1
|
WU XINYU, FAN RUITAI, YAN XINHUI, CUI JING, XU JUNLING, GU HAO, GAO YONGJU. Endoplasmic reticulum stress protects human thyroid carcinoma cell lines against ionizing radiation-induced apoptosis. Mol Med Rep 2014; 11:2341-7. [DOI: 10.3892/mmr.2014.2956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/31/2014] [Indexed: 11/06/2022] Open
|
2
|
Singh V, Gupta D, Arora R, Tripathi RP, Almasan A, Macklis RM. Surface levels of CD20 determine anti-CD20 antibodies mediated cell death in vitro. PLoS One 2014; 9:e111113. [PMID: 25364827 PMCID: PMC4217761 DOI: 10.1371/journal.pone.0111113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/29/2014] [Indexed: 12/04/2022] Open
Abstract
Background The sensitivity of human Burkitt's lymphoma cells to rituximab (Rtx) and tositumomab (Tst) was assessed on cells expressing different levels of CD20 on surface. Cells that harbor low CD20 levels may resists against therapeutics response to CD20-specific antibodies. We postulated that, radiation-induced modulation of CD20 surface levels may play a crucial and central role in determining the relative efficacy of rituximab and tositumomab in treating Burkitt's lymphoma disease. Here, we examined the γ-radiation-induced CD20 expression in the Burkitt lymphoma cell line ‘Daudi’ and the relation of differential levels of CD20 with anti-CD20 mAbs mediated cell death. Methodology In this study we examined kinetics of CD20 expression following sub lethal doses ofγ-radiation to Daudi cells and thereafter anti-CD20 mAbs (rituximab and tositumomab) were added in cell suspensions. The correlation of kinetics of CD20 expression and cells treated with anti-CD20 mAbs/or corresponding isotype Abs with special reference to changes in mitochondrial membrane potential and reactive oxygen species generation was also examined. Further, we also investigated the efficacy of anti-CD20 mAbs and possible induction of cell death in relation to levels of CD20 cell surface expression. Conclusion This report provides evidence that CD20 expression can be induced by exposure of cells to γ-radiation. In addition, these findings demonstrated that the efficacy of anti-CD20 mAbs is dependent on the surface levels of CD20. Based on these findings, we hypothesized (i) irradiation just prior to immunotherapy may provide new treatment options even in aggressive B cell tumors, which are resistant to current therapies in vivo (ii) The efficacy of induction of apoptosis varies with type of monoclonal antibodies in vitro.
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
- * E-mail: (DG); (RMM)
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajendra Prashad Tripathi
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Alexandru Almasan
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Roger M. Macklis
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (DG); (RMM)
| |
Collapse
|
3
|
Radioimmunotherapy: a specific treatment protocol for cancer by cytotoxic radioisotopes conjugated to antibodies. ScientificWorldJournal 2014; 2014:492061. [PMID: 25379535 PMCID: PMC4213411 DOI: 10.1155/2014/492061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022] Open
Abstract
Radioimmunotherapy (RIT) represents a selective internal radiation therapy, that is, the use of radionuclides conjugated to tumor-directed monoclonal antibodies (including those fragments) or peptides. In a clinical field, two successful examples of this treatment protocol are currently extended by 90Y-ibritumomab tiuxetan (Zevalin) and 131I-tositumomab (Bexxar), both of which are anti-CD20 monoclonal antibodies coupled to cytotoxic radioisotopes and are approved for the treatment of non-Hodgkin lymphoma patients. In addition, some beneficial observations are obtained in preclinical studies targeting solid tumors. To date, in order to reduce the unnecessary exposure and to enhance the therapeutic efficacy, various biological, chemical, and treatment procedural improvements have been investigated in RIT. This review outlines the fundamentals of RIT and current knowledge of the preclinical/clinical trials for cancer treatment.
