1
|
Gao Q, Li N, Pan Y, Chu P, Zhou Y, Jia H, Cheng Y, Xue G, Song J, Zhang Y, Zhu H, Sun J, Zhang B, Sun Z, Fang D. Hepatocyte growth factor promotes melanoma metastasis through ubiquitin-specific peptidase 22-mediated integrins upregulation. Cancer Lett 2024; 604:217196. [PMID: 39222676 PMCID: PMC11542356 DOI: 10.1016/j.canlet.2024.217196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocyte growth factor (HGF) plays a critical role in promoting tumor migration, invasion, and metastasis, partly by upregulating integrins. The molecular mechanisms behind how HGF facilitates integrin-mediated tumorigenesis are not fully understood. In this study, we demonstrate that the ubiquitin-specific peptidase 22 (USP22) is essential for HGF-induced melanoma metastasis. HGF treatment dramatically increased the expression of both USP22 and multiple integrin family members in particular ITGAV, ITGB3, and ITGA1. An unbiased analysis of the TCGA database reveals integrins as common downstream targets of both USP22 and HGF across multiple human cancer types. Notably, CRISPR-mediated deletion of USP22 completely eliminates HGF-induced integrin expression in melanoma cells. At the molecular level, USP22 acts as a bona fide deubiquitinase for Sp1, a transcription factor for the ITGAV, ITGB3, and ITGA1 genes. USP22 interacts with and inhibits Sp1 ubiquitination, protecting against Sp1 proteasomal degradation. Supporting this, immunohistology analysis detects a positive correlation among USP22, Sp1, and integrin αv in human melanoma tissues. This study identifies the death from the signature gene USP22 as a critical positive regulator for HGF-induced integrin expression by deubiquitinating the Sp1 transcription factor during melanoma metastasis.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Na Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yujie Pan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Peng Chu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yang Cheng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guoqing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Houyu Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Bin Zhang
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, USA
| | - Zhaolin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, USA.
| |
Collapse
|
2
|
Benkhoucha M, Tran NL, Senoner I, Breville G, Fritah H, Migliorini D, Dutoit V, Lalive PH. c-Met + Cytotoxic T Lymphocytes Exhibit Enhanced Cytotoxicity in Mice and Humans In Vitro Tumor Models. Biomedicines 2023; 11:3123. [PMID: 38137344 PMCID: PMC10740932 DOI: 10.3390/biomedicines11123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) play a crucial role in anti-tumor immunity. In a previous study, we identified a subset of murine effector CTLs expressing the hepatocyte growth factor (HGF) receptor, c-Met (c-Met+ CTLs), that are endowed with enhanced cytolytic capacity. HGF directly inhibited the cytolytic function of c-Met+ CTLs, both in 2D in vitro assays and in vivo, leading to reduced T cell responses against metastatic melanoma. To further investigate the role of c-Met+ CTLs in a three-dimensional (3D) setting, we studied their function within B16 melanoma spheroids and examined the impact of cell-cell contact on the modulation of inhibitory checkpoint molecules' expression, such as KLRG1, PD-1, and CTLA-4. Additionally, we evaluated the cytolytic capacity of human CTL clones expressing c-Met (c-Met+) and compared it to c-Met- CTL clones. Our results indicated that, similar to their murine counterparts, c-Met+ human CTL clones exhibited increased cytolytic activity compared to c-Met- CTL clones, and this enhanced function was negatively regulated by the presence of HGF. Taken together, our findings highlight the potential of targeting the HGF/c-Met pathway to modulate CTL-mediated anti-tumor immunity. This research holds promise for developing strategies to enhance the effectiveness of CTL-based immunotherapies against cancer.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
| | - Ngoc Lan Tran
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
| | - Gautier Breville
- Department of Clinical Neurosciences, Division of Neurology, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hajer Fritah
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
| | - Denis Migliorini
- Brain Tumor and Immune Cell Engineering Laboratory, Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (D.M.); (V.D.)
- Department of Oncology, Unit of Neuro-Oncology, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Valérie Dutoit
- Brain Tumor and Immune Cell Engineering Laboratory, Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (D.M.); (V.D.)
| | - Patrice H. Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.B.); (N.L.T.); (I.S.); (H.F.)
- Department of Clinical Neurosciences, Division of Neurology, University Hospital of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
3
|
Altintas DM, Comoglio PM. An Observatory for the MET Oncogene: A Guide for Targeted Therapies. Cancers (Basel) 2023; 15:4672. [PMID: 37760640 PMCID: PMC10526818 DOI: 10.3390/cancers15184672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging results, however, the complexity of MET's functions in oncogenesis yields intriguing observations, fostering a humbler stance on our comprehension. This review explores recent discoveries concerning MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues, and outlining future directions. By contextualizing the research question and articulating the study's purpose, this work navigates MET biology's intricacies in cancer, offering a comprehensive perspective.
Collapse
Affiliation(s)
| | - Paolo M. Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, 20139 Milano, Italy;
| |
Collapse
|
4
|
Guo M, Duan Y, Dai S, Li J, Chen X, Qu L, Chen Z, Wei H, Jiang L, Chen Y. Structural study of ponatinib in inhibiting SRC kinase. Biochem Biophys Res Commun 2022; 598:15-19. [PMID: 35151199 DOI: 10.1016/j.bbrc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
Abstract
Ponatinib is a multi-target tyrosine kinase inhibitor that targets ABL, SRC, FGFR, and so on. It was designed to overcome the resistance of BCR-ABL mutation to imatinib, especially the gatekeeper mutation ABLT315I. The molecular mechanism by which ponatinib overcomes mutations of BCR-ABL and some other targets has been explained, but little information is known about the characteristics of ponatinib binding to SRC. Here, we showed that ponatinib inhibited wild type SRC kinase but failed to inhibit SRC gatekeeper mutants in both biochemical and cellular assays. We determined the crystal structure of ponatinib in complex with the SRC kinase domain. In addition, by structural analysis, we provided a possible explanation for why ponatinib showed different effects on SRC and other kinases with gatekeeper mutations. The resistance mechanism of SRC gatekeeper mutations to ponatinib may provide meaningful information for designing inhibitors against SRC family kinases in the future.
Collapse
Affiliation(s)
- Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yankun Duan
- Department of Infectious Diseases & State Local Joint Engineering Laboratory for Anticancer Drugs, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Pathology, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
5
|
Lüttich L, Besso MJ, Heiden S, Koi L, Baumann M, Krause M, Dubrovska A, Linge A, Kurth I, Peitzsch C. Tyrosine Kinase c-MET as Therapeutic Target for Radiosensitization of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:1865. [PMID: 33919702 PMCID: PMC8070694 DOI: 10.3390/cancers13081865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 11/23/2022] Open
Abstract
The receptor tyrosine kinase c-MET activates intracellular signaling and induces cell proliferation, epithelial-to-mesenchymal-transition and migration. Within the present study, we validated the prognostic value of c-MET in patients with head and neck squamous cell carcinoma (HNSCC) treated with radio(chemo)therapy using the Cancer Genome Atlas database and found an association of increased MET gene expression and protein phosphorylation with reduced disease-specific and progression-free survival. To investigate the role of c-MET-dependent radioresistance, c-MET-positive cells were purified from established HNSCC cell lines and a reduced radiosensitivity and enhanced sphere-forming potential, compared to the c-MET-depleted cell population, was found in two out of four analyzed cell lines pointing to regulatory heterogeneity. We showed that c-MET is dynamically regulated after irradiation in vitro and in vivo. Interestingly, no direct impact of c-MET on DNA damage repair was found. The therapeutic potential of eight c-MET targeting agents in combination with irradiation demonstrated variable response rates in six HNSCC cell lines. Amongst them, crizotinib, foretinib, and Pha665752 exhibited the strongest radiosensitizing effect. Kinase activity profiling showed an association of crizotinib resistance with compensatory PI3K/AKT and MAP kinase signaling. Overall, our results indicate that c-MET is conferring radioresistance in HNSCC through modulation of intracellular kinase signaling and stem-like features.
