1
|
Xavier JS, Jayabalan K, Ragavendran V, Manoharan MT, Nityananda Shetty A. Virtual and experimental high throughput screening of substituted hydrazones on β-Tubulin polymerization. Bioorg Chem 2021; 114:105094. [PMID: 34167017 DOI: 10.1016/j.bioorg.2021.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Microtubule targeting agents that disrupt the dynamic functioning of the mitotic spindle are some of the best chemotherapeutic agents. Interruption of microtubule dynamics through polymerization or depolymerization causes cell arrest leading to apoptosis. We report a novel class of aroylhydrazones with anticancer properties. Tubulin inhibition studies were performed using both computational and biological methods. Docking and pharmacophore mapping showed efficient binding between the ligands and the protein. Tubulin inhibition assay showed the aroylhydrazones to be inhibitors of tubulin polymerization. DFT studies explains the geometrical and electronic properties of the compounds. Furthermore, anticancer studies using lung and liver cancer cell lines gave low IC50 values with the methyl substituted hydrazone MH-2 being the most potent. (IC50 of 0.0896 and 0.1040 µM respectively). The methyl group is responsible for the effective binding to the protein. Thus, a new class of tubulin binding agents have been identified as potential agents in cancer therapy.
Collapse
Affiliation(s)
- Janet Sabina Xavier
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Karthikeyan Jayabalan
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| | - V Ragavendran
- Department of Physics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram 631561, India
| | - Muthu Tamizh Manoharan
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Arumbakkam, Chennai 600106, India
| | - A Nityananda Shetty
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, India
| |
Collapse
|
2
|
Wu MK, Man RJ, Liao YJ, Zhu HL, Zhou ZG. Discovery of novel indole-1,2,4-triazole derivatives as tubulin polymerization inhibitors. Drug Dev Res 2021; 82:1008-1020. [PMID: 33675542 DOI: 10.1002/ddr.21805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/08/2022]
Abstract
A series of novel indole-1,2,4-triazole derivatives have been designed, synthesized, and evaluated as potential tubulin polymerization inhibitors. The top hit 12, bearing the 3,4,5-trimethoxyphenyl moiety, exhibited substantial anti-proliferative activity against HepG2, HeLa, MCF-7, and A549 cells in vitro with IC50 values of 0.23 ± 0.08 μM, 0.15 ± 0.18 μM, 0.38 ± 0.12 μM, and 0.30 ± 0.13 μM, respectively. It also inhibited tubulin polymerization with the IC50 value of 2.1 ± 0.12 μM, which was comparable with that of the positive controls. Furthermore, compound 12 regulated the expression of cell cycle-related proteins (Cyclin B1, Cdc25c, and Cdc2) and apoptosis-related proteins (Bcl-2, Bcl-x, and Mcl-1). Mechanistically, compound 12 could arrest cell cycle at the G2/M phase, thus induce an increase of apoptotic cell death. In addition, molecular docking hinted the possible interaction mode of compound 12 into the colchicine binding site of tubulin heterodimers. According to the applications of microtubule-targeting agents in both direct and synergistic cancer therapies, we hope this work might be of significance for future researches.
Collapse
Affiliation(s)
- Meng-Ke Wu
- Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform, Guangxi University for Nationalities, Nanning, China
| | - Ruo-Jun Man
- Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform, Guangxi University for Nationalities, Nanning, China
| | - Yan-Juan Liao
- Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform, Guangxi University for Nationalities, Nanning, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhu-Gui Zhou
- College of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
3
|
Bai L, Fei WD, Gu YY, He M, Du F, Zhang WY, Yang LL, Liu YJ. Liposomes encapsulated iridium(III) polypyridyl complexes enhance anticancer activity in vitro and in vivo. J Inorg Biochem 2020; 205:111014. [PMID: 32044395 DOI: 10.1016/j.jinorgbio.2020.111014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Three iridium(III) complexes [Ir(ppy)2(CPIP)](PF6) (Ir-1, ppy = 2-phenylpyridine, CPIP = 2-(4-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(ppy)2(DCPIP)](PF6) (Ir-2, DCPIP = 2-(3,4-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(ppy)2(TCPIP)](PF6) (Ir-3, TCPIP = 2,3,5-trichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The complexes Ir-1, Ir-2 and Ir-3 were encapsulated in liposomes to form Ir-1-Lipo, Ir-2-Lipo and Ir-3-Lipo. Morphology, size distribution, and zeta potential of liposomes were examined by transmission electron microscopy (TEM) and Zetasizer. The cytotoxic activity in vitro of Ir-1, Ir-2 and Ir-3 against cancer A549, HTC-116, HepG2, BEL-7402, Eca-109, B16, HeLa SGC-7901 and normal NIH3T3 cells was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. Ir-2 and Ir-3 show no cytotoxic activity against the selected cancer cells, and Ir-1 displays moderate cytotoxic effect on the cell growth in A549 cells. However, Ir-1, Ir-2 and Ir-3 were encapsulated in liposomes, the cytotoxic activity was greatly enhanced. In particular, Ir-1-Lipo and Ir-2-Lipo can effectively inhibit the cell growth in A549 cells with a low IC50 value of 3.1 ± 0.3 and 1.2 ± 0.4 μM. The apoptosis was assayed by flow cytometry. Ir-1, Ir-2 and Ir-3 reveal weak apoptotic effect, whereas Ir-1-Lipo, Ir-2-Lipo and Ir-3-Lipo induce an apoptotic percentage of 55.6%, 69.3% and 16.7% in A549 cells, respectively. Specially, in the assay of antitumor activity in vivo, the inhibiting percentage of tumor growth induced by Ir-2 is 27.65%, while inhibiting percentage of tumor growth caused by Ir-2-Lipo is 57.45%. Obviously, the liposomes can enhance anticancer activity in vitro and in vivo compared with the complexes. The results show that the iridium(III) complexes encapsulated liposomes induce apoptosis in A549 cells through ROS-mediated lysosome-mitochondria dysfunction pathway and target the microtubules.
Collapse
Affiliation(s)
- Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wei-Dong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin-Lin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou 510000, PR China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Puxeddu M, Shen H, Bai R, Coluccia A, Nalli M, Mazzoccoli C, Da Pozzo E, Cavallini C, Martini C, Orlando V, Biagioni S, Mazzoni C, Coluccia AML, Hamel E, Liu T, Silvestri R, La Regina G. Structure-activity relationship studies and in vitro and in vivo anticancer activity of novel 3-aroyl-1,4-diarylpyrroles against solid tumors and hematological malignancies. Eur J Med Chem 2020; 185:111828. [DOI: 10.1016/j.ejmech.2019.111828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 11/30/2022]
|
5
|
Jadala C, Sathish M, Anchi P, Tokala R, Lakshmi UJ, Reddy VG, Shankaraiah N, Godugu C, Kamal A. Synthesis of Combretastatin‐A4 Carboxamidest that Mimic Sulfonyl Piperazines by a Molecular Hybridization Approach:
in vitro
Cytotoxicity Evaluation and Inhibition of Tubulin Polymerization. ChemMedChem 2019; 14:2052-2060. [DOI: 10.1002/cmdc.201900541] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Chetna Jadala
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Manda Sathish
- Medicinal Chemistry and PharmacologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Pratibha Anchi
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Ramya Tokala
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Uppu Jaya Lakshmi
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Velma Ganga Reddy
- Medicinal Chemistry and PharmacologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Nagula Shankaraiah
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Chandraiah Godugu
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Ahmed Kamal
- Medicinal Chemistry and PharmacologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- School of Pharmaceutical Education and Research (SPER) Jamia Hamdard New Delhi 110062 India
| |
Collapse
|
6
|
Wang YT, Shi TQ, Zhu HL, Liu CH. Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors. Bioorg Med Chem 2018; 27:502-515. [PMID: 30606674 DOI: 10.1016/j.bmc.2018.12.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022]
Abstract
Tubulin-targeting drugs have increasingly become the focus of anticancer drugs research. Twenty-five novel benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives were synthesized and evaluated for bioactivity as potential tubulin polymerization inhibitors. Among them, compound 30 showed the most excellent inhibition against tubulin assembly (IC50 = 1.52 μM) and in vitro growth inhibitory activity against a panel of four human cancer cell lines (IC50 = 0.15, 0.21, 0.33 and 0.17 μM, respectively for A549, Hela, HepG2 and MCF-7). It could also validly induce A549 cell apoptosis, cause cell cycle arrest in G2/M phase and disrupt the cellular microtubule network. These results, along with molecular docking data, provided an important basis for further optimization of compound 30 as a potential anticancer agent.