Collapse
|
4
|
Bondza S, Stenberg J, Nestor M, Andersson K, Björkelund H. Conjugation Effects on Antibody–Drug Conjugates: Evaluation of Interaction Kinetics in Real Time on Living Cells. Mol Pharm 2014; 11:4154-63. [DOI: 10.1021/mp500379d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sina Bondza
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
| | - Jonas Stenberg
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| | - Marika Nestor
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Section
of Otolaryngology and Head and Neck Surgery, Department of Surgical
Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Karl Andersson
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| | - Hanna Björkelund
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| |
Collapse
|
5
|
Williams LE, Wu AM, Kenanova VE, Olafsen T, Yazaki PJ. Numerical Comparison of Iodine-Based and Indium-Based Antibody Biodistributions. Cancer Biother Radiopharm 2014; 29:91-8. [DOI: 10.1089/cbr.2013.1564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lawrence E. Williams
- Division of Diagnostic Radiology, City of Hope National Medical Center, Duarte, California
| | - Anna M. Wu
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Vania E. Kenanova
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Tove Olafsen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Paul J. Yazaki
- Department of Immunology, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
6
|
Roberson PL, Wilderman SJ, Avram AM, Kaminski MS, Schipper MJ, Dewaraja YK. Biological-effect modeling of radioimmunotherapy for non-hodgkins lymphoma: determination of model parameters. Cancer Biother Radiopharm 2013; 29:26-33. [PMID: 24102174 DOI: 10.1089/cbr.2012.1467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Treatment with Tositumomab and 131I tositumomab anti-CD20 radioimmunotherapy (Bexxar) yields a nonradioactive antibody antitumor response (the so-called cold effect) and a radiation response. Numerical parameter determination by least-squares (LS) fitting was implemented for more accurate parameter estimates in equivalent biological-effect calculations. METHODS One hundred thirty-two tumors in 37 patients were followed using five or six SPECT/CT studies per patient, three each (typical) post-tracer (0.2 GBq) and post-therapy (∼3 GBq) injections. The SPECT/CT data were used to calculate position- and time-dependent dose rates and antibody concentrations for each tumor. CT-defined tumor volumes were used to track tumor volume changes. Combined biological-effect and cell-clearance models were fit to tumor volume changes. Optimized parameter values determined using LS fitting were compared to previous fitted values that were determined by matching calculated to measured tumor volume changes using visual assessment. Absorbed dose sensitivity (α) and cold-effect sensitivity (λp) parameters were the primary fitted parameters, yielding equivalent biological-effect (E) values. RESULTS Individual parameter uncertainties were approximately 10% and 30% for α and λp, respectively. LS versus previously fit parameter values were highly correlated, although the averaged α value decreased and the averaged λp value increased for the LS fits compared to the previous fits. Correlation of E with 2-month tumor shrinkage data was similar for the two fitting techniques. The LS fitting yielded improved fit quality and likely improved parameter estimation.
Collapse
Affiliation(s)
- Peter L Roberson
- 1 Department of Radiation Oncology, University of Michigan , Ann Arbor, Michigan
| | | | | | | | | | | |
Collapse
|
7
|
Jain P, O'Brien S. Anti-CD20 monoclonal antibodies in chronic lymphocytic leukemia. Expert Opin Biol Ther 2013; 13:169-82. [PMID: 23256681 DOI: 10.1517/14712598.2012.735655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The last decade has witnesd immense progress in the treatment of chronic lymphocytic leukemia (CLL). Chemoimmunotherapy (CIT) combining rituximab and fludarabine with cyclophosphamide (FCR) in the frontline setting has clearly been shown to improve outcomes in patients with CLL. Building on the success achieved with rituximab, other anti-CD20 monoclonal antibodies (mAbs) are being investigated. Novel bioengineering techniques have helped in the development of anti-CD20 mAbs. One antibody, ofatumumab, was recently approved for the treatment of refractory CLL. A type II anti-CD20 mAb, GA-101 (obinutuzumab), is currently in clinical trials. This short review focuses on ongoing clinical trials of anti-CD20 mAbs in CLL. AREAS COVERED Literature search was performed using PubMed ( www.clinicaltrials.gov (till August 2012)), and recent American Society of Clinical Oncology (ASCO), American Society of Hematology (ASH), European Hematology association (EHA), International workshop on CLL (iwCLL) abstracts, using the primary search terms 'anti-CD20 monoclonal antibody' with/without CLL. Articles were chosen on the basis of relevance of anti-CD20 mAbs to CLL therapy. EXPERT OPINION Rituximab, the prototype anti-CD20 mAb, forms the core of CIT in CLL. The success of rituximab and ofatumumab has led investigators to evaluate other anti-CD20 mAbs in the treatment of CLL.