Collapse
Affiliation(s)
- Lina Lüttich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
| | - María José Besso
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
| | - Stephan Heiden
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
| | - Lydia Koi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
| | - Michael Baumann
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Mechthild Krause
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Annett Linge
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
| | - Claudia Peitzsch
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
6
|
Chu Y, Zhou Y, Lu S, Lu F, Hu Y. Pathogenesis of Higher Blood Pressure and Worse Renal Function in Salt-Sensitive Hypertension. Kidney Blood Press Res 2021; 46:236-244. [PMID: 33794518 DOI: 10.1159/000515088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The underlying pathogenesis of patients with salt-sensitive hypertension expressing higher blood pressure and severer renal damage remains uncertain. METHODS We recruited 329 subjects, 131 in salt-sensitive (SS) group, 148 in nonsalt-sensitive (NSS) group, and 50 healthy people in normal group and tested their renal function, 24-h ambulatory blood pressure, and growth factor series. RESULTS The SS group showed worse renal function with lower estimated glomerular filtration rate and higher urinary microalbumin, α-microglobulin, urinary protein Cr ratio, and urinary immunoglobulin. Most indicators in 24-h ambulatory blood pressure of the SS group were significantly enhanced than the NSS group, indicating their higher blood pressure. The significantly elevated growth factors in the SS group were AR, BMP-5, EG-VEGF, GH, HGF, IGFBP-2, IGFBP-3, IGFBP-6, MCSFR, NT-4, PDGF-AA, SCF, SCFR, VEGFR2, VEGFR3, and VEGF-D, compared to other 2 groups or one of them. PI3K-AKT pathway was activated in the SS group. CONCLUSIONS Differences in growth factors and pathways may account for the manifestations of the SS group. Activated PI3K-AKT pathway with higher IGFBP-3 and GH can lead to renal damage. Higher MCSFR in the SS group indicates that high blood pressure and severe kidney damage may be associated with the activation of the immune system. EG-VEGF, VEGFR2, VEGFR3, and VEGF-D can also explain the elevated blood pressure due to the dilated lymphatic system which drains excess sodium and water back into circulation. The SS group presented higher AR and HGF which may worsen renal function by regulating cell proliferation and tumor formation. However, due to the potential low awareness rate of hypertension at the very beginning, we cannot ensure the exact occurrence order of blood pressure, renal damage, and salt sensitivity. Therefore, further studies which can track data from the onset of hypertension are needed.
Collapse
Affiliation(s)
- Yuguang Chu
- Department of Cardiology, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yan Zhou
- Department of Cardiology, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China.,Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Shihua Lu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Lu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Cheng H, Zhou L, Long Y, Xiang J, Chen L. MACC1 Is Associated With Epithelial-Mesenchymal Transition and Can Predict Poor Prognosis in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:644120. [PMID: 33854976 PMCID: PMC8039464 DOI: 10.3389/fonc.2021.644120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Given the reported correlation between the oncogene metastasis-associated in colon cancer 1 (MACC1) and nasopharyngeal carcinoma (NPC), as well as between MACC1 and epithelial–mesenchymal transition (EMT), we speculated that EMT is a likely causative link between MACC1 expression and poor NPC prognosis. Thus, we aim to clarify the relationship between MACC1 and EMT in NPC prognosis. Material and Methods We performed immunohistochemical examination of tissue sections from 128 NPC patients that were divided into six groups corresponding to high and low protein expression of MACC1 and two EMT-related proteins, vimentin and E-cadherin, and Kaplan–Meier (KM) survival analyses were performed. Results KM survival analysis showed that upregulation of MACC1 and vimentin and downregulation of E-cadherin were significantly associated with reduced survival in NPC. Short hairpin RNA (shRNA) interference and immunoblotting in the NPC cell line HNE-1 led to increased E-cadherin but decreased vimentin levels. MACC1 overexpression was significantly correlated with poor 5-year overall survival, metastasis-free survival, and disease-free survival (P<0.05) but not with poor relapse-free survival (P>0.05). Univariate analyses revealed that MACC1, E-cadherin, and vimentin levels along with T and N tumor classifications and cancer staging are significant prognostic factors of NPC (P<0.05). Conclusion Our findings showed the association between MACC1 and EMT in NPC malignancy and support the role of MACC1 as a prognostic biomarker and molecular target for NPC treatment.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, China
| | - Linxiang Zhou
- Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Yalan Long
- Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Juanjuan Xiang
- Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Parr C, Ali AY. Boswellia frereana suppresses HGF-mediated breast cancer cell invasion and migration through inhibition of c-Met signalling. J Transl Med 2018; 16:281. [PMID: 30314527 PMCID: PMC6186110 DOI: 10.1186/s12967-018-1660-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) plays a pivotal role in breast cancer cell motility, invasion and angiogenesis. These pro-metastatic events are triggered through HGF coupling and activation of the c-Met receptor. Reports have demonstrated that HGF/c-Met signalling plays an important part in breast cancer progression and that their expression is linked to poor patient outcome. In the present study, we investigated the anti-metastatic potential of an extract from traditional Somalian frankincense, Boswellia frereana, on human breast cancer cells. In addition, we also examined the effect of this Boswellia frereana extract (BFE) upon HGF-mediated stimulation of the c-Met receptor. METHODS Two triple negative human breast cancer cell lines, BT549 and MDA-MB-231, were utilised in the study to examine the effect of BFE on tumour cell proliferation, migration, matrix-adhesion, angiogenesis and invasion. Cell migration was investigated using a Cell IQ time-lapsed motion analysis system; while tumour cell-matrix adhesion, angiogenesis and invasion were assessed through Matrigel-based in vitro assays. Breast cancer cell growth and spheroid formation was examined through proliferation assay and 3D non-scaffold cell culture techniques. Western Blotting was employed to determine the phosphorylation status of the c-Met receptor tyrosine kinase following BFE treatment and subsequent HGF stimulation. RESULTS Following HGF treatment, the breast cancer cells displayed a significant increase in migration, matrix adhesion, vessel/tubule formation, invasion and c-Met activation. HGF did not appear to have any bearing on the proliferation rate or spheroid formation of these breast cancer cells. The addition of the BFE extract quenched the HGF-enhanced migratory, angiogenic and invasive potential of these cells. Further study revealed that BFE inhibited c-Met receptor tyrosine kinase phosphorylation within these breast cancer cells. CONCLUSIONS Our findings reveal that BFE was able to significantly suppress the influence of HGF in breast cancer cell motility and invasion in vitro, through the ability of BFE to reduce HGF/c-Met signalling events. Therefore, these results indicate that BFE could play a novel role in the treatment of breast cancer.
Collapse
Affiliation(s)
- Christian Parr
- Connective Tissue Laboratories, Sir Martin Evans Building, School of Biosciences, Cardiff, UK
| | - Ahmed Y. Ali
- Connective Tissue Laboratories, Sir Martin Evans Building, School of Biosciences, Cardiff, UK
| |
Collapse
|
10
|
Jiang J, Feng X, Zhou W, Wu Y, Yang Y. MiR-128 reverses the gefitinib resistance of the lung cancer stem cells by inhibiting the c-met/PI3K/AKT pathway. Oncotarget 2018; 7:73188-73199. [PMID: 27690301 PMCID: PMC5341972 DOI: 10.18632/oncotarget.12283] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Gefitinib is a first line anti-tumor drug used for the treatment of patients with non-small cell lung cancer (NSCLC) harboring EGFR mutations. However, the drug resistance to gefitinib limits its clinical application. Here, we observed the CSCs of PC9 are obviously resistant to gefitinib compared with the non-CSCs. Furthermore, we found the gefitinib failed to suppress the PI3K/AKT pathway in the PC9-CSCs. Mechanically, we showed significant down-regulation of miR-128 in the PC9-CSCs compared with the non-CSCs. Overexpression of miR-128 significantly increased the sensitivity of PC9-CSCs to gefitinib-induced apoptosis. In addition, the gene of c-met was proved to be directly inhibited by miR-128. Enforced expression of c-met could "rescue" the miR-128 promoted apoptosis and cleavage of caspases in PC9-CSCs treated with gefitinib. Thus, these results indicate that the miR-128/c-met pathway enhances the gefitinib sensitivity of the lung cancer stem cells by suppressing the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jingjin Jiang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoning Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wenjing Zhou
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yue Wu
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yunmei Yang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
11
|
Shu Y, Xie B, Liang Z, Chen J. Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met. Oncol Lett 2017; 15:2252-2258. [PMID: 29434932 PMCID: PMC5777119 DOI: 10.3892/ol.2017.7561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy is an irreplaceable treatment for prostate cancer. However, the acquisition of chemoresistance is a common and critical problem that requires urgent solutions for the effective treatment of this disease. The aim of the present study was to determine whether the combination of quercetin with doxorubicin reversed the resistance of prostate cancer cells to doxorubicin-based therapy. A prostate cancer (PC)3 cell line (PC3/R) with acquired doxorubicin-resistance was established. A significant drug-resistance to doxorubicin and high activation of the phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) pathway in PC3/R cells, compared with normal PC3 cells, was demonstrated. Notably, combination treatment of doxorubicin with quercetin significantly promoted the doxorubicin-induced apoptosis in PC3/R cells through the mitochondrial/reaction oxygen species pathway. In PC3/R cells, a significant upregulation of tyrosine-protein kinase-met (c-met) was observed compared with nromal PC3 cells. However, the response to quercetin treatment in PC3/R cells inhibited c-met expression and the downstream PI3K/AKT pathway. In addition, induced expression of c-met rescued quercetin-promoted apoptosis in PC3/R cells treated with doxorubicin. The results of the present study indicated that quercetin is able to reverse prostate cancer cell doxorubicin resistance by downregulating the expression of c-met. It may represent a potential strategy for reversing the chemoresistance of prostate cancer.