Collapse
Affiliation(s)
- Yan-Ting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China; Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Tian-Qi Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China.
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
7
|
Mangiatordi GF, Trisciuzzi D, Iacobazzi R, Denora N, Pisani L, Catto M, Leonetti F, Alberga D, Nicolotti O. Automated identification of structurally heterogeneous and patentable antiproliferative hits as potential tubulin inhibitors. Chem Biol Drug Des 2018; 92:1161-1170. [PMID: 29633572 DOI: 10.1111/cbdd.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Accepted: 03/03/2018] [Indexed: 12/27/2022]
Abstract
By employing a recently developed hierarchical computational platform, we identified 37 novel and structurally diverse tubulin targeting compounds. In particular, hierarchical molecular filters, based on molecular shape similarity, structure-based pharmacophore, and molecular docking, were applied on a large chemical collection of commercial compounds to identify unexplored and patentable microtubule-destabilizing candidates. The herein proposed 37 novel hits, showing new molecular scaffolds (such as 1,3,3a,4-tetraaza-1,2,3,4,5,6,7,7a-octahydroindene or dihydropyrrolidin-2-one fused to a chromen-4-one), are provided with antiproliferative activity in the μm range toward MCF-7 (human breast cancer lines). Importantly, there is a likely causative relationship between cytotoxicity and the inhibition of tubulin polymerization at the colchicine binding site, assessed through fluorescence polymerization assays.
Collapse
Affiliation(s)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | | | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
8
|
Baig MF, Nayak VL, Budaganaboyina P, Mullagiri K, Sunkari S, Gour J, Kamal A. Synthesis and biological evaluation of imidazo[2,1-b]thiazole-benzimidazole conjugates as microtubule-targeting agents. Bioorg Chem 2018; 77:515-526. [PMID: 29459129 DOI: 10.1016/j.bioorg.2018.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 01/11/2023]
Abstract
A series of imidazo[2,1-b]thiazole-benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity against four human cancer cell lines i.e.; HeLa (cervical), A549 (lung), MCF-7 (breast) and DU-145 (prostate) along with normal HEK-293 cell line. Amongst them, conjugate 6d displayed significant cytotoxicity against human lung cancer cell line, A549 with IC50 value 1.08 µM. Further, cell cycle analysis revealed that this compound arrested the cell cycle at G2/M phase in A549 cells. Furthermore, the tubulin polymerization assay results suggest that this conjugate (6d) exhibits significant inhibitory effect on the tubulin assembly with an IC50 value of 1.68 µM. Moreover, the apoptotic inducing properties of compound 6d was confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and annexin V-FITC assay. Further, molecular docking studies revealed that compound 6d occupied the colchicine binding site.
Collapse
Affiliation(s)
- Mirza Feroz Baig
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research, New Delhi 110 025, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Prasad Budaganaboyina
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Kishore Mullagiri
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Satish Sunkari
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research, New Delhi 110 025, India
| | - Jitendra Gour
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research, New Delhi 110 025, India; School of Pharmaceutical Education and Research(SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Synthesis and biological evaluation of 4,6-diphenyl-2-(1H-pyrrol-1-yl)nicotinonitrile analogues of crolibulin and combretastatin A-4. Eur J Med Chem 2018; 146:185-193. [DOI: 10.1016/j.ejmech.2018.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/30/2017] [Accepted: 01/16/2018] [Indexed: 11/24/2022]
|
10
|
Mangiatordi GF, Trisciuzzi D, Alberga D, Denora N, Iacobazzi RM, Gadaleta D, Catto M, Nicolotti O. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur J Med Chem 2017; 139:792-803. [PMID: 28863359 DOI: 10.1016/j.ejmech.2017.07.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Retrospective validation studies carried out on three benchmark databases containing a small fraction (that is 2.80%) of known tubulin binders permitted us to develop a computational platform very effective in selecting easier manageable subsets showing by far higher percentages of actives (about 25%). These studies relied on the hierarchical application of multilayer in silico screenings employing filters implying molecular shape similarity; a structure-based pharmacophore model and molecular docking campaigns. Building on this validated approach, we performed intensive prospective studies to screen a large chemical collection, including up to 3.7 millions of commercial compounds, to across an unexplored and patent space in the search of novel colchicine binding site inhibitors. Our investigation was successful in identifying a pool of 31 initial hits showing new molecular scaffolds (such as 4,5-dihydro-1H-pyrrolo[3,4-c]pyrazol-6-one and pyrazolo[1,5-a]pyrimidine). This panel of new hits resulted antiproliferative activity in the low μM range towards MCF-7 human breast cancer, HepG2 human liver cancer, HeLa human ovarian cancer and SHSY5Y human glioblastoma cell lines as well as interesting concentration-dependent inhibition of tubulin polymerization assessed through fluorescence polymerization assays. Unlike typical tubulin inhibitors, a satisfactorily low sensitivity towards P-gp was also measured in bi-directional transport studies across MDCKII-MDR1 cells for a selected subset of seven compounds.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | | | - Domenico Gadaleta
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
11
|
Wang YT, Cai XC, Shi TQ, Zhang YL, Wang ZC, Liu CH, Zhu HL. Synthesis, molecular docking and biological evaluation of 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as novel potential tubulin assembling inhibitors. Chem Biol Drug Des 2017; 90:112-118. [PMID: 28032450 DOI: 10.1111/cbdd.12932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023]
Abstract
A series of new 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives were designed, synthesized and evaluated as potential inhibitors of tubulin polymerization and anthropic cancer cell lines. Among them, compound 33 displayed the most potent tubulin polymerization inhibitory activity in vitro (IC50 = 1.41 μM) and strong antiproliferative activities against A549, Hela, HepG2 and MCF-7 cell lines in vitro with GI50 value of 1.6, 2.7, 2.9 and 4.3 μM, respectively, comparable with the positive control colchicine (GI50 value of 4.1, 7.2, 9.5 and 14.5 μM, respectively) and CA-4 (GI50 value of 2.2, 4.3, 6.4 and 11.4 μM, respectively). Simultaneously, we evaluated that compound 33 could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Immunofluorescence microscopy also clearly indicated compound 33 a potent antimicrotubule agent. Docking simulation showed that compound 33 could bind tightly with the colchicine-binding site and act as a tubulin inhibitor. Three-dimensional-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent tubulin assembling inhibitory activity in the future.
Collapse
Affiliation(s)
- Yan-Ting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xun-Chao Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Tian-Qi Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
La Regina G, Bai R, Coluccia A, Famiglini V, Passacantilli S, Naccarato V, Ortar G, Mazzoccoli C, Ruggieri V, Agriesti F, Piccoli C, Tataranni T, Nalli M, Brancale A, Vultaggio S, Mercurio C, Varasi M, Saponaro C, Sergio S, Maffia M, Coluccia AM, Hamel E, Silvestri R. 3-Aroyl-1,4-diarylpyrroles Inhibit Chronic Myeloid Leukemia Cell Growth through an Interaction with Tubulin. ACS Med Chem Lett 2017; 8:521-526. [PMID: 28523104 PMCID: PMC5430391 DOI: 10.1021/acsmedchemlett.7b00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/26/2017] [Indexed: 11/28/2022] Open
Abstract
We designed 3-aroyl-1,4-diarylpyrrole (ARDAP) derivatives as potential anticancer agents having different substituents at the 1- or 4-phenyl ring. ARDAP compounds exhibited potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARDAP derivative 10 inhibited the proliferation of BCR/ABL-expressing KU812 and LAMA84 cells from chronic myeloid leukemia (CML) patients in blast crisis and of hematopoietic cells ectopically expressing the imatinib mesylate (IM)-sensitive KBM5-WT or its IM-resistant KBM5-T315I mutation. Compound 10 minimally affected the proliferation of normal blood cells, indicating that it may be a promising agent to overcome broad tyrosine kinase inhibitor resistance in relapsed/refractory CML patients. Compound 10 significantly decreased CML proliferation by inducing G2/M phase arrest and apoptosis via a mitochondria-dependent pathway. ARDAP 10 augmented the cytotoxic effects of IM in human CML cells. Compound 10 represents a robust lead compound to develop tubulin inhibitors with potential as novel treatments for CML.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Institut
Pasteur Italy−Cenci Bolognetti Foundation, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ruoli Bai
- Screening
Technologies Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Antonio Coluccia
- Institut
Pasteur Italy−Cenci Bolognetti Foundation, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valeria Famiglini
- Institut
Pasteur Italy−Cenci Bolognetti Foundation, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Sara Passacantilli
- Institut
Pasteur Italy−Cenci Bolognetti Foundation, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valentina Naccarato
- Institut
Pasteur Italy−Cenci Bolognetti Foundation, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Giorgio Ortar
- Institut
Pasteur Italy−Cenci Bolognetti Foundation, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Carmela Mazzoccoli
- Laboratory
of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Vitalba Ruggieri
- Laboratory
of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Francesca Agriesti
- Laboratory
of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Claudia Piccoli
- Laboratory
of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
- Department
of Clinical and Experimental Medicine, University
of Foggia, 71122 Foggia, Italy
| | - Tiziana Tataranni
- Laboratory
of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Marianna Nalli
- Institut
Pasteur Italy−Cenci Bolognetti Foundation, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Andrea Brancale
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, U.K.