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
8
|
Dual-targeting immunotherapy of lymphoma: potent cytotoxicity of anti-CD20/CD74 bispecific antibodies in mantle cell and other lymphomas. Blood 2012; 119:3767-78. [DOI: 10.1182/blood-2011-09-381988] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We describe the use of novel bispecific hexavalent Abs (HexAbs) to enhance anticancer immunotherapy. Two bispecific HexAbs [IgG-(Fab)4 constructed from veltuzumab (anti-CD20 IgG) and milatuzumab (anti-CD74 IgG)] show enhanced cytotoxicity in mantle cell lymphoma (MCL) and other lymphoma/leukemia cell lines, as well as patient tumor samples, without a crosslinking Ab, compared with their parental mAb counterparts, alone or in combination. The bispecific HexAbs have different properties from and are more potent than their parental mAbs in vitro. The juxtaposition of CD20 and CD74 on MCL cells by the HexAbs resulted in homotypic adhesion and triggered intracellular changes that include loss of mitochondrial transmembrane potential, production of reactive oxygen species, rapid and sustained phosphorylation of ERKs and JNK, down-regulation of pAkt and Bcl-xL, actin reorganization, and lysosomal membrane permeabilization, culminating in cell death. They also displayed different potencies in depleting lymphoma cells and normal B cells from whole blood ex vivo and significantly extended the survival of nude mice bearing MCL xenografts in a dose-dependent manner, thus indicating stability and antitumor activity in vivo. Such bispecific HexAbs may constitute a new class of therapeutic agents for improved cancer immunotherapy, as shown here for MCL and other CD20+/CD74+ malignancies.
Collapse
|
9
|
Antibody-induced nonapoptotic cell death in human lymphoma and leukemia cells is mediated through a novel reactive oxygen species-dependent pathway. Blood 2012; 119:3523-33. [PMID: 22354003 DOI: 10.1182/blood-2011-12-395541] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monoclonal antibodies (mAbs) have revolutionized the treatment of B-cell malignancies. Although Fc-dependent mechanisms of mAb-mediated tumor clearance have been extensively studied, the ability of mAbs to directly evoke programmed cell death (PCD) in the target cell and the underlying mechanisms involved remain under-investigated. We recently demonstrated that certain mAbs (type II anti-CD20 and anti-HLA DR mAbs) potently evoked PCD through an actin-dependent, lysosome-mediated process. Here, we reveal that the induction of PCD by these mAbs, including the type II anti-CD20 mAb GA101 (obinutuzumab), directly correlates with their ability to produce reactive oxygen species (ROS) in human B-lymphoma cell lines and primary B-cell chronic lymphocytic leukemia cells. ROS scavengers abrogated mAb-induced PCD indicating that ROS are required for the execution of cell death. ROS were generated downstream of mAb-induced actin cytoskeletal reorganization and lysosome membrane permeabilization. ROS production was independent of mitochondria and unaffected by BCL-2 overexpression. Instead, ROS generation was mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. These findings provide further insights into a previously unrecognized role for NADPH oxidase-derived ROS in mediating nonapoptotic PCD evoked by mAbs in B-cell malignancies. This newly characterized cell death pathway may potentially be exploited to eliminate malignant cells, which are refractory to conventional chemotherapy and immunotherapy.
