1
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. EMBO J 2024; 43:3175-3191. [PMID: 38886581 PMCID: PMC11294477 DOI: 10.1038/s44318-024-00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function, and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs), and Plexin D1 located at cell-cell junctions mediates many of these events. However, available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial-specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology, and disease.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Minghao Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Zhenwu Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Anthony Koleske
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT, USA
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
3
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598386. [PMID: 38915515 PMCID: PMC11195282 DOI: 10.1101/2024.06.13.598386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs) and PlexinD1 located at cell-cell junctions mediates many of these events. But available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn-2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology and disease.
Collapse
|
4
|
Yu H, Liu Z. GNA12 regulates C5a-induced migration by downregulating C5aR1-PLCβ2-PI3K-AKT-ERK1/2 signaling. BIOPHYSICS REPORTS 2023; 9:33-44. [PMID: 37426201 PMCID: PMC10323775 DOI: 10.52601/bpr.2023.230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 07/11/2023] Open
Abstract
Gna12 has been identified as one of the reported inflammatory bowel disease (IBD) susceptibility genes in genome-wide association studies (GWAS). However, the function of GNA12 in intestinal homeostasis remains unknown. Here we report that GNA12, a G-protein α subunit, regulates C5a-induced migration in macrophages. Deficiency of GNA12 results in enhanced migration induced by C5a in macrophages. Mechanistically, GNA12 suppresses C5a-induced migration by downregulating the C5aR1-PLCβ2-PI3K-AKT-ERK1/2 signaling. Therefore, our study reveals that GNA12 is an anti-inflammatory factor, which might alleviate the development of inflammation by inhibiting the excessive chemotactic migration of macrophages.
Collapse
Affiliation(s)
- Haonan Yu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
5
|
Hasan S, White NF, Tagliatela AC, Durall RT, Brown KM, McDiarmid GR, Meigs TE. Overexpressed Gα13 activates serum response factor through stoichiometric imbalance with Gβγ and mislocalization to the cytoplasm. Cell Signal 2023; 102:110534. [PMID: 36442589 DOI: 10.1016/j.cellsig.2022.110534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Gα13, a heterotrimeric G protein α subunit of the G12/13 subfamily, is an oncogenic driver in multiple cancer types. Unlike other G protein subfamilies that contribute to cancer progression via amino acid substitutions that abolish their deactivating, intrinsic GTPase activity, Gα13 rarely harbors such mutations in tumors and instead appears to stimulate aberrant cell growth via overexpression as a wildtype form. It is not known why this effect is exclusive to the G12/13 subfamily, nor has a mechanism been elucidated for overexpressed Gα13 promoting tumor progression. Using a reporter gene assay for serum response factor (SRF)-mediated transcription in HEK293 cells, we found that transiently expressed, wildtype Gα13 generates a robust SRF signal, approximately half the amplitude observed for GTPase-defective Gα13. When epitope-tagged, wildtype Gα13 was titrated upward in cells, a sharp increase in SRF stimulation was observed coincident with a "spillover" of Gα13 from membrane-associated to a soluble fraction. Overexpressing G protein β and γ subunits caused both a decrease in this signal and a shift of wildtype Gα13 back to the membranous fraction, suggesting that stoichiometric imbalance in the αβγ heterotrimer results in aberrant subcellular localization and signalling by overexpressed Gα13. We also examined the acylation requirements of wildtype Gα13 for signalling to SRF. Similar to GTPase-defective Gα13, S-palmitoylation of the wildtype α subunit was necessary for SRF activation but could be replaced functionally by an engineered site for N-terminal myristoylation. However, a key difference was observed between wildtype and GTPase-defective Gα13: whereas the latter protein lacking palmitoylation sites was rescued in its SRF signalling by either an engineered polybasic sequence or a C-terminal isoprenylation site, these motifs failed to restore signalling by wildtype, non-palmitoylated Gα13. These findings illuminate several components of the mechanism in which overexpressed, wildtype Gα13 contributes to growth and tumorigenic signalling, and reveal greater stringency in its requirements for post-translational modification in comparison to GTPase-defective Gα13.
Collapse
Affiliation(s)
- Sharmin Hasan
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Nicholas F White
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Alicia C Tagliatela
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - R Taylor Durall
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Katherine M Brown
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Gray R McDiarmid
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA.
| |
Collapse
|
6
|
Yagi H, Onoyama I, Asanoma K, Kawakami M, Maenohara S, Kodama K, Matsumura Y, Hamada N, Hori E, Hachisuga K, Yasunaga M, Ohgami T, Okugawa K, Yahata H, Kato K. Tumor-derived ARHGAP35 mutations enhance the Gα 13-Rho signaling axis in human endometrial cancer. Cancer Gene Ther 2023; 30:313-323. [PMID: 36257976 DOI: 10.1038/s41417-022-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
Dysregulated G protein-coupled receptor signaling is involved in the formation and progression of human cancers. The heterotrimeric G protein Gα13 is highly expressed in various cancers and regulates diverse cancer-related transcriptional networks and cellular functions by activating Rho. Herein, we demonstrate that increased expression of Gα13 promotes cell proliferation through activation of Rho and the transcription factor AP-1 in human endometrial cancer. Of interest, the RhoGTPase activating protein (RhoGAP), ARHGAP35 is frequently mutated in human endometrial cancers. Among the 509 endometrial cancer samples in The Cancer Genome Atlas database, 108 harbor 152 mutations at 126 different positions within ARHGAP35, representing a somatic mutation frequency of 20.2%. We evaluated the effect of 124 tumor-derived ARHGAP35 mutations on Gα13-mediated Rho and AP-1 activation. The RhoGAP activity of ARHGAP35 was impaired by 55 of 124 tumor-derived mutations, comprised of 23 nonsense, 15 frame-shift, 15 missense mutations, and two in-frame deletions. Considering that ARHGAP35 is mutated in >2% of all tumors, it ranks among the top 30 most significantly mutated genes in human cancer. Our data suggest potential roles of ARHGAP35 as an oncogenic driver gene, providing novel therapeutic opportunities for endometrial cancer.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Hachisuga
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Yasunaga
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
An overview of kinin mediated events in cancer progression and therapeutic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188807. [PMID: 36167271 DOI: 10.1016/j.bbcan.2022.188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.
