE-A proteins are highly immunogenic and are considered as potential targets for cancer vaccines and/or immuno-therapy. Moreover, recent advances in our understanding of their molecular pathology have revealed interactions that offer potential as therapeutic targets. Here we review recent progress in this area and consider how these interactions might be exploited, especially for the treatment of malignant cancers for which available treatments are inadequate.
Collapse
Affiliation(s)
- David W Meek
- Division of Cancer Research, Medical Research Institute, College of Medicine, Dentistry and Nursing, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, United Kingdom.
| | | |
Collapse
|
26
|
Yacqub-Usman K, Richardson A, Duong CV, Clayton RN, Farrell WE. The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol 2012; 8:486-94. [PMID: 22525730 DOI: 10.1038/nrendo.2012.54] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global and gene-specific changes in the epigenome are hallmarks of most tumour types, including those of pituitary origin. In contrast to genetic mutations, epigenetic changes (aberrant DNA methylation and histone modifications) are potentially reversible. Drugs that specifically target or inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be used to restore the expression of epigenetically silenced genes. These drugs can potentially increase the sensitivity of tumour cells to conventional treatment modalities, such as chemotherapy and radiotherapy. Drug-induced reversal of transcriptional silencing can also be used to restore dopamine-D(2)-receptor-negative, hormone-refractory tumours to their previous receptor-positive, hormone-responsive status. Synergy between HDAC and DNMT inhibitors makes these pharmacological agents more therapeutically effective when administered in combination than when used alone. Studies in pituitary tumour cell lines show that drug-induced re-expression of the epigenetically silenced dopamine D(2) receptor leads to an increase in apoptosis mediated by a receptor agonist. Collectively, the use of drugs to directly or indirectly reverse gene-specific epigenetic changes, in combination with conventional therapeutic interventions, has potential for the clinical management of multiple tumour types-including those of pituitary origin. Furthermore, these drugs can be used to identify epigenetically regulated genes that could be novel, tumour-specific therapeutic targets.
Collapse
Affiliation(s)
- Kiren Yacqub-Usman
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | | | | | | | | |
Collapse
|
27
|
Guo M, Liu W, Serra S, Asa SL, Ezzat S. FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression. Cancer Res 2012; 72:2017-27. [PMID: 22345151 DOI: 10.1158/0008-5472.can-11-3985] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternate splicing yields two distinct isoforms of the fibroblast growth factor (FGF) receptor FGFR2-IIIb and FGFR2-IIIc varying their extracellular structure in human thyroid cancer, in which FGFR expression is commonly dysregulated. In this study, we characterized the function of these variants in modulating thyroid cancer behavior. Enforced expression of either FGFR2-IIIb or FGFR2-IIIc in thyroid epithelial cancer cells reduced expression of fibronectin, MAGE-A3 and MMP9, while increasing p21 and enhancing Rb dephosphorylation. Consistent with these tumor-suppressive properties, FGFR2-IIIb and FGFR2-IIIc each diminished invasive behavior in vitro and reduced tumor growth and metastasis in vivo. Notably, these effects contrasted with those produced by expression of these FGFR isoforms in fibroblasts, in which they both stimulated cell growth. Moreover, in xenograft tumors generated by coimplantation of epithelial and fibroblast cells expressing that same isoform, there was no significant effect on tumor progression. Conversely, FGFR2-IIIb expression in epithelial cells yielded higher FGF4/FGF7 expression that, in the presence of FGFR2-IIIc-expressing fibroblasts, enhanced tumor progression. Together, our findings highlight the importance of cellular context in assigning growth properties to growth factor receptor isoforms. More specifically, they show how alternative splicing of FGFR2 yields heteroisoforms critical to the growth-promoting actions of FGFs that exert distinct epithelial-stromal effects in thyroid cancer.