Collapse
Affiliation(s)
- Yan Shu
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Bo Xie
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhen Liang
- Department of Urology Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
12
|
Lu X, Peled N, Greer J, Wu W, Choi P, Berger AH, Wong S, Jen KY, Seo Y, Hann B, Brooks A, Meyerson M, Collisson EA. MET Exon 14 Mutation Encodes an Actionable Therapeutic Target in Lung Adenocarcinoma. Cancer Res 2017; 77:4498-4505. [PMID: 28522754 DOI: 10.1158/0008-5472.can-16-1944] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/31/2016] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
Targeting somatically activated oncogenes has revolutionized the treatment of non-small cell lung cancer (NSCLC). Mutations in the gene mesenchymal-epithelial transition (MET) near the exon 14 splice sites are recurrent in lung adenocarcinoma and cause exon skipping (METΔ14). Here, we analyzed 4,422 samples from 12 different malignancies to estimate the rate of said exon skipping. METΔ14 mutation and transcript were most common in lung adenocarcinoma. Endogenously expressed levels of METΔ14 transformed human epithelial lung cells in a hepatocyte growth factor-dependent manner. In addition, overexpression of the orthologous mouse allele induced lung adenocarcinoma in a novel, immunocompetent mouse model. Met inhibition showed clinical benefit in this model. In addition, we observed a clinical response to crizotinib in a patient with METΔ14-driven NSCLC, only to observe new missense mutations in the MET activation loop, critical for binding to crizotinib, upon clinical progression. These findings support genomically selected clinical trials directed toward METΔ14 in a fraction of NSCLC patients, confirm second-site mutations for further therapeutic targeting prior to and beyond acquired resistance, and provide an in vivo system for the study of METΔ14 in an immunocompetent host. Cancer Res; 77(16); 4498-505. ©2017 AACR.
Collapse
Affiliation(s)
- Xinyuan Lu
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, California
| | - Nir Peled
- Thoracic Cancer Unit, Davidoff Cancer Center and Tel Aviv University, Petach Tiqwa, Israel
| | - John Greer
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, California
| | - Wei Wu
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, California
| | - Peter Choi
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Sergio Wong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Kuang-Yu Jen
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Byron Hann
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, California
| | - Angela Brooks
- Department of Biomedical Engineering, University of California, Santa Cruz, Santa Cruz, California
| | | | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, California.
| |
Collapse
|
13
|
Wnt Signaling in Renal Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8060057. [PMID: 27322325 PMCID: PMC4931622 DOI: 10.3390/cancers8060057] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.
Collapse
|
14
|
Ilangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S. The hepatocyte growth factor (HGF)–MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions. Cytokine 2016; 82:125-39. [PMID: 26822708 DOI: 10.1016/j.cyto.2015.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/14/2022]
|
15
|
Ohtaki S, Wanibuchi M, Kataoka-Sasaki Y, Sasaki M, Oka S, Noshiro S, Akiyama Y, Mikami T, Mikuni N, Kocsis JD, Honmou O. ACTC1 as an invasion and prognosis marker in glioma. J Neurosurg 2016; 126:467-475. [PMID: 27081897 DOI: 10.3171/2016.1.jns152075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Glioma is a major class of brain tumors, and glioblastoma (GBM) is the most aggressive and malignant type. The nature of tumor invasion makes surgical removal difficult, which results in remote recurrence. The present study focused on glioma invasion and investigated the expression of actin, alpha cardiac muscle 1 (ACTC1), which is 1 of 6 actin families implicated in cell motility. METHODS mRNA expression of ACTC1 expression was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) in 47 formalin-fixed, paraffin-embedded glioma tissues that were graded according to WHO criteria: Grade I (n = 4); Grade II (n = 12); Grade III (n = 6); and Grade IV (n = 25). Survival was analyzed using the Kaplan-Meier method. The relationships between ACTC1 expression and clinical features such as radiological findings at the time of diagnosis and recurrence, patient age, Karnofsky Performance Scale status (KPS), and the MIB-1 index were evaluated. RESULTS The incidence of ACTC1 expression as a qualitative assessment gradually increased according to WHO grade. The hazard ratio for the median overall survival (mOS) of the patients with ACTC1-positive high-grade gliomas as compared with the ACTC1-negative group was 2.96 (95% CI, 1.03-8.56). The mOS was 6.28 years in the ACTC1-negative group and 1.26 years in the positive group (p = 0.037). In GBM patients, the hazard ratio for mOS in the ACTC1-positive GBMs as compared with the ACTC1-negative group was 2.86 (95% CI 0.97-8.45). mOS was 3.20 years for patients with ACTC1-negative GBMs and 1.08 years for patients with ACTC1-positive GBMs (p = 0.048). By the radiological findings, 42.9% of ACTC1-positive GBM patients demonstrated invasion toward the contralateral cerebral hemisphere at the time of diagnosis, although no invasion was observed in ACTC1-negative GBM patients (p = 0.013). The recurrence rate of GBM was 87.5% in the ACTC1-positive group; in contrast, none of the ACTC1-negative patients demonstrated distant recurrence (0.007). No remarkable relationship was demonstrated among ACTC1 expression and patient age, KPS, and the MIB-1 index. CONCLUSIONS ACTC1 may serve as a novel independent prognostic and invasion marker in GBM.
Collapse
Affiliation(s)
- Shunya Ohtaki
- Departments of 1 Neurosurgery and.,Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Masahiko Wanibuchi
- Departments of 1 Neurosurgery and.,Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yuko Kataoka-Sasaki
- Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Masanori Sasaki
- Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.,Department of Neurology, Yale University School of Medicine, New Haven; and.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Shinichi Oka
- Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Shouhei Noshiro
- Departments of 1 Neurosurgery and.,Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | - Takeshi Mikami
- Departments of 1 Neurosurgery and.,Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven; and.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.,Department of Neurology, Yale University School of Medicine, New Haven; and.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
16
|
Fajardo-Puerta AB, Mato Prado M, Frampton AE, Jiao LR. Gene of the month: HGF. J Clin Pathol 2016; 69:575-9. [DOI: 10.1136/jclinpath-2015-203575] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
Abstract
Hepatocyte growth factor (HGF) is a multifunctional cytokine with important roles in cell proliferation, survival, motility and morphogenesis. Secreted by cells of mesenchymal origin, HGF is the specific ligand for the tyrosine-kinase receptor c-MET (cellular mesenchymal-epithelial transition), also called MET, which is expressed in different types of epithelial, endothelial and haematopoietic progenitor cells. The HGF/MET axis is involved in several biological processes, such as embryogenesis, organogenesis, adult tissue regeneration (including wound healing and liver regeneration) and carcinogenesis, for both solid and haematological malignancies.1 2 HGF and its particular interaction with the MET receptor have been extensively investigated in the last decades and remain the focus of numerous clinical trials.3–8 This short review focuses on HGF structure and function, as well as its roles in liver regeneration and different types of tumours.
Collapse
|
17
|
Dai L, Trillo-Tinoco J, Cao Y, Bonstaff K, Doyle L, Del Valle L, Whitby D, Parsons C, Reiss K, Zabaleta J, Qin Z. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma. Blood 2015; 126:2821-31. [PMID: 26531163 PMCID: PMC4692142 DOI: 10.1182/blood-2015-07-658823] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a principal causative agent of primary effusion lymphoma (PEL) with a poor prognosis in immunocompromised patients. However, it still lacks effective treatment which urgently requires the identification of novel therapeutic targets for PEL. Here, we report that the hepatocyte growth factor (HGF)/c-MET pathway is highly activated by KSHV in vitro and in vivo. The selective c-MET inhibitor, PF-2341066, can induce PEL apoptosis through cell cycle arrest and DNA damage, and suppress tumor progression in a xenograft murine model. By using microarray analysis, we identify many novel genes that are potentially controlled by HGF/c-MET within PEL cells. One of the downstream candidates, ribonucleoside-diphosphate reductase subunit M2 (RRM2), also displays the promising therapeutic value for PEL treatment. Our findings provide the framework for development of HGF/c-MET-focused therapy and implementation of clinical trials for PEL patients.
Collapse
Affiliation(s)
- Lu Dai
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA; Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine and
| | - Jimena Trillo-Tinoco
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA
| | - Yueyu Cao
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | | | | | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA
| | - Zhiqiang Qin
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA; Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Mikami K, Medová M, Nisa L, Francica P, Glück AA, Tschan MP, Blaukat A, Bladt F, Aebersold DM, Zimmer Y. Impact of p53 Status on Radiosensitization of Tumor Cells by MET Inhibition-Associated Checkpoint Abrogation. Mol Cancer Res 2015; 13:1544-53. [PMID: 26358474 DOI: 10.1158/1541-7786.mcr-15-0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2-M cell-cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1-S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1-S and G2-M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wild-type p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell-cycle distribution profiling indicates constantly lower G1 and higher G2-M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared with the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, as p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA-damaging agents for MET-positive/p53-negative tumors.