Collapse
|
8
|
Thwarting of Lphn3 Functions in Cell Motility and Signaling by Cancer-Related GAIN Domain Somatic Mutations. Cells 2022; 11:cells11121913. [PMID: 35741042 PMCID: PMC9221416 DOI: 10.3390/cells11121913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer progression relies on cellular transition states accompanied by changes in the functionality of adhesion molecules. The gene for adhesion G protein-coupled receptor latrophilin-3 (aGPCR Lphn3 or ADGRL3) is targeted by tumor-specific somatic mutations predominantly affecting the conserved GAIN domain where most aGPCRs are cleaved. However, it is unclear how these GAIN domain-altering mutations impact Lphn3 function. Here, we studied Lphn3 cancer-related mutations as a proxy for revealing unknown GAIN domain functions. We found that while intra-GAIN cleavage efficiency was unaltered, most mutations produced a ligand-specific impairment of Lphn3 intercellular adhesion profile paralleled by an increase in cell-matrix actin-dependent contact structures for cells expressing the select S810L mutation. Aberrant remodeling of the intermediate filament vimentin, which was found to coincide with Lphn3-induced modification of nuclear morphology, had less impact on the nuclei of S810L expressing cells. Notoriously, receptor signaling through G13 protein was deficient for all variants bearing non-homologous amino acid substitutions, including the S810L variant. Analysis of cell migration paradigms revealed a non-cell-autonomous impairment in collective cell migration indistinctly of Lphn3 or its cancer-related variants expression, while cell-autonomous motility was potentiated in the presence of Lphn3, but this effect was abolished in S810L GAIN mutant-expressing cells. These data identify the GAIN domain as an important regulator of Lphn3-dependent cell motility, thus furthering our understanding of cellular and molecular events linking Lphn3 genetic somatic mutations to cancer-relevant pathogenesis mechanisms.
Collapse
|
9
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
The involvement of the circFOXM1-miR-432-Gα12 axis in glioma cell proliferation and aggressiveness. Cell Death Dis 2022; 8:9. [PMID: 35013157 PMCID: PMC8748925 DOI: 10.1038/s41420-021-00782-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Accumulating evidence indicates that circFOXM1 (Hsa_circ_0025033) is highly expressed in several cancers; however, the function of circFOXM1 in glioma and the molecular mechanism have not been well explored. In the present study, we found that expression of circFOXM1 was upregulated in both glioma tissues and cell lines. In addition, circFOXM1 knockdown suppressed glioma-cell proliferation, activated apoptosis in vitro, and repressed tumour growth in vivo. Moreover, we clarified that circFOXM1 binds with miR-432, which was downregulated in glioma cells. Furthermore, we indicated that Gα12, a direct target of miR-432, was highly expressed in glioma cells, and Gα12 silencing might limit the progression of glioma. Rescue assays indicated that Gα12 reversed the inhibitory effect of circFOXM1 silencing on glioma-cell tumorigenesis. In conclusion, circFOXM1 acts as a sponge of miR-432 to promote the proliferation and aggressiveness of glioma cells through the Gα12 signalling pathway.
Collapse
|
11
|
Stecky RC, Quick CR, Fleming TL, Mull ML, Vinson VK, Whitley MS, Dover EN, Meigs TE. Divergent C-terminal motifs in Gα12 and Gα13 provide distinct mechanisms of effector binding and SRF activation. Cell Signal 2020; 72:109653. [PMID: 32330601 DOI: 10.1016/j.cellsig.2020.109653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/18/2022]
Abstract
The G12/13 subfamily of heterotrimeric guanine nucleotide binding proteins comprises the α subunits Gα12 and Gα13, which transduce signals for cell growth, cytoskeletal rearrangements, and oncogenic transformation. In an increasing range of cancers, overexpressed Gα12 or Gα13 are implicated in aberrant cell proliferation and/or metastatic invasion. Although Gα12 and Gα13 bind non-redundant sets of effector proteins and participate in unique signalling pathways, the structural features responsible for functional differences between these α subunits are largely unknown. Invertebrates encode a single G12/13 homolog that participates in cytoskeletal changes yet appears to lack signalling to SRF (serum response factor), a transcriptional activator stimulated by mammalian Gα12 and Gα13 to promote growth and tumorigenesis. Our previous studies identified an evolutionarily divergent region in Gα12 for which replacement by homologous sequence from Drosophila melanogaster abolished SRF signalling, whereas the same invertebrate substitution was fully tolerated in Gα13 [Montgomery et al. (2014) Mol. Pharmacol. 85: 586]. These findings prompted our current approach of evolution-guided mutagenesis to identify fine structural features of Gα12 and Gα13 that underlie their respective SRF activation mechanisms. Our results identified two motifs flanking the α4 helix that play a key role in Gα12 signalling to SRF. We found the region encompassing these motifs to provide an interacting surface for multiple Gα12-specific target proteins that fail to bind Gα13. Adjacent to this divergent region, a highly-conserved domain was vital for SRF activation by both Gα12 and Gα13. However, dissection of this domain using invertebrate substitutions revealed different signalling mechanisms in these α subunits and identified Gα13-specific determinants of binding Rho-specific guanine nucleotide exchange factors. Furthermore, invertebrate substitutions in the C-terminal, α5 helical region were selectively disruptive to Gα12 signalling. Taken together, our results identify key structural features near the C-terminus that evolved after the divergence of Gα12 and Gα13, and should aid the development of agents to selectively manipulate signalling by individual α subunits of the G12/13 subfamily.