Collapse
Affiliation(s)
- Miao Guo
- The Ontario Cancer Institute, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
28
|
MageA2 restrains cellular senescence by targeting the function of PMLIV/p53 axis at the PML-NBs. Cell Death Differ 2011; 19:926-36. [PMID: 22117195 DOI: 10.1038/cdd.2011.173] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
MAGE-A genes are a subfamily of the melanoma antigen genes (MAGEs), whose expression is restricted to tumor cells of different origin and normal tissues of the human germline. Although the specific function of individual MAGE-A proteins is being currently explored, compelling evidence suggest their involvement in the regulation of different pathways during tumor progression. We have previously reported that MageA2 binds histone deacetylase (HDAC)3 and represses p53-dependent apoptosis in response to chemotherapeutic drugs. The promyelocytic leukemia (PML) tumor suppressor is a regulator of p53 acetylation and function in cellular senescence. Here, we demonstrate that MageA2 interferes with p53 acetylation at PML-nuclear bodies (NBs) and with PMLIV-dependent activation of p53. Moreover, a fraction of MageA2 colocalizes with PML-NBs through direct association with PML, and decreases PMLIV sumoylation through an HDAC-dependent mechanism. This reduction in PML post-translational modification promotes defects in PML-NBs formation. Remarkably, we show that in human fibroblasts expressing RasV12 oncogene, MageA2 expression decreases cellular senescence and increases proliferation. These results correlate with a reduction in NBs number and an impaired p53 response. All these data suggest that MageA2, in addition to its anti-apoptotic effect, could have a novel role in the early progression to malignancy by interfering with PML/p53 function, thereby blocking the senescence program, a critical barrier against cell transformation.
Collapse
|
29
|
|
30
|
Akers SN, Odunsi K, Karpf AR. Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol 2010; 6:717-32. [PMID: 20465387 DOI: 10.2217/fon.10.36] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cancer germline (CG; also known as cancer-testis) antigen genes are normally expressed in germ cells and trophoblast tissues and are aberrantly expressed in a variety of human malignancies. CG antigen genes have high clinical relevance as they encode a class of immunogenic and highly selective tumor antigens. CG antigen-directed immunotherapy is undergoing clinical evaluation for the treatment of a number of solid tumor malignancies and has been demonstrated to be safe, provoke immune responses and be of therapeutic benefit. Achieving an improved understanding of the mechanisms of CG antigen gene regulation will facilitate the continued development of targeted therapeutic approaches against tumors expressing these antigens. Substantial evidence suggests epigenetic mechanisms, particularly DNA methylation, as a primary regulator of CG antigen gene expression in normal and cancer cells as well as in stem cells. The roles of sequence-specific transcription factors and signal transduction pathways in controlling CG antigen gene expression are less clear but are emerging. A combinatorial therapeutic approach involving epigenetic modulatory drugs and CG antigen immunotherapy is suggested based on these data and is being actively pursued. In this article, we review the mechanisms of CG antigen gene regulation and discuss the implications of these mechanisms for the development of cancer immunotherapy approaches targeting CG antigens.
Collapse
Affiliation(s)
- Stacey N Akers
- Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
31
|
Zhu X, Asa SL, Ezzat S. Genetic and epigenetic mechanisms down-regulate FGF receptor 2 to induce melanoma-associated antigen A in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2333-43. [PMID: 20348248 DOI: 10.2353/ajpath.2010.091049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) in the gene encoding fibroblast growth factor receptor 2 (FGFR2) as a risk factor for breast cancer. We examined the relationship between these intron 2 SNPs and gene expression in breast carcinomas. Primary breast tissue showed a common occurrence of these SNPs accompanied by FGFR2 expression in normal ductal epithelium. Unexpectedly, we found that FGFR2 mRNA and protein levels were reduced in microdissected cancer cells when compared with paired normal breast epithelium. FGFR2 down-regulation was associated with DNA methylation and loss-of-heterozygosity. Where FGFR2-IIIb was expressed in tumor cells, it was accompanied by up-regulation of the RNA-binding proteins ESRP1/2, consistent with splicing of this isoform. Reduction in FGFR2 was associated with re-expression of its putative target melanoma-associated antigen (MAGE-A) in primary carcinoma cells. Conversely, forced expression or activation of FGFR2-IIIb resulted in MAGE-A silencing. These data provide the first evidence for FGFR2 down-regulation in breast carcinomas harboring intron 2 SNPs. Our findings underscore the significance of epigenetic and somatic changes that can potentially modify the effects of germline polymorphisms in determining FGFR2 gene expression.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Manabe T, Katayama T, Tohyama M. HMGA1a recognition candidate DNA sequences in humans. PLoS One 2009; 4:e8004. [PMID: 19956671 PMCID: PMC2777381 DOI: 10.1371/journal.pone.0008004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 10/30/2009] [Indexed: 12/17/2022] Open