| | - Stefania Vultaggio
- Experimental
Therapeutics Unit, IFOM-the FIRC Institute
of Molecular Oncology Foundation, Via Adamello 16, I-20139 Milano, Italy
| | - Ciro Mercurio
- Experimental
Therapeutics Unit, IFOM-the FIRC Institute
of Molecular Oncology Foundation, Via Adamello 16, I-20139 Milano, Italy
| | - Mario Varasi
- Experimental
Therapeutics Unit, IFOM-the FIRC Institute
of Molecular Oncology Foundation, Via Adamello 16, I-20139 Milano, Italy
| | - Concetta Saponaro
- Clinical
Proteomics, Polo Oncologico Giovanni Paolo II, ASL−University of Salento, Piazza Muratore 1, 73100 Lecce, Italy
| | - Sara Sergio
- Clinical
Proteomics, Polo Oncologico Giovanni Paolo II, ASL−University of Salento, Piazza Muratore 1, 73100 Lecce, Italy
| | - Michele Maffia
- Clinical
Proteomics, Polo Oncologico Giovanni Paolo II, ASL−University of Salento, Piazza Muratore 1, 73100 Lecce, Italy
| | - Addolorata Maria
Luce Coluccia
- Clinical
Proteomics, Polo Oncologico Giovanni Paolo II, ASL−University of Salento, Piazza Muratore 1, 73100 Lecce, Italy
| | - Ernest Hamel
- Screening
Technologies Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Romano Silvestri
- Institut
Pasteur Italy−Cenci Bolognetti Foundation, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
13
|
Design and synthesis of imidazo[2,1-b]thiazole linked triazole conjugates: Microtubule-destabilizing agents. Eur J Med Chem 2017; 126:36-51. [DOI: 10.1016/j.ejmech.2016.09.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/11/2023]
|
14
|
Chen YR, Tsou B, Hu S, Ma H, Liu X, Yen Y, Ann DK. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget 2016; 7:1984-99. [PMID: 26675256 PMCID: PMC4811511 DOI: 10.18632/oncotarget.6539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/21/2015] [Indexed: 01/05/2023] Open
Abstract
Macroautophagy can promote cellular survival or death depending on the cellular context and its extent. We hypothesized that autophagy induction would synergize with a therapeutic agent targeting the autophagic cargo. To test this hypothesis, we treated breast cancer MDA-MB-231 cells with tamoxifen (TMX), which induces autophagy through an estrogen receptor-independent pathway. Induction of autophagy reduced cellular levels of RRM2, a subunit of ribonucleotide reductase (RR), the rate limiting enzyme in the production of deoxyribonucleotide triphosphates (dNTPs). This autophagy inducer was combined with COH29, an inhibitor developed in our laboratory that targets RR through a novel mechanism. The combination therapy showed synergistic effects on cytotoxicity in vitro and in an in vivo xenograft model. This cytotoxicity was blocked by knockdown of the autophagy protein ATG5 or addition of chloroquine, an autophagy inhibitor. The combined therapy also induced dNTP depletion and massive genomic instability, leading us to hypothesize that combining autophagy induction with RR inhibition can lead to mitotic catastrophe in rapidly dividing cells. We propose that this TMX + COH29 combined therapy may have clinical benefit. Furthermore, autophagy induction may be a general mechanism for augmenting the effects of chemotherapeutic agents.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diabetes and Metabolic Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Brittany Tsou
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diabetes and Metabolic Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Shuya Hu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Huimin Ma
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diabetes and Metabolic Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Xiyong Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yun Yen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - David K Ann
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diabetes and Metabolic Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
15
|
Khalid EB, Ayman EMEK, Rahman H, Abdelkarim G, Najda A. Natural products against cancer angiogenesis. Tumour Biol 2016; 37:14513-14536. [PMID: 27651162 DOI: 10.1007/s13277-016-5364-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/07/2016] [Indexed: 02/08/2023] Open
Abstract
The process of angiogenesis is quite well-known nowadays. Some medicines and extracts affecting this process are already used routinely in supporting the conventional treatment of many diseases that are considered angiogenic such as cancer. However, we must be aware that the area of currently used drugs of this type is much narrower than the theoretical possibilities existing in therapeutic angiogenesis. Plant substances are a large and diverse group of compounds that are found naturally in fruits, vegetables, spices, and medicinal plants. They also have different anticancer properties. The aim of this literature review article is to present the current state of knowledge concerning the molecular targets of tumor angiogenesis and the active substances (polyphenols, alkaloids, phytohormones, carbohydrates, and terpenes) derived from natural sources, whose activity against cancer angiogenesis has been confirmed.
Collapse
Affiliation(s)
- El Bairi Khalid
- Independent Research Team in Cancer Biology and Bioactive Compounds, Faculty of Medicine and Pharmacy, University Mohammed 1st, Oujda, Morocco.
| | - El-Meghawry El-Kenawy Ayman
- Department of Molecular Biology GEBRI, University of Sadat City, Sadat, Egypt
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heshu Rahman
- Department of Veterinary Clinical Diagnosis, Faculty of Veterinary Medicine, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Medical Laboratory Science, Komar University of Science and Technology, ChaqChaq, Qularasy, Sulaimani City, Kurdistan Region, Iraq
| | - Guaadaoui Abdelkarim
- Laboratory of Genetics and Biotechnology (LGB), Faculty of Sciences, Mohammed 1st University (UMP), Oujda, Morocco
| | - Agnieszka Najda
- Quality Laboratory of Vegetable and Medicinal Materials, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Leszczyńskiego Street 58, 20-068, Lublin, Poland
| |
Collapse
|
16
|
Srikanth PS, Nayak VL, Suresh Babu K, Kumar GB, Ravikumar A, Kamal A. 2-Anilino-3-Aroylquinolines as Potent Tubulin Polymerization Inhibitors. ChemMedChem 2016; 11:2050-62. [PMID: 27465681 DOI: 10.1002/cmdc.201600259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Indexed: 01/11/2023]
Abstract
Several 2-anilino-3-aroylquinolines were designed, synthesized, and screened for their cytotoxic activity against five human cancer cell lines: HeLa, DU-145, A549, MDA-MB-231, and MCF-7. Their IC50 values ranged from 0.77 to 23.6 μm. Among the series, compounds 7 f [(4-fluorophenyl)(2-((4-fluorophenyl)amino)quinolin-3-yl)methanone] and 7 g [(4-chlorophenyl)(2-((4-fluorophenyl)amino)quinolin-3-yl)methanone] showed remarkable antiproliferative activity against human lung cancer and prostate cancer cell lines. The IC50 values for inhibiting tubulin polymerization were 2.24 and 2.10 μm for compounds 7 f and 7 g, respectively, and were much lower than that of the reference compound E7010 [N-(2-(4-hydroxyphenylamino)pyridin-3-yl)-4-methoxybenzenesulfonamide]. Furthermore, flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2 /M phase, leading to apoptosis. Apoptosis was also confirmed by mitochondrial membrane potential, Annexin V-FITC assay, and intracellular ROS generation. Immunohistochemistry, western blot, and tubulin polymerization assays showed that these compounds disrupt tubulin polymerization. Molecular docking studies revealed that these compounds bind efficiently to β-tubulin at the colchicine binding site.