Collapse
Affiliation(s)
- Rebecca C Stecky
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Courtney R Quick
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Todd L Fleming
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Makenzy L Mull
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Vanessa K Vinson
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Megan S Whitley
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - E Nicole Dover
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America.
| |
Collapse
|
12
|
Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol Diagn Ther 2019; 22:551-569. [PMID: 29926308 DOI: 10.1007/s40291-018-0338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) are an attractive new agent with potential as a therapeutic tool because of its ability to inhibit specific genes for many conditions, including viral infections and cancers. However, despite this potential, many challenges remain, including off-target effects, difficulties with delivery, immune responses, and toxicity. Traditional genetic vectors do not guarantee that siRNAs will silence genes in vivo. Rational design strategies, such as chemical modification, viral vectors, and non-viral vectors, including cationic liposomes, polymers, nanocarriers, and bioconjugated siRNAs, provide important opportunities to overcome these challenges. We summarize the results of research into vector delivery of siRNAs as a therapeutic agent from their design to clinical trials in ophthalmic diseases, cancers, respiratory diseases, and liver virus infections. Finally, we discuss the current state of siRNA delivery methods and the need for greater understanding of the requirements.
Collapse
|
13
|
Syrovatkina V, Huang XY. Signaling mechanisms and physiological functions of G-protein Gα 13 in blood vessel formation, bone homeostasis, and cancer. Protein Sci 2018; 28:305-312. [PMID: 30345641 DOI: 10.1002/pro.3531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Heterotrimeric G-proteins are cellular signal transducers. They mainly relay signals from G-protein-coupled receptors (GPCRs). GPCRs function as guanine nucleotide-exchange factors to active these G-proteins. Based on the sequence and functional similarities, these G-proteins are grouped into four subfamilies: Gs , Gi , Gq , and G12/13 . The G12/13 subfamily consists of two members: G12 and G13 . G12/13 -mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. Here we summarize the signaling mechanisms and physiological functions of Gα13 in blood vessel formation and bone homeostasis. We further discuss the expanding roles of Gα13 in cancers, serving as oncogenes as well as tumor suppressors.
Collapse
Affiliation(s)
- Viktoriya Syrovatkina
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| |
Collapse
|
14
|
Kim TH, Yang YM, Han CY, Koo JH, Oh H, Kim SS, You BH, Choi YH, Park TS, Lee CH, Kurose H, Noureddin M, Seki E, Wan YJY, Choi CS, Kim SG. Gα12 ablation exacerbates liver steatosis and obesity by suppressing USP22/SIRT1-regulated mitochondrial respiration. J Clin Invest 2018; 128:5587-5602. [PMID: 30300140 DOI: 10.1172/jci97831] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) arises from mitochondrial dysfunction under sustained imbalance between energy intake and expenditure, but the underlying mechanisms controlling mitochondrial respiration have not been entirely understood. Heterotrimeric G proteins converge with activated GPCRs to modulate cell-signaling pathways to maintain metabolic homeostasis. Here, we investigated the regulatory role of G protein α12 (Gα12) on hepatic lipid metabolism and whole-body energy expenditure in mice. Fasting increased Gα12 levels in mouse liver. Gα12 ablation markedly augmented fasting-induced hepatic fat accumulation. cDNA microarray analysis from Gna12-KO liver revealed that the Gα12-signaling pathway regulated sirtuin 1 (SIRT1) and PPARα, which are responsible for mitochondrial respiration. Defective induction of SIRT1 upon fasting was observed in the liver of Gna12-KO mice, which was reversed by lentivirus-mediated Gα12 overexpression in hepatocytes. Mechanistically, Gα12 stabilized SIRT1 protein through transcriptional induction of ubiquitin-specific peptidase 22 (USP22) via HIF-1α increase. Gα12 levels were markedly diminished in liver biopsies from NAFLD patients. Consistently, Gna12-KO mice fed a high-fat diet displayed greater susceptibility to diet-induced liver steatosis and obesity due to decrease in energy expenditure. Our results demonstrate that Gα12 regulates SIRT1-dependent mitochondrial respiration through HIF-1α-dependent USP22 induction, identifying Gα12 as an upstream molecule that contributes to the regulation of mitochondrial energy expenditure.