Abstract
High mobility group protein A1a (HMGA1a) acts as an architectural transcription factor and influences a diverse array of normal biological processes. It binds AT-rich sequences, and previous reports have demonstrated HMGA1a binding to the authentic promoters of various genes. However, the precise sequences that HMGA1a binds to remain to be clarified. Therefore, in this study, we searched for the sequences with the highest affinity for human HMGA1a using an existing SELEX method, and then compared the identified sequences with known human promoter sequences. Based on our results, we propose the sequences “-(G/A)-G-(A/T)-(A/T)-A-T-T-T-” as HMGA1a-binding candidate sequences. Furthermore, these candidate sequences bound native human HMGA1a from SK-N-SH cells. When candidate sequences were analyzed by performing FASTAs against all known human promoter sequences, 500–900 sequences were hit by each one. Some of the extracted genes have already been proven or suggested as HMGA1a-binding promoters. The candidate sequences presented here represent important information for research into the various roles of HMGA1a, including cell differentiation, death, growth, proliferation, and the pathogenesis of cancer.
Collapse
Affiliation(s)
- Takayuki Manabe
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | |
Collapse
|
33
|
Filho PAA, López-Albaitero A, Xi L, Gooding W, Godfrey T, Ferris RL. Quantitative expression and immunogenicity of MAGE-3 and -6 in upper aerodigestive tract cancer. Int J Cancer 2009; 125:1912-20. [PMID: 19610063 DOI: 10.1002/ijc.24590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aerodigestive tract (UADT) tumor cells and its association with T-cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE-specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+ squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using Western blot. HLA-A*0201:MAGE-3- (271-279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. On the basis of the MAGE-3/6 expression, we could identify 31 (47%) of the 65 UADT tumors, which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, 2 MAGE-3/6 mRNA(high) SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6-specific knockdown. RNAi-transfected cells showed that MAGE expression and MAGE-CTL recognition were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR-based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials.
Collapse
Affiliation(s)
- Pedro A Andrade Filho
- Department of Otolaryngology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
34
|
Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation and histone H3 modulation in thyroid carcinomas. J Transl Med 2009; 89:791-9. [PMID: 19506552 DOI: 10.1038/labinvest.2009.50] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Thyroid transcription factor-1 (TTF-1), also known as NKX2-1, is a homeodomain containing transcriptional factor identified in thyroid, lung and central nervous system. In the thyroid, TTF-1 is essential for thyroid organogenesis and governs thyroid functions by regulating various thyroid-specific genes. We previously demonstrated that most differentiated thyroid neoplasms, including follicular adenomas/carcinomas and papillary carcinomas, express TTF-1 at both protein and mRNA levels. However, certain subtypes of thyroid cancers have shown low or negative expression of TTF-1. The aim of our study was to investigate the function of epigenetic modification in dysregulation of TTF-1 in thyroid carcinoma cells. We evaluated the expression of TTF-1 in primary thyroid tissues (normal thyroid, papillary carcinoma and undifferentiated carcinoma) and in thyroid carcinoma cell lines using immunohistochemistry and RT-PCR. Methylation-specific PCR targeting CpG islands of TTF-1 and chromatin immunoprecipitation (ChIP) for histone H3 lysine 9 (H3-lys9) were applied to clarify the correlation of the TTF-1 expression profile and epigenetic status. We also explored whether epigenetic modifiers, including 5-aza-deoxycytidine, could restore TTF-1 expression in thyroid carcinoma cells. In our current study, immunohistochemistry and RT-PCR showed positive expression of TTF-1 in normal thyroids and papillary carcinomas. Meanwhile, most of the undifferentiated carcinomas and the cell lines lost TTF-1 expression. No methylation in the CpG of TTF-1 promoter was detected in normal thyroids or papillary carcinomas. In contrast, DNA methylation was identified in 60% of the undifferentiated carcinomas (6/10) and 50% of the cell lines (4/8). ChIP assay demonstrated that acetylation of H3-lys9 was positively correlated with TTF-1 expression in thyroid carcinoma cells. Finally, DNA demethylating agents could restore TTF-1 gene expression in the thyroid carcinoma cell lines. Our data suggest that epigenetics is involved with inactivation of TTF-1 in thyroid carcinomas, and provide a possible means of using TTF-1 as a target for differentiation-inducing therapy through epigenetic modification.