Collapse
Affiliation(s)
- P S Srikanth
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Korrapati Suresh Babu
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - G Bharath Kumar
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - A Ravikumar
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. .,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India. .,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| |
Collapse
|
17
|
Zhang YL, Qin YJ, Tang DJ, Yang MR, Li BY, Wang YT, Cai HY, Wang BZ, Zhu HL. Synthesis and Biological Evaluation of 1-Methyl-1H-indole-Pyrazoline Hybrids as Potential Tubulin Polymerization Inhibitors. ChemMedChem 2016; 11:1446-58. [DOI: 10.1002/cmdc.201600137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/03/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| | - Ya-Juan Qin
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| | - Dan-Jie Tang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| | - Meng-Ru Yang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| | - Bo-Yan Li
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| | - Yan-Ting Wang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| | - Hong-Yu Cai
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
18
|
Design, Synthesis and Antitumor Activity of Novel link-bridge and B-Ring Modified Combretastatin A-4 (CA-4) Analogues as Potent Antitubulin Agents. Sci Rep 2016; 6:25387. [PMID: 27138035 PMCID: PMC4853715 DOI: 10.1038/srep25387] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
A series of 12 novel acylhydrazone, chalcone and amide–bridged analogues of combretastatin A-4 were designed and synthesized toward tubulin. All these compounds were determined by elemental analysis, 1H NMR, and MS. Among them, compound 7 with acylhydrazone-bridge, bearing a benzyl at the indole-N position, was identified as a potent antiproliferative agent against a panel of cancer cell lines with IC50 values ranging from 0.08 to 35.6 μM. In contrast, its cytotoxic effects on three normal human cells were minimal. Cellular studies have revealed that the induction of apoptosis by compound 7 was associated with a collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, alterations in the expression of some cell cycle-related proteins (Cyclin B1, Cdc25c, Cdc2, P21) and some apoptosis-related proteins (Bax, PARP, Bcl-2, Caspase3). The docking mode showed the binding posture of CA-4 and compound 7 are similar in the colchicine-binding pocket of tubulin, as confirmed by colchicine-tubulin competitive binding assay, tubulin polymerization inhibitory activity, extracellular protein expression determination assay and confocal immunofluorescence microscopy. In vivo study, compound 7 effectively inhibited A549 xenograft tumor growth without causing significant loss of body weight suggesting that compound 7 is a promising new antimitotic agent with clinical potential.
Collapse
|
19
|
Yang MR, Qin YJ, Chen C, Zhang YL, Li BY, Liu TB, Gong HB, Wang BZ, Zhu HL. Synthesis, biological evaluation and molecular docking studies of novel 1-(4,5-dihydro-1H-pyrazol-1-yl)ethanone-containing 1-methylindol derivatives as potential tubulin assembling inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra28141e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel compounds (6a–6v) containing 1-methylindol and 1-(4,5-dihydro-1H-pyrazol-1-yl)ethanone skeleton were designed, synthesized and evaluated as potential anticancer agents.
Collapse
Affiliation(s)
- Meng-Ru Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Ya-Juan Qin
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Chen Chen
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Bo-Yan Li
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Tian-Bao Liu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Hai-Bin Gong
- Xuzhou Central Hospital
- Xuzhou 221009
- People's Republic of China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People's Republic of China
| |
Collapse
|
20
|
Teicher BA, Polley E, Kunkel M, Evans D, Silvers T, Delosh R, Laudeman J, Ogle C, Reinhart R, Selby M, Connelly J, Harris E, Monks A, Morris J. Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression. Mol Cancer Ther 2015; 14:2452-62. [PMID: 26351324 PMCID: PMC4636476 DOI: 10.1158/1535-7163.mct-15-0074] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023]
Abstract
The diversity in sarcoma phenotype and genotype make treatment of this family of diseases exceptionally challenging. Sixty-three human adult and pediatric sarcoma lines were screened with 100 FDA-approved oncology agents and 345 investigational agents. The investigational agents' library enabled comparison of several compounds targeting the same molecular entity allowing comparison of target specificity and heterogeneity of cell line response. Gene expression was derived from exon array data and microRNA expression was derived from direct digital detection assays. The compounds were screened against each cell line at nine concentrations in triplicate with an exposure time of 96 hours using Alamar blue as the endpoint. Results are presented for inhibitors of the following targets: aurora kinase, IGF-1R, MEK, BET bromodomain, and PARP1. Chemical structures, IC50 heat maps, concentration response curves, gene expression, and miR expression heat maps are presented for selected examples. In addition, two cases of exceptional responders are presented. The drug and compound response, gene expression, and microRNA expression data are publicly available at http://sarcoma.cancer.gov. These data provide a unique resource to the cancer research community.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland.
| | - Eric Polley
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Mark Kunkel
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - David Evans
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas Silvers
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rene Delosh
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Julie Laudeman
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Chad Ogle
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Russell Reinhart
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Michael Selby
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - John Connelly
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Erik Harris
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Anne Monks
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joel Morris
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
21
|
Pang Y, Wang S, Ba W, Li Q. Cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells. SPRINGERPLUS 2015; 4:569. [PMID: 26543704 PMCID: PMC4627967 DOI: 10.1186/s40064-015-1270-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/24/2015] [Indexed: 11/10/2022]
Abstract
The supraneural body was identified in the adult lamprey, and its secretions induced the death of a variety of tumor cells but had no effect on normal cells. The cell secretions from different lamprey tissues were separated, and these secretions killed human tumor cells to varying degrees. The cell secretions induced remarkable cell morphological alterations such as cell blebbing, and the plasma membrane was destroyed by the secretions. In addition, the secretions induced morphological alterations of the mitochondria, cytoskeletal structure, and endoplasmic reticulum, eventually leading to cell death. These observations suggest the presence of a novel protein in the lamprey and the possibility of new applications for the protein in the medical field.
Collapse
Affiliation(s)
- Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081 China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081 China
| | - Shiyue Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081 China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081 China
| | - Wei Ba
- College of Life Science, Liaoning Normal University, Dalian, 116081 China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081 China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081 China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081 China
| |
Collapse
|
22
|
Atanasova TP, Riley S, Biros SM, Staples RJ, Ngassa FN. Crystal structure of 3,5-di-methyl-phenyl 2-nitro-benzene-sulfonate. Acta Crystallogr E Crystallogr Commun 2015; 71:1045-7. [PMID: 26396844 PMCID: PMC4555383 DOI: 10.1107/s2056989015015078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/12/2015] [Indexed: 12/02/2022]
Abstract
The title compound, C14H13NO5S, was synthesized via a nucleophilic substitution reaction between 3,5-di-methyl-phenol and 2-nitro-benzene-sulfonyl chloride. The aromatic rings attached to the SO3 group are oriented in a gauche fashion around the ester S-O bond, with a C-S-O-C torsion angle of 84.68 (11)°. The mol-ecules form centrosymmetric dimers via π-π stacking inter-actions between 3,5-di-methyl-phenyl groups (centroid-centroid distance = 3.709 Å). An inter-molecular S=O⋯N inter-action between the sulfonyl and nitro groups, with an O⋯N distance of 2.9840 (18) Å, organizes the dimers into columns extending along [011]. These columns are further assembled into (111) layers through C-H⋯O inter-actions.
Collapse
Affiliation(s)
- Tsvetelina P. Atanasova
- Department of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA
| | - Sean Riley
- Department of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA
| | - Shannon M. Biros
- Department of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA
| | - Richard J. Staples
- Center for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Felix N. Ngassa
- Department of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA
| |
Collapse
|
23
|
La Regina G, Bai R, Coluccia A, Famiglini V, Pelliccia S, Passacantilli S, Mazzoccoli C, Ruggieri V, Verrico A, Miele A, Monti L, Nalli M, Alfonsi R, Di Marcotullio L, Gulino A, Ricci B, Soriani A, Santoni A, Caraglia M, Porto S, Da Pozzo E, Martini C, Brancale A, Marinelli L, Novellino E, Vultaggio S, Varasi M, Mercurio C, Bigogno C, Dondio G, Hamel E, Lavia P, Silvestri R. New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer. J Med Chem 2015; 58:5789-807. [PMID: 26132075 DOI: 10.1021/acs.jmedchem.5b00310] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer.