Collapse
Affiliation(s)
- K Mikami
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - M Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - L Nisa
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - P Francica
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - A A Glück
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - M P Tschan
- Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - A Blaukat
- Merck Serono Research & Development, Merck KGaA, Darmstadt, Germany
| | - F Bladt
- Merck Serono Research & Development, Merck KGaA, Darmstadt, Germany
| | - D M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Y Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Jagoda EM, Bhattacharyya S, Kalen J, Riffle L, Leeder A, Histed S, Williams M, Wong KJ, Xu B, Szajek LP, Elbuluk O, Cecchi F, Raffensperger K, Golla M, Bottaro DP, Choyke P. Imaging the Met Receptor Tyrosine Kinase (Met) and Assessing Tumor Responses to a Met Tyrosine Kinase Inhibitor in Human Xenograft Mouse Models with a [
99m
Tc] (AH-113018) or CY 5** (AH-112543) Labeled Peptide. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elaine M. Jagoda
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Sibaprasad Bhattacharyya
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Joseph Kalen
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Lisa Riffle
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Avrum Leeder
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Stephanie Histed
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Mark Williams
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Karen J. Wong
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Biying Xu
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Lawrence P. Szajek
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Osama Elbuluk
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Fabiola Cecchi
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Kristen Raffensperger
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Meghana Golla
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Donald P. Bottaro
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Peter Choyke
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| |
Collapse
|
20
|
Watermann I, Schmitt B, Stellmacher F, Müller J, Gaber R, Kugler C, Reinmuth N, Huber RM, Thomas M, Zabel P, Rabe KF, Jonigk D, Warth A, Vollmer E, Reck M, Goldmann T. Improved diagnostics targeting c-MET in non-small cell lung cancer: expression, amplification and activation? Diagn Pathol 2015; 10:130. [PMID: 26215852 PMCID: PMC4517562 DOI: 10.1186/s13000-015-0362-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/09/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Several c-MET targeting inhibitory molecules have already shown promising results in the treatment of patients with Non-small Cell Lung Cancer (NSCLC). Combination of EGFR- and c-MET-specific molecules may overcome EGFR tyrosine kinase inhibitor (TKI) resistance. The aim of this study was to allow for the identification of patients who might benefit from TKI treatments targeting MET and to narrow in on the diagnostic assessment of MET. METHODS 222 tumor tissues of patients with NSCLC were analyzed concerning c-MET expression and activation in terms of phosphorylation (Y1234/1235 and Y1349) using a microarray format employing immunohistochemistry (IHC). Furthermore, protein expression and MET activation was correlated with the amplification status by Fluorescence in Situ Hybridization (FISH). RESULTS Correlation was observed between phosphorylation of c-MET at Y1234/1235 and Y1349 (spearman correlation coefficient rs = 0.41; p < 0.0001). No significant correlation was shown between MET expression and phosphorylation (p > 0.05). c-MET gene amplification was detected in eight of 214 patients (3.7%). No significant association was observed between c-MET amplification, c-MET protein expression and phosphorylation. CONCLUSION Our data indicate, that neither expression of c-MET nor the gene amplification status might be the best way to select patients for MET targeting therapies, since no correlation with the activation status of MET was observed. We propose to take into account analyzing the phosphorylation status of MET by IHC to select patients for MET targeting therapies. Signaling of the receptor and the activation of downstream molecules might be more crucial for the benefit of therapeutics targeting MET receptor tyrosine kinases than expression levels alone.
Collapse
Affiliation(s)
- I Watermann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany.
- LungenClinic Grosshansdorf, Grosshansdorf, Germany.
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.
| | - B Schmitt
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - F Stellmacher
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - J Müller
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - R Gaber
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ch Kugler
- LungenClinic Grosshansdorf, Grosshansdorf, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - N Reinmuth
- LungenClinic Grosshansdorf, Grosshansdorf, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - R M Huber
- Ludwig Maximilians University (LMU), Munich, Germany
- Comprehensive Pneumology Center Munich, (CPC-M), Member of the German Center for Lung Research, Thoracic Oncology Centre Munich, Munich, Germany
| | - M Thomas
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - P Zabel
- Medical Clinic, Research Center Borstel, Borstel, Germany
| | - K F Rabe
- LungenClinic Grosshansdorf, Grosshansdorf, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - D Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), Member of the German Center for Lung Research, Munich, Germany
| | - A Warth
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research, Heidelberg, Germany
| | - E Vollmer
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - M Reck
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Ludwig Maximilians University (LMU), Munich, Germany
| | - T Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
21
|
Mao ZY, Zhu GQ, Ren L, Guo XC, Su D, Bai L. Prognostic Value of C-met Expression in Cholangiocarcinoma. Technol Cancer Res Treat 2015; 15:227-33. [PMID: 25873560 DOI: 10.1177/1533034615578959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/19/2015] [Indexed: 12/14/2022] Open
Abstract
Aim: To explore the relationship of clinicopathological features and the proteins of C-met expression in the prognosis of cholangiocarcinoma. Methods: Clinical data and the completed follow-up information of patients with cholangiocarcinoma who underwent cholangiocarcinoma operation from January 2004 to December 2010 were analyzed retrospectively. The relationship of clinicopathological features and C-met in the prognosis of the patients was analyzed. Results: Patients with high expression of C-met had significantly shorter overall survival than those with low expression of C-met, the difference being statistically significant ( P = .003). Patients with high C-met expression had significantly shorter disease-free survival time than those with low expression of C-met, the difference being statistically significant ( P = .009). By COX multivariate analysis, high C-met expression in tumor tissues was an independent risk factor in predicting overall survival and disease-free survival for patients with cholangiocarcinoma ( P = .038, .048, relative risk = 1.390, 1.427). Conclusion: Patients with high C-met expression in cancer tissues had shorter disease-free survival and overall survival. High expression of C-met is an independent risk factor for overall survival and disease-free survival.
Collapse
Affiliation(s)
- Zhi-Yuan Mao
- Department of Oncology, Air Force General Hospital of PLA, Beijing, China
| | - Guang-Qing Zhu
- Department of Oncology, Air Force General Hospital of PLA, Beijing, China
| | - Li Ren
- Department of Pathology, Air Force General Hospital of PLA, Beijing, China
| | - Xiao-Chuan Guo
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Dan Su
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Li Bai
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Finocchiaro G, Toschi L, Gianoncelli L, Baretti M, Santoro A. Prognostic and predictive value of MET deregulation in non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:83. [PMID: 25992382 PMCID: PMC4416957 DOI: 10.3978/j.issn.2305-5839.2015.03.43] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022]
Abstract
Recent progress in cancer biology has led to the discovery of increasing number of oncogene alterations that have dramatically changed the paradigm of lung cancer treatment. MET is a tyrosine kinase receptor for the hepatocyte growth factor (HGF) that is deregulated in several malignancies, including non-small cell lung cancer (NSCLC). Abnormal MET-HGF signaling pathway activation can occur via different mechanisms, including HGF and/or MET overexpression, MET gene amplification, mutations or rearrangements. MET protein overexpression and increased MET gene number have been identified as poor prognostic factors in several series of surgically resected NSCLC making this receptor an attractive target for cancer treatment. Several clinical trials have recently evaluated the activity of a variety of anti-MET strategies in NSCLC patients with or without molecular selection with a variable degree of success, underscoring the need of establishing the best predictive biomarker for the identification of responding patients.
Collapse
Affiliation(s)
- Giovanna Finocchiaro
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Luca Toschi
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Letizia Gianoncelli
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Marina Baretti
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
23
|
Wood SL, Pernemalm M, Crosbie PA, Whetton AD. Molecular histology of lung cancer: from targets to treatments. Cancer Treat Rev 2015; 41:361-75. [PMID: 25825324 DOI: 10.1016/j.ctrv.2015.02.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 01/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide with a 5-year survival rate of less than 15%, despite significant advances in both diagnostic and therapeutic approaches. Combined genomic and transcriptomic sequencing studies have identified numerous genetic driver mutations that are responsible for the development of lung cancer. In addition, molecular profiling studies identify gene products and their mutations which predict tumour responses to targeted therapies such as protein tyrosine kinase inhibitors and also can offer explanation for drug resistance mechanisms. The profiling of circulating micro-RNAs has also provided an ability to discriminate patients in terms of prognosis/diagnosis and high-throughput DNA sequencing strategies are beginning to elucidate cell signalling pathway mutations associated with oncogenesis, including potential stem cell associated pathways, offering the promise that future therapies may target this sub-population, preventing disease relapse post treatment and improving patient survival. This review provides an assessment of molecular profiling within lung cancer concerning molecular mechanisms, treatment options and disease-progression. Current areas of development within lung cancer profiling are discussed (i.e. profiling of circulating tumour cells) and future challenges for lung cancer treatment addressed such as detection of micro-metastases and cancer stem cells.