Collapse
|
10
|
Alduaij W, Ivanov A, Honeychurch J, Cheadle EJ, Potluri S, Lim SH, Shimada K, Chan CHT, Tutt A, Beers SA, Glennie MJ, Cragg MS, Illidge TM. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood 2011; 117:4519-29. [PMID: 21378274 PMCID: PMC3099571 DOI: 10.1182/blood-2010-07-296913] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 02/06/2011] [Indexed: 01/13/2023] Open
Abstract
The anti-CD20 mAb rituximab has substantially improved the clinical outcome of patients with a wide range of B-cell malignancies. However, many patients relapse or fail to respond to rituximab, and thus there is intense investigation into the development of novel anti-CD20 mAbs with improved therapeutic efficacy. Although Fc-FcγR interactions appear to underlie much of the therapeutic success with rituximab, certain type II anti-CD20 mAbs efficiently induce programmed cell death (PCD), whereas rituximab-like type I anti-CD20 mAbs do not. Here, we show that the humanized, glycoengineered anti-CD20 mAb GA101 and derivatives harboring non-glycoengineered Fc regions are type II mAb that trigger nonapoptotic PCD in a range of B-lymphoma cell lines and primary B-cell malignancies. We demonstrate that GA101-induced cell death is dependent on actin reorganization, can be abrogated by inhibitors of actin polymerization, and is independent of BCL-2 overexpression and caspase activation. GA101-induced PCD is executed by lysosomes which disperse their contents into the cytoplasm and surrounding environment. Taken together, these findings reveal that GA101 is able to potently elicit actin-dependent, lysosomal cell death, which may potentially lead to improved clearance of B-cell malignancies in vivo.
Collapse
MESH Headings
- Actins/drug effects
- Actins/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Antineoplastic Agents/pharmacology
- Cathepsins/pharmacology
- Cell Adhesion/immunology
- Cell Death/drug effects
- Cell Death/immunology
- Cell Line, Tumor
- Cell Membrane Permeability/immunology
- Drug Resistance, Neoplasm/immunology
- Humans
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lysosomes/drug effects
- Lysosomes/immunology
- Rituximab
Collapse
Affiliation(s)
- Waleed Alduaij
- Targeted Therapy Group, Paterson Institute for Cancer Research, School of Cancer and Enabling Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
INTRODUCTION The advent of anti-CD20 monoclonal antibody (mAb) rituximab heralded a new era in the treatment of non-Hodgkin's lymphoma leading to significant improvements in outcome for patients. This unprecedented success has changed the mindset of the clinical community and catalyzed the interest in the pharmaceutical industry to develop the next-generation of antibodies and antibody conjugates in cancer. AREAS COVERED There are an ever increasing number of newer generation anti-CD20 and rituximab 'bio-similars' undergoing early phase clinical development. In addition emerging novel therapies including antibody drug conjugates (brentuximab vedotin, SGN-35) and mAb against T-cell lymphomas antigens (e.g., zanolimumab) offer hope of improved outcome for other lymphomas. Bispecific T-cell-engaging antibodies and combination immunotherapy, also provide the promise of further improvements. Radiolabelled antibodies or radioimmunotherapy (RIT) has also demonstrated high clinical activity and two drugs namely 131I-tositumomab (Bexxar) and 90Y-ibritumomab (Zevalin) are licensed. EXPERT OPINION Despite the large numbers of new anti-CD20 mAb currently undergoing clinical testing, improving on clinical efficacy of rituximab is a substantial challenge. Further improvements in outcome for patients will require rigorous testing in well designed clinical trials alongside the translation of new insights into mechanism of mAb action that lead to improvements in clinical efficacy.
Collapse
Affiliation(s)
- Sam Mayes
- University of Manchester, Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, School of Medicine, Manchester, M20 4BX, UK
| | | | | |
Collapse
|
12
|
Abstract
Targeting of radionuclides with antibodies, or radioimmunotherapy, has been an active field of research spanning nearly 50 years, evolving with advancing technologies in molecular biology and chemistry, and with many important preclinical and clinical studies illustrating the benefits, but also the challenges, which all forms of targeted therapies face. There are currently two radiolabeled antibodies approved for the treatment of non-Hodgkin lymphoma, but radioimmunotherapy of solid tumors remains a challenge. Novel antibody constructs, focusing on treatment of localized and minimal disease, and pretargeting are all promising new approaches that are currently under investigation.