Collapse
Affiliation(s)
- Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yoon Mee Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.,Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.,Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hyunhee Oh
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, South Korea
| | - Su Sung Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, South Korea
| | - Byoung Hoon You
- College of Pharmacy, Dongguk University, Ilsan Dong-Gu, Goyang, Gyeoggi-Do, South Korea
| | - Young Hee Choi
- College of Pharmacy, Dongguk University, Ilsan Dong-Gu, Goyang, Gyeoggi-Do, South Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-Do, South Korea
| | - Chang Ho Lee
- College of Medicine, Hanyang University, Seoul, South Korea
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mazen Noureddin
- Fatty Liver Disease Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, UCD, Sacramento, California, USA
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, South Korea.,Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Shimono J, Miyoshi H, Yoshida N, Kato T, Sato K, Sugio T, Miyawaki K, Kurita D, Sasaki Y, Kawamoto K, Imaizumi Y, Kato K, Nagafuji K, Akashi K, Seto M, Teshima T, Ohshima K. Analysis of GNA13 Protein in Follicular Lymphoma and its Association With Poor Prognosis. Am J Surg Pathol 2018; 42:1466-1471. [PMID: 30307409 PMCID: PMC6266301 DOI: 10.1097/pas.0000000000000969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GNA13 is a G protein involved in modulating tumor proliferative capacity, infiltration, metastasis, and migration. Genomic alteration of GNA13 was frequently observed in follicular lymphoma (FL). In this study, we examined 167 cases of FL by immunostaining of GNA13 using tissue microarray to evaluate the clinical significance. There were 26 GNA13-positive cases (15.6%) and 141 GNA13-negative cases (84.4%). GNA13-positive cases had a higher incidence of early progression of disease for which disease progression was recognized within 2 years compared with GNA13-negative cases (P=0.03). There were no significant differences in other clinicopathologic factors including histological grade, BCL2-IGH translocation, immunohistochemical phenotype, and Follicular Lymphoma International Prognostic Index. In addition, overall survival and progression-free survival were poorer in GNA13-positive cases than in GNA13-negative cases (P=0.009 and 0.005, respectively). In multivariate analysis, GNA13 positivity was found to be a poor prognostic factor for overall survival and progression-free survival. Thus, GNA13 protein expression was an independent prognostic factor and may affect disease progression in FL.
Collapse
Affiliation(s)
- Joji Shimono
- Departments of Pathology
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | | | | | - Takeharu Kato
- Department of Hematology, Sasebo City General Hospital, Sasebo
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki
| | | | - Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine Sciences, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine Sciences, Fukuoka, Japan
| | | | | | | | - Yoshitaka Imaizumi
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine Sciences, Fukuoka, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Hematology, School of Medicine, Kurume University, Kurume
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine Sciences, Fukuoka, Japan
| | | | - Takanori Teshima
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | | |
Collapse
|
16
|
Muhammad S, Tang Q, Wei L, Zhang Q, Wang G, Muhammad BU, Kaur K, Kamchedalova T, Gang Z, Jiang Z, Liu Z, Wang X. miRNA-30d serves a critical function in colorectal cancer initiation, progression and invasion via directly targeting the GNA13 gene. Exp Ther Med 2018; 17:260-272. [PMID: 30651791 PMCID: PMC6307398 DOI: 10.3892/etm.2018.6902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are reported to be dysregulated in the progression and invasion of various human cancer types, including colorectal cancer (CRC). They are also reported to be molecular biomarkers and therapeutic targets in CRC. miRNAs serve functions in a plethora of biological processes, including proliferation, migration, invasion and apoptosis, and several miRNAs have been demonstrated to be involved in CRC carcinogenesis, invasion and metastasis. Aberrant miR-30d expression and its effects have been reported in certain cancer types. However, the function and underlying mechanism of miR-30d in the progression of CRC remains largely unknown. In the current study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to quantify miR-30d expression in CRC tissues. In vivo and in vitro functional assays indicated that miR-30d inhibits CRC cell proliferation. Target prediction online software packages, miRBase, TargetScan and miRANDA, and luciferase reporter assays were used to confirm the target gene GNA13. Specimens from 45 patients with CRC were analyzed for correlation between the expression of miR-30d and the expression of target gene GNA13, evaluated by RT-qPCR. miR-30d was downregulated in CRC tissues and cell lines. Ectopic expression of miR-30d inhibited cell proliferation and invasion and tumor growth ability. By contrast, inhibition of endogenous miR-30d promoted cell proliferation and tumor growth ability of CRC cells. It was indicated that miR-30d directly targets the 3'-untranslated region of the GNA13 gene. Downregulation of miR-30d led to the activation of cell proliferation in CRC. In addition, miR-30d expression was negatively correlated with the expression of GNA13 in CRC tissues. In conclusion, miR-30d inhibits cancer initiation, proliferation and invasion in colorectal cancer via targeting GNA13.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Neurology, Heilongjiang University of Traditional Medicine, Harbin, Heilongjiang 150081, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Qingchao Tang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Liu Wei
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Library of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qian Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Guiyu Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Bilal Umar Muhammad
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Kavanjit Kaur
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Tatiana Kamchedalova
- Department of Neurology, Heilongjiang University of Traditional Medicine, Harbin, Heilongjiang 150081, P.R. China
| | - Zhao Gang
- Department of Neurology, Heilongjiang University of Traditional Medicine, Harbin, Heilongjiang 150081, P.R. China
| | - Zheng Jiang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, P.R. China
| | - Zheng Liu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, P.R. China
| | - Xishan Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
17
|
Liu W, Li H, Wang Y, Zhao X, Guo Y, Jin J, Chi R. MiR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis and epithelial-to-mesenchymal transition by targeting G-protein subunit α-13 in renal cell carcinoma. Gene 2017; 626:275-281. [PMID: 28536082 DOI: 10.1016/j.gene.2017.05.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/04/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022]
Abstract