Collapse
Affiliation(s)
- Steven L Wood
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester M20 3LJ, UK.
| | - Maria Pernemalm
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester M20 3LJ, UK; Karolinska Institutet, Department of Oncology and Pathology, SciLifeLab, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Philip A Crosbie
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester M20 3LJ, UK
| | - Anthony D Whetton
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester M20 3LJ, UK
| |
Collapse
|
24
|
High c-Met expression is a negative prognostic marker for colorectal cancer: a meta-analysis. Tumour Biol 2015; 36:515-20. [DOI: 10.1007/s13277-014-2659-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/18/2014] [Indexed: 12/14/2022] Open
|
25
|
Jagoda EM, Bhattacharyya S, Kalen J, Riffle L, Leeder A, Histed S, Williams M, Wong KJ, Xu B, Szajek LP, Elbuluk O, Cecchi F, Raffensperger K, Golla M, Bottaro DP, Choyke P. Imaging the Met Receptor Tyrosine Kinase (Met) and Assessing Tumor Responses to a Met Tyrosine Kinase Inhibitor in Human Xenograft Mouse Models with a [99mTc] (AH-113018) or Cy 5** (AH-112543) Labeled Peptide. Mol Imaging 2015; 14:499-515. [PMID: 26461980 PMCID: PMC7709139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
Developing an imaging agent targeting the hepatocyte growth factor receptor protein (Met) status of cancerous lesions would aid in the diagnosis and monitoring of Met-targeted tyrosine kinase inhibitors (TKIs). A peptide targeting Met labeled with [(99m)Tc] had high affinity in vitro (Kd = 3.3 nM) and detected relative changes in Met in human cancer cell lines. In vivo [(99m)Tc]-Met peptide (AH-113018) was retained in Met-expressing tumors, and high-expressing Met tumors (MKN-45) were easily visualized and quantitated using single-photon emission computed tomography or optical imaging. In further studies, MKN-45 mouse xenografts treated with PHA 665752 (Met TKI) or vehicle were monitored weekly for tumor responses by [(99m)Tc]-Met peptide imaging and measurement of tumor volumes. Tumor uptake of [(99m)Tc]-Met peptide was significantly decreased as early as 1 week after PHA 665752 treatment, corresponding to decreases in tumor volumes. These results were comparable to Cy5**-Met peptide (AH-112543) fluorescence imaging using the same treatment model. [(99m)Tc] or Cy5**-Met peptide tumor uptake was further validated by histologic (necrosis, apoptosis) and immunoassay (total Met, p Met, and plasma shed Met) assessments in imaged and nonimaged cohorts. These data suggest that [(99m)Tc] or Cy5**-Met peptide imaging may have clinical diagnostic, prognostic, and therapeutic monitoring applications.
Collapse
|
26
|
Abstract
The survival outcome of patients with malignant gliomas is still poor, despite advances in surgical techniques, radiation therapy and the development of novel chemotherapeutic agents. The heterogeneity of molecular alterations in signaling pathways involved in the pathogenesis of these tumors contributes significantly to their resistance to treatment. Several molecular targets for therapy have been discovered over the last several years. Therapeutic agents targeting these signaling pathways may provide more effective treatments and may improve survival. This review summarizes the important molecular therapeutic targets and the outcome of published clinical trials involving targeted therapeutic agents in glioma patients.
Collapse
|
27
|
Sylvester PW. Targeting met mediated epithelial-mesenchymal transition in the treatment of breast cancer. Clin Transl Med 2014; 3:30. [PMID: 26932375 PMCID: PMC4883993 DOI: 10.1186/s40169-014-0030-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal epithelial transition factor receptor (Met) is a receptor tyrosine kinase that plays a critical role in promoting cancer cell malignant progression. Met is activated by its ligand hepatocyte growth factor (HGF). HGF-dependent Met activation plays an important role in stimulating epithelial-mesenchymal transition (EMT) in tumor cells, resulting in increased tumor cell proliferation, survival, motility, angiogenesis, invasion, and metastasis. The HGF/Met axis has thus attracted great interest as a potential target in the development of novel cancer therapies. In an effort to suppress tumor cell malignant progression, efforts have been made to develop agents capable of inhibiting inhibit Met-induced EMT, including specific Met tyrosine kinase inhibitors, HGF antagonists that interfere with HGF binding to Met, and antibodies that prevent Met activation and/or dimerization. Tocotrienols, a subgroup within the vitamin E family of compounds, display potent anticancer activity that results, at least in part, from inhibition of HGF-dependent Met activation and signaling. The present review will provide a brief summary of the increasing importance of the HGF/Met axis as an attractive target for cancer chemotherapy and the role of tocotrienols in suppressing Met activation, signaling and HGF-induced EMT in breast cancer cells. Evidence provided suggests that γ-tocotrienol therapy may afford significant benefit in the treatment of breast cancers characterized by Met dysregulation.
Collapse
Affiliation(s)
- Paul W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, 71209-0470, LA, USA.
| |
Collapse
|
28
|
The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms? Cancers (Basel) 2014; 6:1631-69. [PMID: 25119536 PMCID: PMC4190560 DOI: 10.3390/cancers6031631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs).
Collapse
|
29
|
Ozasa H, Oguri T, Maeno K, Takakuwa O, Kunii E, Yagi Y, Uemura T, Kasai D, Miyazaki M, Niimi A. Significance of c-MET overexpression in cytotoxic anticancer drug-resistant small-cell lung cancer cells. Cancer Sci 2014; 105:1032-9. [PMID: 24827412 PMCID: PMC4317853 DOI: 10.1111/cas.12447] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 12/11/2022] Open
Abstract
The c-MET receptor tyrosine kinase is the receptor for hepatocyte growth factor. Recently, activation of the c-MET/hepatocyte growth factor signaling pathway was associated with poor prognosis in various solid tumors and was one of the mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib. But the link between c-MET activation and the cytotoxic anticancer drug has not been fully examined. Here, we found that the enhanced expression and activation of c-MET in cytotoxic anticancer agent-resistant small-cell lung cancer cells. Downregulation of c-MET expression by siRNA against the c-MET gene or inhibition of c-MET activation by SU11274, a c-MET inhibitor, in the resistant cells altered resistance to the cytotoxic anticancer agent. These results indicated that c-MET overexpression might play an important role in acquired resistance to cytotoxic anticancer drugs. Furthermore, the number of c-MET gene loci was increased in the resistant cells compared to the parental cells. In conclusion, increased c-Met expression through an increase in the number of c-MET gene loci is one of the mechanisms of acquired resistance to cytotoxic anticancer drugs. Our results add a new strategy, the targeting of c-MET, for overcoming resistance to cytotoxic agents in small-cell lung cancer.
Collapse
Affiliation(s)
- Hiroaki Ozasa
- Department of Medical Oncology and Immunology, Nagoya City University, Nagoya, Japan; Department of Multidisciplinary Cancer Treatment, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene 2014; 34:1883-9. [PMID: 24882574 DOI: 10.1038/onc.2014.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field.
Collapse
Affiliation(s)
- E Vigna
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - P M Comoglio
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|
31
|
Wardak Z, Choe KS. Molecular pathways and potential therapeutic targets in glioblastoma multiforme. Expert Rev Anticancer Ther 2014; 13:1307-18. [DOI: 10.1586/14737140.2013.852472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
32
|
Molinelli EJ, Korkut A, Wang W, Miller ML, Gauthier NP, Jing X, Kaushik P, He Q, Mills G, Solit DB, Pratilas CA, Weigt M, Braunstein A, Pagnani A, Zecchina R, Sander C. Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput Biol 2013; 9:e1003290. [PMID: 24367245 PMCID: PMC3868523 DOI: 10.1371/journal.pcbi.1003290] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 08/26/2013] [Indexed: 12/16/2022] Open
Abstract
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology. Drugs that target specific effects of signaling proteins are promising agents for treating cancer. One of the many obstacles facing optimal drug design is inadequate quantitative understanding of the coordinated interactions between signaling proteins. De novo model inference of network or pathway models refers to the algorithmic construction of mathematical predictive models from experimental data without dependence on prior knowledge. De novo inference is difficult because of the prohibitively large number of possible sets of interactions that may or may not be consistent with observations. Our new method overcomes this difficulty by adapting a method from statistical physics, called Belief Propagation, which first calculates probabilistically the most likely interactions in the vast space of all possible solutions, then derives a set of individual, highly probable solutions in the form of executable models. In this paper, we test this method on artificial data and then apply it to model signaling pathways in a BRAF-mutant melanoma cancer cell line based on a large set of rich output measurements from a systematic set of perturbation experiments using drug combinations. Our results are in agreement with established biological knowledge, predict novel interactions, and predict efficacious drug targets that are specific to the experimental cell line and potentially to related tumors. The method has the potential, with sufficient systematic perturbation data, to model, de novo and quantitatively, the effects of hundreds of proteins on cellular responses, on a scale that is currently unreachable in diverse areas of cell biology. In a disease context, the method is applicable to the computational design of novel combination drug treatments.