Collapse
|
13
|
Abstract
The anti-CD20 monoclonal antibody (mAb) rituximab has revolutionized the treatment of B-cell malignancies. This unprecedented success has not only substantially changed the mindset of the clinical community about the ability of mAb to improve outcomes but has catalyzed the interest in the pharmaceutical industry to develop the next generation of anti-CD20 mAbs. Since the introduction of rituximab 15 years ago, we have learned much about the potential mechanisms underlying the therapeutic efficacy of anti-CD20 mAbs. In parallel, many novel anti-CD20 mAbs have entered the clinic, each designed with modifications to structure aimed at further improving efficacy. On review of the newer generation of anti-CD20 mAbs entering clinical trials, it appears that the link between the novel mechanistic insights and the development of these next-generation anti-CD20 mAbs is unclear. As we move into an era of personalized medicine, it will become increasingly important for us to develop closer links between the emerging mechanistic insights and the clinical development, to further enhance the potency of anti-CD20 mAbs beyond that achieved with rituximab.
Collapse
|
14
|
Abstract
IMPORTANCE OF THE FIELD Follicular lymphoma (FL) is a subgroup of B-cell Non-Hodgkin's lymphomas (NHL) that account for 15 - 30% of all lymphomas. I-131 tositumomab is a radiommunoconjugate of (131)I and the anti-CD20 monoclonal antibody tositumomab. It is one of two available radioimmunoconjugates for the treatment of recurrent, refractory, or transformed FL. AREAS COVERED IN THIS REVIEW This review describes the clinical pharmacology of I-131 tositumomab, dosing and administration guidelines, and the key clinical trials providing evidence of its efficacy and safety in patients with FL, transformed, or other aggressive B-NHL, in combination with chemotherapy, or its incorporation in transplant conditioning regimens. This review also covers safety and regulatory concerns regarding the use of I-131 tositumomab. WHAT THE READER WILL GAIN This review critically appraises the clinical trials behind approval of I-131 tositumomab as a second-line agent for FL and also outlines the data supporting its use in the upfront setting. TAKE HOME MESSAGE I-131 tositumomab is a safe and effective option for patients with recurrent, refractory, or transformed FL and carries promise in the upfront treatment of FL, aggressive B-NHL, and as a transplant conditioning regimen.
Collapse
Affiliation(s)
- Basem M William
- Oncology/Hematology, University of Nebraska Medical Center, Omaha, NE 68198-7680. USA.
| | | |
Collapse
|
15
|
Beers SA, Chan CHT, French RR, Cragg MS, Glennie MJ. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 2010; 47:107-14. [PMID: 20350657 DOI: 10.1053/j.seminhematol.2010.01.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last decade has seen the monoclonal antibody (mAb), rituximab, transform clinical management of many non-Hodgkin lymphomas and more recently provide new opportunities for controlling autoimmune conditions, such as rheumatoid arthritis. Although not yet fully determined, the explanation for this success appears to lie with the inherent properties of its target, CD20, which allow rituximab to recruit potent cytotoxic effectors with unusual efficiency. In this review we detail the properties of CD20 that make it such an effective therapeutic target and describe how different mAbs change the membrane distribution and internalization of CD20 and have distinct modes of cytotoxic activity.
Collapse
Affiliation(s)
- Stephen A Beers
- Tenovus Laboratory, Cancer Sciences Division, University of Southampton School of Medicine, General Hospital, Southampton, UK
| | | | | | | | | |
Collapse
|
16
|
Beers SA, French RR, Chan HTC, Lim SH, Jarrett TC, Vidal RM, Wijayaweera SS, Dixon SV, Kim H, Cox KL, Kerr JP, Johnston DA, Johnson PWM, Verbeek JS, Glennie MJ, Cragg MS. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 2010; 115:5191-201. [PMID: 20223920 DOI: 10.1182/blood-2010-01-263533] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcgamma receptor-expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.