Collapse
Affiliation(s)
- Giuseppe La Regina
- †Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ruoli Bai
- ‡Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Antonio Coluccia
- †Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valeria Famiglini
- †Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Sveva Pelliccia
- §Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, I-80131 Napoli, Italy
| | - Sara Passacantilli
- †Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Carmela Mazzoccoli
- ∥Laboratorio di Ricerca Pre-Clinica e Traslazionale, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Centro di Riferimento Oncologico della Basilicata, Via Padre Pio 1, I-85028 Rionero in Vulture, Italy
| | - Vitalba Ruggieri
- ∥Laboratorio di Ricerca Pre-Clinica e Traslazionale, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Centro di Riferimento Oncologico della Basilicata, Via Padre Pio 1, I-85028 Rionero in Vulture, Italy
| | - Annalisa Verrico
- ⊥Institute of Molecular Biology and Pathology, Sapienza Università di Roma, Consiglio Nazionale delle Ricerche (CNR), Via degli Apuli 4, I-00185 Roma, Italy
| | - Andrea Miele
- ⊥Institute of Molecular Biology and Pathology, Sapienza Università di Roma, Consiglio Nazionale delle Ricerche (CNR), Via degli Apuli 4, I-00185 Roma, Italy
| | - Ludovica Monti
- †Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Marianna Nalli
- †Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Romina Alfonsi
- #Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Lucia Di Marcotullio
- #Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, I-00161 Roma, Italy.,∇Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Alberto Gulino
- #Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Biancamaria Ricci
- #Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Alessandra Soriani
- #Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Angela Santoni
- ⊥Institute of Molecular Biology and Pathology, Sapienza Università di Roma, Consiglio Nazionale delle Ricerche (CNR), Via degli Apuli 4, I-00185 Roma, Italy.,#Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Michele Caraglia
- ○Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via S.M. Costantinopoli 16, I-80138 Naples, Italy
| | - Stefania Porto
- ○Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via S.M. Costantinopoli 16, I-80138 Naples, Italy
| | - Eleonora Da Pozzo
- ◆Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Claudia Martini
- ◆Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Andrea Brancale
- ¶Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Luciana Marinelli
- §Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, I-80131 Napoli, Italy
| | - Ettore Novellino
- §Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, I-80131 Napoli, Italy
| | | | - Mario Varasi
- △European Institute of Oncology, Via Adamello 16, I-20139 Milano, Italy
| | - Ciro Mercurio
- ☆DAC SRL, Genextra Group, Via Adamello 16, I-20139 Milano, Italy
| | - Chiara Bigogno
- ▲APHAD Srl, Via della Resistanza 65, I-20090 Buccinasco, Italy
| | - Giulio Dondio
- ▲APHAD Srl, Via della Resistanza 65, I-20090 Buccinasco, Italy
| | - Ernest Hamel
- ‡Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Patrizia Lavia
- ⊥Institute of Molecular Biology and Pathology, Sapienza Università di Roma, Consiglio Nazionale delle Ricerche (CNR), Via degli Apuli 4, I-00185 Roma, Italy
| | - Romano Silvestri
- †Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
24
|
Wang YT, Qin YJ, Yang N, Zhang YL, Liu CH, Zhu HL. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Eur J Med Chem 2015; 99:125-37. [PMID: 26070164 DOI: 10.1016/j.ejmech.2015.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 11/19/2022]
Abstract
A series of 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives were designed, synthesized and evaluated as potential tubulin polymerization inhibitors and for the cytotoxicity against anthropic cancer cell lines. Among the novel compounds, compound 11f was demonstrated the most potent tubulin polymerization inhibitory activity (IC50 = 1.5 μM) and antiproliferative activity against A549, HepG2 and MCF-7 (GI50 = 2.4, 3.8 and 5.1 μM, respectively), which was compared with the positive control colchicine and CA-4. We also evaluated that compound 11f could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Docking simulation and 3D-QSAR model in these studies provided more information that could be applied to design new molecules with more potent tubulin inhibitory activity.
Collapse
Affiliation(s)
- Yan-Ting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Ya-Juan Qin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Na Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
25
|
Guerram M, Jiang ZZ, Sun L, Zhu X, Zhang LY. Antineoplastic effects of deoxypodophyllotoxin, a potent cytotoxic agent of plant origin, on glioblastoma U-87 MG and SF126 cells. Pharmacol Rep 2015; 67:245-52. [DOI: 10.1016/j.pharep.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 12/24/2022]
|
26
|
Provencio M, Sánchez A. Therapeutic integration of new molecule-targeted therapies with radiotherapy in lung cancer. Transl Lung Cancer Res 2015; 3:89-94. [PMID: 25806286 DOI: 10.3978/j.issn.2218-6751.2014.03.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/30/2014] [Indexed: 01/30/2023]
Abstract
Lung cancer is the most common form of the disease and the leading cause of cancer deaths worldwide. Non-small-cell lung cancer (NSCLC) accounts for approximately 80-85% of all lung cancers. Forty percent of all cases present with stage III, and many of them are considered inoperable (staged IIIA with mediastinal lymph node involvement) or stage IIIB disease. Concurrent platinum-based chemotherapy and thoracic radiation has demonstrated survival benefits in these patients. We review the role of new target agents in combination with radiotherapy in stage III NSCLC. Antiangiogenics improve tumor oxygenation thereby improving the therapeutic efficacy of irradiation in models. Bevacizumab in combination with thoracic radiation has shown high toxicity. However, other antiangiogenic agents are more promising. Radiation activates epidermal growth factor receptor (EGFR) pathways, inducing radioresistance, cell proliferation and enhanced DNA repair. After promising data from preclinical models and early clinical trials, cetuximab did not show any benefit in a recent phase III trial. Panitumumab and nimotuzumab are under evaluation. Gefitinib has been investigated in combination with radiotherapy for unresectable stage III NSCLC, but results in maintenance treatment after chemoradiotherapy were not encouraging. Erlotinib has also been tested in a phase II trial with chemoradiotherapy. Other new pathways and agents are being studied, such as m-TOR pathway, bortezomib, heat shock protein 90 (Hsp90) inhibition, histone deacetylase inhibitors (HDACS), aurora kinases, mitogen activated protein kinases (MARK) and PARP inhibitors.
Collapse
Affiliation(s)
- Mariano Provencio
- Department of Medical Oncology of Puerta de Hierro Majadahonda, University Hospital, Madrid, Spain
| | - Antonio Sánchez
- Department of Medical Oncology of Puerta de Hierro Majadahonda, University Hospital, Madrid, Spain
| |
Collapse
|
27
|
Platinum(IV) cisplatin derivative trans, cis, cis-bis(heptanoato)amine(cyclohexylamine)dichloridoplatinum(IV) has an enhanced therapeutic index compared to cisplatin for the treatment of non-small cell lung cancer. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Wang Y, Qi X, Li D, Zhu T, Mo X, Li J. Anticancer efficacy and absorption, distribution, metabolism, and toxicity studies of aspergiolide A in early drug development. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1965-77. [PMID: 25378909 PMCID: PMC4207554 DOI: 10.2147/dddt.s64989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since the first anthracycline was discovered, many other related compounds have been studied in order to overcome its defects and improve efficacy. In the present paper, we investigated the anticancer effects of a new anthracycline, aspergiolide A (ASP-A), from a marine-derived fungus in vitro and in vivo, and we evaluated the absorption, distribution, metabolism, and toxicity drug properties in early drug development. We found that ASP-A had activity against topoisomerase II that was comparable to adriamycin. ASP-A decreased the growth of various human cancer cells in vitro and induced apoptosis in BEL-7402 cells via a caspase-dependent pathway. The anticancer efficacy of ASP-A on the growth of hepatocellular carcinoma xenografts was further assessed in vivo. Results showed that, compared with the vehicle group, ASP-A exhibited significant anticancer activity with less loss of body weight. A pharmacokinetics and tissue distribution study revealed that ASP-A was rapidly cleared in a first order reaction kinetics manner, and was enriched in cancer tissue. The maximal tolerable dose (MTD) of ASP-A was more than 400 mg/kg, and ASP-A was not considered to be potentially genotoxic or cardiotoxic, as no significant increase of micronucleus rates or inhibition of the hERG channel was seen. Finally, an uptake and transport assay of ASP-A was performed in monolayers of Caco-2 cells, and ASP-A was shown to be absorbed through the active transport pathway. Altogether, these results indicate that ASP-A has anticancer activity targeting topoisomerase II, with a similar structure and mechanism to adriamycin, but with much lower toxicity. Nonetheless, further molecular structure optimization is necessary.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Xiaomei Mo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jing Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
29
|
Discovery and molecular modeling of novel 1-indolyl acetate – 5-Nitroimidazole targeting tubulin polymerization as antiproliferative agents. Eur J Med Chem 2014; 85:341-51. [DOI: 10.1016/j.ejmech.2014.07.082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 11/23/2022]
|
30
|
La Regina G, Bai R, Coluccia A, Famiglini V, Pelliccia S, Passacantilli S, Mazzoccoli C, Ruggieri V, Sisinni L, Bolognesi A, Rensen WM, Miele A, Nalli M, Alfonsi R, Di Marcotullio L, Gulino A, Brancale A, Novellino E, Dondio G, Vultaggio S, Varasi M, Mercurio C, Hamel E, Lavia P, Silvestri R. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J Med Chem 2014; 57:6531-52. [PMID: 25025991 DOI: 10.1021/jm500561a] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bartusik D, Aebisher D. 19F applications in drug development and imaging – a review. Biomed Pharmacother 2014; 68:813-7. [DOI: 10.1016/j.biopha.2014.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022] Open
|
32
|
Cullinane C, Waldeck KL, Binns D, Bogatyreva E, Bradley DP, de Jong R, McArthur GA, Hicks RJ. Preclinical FLT-PET and FDG-PET imaging of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901. Nucl Med Biol 2014; 41:148-54. [DOI: 10.1016/j.nucmedbio.2013.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/03/2023]
|
33
|
Wang YT, Qin YJ, Zhang YL, Li YJ, Rao B, Zhang YQ, Yang MR, Jiang AQ, Qi JL, Zhu HL. Synthesis, biological evaluation, and molecular docking studies of novel chalcone oxime derivatives as potential tubulin polymerization inhibitors. RSC Adv 2014. [DOI: 10.1039/c4ra03803g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compounds of novel chalcone oxime derivatives containing different substituent groups were designed, synthesized and evaluated for the inhibitory activity against tubulin polymerization and cancer cell inhibitory activity.