Collapse
Affiliation(s)
- Evan J. Molinelli
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Tri-Institutional Program for Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Anil Korkut
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Weiqing Wang
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Martin L. Miller
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nicholas P. Gauthier
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Xiaohong Jing
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Poorvi Kaushik
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Tri-Institutional Program for Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Qin He
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Gordon Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David B. Solit
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Christine A. Pratilas
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Martin Weigt
- Laboratoire de Génomique des Microorganismes, Université Pierre et Marie Curie, Paris, France
| | - Alfredo Braunstein
- Politecnico di Torino and Human Genetics Foundation, HuGeF, Torino, Italy
| | - Andrea Pagnani
- Politecnico di Torino and Human Genetics Foundation, HuGeF, Torino, Italy
| | - Riccardo Zecchina
- Politecnico di Torino and Human Genetics Foundation, HuGeF, Torino, Italy
| | - Chris Sander
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Effects of MACC1 siRNA on biological behaviors of HeLa. Arch Gynecol Obstet 2013; 289:1271-80. [PMID: 24346124 DOI: 10.1007/s00404-013-3126-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022]
Abstract
PURPOSE Metastasis-associated in colon cancer 1 (MACC1) has been shown to play a critical role in several types of cancer. The purposes of this study were to evaluate MACC1 expression in cervical cancer and determine role of MACC1 small interference RNA (siRNA) in the growth and progression of cervical cancer. METHODS Immunohistochemical analysis of MACC1 expression was performed in different cervical lesion tissues. siRNA knockdown of MACC1 was performed. Cytoskeletal staining, RT-PCR, Western blot technology, transwell migration, MTT, and flow cytometry were used for identification of the functional roles of MACC1 siRNA in HeLa cells. RESULTS Immunohistochemistry demonstrated that MACC1 overexpression was detected in cervical cancer tissues. MACC1 siRNA transfection remarkably affected HeLa cell biological behaviors. Expression of MACC1 in HeLa cells was significantly down-regulated by MACC1 siRNA. In addition, knockdown of MACC1 in HeLa cells caused a significant decrease in cell proliferation or migration, and increased cell apoptosis rate. Flow cytometry showed that MACC1 siRNA may inhibit cell proliferation by interfering with cell mitosis and cell cycle progression. CONCLUSIONS These results suggest that MACC1 is a novel biomarker for cervical cancer diagnosis and a target for therapeutic interventions. Decreasing MACC1 expression by siRNA may prove to be an effective genetic therapy strategy.
Collapse
|
34
|
Vrana JA, Boggs N, Currie HN, Boyd J. Amelioration of an undesired action of deguelin. Toxicon 2013; 74:83-91. [PMID: 23933198 DOI: 10.1016/j.toxicon.2013.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 01/09/2023]
Abstract
The pharmaceutical world has greatly benefited from the well-characterized structure-function relationships of toxins with endogenous biomolecules, such as ion-channels, receptors, and signaling molecules. Thus, therapeutics derived from toxins have been aggressively pursued. However, the multifunctional role of various toxins may lead to undesirable off-target effects, hindering their use as therapeutic agents. In this paper, we suggest that previously unsuccessful toxins (due to off-target effects) may be revisited with mixtures by utilizing the pharmacodynamic response to the potential primary therapeutic as a starting point for finding new targets to ameliorate the unintended responses. In this proof of principle study, the pharmacodynamic response of HepG2 cells to a potential primary therapeutic (deguelin, a plant-derived chemopreventive agent) was monitored, and a possible secondary target (p38MAPK) was identified. As a single agent, deguelin decreased cellular viability at higher doses (>10 μM), but inhibited oxygen consumption over a wide dosing range (1.0-100 μM). Our results demonstrate that inhibition of oxygen consumption is related to an increase in p38MAPK phosphorylation, and may only be an undesired side effect of deguelin (i.e., one that does not contribute to the decrease in HepG2 viability). We further show that deguelin's negative effect on oxygen consumption can be diminished while maintaining efficacy when used as a therapeutic mixture with the judiciously selected secondary inhibitor (SB202190, p38MAPK inhibitor). These preliminary findings suggest that an endogenous response-directed mixtures approach, which uses a pharmacodynamic response to a primary therapeutic to determine a secondary target, allows previously unsuccessful toxins to be revisited as therapeutic mixtures.
Collapse
Affiliation(s)
- Julie A Vrana
- C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Prospect Street, P.O. Box 6045, Morgantown, WV 26506, United States
| | | | | | | |
Collapse
|
35
|
Zhu M, Xu Y, Mao X, Gao Y, Shao L, Yan F. Overexpression of metastasis-associated in colon cancer-1 associated with poor prognosis in patients with esophageal cancer. Pathol Oncol Res 2013; 19:749-53. [PMID: 23737034 DOI: 10.1007/s12253-013-9638-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/05/2013] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that expression of metastasis-associated in colon cancer-1(MACC1) is observed in different types of cancer and plays an important role in tumor metastasis. However, the expression of MACC1 and its possible role in esophageal cancer remains unknown. In this study, we determined the expression of MACC1 in esophageal cancer by utilizing immunohistochemistry and analyzed the relationship between the expression and esophageal cancer prognosis. Immunohistochemistry results showed that 47 of 85 cancer lesions (55.2 %) were stained positive, and high expression of MACC1 was correlated with the node metastasis and TNM stage (P < 0.05). The Kaplan-Meier survival curve showed that patients with high MACC1 expression had significantly reduced overall 5-year survival rates (P = 0.004). Cox regression analysis revealed that high expression of MACC1 was associated with increased risk of death (hazard ratio [HR] =2.25) in patients with esophageal cancer. These findings suggested that high expression of MACC1 was correlated with progression and metastasis of esophageal cancer and might serve as a novel prognostic marker for patients with esophageal cancer.
Collapse
Affiliation(s)
- Mingchen Zhu
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, 42 Baiziting Road, Nanjing, 210009, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
36
|
Understanding the functions of tumor stroma in resistance to ionizing radiation: Emerging targets for pharmacological modulation. Drug Resist Updat 2013; 16:10-21. [DOI: 10.1016/j.drup.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/14/2013] [Indexed: 02/08/2023]
|
37
|
Abstract
The receptor tyrosine kinase c-MET and its ligand, hepatocyte growth factor (HGF), regulate multiple cellular processes that stimulate cell proliferation, invasion and angiogenesis. This review provides an overview of the evidence to support c-MET or the HGF/c-MET signaling pathway as relevant targets for personalized cancer treatment based on high frequencies of c-MET and/or HGF overexpression, activation, amplification in non-small cell lung carcinoma (NSCLC), gastric, ovarian, pancreatic, thyroid, breast, head and neck, colon and kidney carcinomas. Additionally, the current knowledge of small molecule inhibitors (tivantinib [ARQ 197]), c-MET/HGF antibodies (rilotumumab and MetMAb) and mechanisms of resistance to c-MET-targeted therapies are discussed.
Collapse
Affiliation(s)
- J Rafael Sierra
- Princess Margaret Hospital/Ontario Cancer Institute and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
38
|
Poomsawat S, Punyasingh J, Vejchapipat P, Larbcharoensub N. Co-expression of hepatocyte growth factor and c-met in epithelial odontogenic tumors. Acta Histochem 2012; 114:400-5. [PMID: 21855117 DOI: 10.1016/j.acthis.2011.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 07/26/2011] [Accepted: 07/31/2011] [Indexed: 02/04/2023]
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-met, have been shown to regulate cell proliferation, motility and morphology in a variety of cell types. A significant role of the HGF/c-met pathway has been demonstrated in various tumors, however, little is known about the role of HGF/c-met pathway in odontogenic tumors. The aim of this study was to characterize the expression of HGF and c-met in 30 ameloblastomas, 7 unicystic ameloblastomas (luminal type), 10 calcifying cystic odontogenic tumors, 10 adenomatoid odontogenic tumors (AOTs), 30 keratocytic odontogenic tumors (KCOTs) and 6 ameloblastic carcinomas using an immunohistochemical method. HGF and c-met were generally immunolocalized in the cytoplasm of all epithelial tumor cells, except for keratinizing cells in acanthomatous ameloblastoma, in all the examined odontogenic tumors. These results, together with the expression of these two proteins in the epithelium of tooth germs, suggest that the HGF/c-met pathway is involved in the differentiation of odontogenic tumors. This pathway may also promote tumor proliferation in odontogenic tumors due to its potent mitogenic effect. The consistent and strong immunolocalization of HGF and c-met in squamous cells present in acanthomatous ameloblastomas, AOTs and ameloblastic carcinomas, and in the linings of KCOTs suggests that the HGF/c-met interaction may have an influence on squamous differentiation in these odontogenic tumors.
Collapse
Affiliation(s)
- Sopee Poomsawat
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| | | | | | | |
Collapse
|
39
|
Lang AH, Geller-Rhomberg S, Winder T, Stark N, Gasser K, Hartmann B, Kohler B, Grizelj I, Drexel H, Muendlein A. A common variant of the MACC1 gene is significantly associated with overall survival in colorectal cancer patients. BMC Cancer 2012; 12:20. [PMID: 22251819 PMCID: PMC3282635 DOI: 10.1186/1471-2407-12-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The newly discovered metastasis-associated in colon cancer-1 (MACC1) gene is a key regulator of the HGF/MET pathway. Deregulation of HGF/MET signaling is reported as a prognostic marker for tumorigenesis, early stage invasion, and metastasis. High expression levels of MACC1 have been associated with colon cancer metastasis and reduced survival. Potential links between the genetic diversity of the MACC1 locus and overall survival are unknown. We therefore investigated the association between MACC1 tagging single nucleotide polymorphisms (SNPs) and overall survival in a large cohort of colorectal cancer patients. METHODS The study included 318 subjects with histopathologically proven colorectal cancer at the Academic Teaching Hospital Feldkirch, Austria. Survival data were provided by the federal agency for statistics in Austria. Genomic DNA was isolated from formalin-fixed paraffin-embedded specimens; six tagging SNPs (rs1990172, rs3114446, rs10275612, rs3095007, rs3095009, and rs7780032), capturing most of the common variants of the MACC1 locus, were genotyped by SNaPshot assays. RESULTS Over a mean follow up period of 5.3 (± 1.0) years, 94 deaths were recorded. Carriers of the G-allele of SNP rs1990172 showed a significantly decreased overall survival (additive HR = 1.38 [1.05-1.82]; p = 0.023). Multivariate analysis adjusted for age and UICC tumor stage confirmed this result (HR = 1.49 [1.12-1.98]; p = 0.007). Other investigated genetic variants of the MACC1 gene were not significantly associated with overall survival (p-values > 0.05). CONCLUSIONS For the first time, our study investigated the influence of MACC1 tagging polymorphisms on overall survival suggesting SNP rs1990172 as a predictor for reduced overall survival in colorectal cancer patients. Further studies will be required to validate our findings.