Collapse
Affiliation(s)
- Stephen A Beers
- Tenovus Laboratory, Cancer Sciences Division, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lim SH, Beers SA, French RR, Johnson PWM, Glennie MJ, Cragg MS. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 2010; 95:135-43. [PMID: 19773256 PMCID: PMC2805725 DOI: 10.3324/haematol.2008.001628] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antibodies to CD20 have confirmed the hypothesis that monoclonal reagents can be given in vivo to alleviate human diseases. The targeting of CD20 on normal, malignant and auto-immune B-lymphocytes by rituximab has demonstrated substantial benefits for patients with a variety of B-cell lymphomas, as well as some with autoimmune disorders. There has been a notable increase in the survival rates from B-cell lymphoma in the decade since anti-CD20 therapy was introduced.
Collapse
Affiliation(s)
- Sean H Lim
- Tenovus Laboratory, Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | |
Collapse
|
18
|
Ivanov A, Beers SA, Walshe CA, Honeychurch J, Alduaij W, Cox KL, Potter KN, Murray S, Chan CHT, Klymenko T, Erenpreisa J, Glennie MJ, Illidge TM, Cragg MS. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J Clin Invest 2009; 119:2143-59. [PMID: 19620786 PMCID: PMC2719942 DOI: 10.1172/jci37884] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 05/20/2009] [Indexed: 11/17/2022] Open
Abstract
mAbs are becoming increasingly utilized in the treatment of lymphoid disorders. Although Fc-FcgammaR interactions are thought to account for much of their therapeutic effect, this does not explain why certain mAb specificities are more potent than others. An additional effector mechanism underlying the action of some mAbs is the direct induction of cell death. Previously, we demonstrated that certain CD20-specific mAbs (which we termed type II mAbs) evoke a nonapoptotic mode of cell death that appears to be linked with the induction of homotypic adhesion. Here, we reveal that peripheral relocalization of actin is critical for the adhesion and cell death induced by both the type II CD20-specific mAb tositumomab and an HLA-DR-specific mAb in both human lymphoma cell lines and primary chronic lymphocytic leukemia cells. The cell death elicited was rapid, nonapoptotic, nonautophagic, and dependent on the integrity of plasma membrane cholesterol and activation of the V-type ATPase. This cytoplasmic cell death involved lysosomes, which swelled and then dispersed their contents, including cathepsin B, into the cytoplasm and surrounding environment. The resulting loss of plasma membrane integrity occurred independently of caspases and was not controlled by Bcl-2. These experiments provide what we believe to be new insights into the mechanisms by which 2 clinically relevant mAbs elicit cell death and show that this homotypic adhesion-related cell death occurs through a lysosome-dependent pathway.
Collapse
Affiliation(s)
- Andrei Ivanov
- CRUK Paterson Institute for Cancer Research, School of Cancer and Imaging Sciences, School of Medicine, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Grønbaek K, Jäättelä M. Engaging the lysosomal compartment to combat B cell malignancies. J Clin Invest 2009; 119:2133-6. [PMID: 19620776 DOI: 10.1172/jci40259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The combination of rituximab, a type I anti-CD20 mAb, with conventional chemotherapy has significantly improved the outcome of patients with B cell malignancies. Regardless of this success, many patients still relapse with therapy-resistant disease, highlighting the need for the development of mAbs with higher capacity to induce programmed cell death. The so-called type II anti-CD20 mAbs (e.g., tositumomab) that trigger caspase-independent B cell lymphoma cell death in vitro and show superior efficacy as compared with rituximab in eradicating target cells in mouse models are emerging as the next generation of therapeutic anti-CD20 mAbs. In this issue of the JCI, Ivanov and colleagues identify the lysosomal compartment as a target for type II mAbs (see the related article beginning on page 2143). These data encourage the further clinical development of type II mAbs as well as other lysosome-targeting drugs in the treatment of B cell malignancies.