Increasing evidence has demonstrated that aberrant microRNAs (miRNAs) play important roles in the pathogenesis of most human malignancies. The purpose of this study was to explore the role of miR-30b-5p in human RCC. In the current study, we firstly found that the expression levels of miR-30b-5p were lower in both RCC tissues and cell lines. Then, we found that enforced miR-30b-5p expression and knockdown of GNA13 significantly suppressed the proliferation, invasion, migration and EMT of RCC cell lines. In addition, miR-30b-5p directly targeted GNA13 and repressed its expression. Furthermore, re-expression of GNA13 (without the 3'-UTR) could partially abrogate the miR-30b-5p-induced cell proliferation and metastasis inhibition. Taken together, these findings indicated that miR-30b-5p acts as a novel tumor suppressor to regulate RCC cell proliferation, metastasis and EMT through downregulation of GNA13 expression. Therefore, miR-30b-5p may be considered a potential biomarker for the diagnosis of RCC.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qindao University, Yantai 26400, PR China
| | - Honghong Li
- Department of Public health, The Affiliated Yantai Yuhuangding Hospital of Qindao University, Yantai 26400, PR China
| | - Yan Wang
- Department of Oncology, Yantai hospital of traditional Chinese Medicine, Yantai 26400, PR China
| | - Xinyao Zhao
- Department of Medical Imaging,Yantai Yantaishan Hospital, Yantai 264001, PR China
| | - Yuanying Guo
- School of Public Health, Jilin University, Changchun, Jilin 130021, PR China
| | - Jing Jin
- Department of Ultrasound, Yantai Yantaishan Hospital, Yantai 264001, PR China
| | - Rongxiang Chi
- Nursing Department, Yantai Hospital of Traditional Chinese Medicine, 26400, Yantai 26400, PR China.
| |
Collapse
|
18
|
Xu Y, Rong J, Duan S, Chen C, Li Y, Peng B, Yi B, Zheng Z, Gao Y, Wang K, Yun M, Weng H, Zhang J, Ye S. High expression of GNA13 is associated with poor prognosis in hepatocellular carcinoma. Sci Rep 2016; 6:35948. [PMID: 27883022 PMCID: PMC5121652 DOI: 10.1038/srep35948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Guanine nucleotide binding protein alpha 13 (GNA13) has been found to play critical roles in the development of several human cancers. However, little is known about GNA13 expression and its clinical significance in hepatocellular carcinoma (HCC). In our study, GNA13 was reported to be significantly up-regulated in HCC tissues, and this was correlated with several clinicopathological parameters, including tumor multiplicity (P = 0.004), TNM stage (P = 0.002), and BCLC stage (P = 0.010). Further Cox regression analysis suggested that GNA13 expression was an independent prognostic factor for overall survival (P = 0.014) and disease-free survival (P = 0.005). Moreover, we found that overexpression of GNA13 couldn’t promote cell proliferation in vitro, but could significantly increase the invasion ability of HCC cells. Together, our study demonstrates GNA13 may be served as a prognostic biomarker for HCC patients after curative hepatectomy, in which high expression of GNA13 suggests poor prognosis of HCC patients.
Collapse
Affiliation(s)
- Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Rong
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Baogang Peng
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Yi
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ying Gao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kebing Wang
- Department of Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Miao Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Ultrasound, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Huiwen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
19
|
Zhang JX, Yun M, Xu Y, Chen JW, Weng HW, Zheng ZS, Chen C, Xie D, Ye S. GNA13 as a prognostic factor and mediator of gastric cancer progression. Oncotarget 2016; 7:4414-27. [PMID: 26735177 PMCID: PMC4826215 DOI: 10.18632/oncotarget.6780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/21/2015] [Indexed: 01/16/2023] Open
Abstract
Guanine nucleotide binding protein (G protein), alpha 13 (GNA13) has been implicated as an oncogenic protein in several human cancers. In this study, GNA13 was characterized for its role in gastric cancer (GC) progression and underlying molecular mechanisms. The expression dynamics of GNA13 were examined by immunohistochemistry (IHC) in two independent cohorts of GC samples. A series of in-vivo and in-vitro assays was performed to elucidate the function of GNA13 in GC and its underlying mechanisms. In both two cohorts of GC samples, we observed that GNA13 was markedly overexpressed in GC tissues and associated closely with aggressive magnitude of GC progression and poor patients' survival. Further study showed that upregulation of GNA13 expression increased the proliferation and tumorigenicity of GC cells in vitro and in vivo, by promoting cell growth rate, colony formation, and tumor formation in nude mice. By contrast, knockdown of GNA13 effectively suppressed the proliferation and tumorigenicity of GC cells in vitro and in vivo. Our results also demonstrated that the molecular mechanisms of the effect of GNA13 in GC included promotion of G1/S cell cycle transition through upregulation of c-Myc, activation of AKT and ERK activity, suppression of FOXO1 activity, upregulation of cyclin-dependent kinase (CDK) regulator cyclin D1 and downregulation of CDK inhibitor p21Cip1 and p27Kip1. Our present study illustrated that GNA13 has an important role in promoting proliferation and tumorigenicity of GC, and may represent a novel prognostic biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Jia-Xing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Miao Yun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China.,Department of Ultrasound, Cancer Center, Sun Yat-Sen University, Guangzhou, PR China
| | - Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Jie-Wei Chen
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, PR China
| | - Hui-Wen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Zou-San Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Dan Xie
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
20
|
Park J, Park J, Pei Y, Xu J, Yeo Y. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 2016; 104:93-109. [PMID: 26686832 DOI: 10.1016/j.addr.2015.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) is a promising drug candidate, expected to have broad therapeutic potentials toward various diseases including viral infections and cancer. With recent advances in bioconjugate chemistry and carrier technology, several siRNA-based drugs have advanced to clinical trials. However, most cases address local applications or diseases in the filtering organs, reflecting remaining challenges in systemic delivery of siRNA. The difficulty in siRNA delivery is in large part due to poor circulation stability and unfavorable pharmacokinetics and biodistribution profiles of siRNA. This review describes the pharmacokinetics and biodistribution of siRNA nanomedicines, focusing on those reported in the past 5years, and their pharmacological effects in selected disease models such as hepatocellular carcinoma, liver infections, and respiratory diseases. The examples discussed here will provide an insight into the current status of the art and unmet needs in siRNA delivery.