Collapse
Affiliation(s)
- Alois H Lang
- Vorarlberg Institute for Vascular Investigation and Treatment, A-6800 Feldkirch, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The c-MET (mesenchymal-epithelial transition factor) receptor tyrosine kinase is an exciting novel drug target in view of its key role in oncogenesis, as well as its association with disease prognosis in a number of malignancies. Several drugs targeting c-MET are currently showing promise in clinical trials and will hopefully validate positive observations from preclinical studies. The potential efficacy of these different therapeutic agents is expected to be influenced by the mechanism of aberrant hepatocyte growth factor (HGF)/c-MET signaling pathway activation in a particular cancer, but presents a promising strategy for cancer treatment either as a single agent or as part of a combination therapeutic approach. However, there is an ongoing need to improve and accelerate the transition of preclinical research into improved therapeutic strategies for patients with cancer. The main challenges facing the development of HGF/c-MET-targeted agents for cancer treatment include the discovery of rationally designed anticancer drugs and combination strategies, as well as the validation of predictive biomarkers. This paper discusses these issues, with a particular focus on future directions in the evaluation of c-MET-driven malignancies.
Collapse
Affiliation(s)
- Johann S. de Bono
- Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
41
|
Hong JY, Chung HJ, Lee HJ, Park HJ, Lee SK. Growth inhibition of human lung cancer cells via down-regulation of epidermal growth factor receptor signaling by yuanhuadine, a daphnane diterpene from Daphne genkwa. JOURNAL OF NATURAL PRODUCTS 2011; 74:2102-2108. [PMID: 21916433 DOI: 10.1021/np2003512] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The growth inhibition and antitumor activities of yuanhuadine (1), a daphnane diterpenoid from the flowers of Daphne genkwa, were investigated in human lung cancer cells. Compound 1 exhibited a relatively selective growth inhibition against human lung cancer cells compared to other solid human cancer cell lines. The potent antiproliferative activity by 1 was associated with cell-cycle arrest and modulation of cell-signaling pathways. Cell-cycle arrest in the G0/G1 and G2/M phase was induced by 1 in A549 human non-small-cell lung cancer cells, and these events were correlated with the expression of checkpoint proteins including the up-regulation of p21 and down-regulation of cyclins, cyclin-dependent kinases 2 (CDK2) and 4 (CDK4), and c-Myc. Compound 1 also suppressed the expression of the Akt/mammalian target of rapamycin (mTOR) and its downstream effector molecules including p70 S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4EBP1). Ligand-induced epidermal growth factor receptor (EGFR) and c-Met signaling were also inhibited by 1. The oral administration of 1 (0.5 mg/kg body weight, daily) for 14 days significantly inhibited tumor growth in athymic xenograft nude mouse model bearing human lung A549 cells, without any overt toxicity. Synergistic antiproliferative effects of compound 1 were also found in combination with the EGFR inhibitor gefitinib. Cell-cycle arrest and suppression of Akt/mTOR and EGFR signaling pathways might be plausible mechanisms of actions for the antiproliferative and antitumor activity of 1 in human non-small-cell lung cancer cells.
Collapse
Affiliation(s)
- Ji-Young Hong
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
42
|
Neklason DW, Done MW, Sargent NR, Schwartz AG, Anton-Culver H, Griffin CA, Ahnen DJ, Schildkraut JM, Tomlinson GE, Strong LC, Miller AR, Stopfer JE, Burt RW. Activating mutation in MET oncogene in familial colorectal cancer. BMC Cancer 2011; 11:424. [PMID: 21970370 PMCID: PMC3202244 DOI: 10.1186/1471-2407-11-424] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 10/04/2011] [Indexed: 12/15/2022] Open
Abstract
Background In developed countries, the lifetime risk of developing colorectal cancer (CRC) is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies). Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I) in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in <1% in the general population. The threonine at amino acid position 992 lies in the tyrosine kinase domain of MET and a change to isoleucine at this position has been shown to promote metastatic behavior in cell-based models. The average age of CRC diagnosis in patients in this study is 63 years in mutation carriers, which is 8 years earlier than the general population average for CRC. Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will be an important extension of this work to define the clinical significance.
Collapse
Affiliation(s)
- Deborah W Neklason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ayoub NM, Bachawal SV, Sylvester PW. γ-Tocotrienol inhibits HGF-dependent mitogenesis and Met activation in highly malignant mammary tumour cells. Cell Prolif 2011; 44:516-26. [PMID: 21973114 DOI: 10.1111/j.1365-2184.2011.00785.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Aberrant Met signalling is associated with aggressive cancer cell phenotypes. γ-tocotrienol displays potent anti-cancer activity that is associated with suppression of HER/ErbB receptor signalling. Experiments were conducted to investigate the effects of γ-tocotrienol treatment on HGF-dependent +SA mammary tumour cell proliferation, upon Met activation. MATERIALS AND METHODS The +SA cells were maintained in serum-free defined media containing 10 ng/ml HGF as the mitogen. Cell viability was determined using the MTT assay, western blot analysis was used to measure protein expression, and Met expression and activation were determined using immunofluorescent staining. RESULTS AND CONCLUSIONS Treatment with γ-tocotrienol or Met inhibitor, SU11274, significantly inhibited HGF-dependent +SA cell replication in a dose-responsive manner. Treatment with 4 μmγ-tocotrienol reduced both total Met levels and HGF-induced Met autophosphorylation. In contrast, similar treatment with 5.5 μm SU11274 inhibited HGF-induced Met autophosphorylation, but had no effect on total Met levels. Combined treatment with subeffective doses of γ-tocotrienol (2 μm) and SU11274 (3 μm) resulted in significant inhibition of +SA cell expansion compared to treatment with individual agents alone. These findings show, for the first time, the inhibitory effects of γ-tocotrienol on Met expression and activation, and strongly suggest that γ-tocotrienol treatment may provide significant health benefits in prevention and/or treatment of breast cancer, in women with deregulated HGF/Met signalling.
Collapse
Affiliation(s)
- N M Ayoub
- College of Pharmacy, University of Louisiana at Monroe, USA
| | | | | |
Collapse
|
44
|
Zhang R, Shi H, Chen Z, Wu Q, Ren F, Huang H. Effects of metastasis-associated in colon cancer 1 inhibition by small hairpin RNA on ovarian carcinoma OVCAR-3 cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:83. [PMID: 21923915 PMCID: PMC3182136 DOI: 10.1186/1756-9966-30-83] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/16/2011] [Indexed: 02/08/2023]
Abstract
Background Metastasis-associated in colon cancer 1 (MACC1) is demonstrated to be up-regulated in several types of cancer, and can serve as biomarker for cancer invasion and metastasis. To investigate the relations between MACC1 and biological processes of ovarian cancer, MACC1 specific small hairpin RNA (shRNA) expression plasmids were used to investigate the effects of MACC1 inhibition on ovarian carcinoma OVCAR-3 cells. Methods Expressions of MACC1 were detected in different ovarian tissues by immunohistochemistry. MACC1 specific shRNA expression plasmids were constructed and transfected into OVCAR-3 cells. Then, expressions of MACC1 were examined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Cell proliferation was observed by MTT and monoplast colony formation assay. Flow cytometry and TUNEL assay were used to measure cell apoptosis. Cell migration was assessed by wound healing and transwell migration assay. Matrigel invasion and xenograft model assay were performed to analyze the potential of cell invasion. Activities of Met, MEK1/2, ERK1/2, Akt, cyclinD1, caspase3 and MMP2 protein were measured by Western blot. Results Overexpressions of MACC1 were detected in ovarian cancer tissues. Expression of MACC1 in OVCAR-3 cells was significantly down-regulated by MACC1 specific small hairpin RNA. In OVCAR-3 cells, down-regulation of MACC1 resulted in significant inhibition of cell proliferation, migration and invasion, meanwhile obvious enhancement of apoptosis. As a consequence of MACC1 knockdown, expressions of Met, p-MEK1/2, p-ERK1/2, cyclinD1 and MMP2 protein decreased, level of cleaved capase3 was increased. Conclusions RNA interference (RNAi) against MACC1 could serve as a promising intervention strategy for gene therapy of ovarian carcinoma, and the antitumor effects of MACC1 knockdown might involve in the inhibition of HGF/Met and MEK/ERK pathways.