Collapse
|
20
|
Burdick MJ, Macklis RM. Update on the rational use of tositumomab and iodine-131 tositumomab radioimmunotherapy for the treatment of non-Hodgkin's lymphoma. Onco Targets Ther 2009; 2:229-42. [PMID: 20616910 PMCID: PMC2886324 DOI: 10.2147/ott.s4456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Indexed: 11/23/2022] Open
Abstract
Targeted radioimmunotherapy in non-Hodgkin’s B-cell lymphoma (NHL) offers an efficacious therapy and minimal toxicity compared to conventional chemotherapy. Iodine 131 tositumomab (131I-TST) is a murine monoclonal antibody against the CD20 cell surface protein and is directly covalently conjugated to 131I, a radioactive β and γ emitter. While initially approved for use in relapsed, refractory, or transformed low grade B-cell NHL, investigational uses with promising results include autologous stem cell transplant, intermediate grade NHL, and the frontline management of indolent NHL. This review summarizes the 131I-TST literature on mechanism of action, treatment indications, treatment delivery, efficacy, investigational uses, and future prospects.
Collapse
Affiliation(s)
- Michael J Burdick
- Department of Radiation Oncology, Taussig Cancer Center and Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
21
|
Beers SA, Chan CHT, James S, French RR, Attfield KE, Brennan CM, Ahuja A, Shlomchik MJ, Cragg MS, Glennie MJ. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 2008; 112:4170-7. [PMID: 18583569 PMCID: PMC2582008 DOI: 10.1182/blood-2008-04-149161] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-CD20 monoclonal antibodies (mAbs) are classified into type I (rituximab-like) or type II (tositumomab-like) based on their ability to redistribute CD20 molecules in the plasma membrane and activate various effector functions. To compare type I and II mAbs directly in vivo and maximize Fc effector function, we selected and engineered mAbs with the same mouse IgG(2)a isotype and assessed their B-cell depleting activity in human CD20 transgenic mice. Despite being the same isotype, having similar affinity, opsonizing activity for phagocytosis, and in vivo half-life, the type II mAb tositumomab (B1) provided substantially longer depletion of B cells from the peripheral blood compared with the type I mAb rituximab (Rit m2a), and 1F5. This difference was also evident within the secondary lymphoid organs, in particular, the spleen. Failure to engage complement did not explain the efficacy of the type II reagents because type I mAbs mutated in the Fc domain (K322A) to prevent C1q binding still did not display equivalent efficacy. These results give support for the use of type II CD20 mAbs in human B-cell diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Murine-Derived
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Antineoplastic Agents/immunology
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Complement Activation/drug effects
- Complement Activation/genetics
- Complement Activation/immunology
- Complement C1q/immunology
- Complement C1q/metabolism
- Drug Evaluation, Preclinical/methods
- Humans
- Immunoglobulin Constant Regions/genetics
- Immunoglobulin Constant Regions/immunology
- Lymphocyte Depletion/methods
- Mutation, Missense
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Rituximab
Collapse
Affiliation(s)
- Stephen A Beers
- Tenovus Laboratory, Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ivanov A, Swann R, Illidge T. New insights into the mechanisms of action of radioimmunotherapy in lymphoma. J Pharm Pharmacol 2008; 60:987-98. [PMID: 18644192 DOI: 10.1211/jpp.60.8.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The exquisite sensitivity of haematological malignancies to targeted radiation alongside the impressive results achieved by the pioneers in this field suggests that radioimmunotherapy is likely to be a productive area for future clinical research. Recent experimental work has demonstrated that the combination of targeted radiation and antibody effector mechanisms are critical to long-term clearance of tumour. This review provides the background of clinical and biological insights into the mechanisms of action of radioimmunotherapy.
Collapse
Affiliation(s)
- Andrei Ivanov
- School of Cancer and Imaging Sciences, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | | | | |
Collapse
|