Collapse
|
21
|
Ha JH, Gomathinayagam R, Yan M, Jayaraman M, Ramesh R, Dhanasekaran DN. Determinant role for the gep oncogenes, Gα12/13, in ovarian cancer cell proliferation and xenograft tumor growth. Genes Cancer 2015; 6:356-364. [PMID: 26413218 PMCID: PMC4575922 DOI: 10.18632/genesandcancer.72] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 01/19/2023] Open
Abstract
Recent studies have shown that the gip2 and gep oncogenes defined by the α-subunits of Gi2 and G12 family of G proteins, namely Gαi2 and Gα12/13, stimulate oncogenic signaling pathways in cancer cells including those derived from ovarian cancer. However, the critical α-subunit involved in ovarian cancer growth and progression in vivo remains to be identified. Using SKOV3 cells in which the expressions of individual Gα-subunits were silenced, we demonstrate that the silencing of Gα12 and Gα13 drastically attenuated serum- or lysophosphatidic acid-stimulated proliferation. In contrast, the invasive migration of these cells were reduced only by the silencing of Gαi2 or Gα13. Analyses of the xenograft tumors derived from these Gα-silenced cells indicated that only the silencing of Gα13 drastically reduced xenograft tumor growth and prolonged the survival of the mice. Similar, but albeit reduced, effect was seen with the silencing of Gα12. On the contrary, the silencing of Gαi2 or Gαq failed to exert such effect. Thus, our studies establish for the first time that Gα12/13, the putative gep oncogenes, are the determinant α-subunits involved in ovarian cancer growth in vivo and their increased oncogenicity can be correlated with its ability to stimulate both proliferation and invasive migration.
Collapse
Affiliation(s)
- Ji Hee Ha
- Stephenson Cancer Center and the Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rohini Gomathinayagam
- Stephenson Cancer Center and the Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mingda Yan
- Stephenson Cancer Center and the Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center and the Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Stephenson Cancer Center and the Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Stephenson Cancer Center and the Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
22
|
Gan CP, Patel V, Mikelis CM, Zain RB, Molinolo AA, Abraham MT, Teo SH, Abdul Rahman ZA, Gutkind JS, Cheong SC. Heterotrimeric G-protein alpha-12 (Gα12) subunit promotes oral cancer metastasis. Oncotarget 2015; 5:9626-40. [PMID: 25275299 PMCID: PMC4259425 DOI: 10.18632/oncotarget.2437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has a propensity to spread to the cervical lymph nodes (LN). The presence of cervical LN metastases severely impacts patient survival, whereby the two-year survival for oral cancer patients with involved LN is ~30% compared to over 80% in patients with non-involved LN. Elucidation of key molecular mechanisms underlying OSCC metastasis may afford an opportunity to target specific genes, to prevent the spread of OSCC and to improve patient survival. In this study, we demonstrated that expression of the heterotrimeric G-protein alpha-12 (Gα12) is highly up-regulated in primary tumors and LN of OSCC patients, as assessed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). We also found that exogenous expression of the constitutively activated-form of Gα12 promoted cell migration and invasion in OSCC cell lines. Correspondingly, inhibition of Gα12 expression by shRNA consistently inhibited OSCC cell migration and invasion in vitro. Further, the inhibition of G12 signaling by regulator of G-protein signaling (RGS) inhibited Gα12-mediated RhoA activation, which in turn resulted in reduced LN metastases in a tongue-orthotopic xenograft mouse model of oral cancer. This study provides a rationale for future development and evaluation of drug candidates targeting Gα12-related pathways for metastasis prevention.