Collapse
Affiliation(s)
- Yan-Ting Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| | - Ya-Juan Qin
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| | - Yu-Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| | - Bing Rao
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| | - Yan-Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| | - Meng-Ru Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| | - Ai-Qin Jiang
- School of Medicine
- Nanjing University
- Nanjing 210093, P. R. China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210093, P. R. China
| |
Collapse
|
34
|
Abstract
The ubiquitin-mediated degradation of proteins in numerous cellular processes, such as turnover and quality control of proteins, cell cycle and apoptosis, transcription and cell signaling, immune response and antigen presentation, and inflammation and development makes the ubiquitin-proteosome systems a very interesting target for various therapeutic interventions. Proteosome inhibitors were first synthesized as tools to probe the function and specificity of this particle's proteolytic activities. Most synthetic inhibitors rely on a peptide base, which mimics a protein substrate, attached at a COOH terminal "warhead." Notable warheads include boronic acids, such as bortezomib and epoxy ketones, such as carfilzomib. A variety of natural products also inhibit the proteosome that are not peptide-based, most notably lactacystin, that is related to NPI-0052, or salinosporamide A, another inhibitor in clinical trials. The possibility that proteosome inhibitors could be drug candidates was considered after studies showed that they induced apoptosis in leukemic cell lines. The first proteasome inhibitor in clinical application, bortezomib showed activity in non-small-cell lung and androgen-independent prostate carcinoma, as well as MM and mantle cell and follicular non-Hodgkin's lymphoma. It is now licensed for the treatment of newly diagnosed as well as relapsed/progressive MM and has had a major impact on the improvement in the treatment of MM in the last few years.
Collapse
Affiliation(s)
- Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Josef-Schneider Straße 2, 97080, Wurzburg, Germany,
| |
Collapse
|
35
|
Linobiflavonoid inhibits human lung adenocarcinoma A549 cells: effect on tubulin protein. Mol Biol Rep 2013; 40:6019-25. [PMID: 24057268 DOI: 10.1007/s11033-013-2711-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
The antitumor bioactivities of linobiflavonoid were studied through evaluating its in vitro cytotoxicity against several cell lines (A549, H1975, SMMC-7721, HEP-2 and Vero cells), with the aid of 3-(4,5)-dimethylthiazoly1)-3,5-diphenytetrazolium bromide (MTT) assay. It was found that linobiflavonoid shows more notable inhibiting activity against A549 cells, with IC50 value of 4.67 μM. Furthermore, western blot analysis revealed that linobiflavonoid is able to increase the expression of β-tubulin, whereas not α-tubulin. In virtuale simulations indicated that linobiflavonoid specifically interacts with the binding pocket which is located at the top of β-tubulin, due to the presence of strong hydrophobic effects between the core templates and the hydrophobic surface of the tubulin protein (TB) binding site. The binding energy (E inter ) was calculated to be -140.47 kcal/mol. Results above suggest that linobiflavonoid possesses anti-A549 properties relating to β-tubulin depolymerization inhibition.
Collapse
|
36
|
Tomé M, López C, González A, Ozay B, Quirante J, Font-Bardía M, Calvet T, Calvis C, Messeguer R, Baldomá L, Badía J. Trans- and cis-2-phenylindole platinum(II) complexes as cytotoxic agents against human breast adenocarcinoma cell lines. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
TW01001, a novel piperazinedione compound, induces mitotic arrest and autophagy in non-small cell lung cancer A549 cells. Cancer Lett 2013; 336:370-8. [PMID: 23567646 DOI: 10.1016/j.canlet.2013.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/07/2013] [Accepted: 03/24/2013] [Indexed: 01/27/2023]
Abstract
Here, we report that TW01001, a novel piperazinedione compound, could be a new mitotic inhibitor for the treatment of non-small cell lung cancer by the following observations in A549 cells: (1) induction of cells to accumulate at G2/M phase, which ultimately led to cell apoptotic death, (2) accumulation of p53 and inhibition of survival signalings, and (3) induction of p53-independent autophagy. Taken together, our data suggested that TW01001 induces autophagy-p53-signaling pathway to cause mitotic arrest and cell growth inhibition in A549 cells and provides the framework for further development as a novel therapeutic agent for lung cancer treatment.
Collapse
|
38
|
Theoretic study of DNA base guanine and adenine and protein residues’ binding mode of the trans geometries of new antitumor non-classical platinum complexes containing pyridine and picoline ligand. Struct Chem 2013. [DOI: 10.1007/s11224-013-0204-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Mahmood M, Xu Y, Dantuluri V, Mustafa T, Zhang Y, Karmakar A, Casciano D, Ali S, Biris A. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics. NANOTECHNOLOGY 2013; 24:045102. [PMID: 23291321 DOI: 10.1088/0957-4484/24/4/045102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells.