Collapse
Affiliation(s)
- Ruitao Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, Henan, P.R. China.
| | | | | | | | | | | |
Collapse
|
45
|
Heinrich EL, Walser TC, Krysan K, Liclican EL, Grant JL, Rodriguez NL, Dubinett SM. The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. CANCER MICROENVIRONMENT 2011; 5:5-18. [PMID: 21922183 DOI: 10.1007/s12307-011-0089-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
The inflammatory tumor microenvironment (TME) has many roles in tumor progression and metastasis, including creation of a hypoxic environment, increased angiogenesis and invasion, changes in expression of microRNAs (miRNAs) and an increase in a stem cell phenotype. Each of these has an impact on epithelial mesenchymal transition (EMT), particularly through the downregulation of E-cadherin. Here we review seminal work and recent findings linking the role of inflammation in the TME, EMT and lung cancer initiation, progression and metastasis. Finally, we discuss the potential of targeting aspects of inflammation and EMT in cancer prevention and treatment.
Collapse
Affiliation(s)
- Eileen L Heinrich
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 37-131 CHS Building, Los Angeles, CA, 90095, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Wick W, Wick A, Weiler M, Weller M. Patterns of progression in malignant glioma following anti-VEGF therapy: perceptions and evidence. Curr Neurol Neurosci Rep 2011; 11:305-12. [PMID: 21279815 DOI: 10.1007/s11910-011-0184-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antiangiogenic treatment has recently become an integral part of modern cancer therapy targeting the vasculature of numerous aggressive malignancies including glioblastoma. There is preclinical evidence that antiangiogenic therapies promote glioma cell invasiveness. In clinical series, upon progression on antiangiogenic therapy with the vascular endothelial growth factor-directed antibody bevacizumab (BEV), glioblastoma has been reported to display a more infiltrative pattern of recurrence. This distant spread at recurrence or progression and a gliomatosis cerebri-like growth pattern is best detectable on fluid-attenuated inversion recovery MRI. The frequency of up to 20% to 30% of such a pattern in BEV-treated patients is higher than expected to occur without BEV. Older reports and common clinical knowledge estimate the frequency of diffuse or distant spread in recurrent glioblastoma at 10%. This observation stimulated two streams of research. One is to overcome this often insidious adverse effect of antiangiogenic treatment, to optimize antiangiogenic therapies and to face this major challenge, integrating antiangiogenic with anti-invasive mechanisms into one combined treatment concept. The second is questioning a specific property of antiangiogenic therapy to induce diffuse or distant spread. Here, alternative hypotheses of increased awareness and better imaging as well as invasiveness being part of the natural course of the disease have been tested. Without doubt, migration and invasiveness are major obstacles to successful glioma therapy, notably local therapies, both in the natural course of the disease and in the concept of "evasive resistance." However, clinical analyses of case series, matched pairs analyses, and follow-up on the BRAIN trial (A Study to Evaluate Bevacizumab Alone or in Combination with Irinotecan for Treatment of Glioblastoma Multiforme), which led to accelerated approval of BEV for recurrent glioblastoma in the United States, have not supported a specific propensity of BEV to induce diffuse growth or distant spread at recurrence.
Collapse
Affiliation(s)
- Wolfgang Wick
- Department of Neurooncology, University Clinic Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
47
|
Abstract
Background: Cholangiocarcinoma (CC) is a highly malignant carcinoma. We attempted to clarify the prognostic significance of c-Met overexpression and its association with clinicopathological factors in patients with CC. Patients and methods: One hundred and eleven patients with intrahepatic CC (IHCC) and 136 patients with extrahepatic CC (EHCC) who had undergone curative surgery were divided immunohistologically into c-Methigh and c-Metlow groups. Clinicopathological factors and outcomes were compared between the groups. c-Met and epidermal growth factor receptor (EGFR) expression was also examined in 10 CC cell lines. Results: The positivity of c-Met was 45.0% in IHCC and 68.4% in EHCC; c-Methigh expression was demonstrated in 11.7% of IHCC and 16.2% of EHCC. c-Methigh expression was significantly correlated with the 5-year survival rate for CC overall (P=0.0046) and for IHCC (P=0.0013), histopathological classification in EHCC, and for EGFR overexpression in both IHCC and EHCC. Coexpression and coactivation of c-Met and EGFR were also observed in CC cell lines. Multivariate analysis revealed that c-Methigh expression was an independent predictor of poor overall and disease-free survival in patients with IHCC. Conclusions: c-Met overexpression is associated with EGFR expression and is a poor prognostic factor in CC.
Collapse
|
48
|
Zhang Z, Stiegler AL, Boggon TJ, Kobayashi S, Halmos B. EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget 2011; 1:497-514. [PMID: 21165163 PMCID: PMC3001953 DOI: 10.18632/oncotarget.186] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The development of EGFR tyrosine kinase inhibitors for clinical use in non-small cell lung cancer and the subsequent discovery of activating EGFR mutations have led to an explosion of knowledge in the fields of EGFR biology, targeted therapeutics and lung cancer research. EGFR-mutated adenocarcinoma of the lung has clearly emerged as a unique clinical entity necessitating the routine introduction of molecular diagnostics into our current diagnostic algorithms and leading to the evidence-based preferential usage of EGFR-targeted agents for patients with EGFR-mutant lung cancers. This review will summarize our current understanding of the functional role of activating mutations, key downstream signaling pathways and regulatory mechanisms, pivotal primary and acquired resistance mechanisms, structure-function relationships and ultimately the incorporation of molecular diagnostics and small molecule EGFR tyrosine kinase inhibitors into our current treatment paradigms.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, New York Presbyterian Hospital- Columbia University Medical Center, New York, NY, USA
| | | | | | | | | |
Collapse
|
49
|
Wick W, Weller M, Weiler M, Batchelor T, Yung AWK, Platten M. Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro Oncol 2011; 13:566-79. [PMID: 21636705 PMCID: PMC3107100 DOI: 10.1093/neuonc/nor039] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/28/2011] [Indexed: 12/26/2022] Open
Abstract
Insights into the molecular pathogenesis of glioblastoma have not yet resulted in relevant clinical improvement. With standard therapy, which consists of surgical resection with concomitant temozolomide in addition to radiotherapy followed by adjuvant temozolomide, the median duration of survival is 12-14 months. Therefore, the identification of novel molecular targets and inhibitory agents has become a focus of research for glioblastoma treatment. Recent results of bevacizumab may represent a proof of principle that treatment with targeted agents can result in clinical benefits for patients with glioblastoma. This review discusses limitations in the existing therapy for glioblastoma and provides an overview of current efforts to identify molecular targets using large-scale screening of glioblastoma cell lines and tumor samples. We discuss preclinical and clinical data for several novel molecular targets, including growth factor receptors, phosphatidylinositol-3 kinase, SRC-family kinases, integrins, and CD95 ligand and agents that inhibit these targets, including erlotinib, enzastaurin, dasatinib, sorafenib, cilengitide, AMG102, and APG101. By combining advances in tumor screening with novel targeted therapies, it is hoped that new treatment options will emerge for this challenging tumor type.
Collapse
Affiliation(s)
- Wolfgang Wick
- Department of Neurooncology, National Center of Tumor Disease, University Clinic Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Adjei AA, Schwartz B, Garmey E. Early clinical development of ARQ 197, a selective, non-ATP-competitive inhibitor targeting MET tyrosine kinase for the treatment of advanced cancers. Oncologist 2011; 16:788-99. [PMID: 21632449 DOI: 10.1634/theoncologist.2010-0380] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Expression of the receptor tyrosine kinase c-MET (MET, mesenchymal-epithelial transition factor) in many cancers, and its participation in multiple signal transduction pathways involved in malignant tumor growth, suggest a wide therapeutic potential for MET inhibition in human cancer. Here we describe the discovery and early clinical development of ARQ 197, a novel, selective, non-ATP-competitive inhibitor of MET. Phase I studies demonstrate that ARQ 197 has a predictable pharmacokinetics and favorable safety profile, making it a potentially ideal partner for combination with cytotoxic chemotherapies and targeted anticancer agents. Results from phase I and phase II trials demonstrate preliminary evidence of anticancer activity. New data from a global phase II randomized trial comparing a combination of ARQ 197 plus erlotinib with erlotinib/placebo, in endothelial growth factor receptor inhibitor-naïve patients with locally advanced/metastatic non-small cell lung cancer, demonstrate improvement in progression-free and overall survival with combined therapy. Results were especially pronounced for patients with non-squamous lung cancer histologies, and in particular molecularly defined subgroups including KRAS mutations. These and other data from ARQ 197 clinical trials in hepatocellular, germ-cell, pancreatic (in combination with gemcitabine), and colorectal (in combination with cetuximab and irinotecan) cancers further highlight the potential role of ARQ 197 in existing and emerging anticancer therapeutic regimens.
Collapse
Affiliation(s)
- Alex A Adjei
- Roswell Park Cancer Institute, Buffalo, New York, USA.
| | | | | |
Collapse
|