Collapse
Affiliation(s)
- Chai Phei Gan
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia
| | - Vyomesh Patel
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia. Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Constantinos M Mikelis
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Rosnah Binti Zain
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia. Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya, Kuala Lumpur, Malaysia
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Mannil Thomas Abraham
- Department of Oral and Maxillofacial Surgery, Tengku Ampuan Rahimah Hospital, Klang, Malaysia
| | - Soo-Hwang Teo
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Sok Ching Cheong
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia. Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
GPR84 sustains aberrant β-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis. Blood 2014; 124:3284-94. [PMID: 25293777 DOI: 10.1182/blood-2013-10-532523] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
β-catenin is required for establishment of leukemic stem cells (LSCs) in acute myeloid leukemia (AML). Targeted inhibition of β-catenin signaling has been hampered by the lack of pathway components amenable to pharmacologic manipulation. Here we identified a novel β-catenin regulator, GPR84, a member of the G protein-coupled receptor family that represents a highly tractable class of drug targets. High GPR84 expression levels were confirmed in human and mouse AML LSCs compared with hematopoietic stem cells (HSCs). Suppression of GPR84 significantly inhibited cell growth by inducing G1-phase cell-cycle arrest in pre-LSCs, reduced LSC frequency, and impaired reconstitution of stem cell-derived mixed-lineage leukemia (MLL) AML, which represents an aggressive and drug-resistant subtype of AML. The GPR84-deficient phenotype in established AML could be rescued by expression of constitutively active β-catenin. Furthermore, GPR84 conferred a growth advantage to Hoxa9/Meis1a-transduced stem cells. Microarray analysis demonstrated that GPR84 significantly upregulated a small set of MLL-fusion targets and β-catenin coeffectors, and downregulated a hematopoietic cell-cycle inhibitor. Altogether, our data reveal a previously unrecognized role of GPR84 in maintaining fully developed AML by sustaining aberrant β-catenin signaling in LSCs, and suggest that targeting the oncogenic GPR84/β-catenin signaling axis may represent a novel therapeutic strategy for AML.
Collapse
|
24
|
Gα12 gep oncogene deregulation of p53-responsive microRNAs promotes epithelial-mesenchymal transition of hepatocellular carcinoma. Oncogene 2014; 34:2910-21. [PMID: 25065598 DOI: 10.1038/onc.2014.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis owing to aggressive phenotype. Gα12 gep oncogene product couples to G-protein-coupled receptors, whose ligand levels are frequently increased in tumor microenvironments. Here, we report Gα12 overexpression in human HCC and the resultant induction of zinc-finger E-box-binding homeobox 1 (ZEB1) as mediated by microRNA deregulation. Gα12 expression was higher in HCC than surrounding non-tumorous tissue. Transfection of Huh7 cell with an activated mutant of Gα12 (Gα12QL) deregulated microRNA (miRNA or miR)-200b/a/429, -194-2/192 and -194-1/215 clusters in the miRNome. cDNA microarray analyses disclosed the targets affected by Gα12 gene knockout. An integrative network of miRNAs and mRNA changes enabled us to predict ZEB1 as a key molecule governed by Gα12. Decreases of miR-200a/b, -192 and -215 by Gα12 caused ZEB1 induction. The ability of Gα12 to decrease p53 levels, as a result of activating protein-1 (AP-1)/c-Jun-mediated mouse double minute 2 homolog induction, contributed to transcriptional deregulation of the miRNAs. Gα12QL induced ZEB1 and other epithelial-mesenchymal transition markers with fibroblastoid phenotype change. Consistently, transfection with miR-200b, -192 or -215 mimic prevented the ability of Gα12QL to increase tumor cell migration/invasion. In xenograft studies, sustained knockdown of Gα12 decreased the overall growth rate and average volume of tumors derived from SK-Hep1 cell (mesenchymal-typed). In HCC patients, miR-192, -215 and/or -200a were deregulated with microvascular invasion or growth advantage. In the HCC samples with higher Gα12 level, a correlation existed in the comparison of relative changes of Gα12 and ZEB1. In conclusion, Gα12 overexpressed in HCC causes ZEB1 induction by deregulating p53-responsive miRNAs, which may facilitate epithelial-mesenchymal transition and growth of liver tumor. These findings highlight the significance of Gα12 upregulation in liver tumor progression, implicating Gα12 as an attractive therapeutic target.
Collapse
|
25
|
Frömberg A, Rabe M, Aigner A. Multiple effects of the special AT-rich binding protein 1 (SATB1) in colon carcinoma. Int J Cancer 2014; 135:2537-46. [PMID: 24729451 DOI: 10.1002/ijc.28895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 03/18/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
SATB1 (special AT-rich binding protein 1) is a global chromatin organizer regulating the expression of a large number of genes. Overexpression has been found in various solid tumors and positively correlated with prognostic and clinicopathological properties. In colorectal cancer (CRC), SATB1 overexpression and its correlation with poor differentiation, invasive depth, TNM (tumor, nodes, metastases) stage and prognosis have been demonstrated. However, more detailed studies on the SATB1 functions in CRC are warranted. In this article, we comprehensively analyze the cellular and molecular role of SATB1 in CRC cell lines with different SATB1 expression levels by using RNAi-mediated knockdown. Using siRNAs with different knockdown efficacies, we demonstrate antiproliferative, cell cycle-inhibitory and proapoptotic effects of SATB1 knockdown in a SATB1 gene dose-dependent manner. Tumor growth inhibition is confirmed in vivo in a subcutaneous tumor xenograft mouse model using stable knockdown cells. The in-depth analysis of cellular effects reveals increased activities of caspases-3, -7, -8, -9 and other mediators of apoptotic pathways. Similarly, the analysis of E- and N-cadherin, slug, twist, β-catenin and MMP7 indicates SATB1 effects on epithelial-mesenchymal transition (EMT) and matrix breakdown. Our results also establish SATB1 effects on receptor tyrosine kinases and (proto-)oncogenes such as HER receptors and Pim-1. Taken together, this suggests a more complex molecular interplay between tumor-promoting and possible inhibitory effects in CRC by affecting multiple pathways and molecules involved in proliferation, cell cycle, EMT, invasion and cell survival.