Collapse
Affiliation(s)
- M Mahmood
- Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
La Regina G, Bai R, Rensen WM, Di Cesare E, Coluccia A, Piscitelli F, Famiglini V, Reggio A, Nalli M, Pelliccia S, Pozzo ED, Costa B, Granata I, Porta A, Maresca B, Soriani A, Iannitto ML, Santoni A, Li J, Cona MM, Chen F, Ni Y, Brancale A, Dondio G, Vultaggio S, Varasi M, Mercurio C, Martini C, Hamel E, Lavia P, Novellino E, Silvestri R. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J Med Chem 2013; 56:123-49. [PMID: 23214452 PMCID: PMC3563301 DOI: 10.1021/jm3013097] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
New arylthioindole derivatives having different cyclic substituents at position 2 of the indole were synthesized as anticancer agents. Several compounds inhibited tubulin polymerization at submicromolar concentration and inhibited cell growth at low nanomolar concentrations. Compounds 18 and 57 were superior to the previously synthesized 5. Compound 18 was exceptionally potent as an inhibitor of cell growth: it showed IC₅₀ = 1.0 nM in MCF-7 cells, and it was uniformly active in the whole panel of cancer cells and superior to colchicine and combretastatin A-4. Compounds 18, 20, 55, and 57 were notably more potent than vinorelbine, vinblastine, and paclitaxel in the NCI/ADR-RES and Messa/Dx5 cell lines, which overexpress P-glycoprotein. Compounds 18 and 57 showed initial vascular disrupting effects in a tumor model of liver rhabdomyosarcomas at 15 mg/kg intravenous dosage. Derivative 18 showed water solubility and higher metabolic stability than 5 in human liver microsomes.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Whilelmina Maria Rensen
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Sapienza Università di Roma, Via degli Apuli 4, I-00185 Roma, Italy
| | - Erica Di Cesare
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Sapienza Università di Roma, Via degli Apuli 4, I-00185 Roma, Italy
| | - Antonio Coluccia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Francesco Piscitelli
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valeria Famiglini
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Alessia Reggio
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Marianna Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Sveva Pelliccia
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via Domenico Montesano 49, I-80131, Napoli, Italy
| | - Eleonora Da Pozzo
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Barbara Costa
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Ilaria Granata
- Dipartimento di Scienze Farmaceutiche, Sezione Biomedica, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano, Salerno, Italy
| | - Amalia Porta
- Dipartimento di Scienze Farmaceutiche, Sezione Biomedica, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano, Salerno, Italy
| | - Bruno Maresca
- Dipartimento di Scienze Farmaceutiche, Sezione Biomedica, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Soriani
- Dipartimento di Medicina Sperimentale e Patologia, Sapienza Università di Roma, Viale Regina Elena 324, I-00161 Roma, Italy
| | - Maria Luisa Iannitto
- Dipartimento di Medicina Sperimentale e Patologia, Sapienza Università di Roma, Viale Regina Elena 324, I-00161 Roma, Italy
| | - Angela Santoni
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Sapienza Università di Roma, Via degli Apuli 4, I-00185 Roma, Italy
- Dipartimento di Medicina Sperimentale e Patologia, Sapienza Università di Roma, Viale Regina Elena 324, I-00161 Roma, Italy
| | - Junjie Li
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Marlein Miranda Cona
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Feng Chen
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Yicheng Ni
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Brancale
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, U.K
| | - Giulio Dondio
- NiKem Research Srl, Via Zambeletti 25, I-20021 Baranzate, Milano, Italy
| | | | - Mario Varasi
- European Institute of Oncology, Via Adamello 16, I-20139 Milano, Italy
| | - Ciro Mercurio
- Genextra Group, DAC SRL, Via Adamello 16, I-20139 Milano, Italy
| | - Claudia Martini
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Sapienza Università di Roma, Via degli Apuli 4, I-00185 Roma, Italy
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via Domenico Montesano 49, I-80131, Napoli, Italy
| | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
41
|
Eisenlöffel C, Schmöle AC, Pews-Davtyan A, Brennführer A, Kuznetsov SA, Hübner R, Frech S, Schult C, Junghanss C, Beller M, Rolfs A, Frech MJ. Interference of a novel indolylmaleimide with microtubules induces mitotic arrest and apoptosis in human progenitor and cancer cells. Biochem Pharmacol 2012; 85:763-71. [PMID: 23274302 DOI: 10.1016/j.bcp.2012.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
Abstract
Indolylmaleimides display a broad spectrum of biological activity and offer great opportunity to influence several aspects of cell fate, as proliferation and differentiation. In this study we describe the effect of PDA-66, a newly synthesised indolylmaleimide, showing a strong dose dependent anti-proliferative effect on immortalised human progenitor and cancer cells. We demonstrated a highly depolymerizing effect on in vitro tubulin assembly and conclude that PDA-66 acts as microtubule destabilising agent. In addition we found that PDA-66 induces mitotic arrest of cells in the G₂/M phase of the cell cycle. Subsequently cells undergo apoptosis, indicating the major mechanism of the anti-proliferative effect. To prove a potential anti-cancer activity of PDA-66 we examined the effect of PDA-66 on human SH-SY5Y neuroblastoma and A-459 lung cancer cells, showing a significant reduction in cancer cell proliferation in a dose dependent manner. Thus PDA-66 is a new anti-mitotic compound with an indole-core with the potential to be used for cancer therapy.
Collapse
Affiliation(s)
- Christian Eisenlöffel
- Albrecht-Kossel-Institute for Neuroregeneration, Center for Mental Health, University of Rostock, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li Y, Zhou W, Wei L, Jin J, Tang K, Li C, Teh BT, Chen X. The effect of Aurora kinases on cell proliferation, cell cycle regulation and metastasis in renal cell carcinoma. Int J Oncol 2012; 41:2139-49. [PMID: 23007526 DOI: 10.3892/ijo.2012.1633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/02/2012] [Indexed: 11/06/2022] Open
Abstract
Aurora kinases have been shown to be involved in the regulation of the cell cycle and are related to tumor progression. This suggests the possibility that they can serve as new anticancer targets for tumor treatment. However, the important roles that Aurora kinases and their signaling pathway play in renal cell carcinoma (RCC) are not fully understood and addressed to date. In this study, we aimed to address these questions. We observed that downregulation of Aurora kinases induced by AurA miRNA, AurB miRNA or VX680 could inhibit proliferation and metastasis, induce G2/M phase arrest in clear cell renal cell carcinoma cells and exert antitumor activity in an SN12C xenograft model. We also show that either silencing of Aurora kinases or treating the cells with VX680 could downregulate the expression of cdc25c and cyclin B/cdc2, upregulate the expression of p-cdc2 (Tyr15) via blocking the activity of ERK. All these changes may contribute to inhibition of proliferation, metastasis and G2/M arrest in ccRCC. In summary, we proved that both Aurora kinases A and B are key elements of tumor growth regulation, and inhibition of Aurora kinases may contribute to blocking ccRCC progression. We conclude that Aurora kinases could be potential therapeutic targets in the management of renal cell carcinoma.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gianolio DA, Rouleau C, Bauta WE, Lovett D, Cantrell WR, Recio A, Wolstenholme-Hogg P, Busch M, Pan P, Stefano JE, Kramer HM, Goebel J, Krumbholz RD, Roth S, Schmid SM, Teicher BA. Targeting HER2-positive cancer with dolastatin 15 derivatives conjugated to trastuzumab, novel antibody-drug conjugates. Cancer Chemother Pharmacol 2012; 70:439-49. [PMID: 22821053 DOI: 10.1007/s00280-012-1925-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/05/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE Targeting tubulin binders to cancer cells using antibody-drug conjugates (ADCs) has great potential to become an effective cancer treatment with low normal tissue toxicity. The nature of the linker used to tether the tubulin binder to the antibody and the conjugation sites on the antibody and the small molecule are important factors in the ADC stability and effectiveness. METHODS We explored the use of tubulin-targeting dolastatin 15 derivatives (Dol15) tethered covalently to a representative antibody, trastuzumab, via cleavable and non-cleavable linkers at varying antibody reactive sites (i.e., lysine residues, partially reduced hinge region disulfide bonds) and drug coupling sites (i.e., C-terminus, N-terminus), to investigate which constructs were more effective in killing HER2-positive cells in vitro and in vivo. RESULTS We found that Dol15 conjugated to trastuzumab via lysine residues at the drug C-terminus using a non-cleavable linker (trastuzumab-amide-C-term-Dol15) produced target-dependent growth inhibition of cells endogenously expressing high HER2 levels (i.e., SK-BR-3, SK-OV-3) in vitro. This ADC was effective at varying doses (i.e., 10 and 20 mg/kg) in the SK-OV-3 human ovarian cancer xenograft. CONCLUSIONS Tethering Dol15 via partially reduced disulfide bonds at the drug C-terminus via a non-cleavable linker (trastuzumab-MC-C-term-Dol15) resulted in an equally effective ADC in vitro, showing that site of antibody conjugation did not influence ADC activity. However, tethering Dol15 at the drug N-terminus using non-cleavable and cleavable linkers (trastuzumab-MC-N-term-Dol15 and trastuzumab-MC-VC-PABC-N-term-Dol15, respectively) resulted in ineffective ADCs. Thus, Dol15 tethered at the C-terminus may be a useful tubulin-targeting agent for conjugation at various antibody reactive sites.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Depsipeptides/administration & dosage
- Depsipeptides/chemistry
- Depsipeptides/pharmacology
- Dose-Response Relationship, Drug
- Drug Delivery Systems
- Female
- Humans
- Mice
- Mice, SCID
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Receptor, ErbB-2/immunology
- Trastuzumab
- Tubulin/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Diego A Gianolio
- Drugs and Biomaterials R&D, Genzyme a Sanofi Company, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Favoni RE, Daga A, Malatesta P, Florio T. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma. Br J Pharmacol 2012; 166:532-53. [PMID: 22289125 PMCID: PMC3417486 DOI: 10.1111/j.1476-5381.2012.01873.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/01/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022] Open
Abstract
The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth.