Collapse
|
35
|
Abstract
Epigenetically-mediated gene dysregulation is a common feature associated with human pituitary tumorigenesis. The mechanisms leading to these changes, however, remain largely unknown. In this review, we examine changes responsible for DNA and histone modifications as independent, butpotentially interrlated modes of communication effecting chromatin remodeling. The dynamic properties of the enzymes involved in these reactions is highlighted. We use the fibroblast growth factor receptor 2 (FGFR2) as a model through which the p53-regulating melanoma-associated antigen (MAGE) system is governing in pituitary cells. The pathogenetic and potential therapeutic implications are discussed.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Liu W, Cheng S, Asa SL, Ezzat S. The Melanoma-Associated Antigen A3 Mediates Fibronectin-Controlled Cancer Progression and Metastasis. Cancer Res 2008; 68:8104-12. [DOI: 10.1158/0008-5472.can-08-2132] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Rousseaux S, Reynoird N, Gaucher J, Khochbin S. L’intrusion des régulateurs de l’épigénome mâle dans les cellules somatiques cancéreuses. Med Sci (Paris) 2008; 24:735-41. [DOI: 10.1051/medsci/20082489735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
38
|
Zhu X, Asa SL, Ezzat S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res 2008; 14:1984-96. [PMID: 18381936 DOI: 10.1158/1078-0432.ccr-07-2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Four members of the fibroblast growth factor receptor (FGFR) family transduce signals of a diverse group of FGF ligands. The FGFR2-IIIb isoform is abundantly present in the normal pituitary gland with contrasting down-regulation in neoplastic pituitary cells. cDNA profiling identified the cancer-testis antigen melanoma-associated antigen A3 (MAGE-A3) as a putative target negatively regulated by FGFR2. EXPERIMENTAL DESIGN Comparisons were made between normal and neoplastic human and mouse pituitary cells. Gene expression was examined by reverse transcription-PCR, DNA methylation was determined by methylation-specific PCR and combined bisulfite restriction analysis, and histone modification marks were identified by chromatin immunoprecipitation. RESULTS Normal human pituitary tissue that expresses FGFR2-IIIb does not express MAGE-A3; in contrast, pituitary tumors that are FGFR2 negative show abundant MAGE-A3 mRNA expression. MAGE-A3 expression correlates with the presence and extent of DNA promoter methylation; more frequent and higher-degree methylation is present in the normal gland compared with pituitary tumors. Conversely, pituitary tumors are hypomethylated, particularly in females where MAGE-A3 expression is nearly thrice higher than in males. Estradiol treatment induces MAGE-A3 through enhanced histone 3 acetylation and diminished methylation. The effects of estradiol are directly opposed by FGF7/FGFR2-IIIb. Down-regulation of MAGE-A3 results in p53 transcriptional induction, also through reciprocal histone acetylation and methylation modifications. CONCLUSIONS These findings highlight MAGE-A3 as a target of FGFR2-IIIb and estrogen action and provide evidence for a common histone-modifying network in the control of the balance between opposing signals.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
39
|
Abstract
Gain-of-function mutations in oncogenes have aided our understanding of the molecular mechanisms of thyroid carcinogenesis. Mutations or deletions cause inactivation of tumor suppressor genes in thyroid carcinomas. However, recent advances have disclosed the significance of epigenetic events in the development and progression of human tumorigenesis. Indeed, various tumor-suppressor genes and thyroid hormone-related genes are epigenetically silenced in thyroid tumors. This article reviews the evidence for epigenetic gene dysregulation in follicular cell-derived thyroid carcinomas including papillary thyroid carcinoma, follicular thyroid carcinoma, and undifferentiated thyroid carcinoma. The authors also discuss future applications of epigenetics as ancillary diagnostic tools and in the design of targeted therapies for thyroid cancer.
Collapse
Affiliation(s)
- Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Japan
| | | | | |
Collapse
|