Collapse
Affiliation(s)
- Roberto E Favoni
- IRCCS A.O.U. San Martino-IST, Laboratory of Gene Transfer, Genoa, Italy.
| | | | | | | |
Collapse
|
45
|
Exposure–Response Relationship of the Synthetic Epothilone Sagopilone in a Peripheral Neurotoxicity Rat Model. Neurotox Res 2011; 22:91-101. [DOI: 10.1007/s12640-011-9302-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 01/22/2023]
|
46
|
La Regina G, Bai R, Rensen W, Coluccia A, Piscitelli F, Gatti V, Bolognesi A, Lavecchia A, Granata I, Porta A, Maresca B, Soriani A, Iannitto ML, Mariani M, Santoni A, Brancale A, Ferlini C, Dondio G, Varasi M, Mercurio C, Hamel E, Lavia P, Novellino E, Silvestri R. Design and synthesis of 2-heterocyclyl-3-arylthio-1H-indoles as potent tubulin polymerization and cell growth inhibitors with improved metabolic stability. J Med Chem 2011; 54:8394-406. [PMID: 22044164 DOI: 10.1021/jm2012886] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
New arylthioindoles (ATIs) were obtained by replacing the 2-alkoxycarbonyl group with a bioisosteric 5-membered heterocycle nucleus. The new ATIs 5, 8, and 10 inhibited tubulin polymerization, reduced cell growth of a panel of human transformed cell lines, and showed higher metabolic stability than the reference ester 3. These compounds induced mitotic arrest and apoptosis at a similar level as combretastatin A-4 and vinblastine and triggered caspase-3 expression in a significant fraction of cells in both p53-proficient and p53-defective cell lines. Importantly, ATIs 5, 8, and 10 were more effective than vinorelbine, vinblastine, and paclitaxel as growth inhibitors of the P-glycoprotein-overexpressing cell line NCI/ADR-RES. Compound 5 was shown to have medium metabolic stability in both human and mouse liver microsomes, in contrast to the rapidly degraded reference ester 3, and a pharmacokinetic profile in the mouse characterized by a low systemic clearance and excellent oral bioavailability.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Delvare C, Harris CS, Hennequin L, Koza P, Lambert-van der Brempt C, Pelleter J, Willerval O. Efficient three-step one-pot synthesis of a novel 2,3,5-substituted pyrazine library. ACS COMBINATORIAL SCIENCE 2011; 13:449-52. [PMID: 21648463 DOI: 10.1021/co200062n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The partnership between rational synthesis design and mass-triggered preparative LCMS is a powerful one, capable of furnishing very large libraries in a selective manner in a very short space of time. Herein, we communicate one example of possibly a perfect marriage between the synthetic chemistry and the subsequent purification method employed, affording a ∼1000-member library supplying 50 mg on average of final compound in less than a month.
Collapse
Affiliation(s)
- Christian Delvare
- AstraZeneca, Centre de Recherches, Z.I. la Pompelle, BP1050, 51689 Reims Cedex
| | - Craig S. Harris
- AstraZeneca, Centre de Recherches, Z.I. la Pompelle, BP1050, 51689 Reims Cedex
| | - Laurent Hennequin
- AstraZeneca, Centre de Recherches, Z.I. la Pompelle, BP1050, 51689 Reims Cedex
| | - Patrice Koza
- AstraZeneca, Centre de Recherches, Z.I. la Pompelle, BP1050, 51689 Reims Cedex
| | | | - Jacques Pelleter
- AstraZeneca, Centre de Recherches, Z.I. la Pompelle, BP1050, 51689 Reims Cedex
| | - Olivier Willerval
- AstraZeneca, Centre de Recherches, Z.I. la Pompelle, BP1050, 51689 Reims Cedex
| |
Collapse
|
48
|
Rivera S, Quéro L, Wong Hee Kam S, Maylin C, Deutsch E, Hennequin C. [Targeted therapies and radiation therapy in non-small cell lung cancer]. Cancer Radiother 2011; 15:527-35. [PMID: 21885318 DOI: 10.1016/j.canrad.2011.07.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/17/2011] [Indexed: 01/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related death. Between 80-85% of lung cancers are non-small cell lung carcinomas. One third of the patients are diagnosed with locally advanced stage. In this condition, concomitant radio-chemotherapy is the standard treatment for patients with good performance status. Despite important improvements in the last years, non-small cell lung carcinoma prognosis remains poor, with high rates of both local recurrences and metastases. The heterogeneity of molecular characteristics of non-small cell lung carcinoma cells and a better knowledge of potential targets offer promising developments for new pharmacologic agents. Hereafter we will review the currently most studied pathways and the most promising ones for the treatment of locally advanced unresectable non-small cell lung carcinoma. Two of the most attractive pathways where new agents have been developed and assessed in combination with thoracic radiotherapy or radiochemotherapy are the EGFR pathway (either with the use of monoclonal antibodies or tyrosine kinase inhibitors) and the angiogenesis inhibition. The development of targeted agents could lead to individualized therapeutic combinations taking into account the intrinsic characteristics of tumor cells. Pharmacological modulation of tumour cells radiosensitivity by targeted therapies is only starting, but yet offers promising perspectives.
Collapse
Affiliation(s)
- S Rivera
- Service de cancérologie radiothérapie, hôpital Saint-Louis, Paris, France.
| | | | | | | | | | | |
Collapse
|
49
|
Mahmood M, Casciano D, Xu Y, Biris AS. Engineered nanostructural materials for application in cancer biology and medicine. J Appl Toxicol 2011; 32:10-9. [PMID: 21882206 DOI: 10.1002/jat.1718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/19/2011] [Accepted: 06/19/2011] [Indexed: 01/03/2023]
Abstract
Nanotechnology covers a wide variety of fields of research, including chemistry, physics, biology and medicine, with extensive applications in cancer, ranging from accurate, early detection of malignant lesions to minimizing metastasis. Continued development of cancer-targeted therapy has promising advantages: maximizing the effectiveness of anticancer drugs while decreasing the harmful systemic effects; tumor destruction via heating that takes advantage of magnetic nanoparticles' size, magnetization and biocompatibility; novel drug-delivery systems; and gene therapy functions to facilitate controlled drug loading and release inside the cytoplasm. These and other nanotechnology applications can contribute essential new knowledge in the fight against cancer.
Collapse
Affiliation(s)
- Meena Mahmood
- University of Arkansas at Little Rock, Applied Science Department, UALR Nanotechnology Center, Little Rock, AR 72204, USA
| | | | | | | |
Collapse
|
50
|
Fang W, Liu S, Nie Y. Anticancer activity of chamaejasmine: effect on tubulin protein. Molecules 2011; 16:6243-54. [PMID: 21788932 PMCID: PMC6264762 DOI: 10.3390/molecules16086243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 11/16/2022] Open
Abstract
In this work, the anticancer activity of chamaejasmine was studied by evaluating its in vitro cytotoxicity against several human cancer cell lines (MCF-7, A549, SGC-7901, HCT-8, HO-4980, Hela, HepG2, PC-3, LNCap, Vero and MDCK) using the MTT assay. Results indicated chamaejasmine showed more notable anticancer activity than taxol against PC-3 cells, with IC50 values of 2.28 and 3.98 µM, respectively. Furthermore, Western blot analysis showed that chamaejasmine was able to increase the expression of β-tubulin, but not α-tubulin. In silico simulations indicated that chamaejasmine specifically interacts with the active site which is located at the top of β-tubulin, thanks to the presence of strong hydrophobic effects between the core templates and the hydrophobic surface of the TB active site. The binding energy (Einter) was calculated to be −164.77 kcal·mol−1. Results presented here suggest that chamaejasmine possesses anti-cancer properties relating to β-tubulin depolymerization inhibition, and therefore is a potential source of anticancer leads for the pharmaceutical industry.
Collapse
Affiliation(s)
- Wenlong Fang
- Department of Rheumatology, The Second Hospital Affiliated Harbin Medical University, Harbin 150086, China; (W.F.)
| | - Songtao Liu
- Hei longjiang Disabled Federation for Human Care Clinic, Harbin 150020, China; (S.L.)
| | - Yingkun Nie
- Department of Rheumatology, The Second Hospital Affiliated Harbin Medical University, Harbin 150086, China; (W.F.)
- Author to whom correspondence should be addressed; ; Tel.: +86-0451-89877490; Fax: +86-0451-86605060
| |
Collapse
|