Collapse
Affiliation(s)
- Anja Frömberg
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
26
|
Cheng SJ, Liu YC, Cheng SL, Lee JJ, Chen HM, Chang HH, Kok SH, Kuo MYP, Chiang CP. Expression of Gα12 predicts progression and prognosis of oral squamous cell carcinomas in Taiwan. J Oral Pathol Med 2013; 42:565-9. [PMID: 23438080 DOI: 10.1111/jop.12050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Expression of Gα12 is found to be associated with cancer cell proliferation, migration, invasion, and metastasis. METHODS This study used immunohistochemistry to examine the expression of Gα12 protein in 100 specimens of oral squamous cell carcinoma (OSCC), 45 specimens of oral epithelial dysplasia (OED), and 36 specimens of normal oral mucosa (NOM). RESULTS The mean Gα12 labeling indices (LIs, defined as the percentage of positive cells in total cells) increased significantly from NOM (7 ± 11%) through OED (21 ± 20%) to OSCC samples (53 ± 33%, P < 0.001). The higher mean Gα12 LI was significantly associated with OSCCs with larger tumor size (P = 0.003), positive lymph node metastasis (P = 0.002), or more advanced clinical stages (P = 0.003). Positive lymph node metastasis (P = 0.039) and Gα12 LI > 50% (P = 0.009) were identified as independent unfavorable prognosis factors by multivariate analyses with Cox regression model. Moreover, Kaplan-Meier curve showed that OSCC patients with a Gα12 LI > 50% had a significantly poorer cumulative survival than those with a Gα12 LI ≤ 50% (log-rank test, P = 0.009). CONCLUSIONS Our results showed a stepwise and significant elevation in Gα12 protein expression from NOM through OED to OSCCs, suggesting that overexpression of Gα12 protein may be an early event in oral carcinogenesis and may play a pivotal role in oral cancer development. Moreover, the Gα12 protein can be a biomarker for prediction of the progression of OSCCs and the prognosis of patients with OSCC in Taiwan.
Collapse
Affiliation(s)
- Shih-Jung Cheng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schaefer EA, Stohr S, Meister M, Aigner A, Gudermann T, Buech TR. Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem Pharmacol 2013; 85:426-38. [DOI: 10.1016/j.bcp.2012.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 12/19/2022]
|
28
|
Figueroa CD, Ehrenfeld P, Bhoola KD. Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets 2012; 16:299-312. [DOI: 10.1517/14728222.2012.662957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Kim YM, Lim SC, Han CY, Kay HY, Cho IJ, Ki SH, Lee MY, Kwon HM, Lee CH, Kim SG. G(alpha)12/13 induction of CYR61 in association with arteriosclerotic intimal hyperplasia: effect of sphingosine-1-phosphate. Arterioscler Thromb Vasc Biol 2011; 31:861-869. [PMID: 21212405 DOI: 10.1161/atvbaha.110.218552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 12/23/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Gα(12/13) play a role in oncogenic transformation and tumor growth. Cysteine-rich protein 61 (CYR61) is a growth-factor-inducible angiogenic factor. In view of potential overlapping functions between Gα(12/13) and CYR61, this study investigated the role of these G proteins in CYR61 induction in association with hyperplastic vascular abnormality. METHODS AND RESULTS Overexpression of activated Gα(12) or Gα(13) induced CYR61 expression in vascular smooth muscle cells (VSMCs). Gene knockdown and knockout experiments revealed that sphingosine-1-phosphate (S1P) treatment induced CYR61 via Gα(12/13). JunD/activator protein-1 (AP-1) was identified as a transcription factor required for CYR61 transactivation by S1P. Deficiencies in Gα(12/13) abrogated AP-1 activation and AP-1-mediated CYR61 induction. c-Jun N-terminal kinase was responsible for CYR61 induction. Moreover, deficiencies of Gα(12/13) abolished c-Jun N-terminal kinase-dependent CYR61 induction by S1P. N-acetyl-l-cysteine or NADPH oxidase inhibitor treatment reversed CYR61 induction by S1P, indicating that reactive oxygen species are responsible for this process. The levels of Gα(12/13) were increased within thickened intimas and medias in wire-injured mouse femoral arteries, which was accompanied by simultaneous CYR61 induction. Moreover, Gα(12/13) and CYR61 were costained in the arteriosclerotic lesions immediately adjacent to human tumor tissues. CONCLUSIONS Gα(12/13) regulate AP-1-dependent CYR61 induction in VSMCs and promote VSMC migration, and they are upregulated with CYR61 in arteriosclerotic lesions.
Collapse
MESH Headings
- Aged
- Animals
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Cell Movement
- Cysteine-Rich Protein 61/genetics
- Cysteine-Rich Protein 61/metabolism
- Disease Models, Animal
- Enzyme Activation
- Female
- GTP-Binding Protein alpha Subunits, G12-G13/deficiency
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- HEK293 Cells
- Humans
- Hyperplasia
- JNK Mitogen-Activated Protein Kinases/metabolism
- Lysophospholipids/metabolism
- Male
- Mice
- Mice, Inbred ICR
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mutation
- NADPH Oxidases/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-jun/metabolism
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Transcription Factor AP-1/metabolism
- Transfection
- Tunica Intima/metabolism
- Tunica Intima/pathology
- Up-Regulation
Collapse
Affiliation(s)
- Young Mi Kim
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of PharmaceuticalSciences, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Günther M, Lipka J, Malek A, Gutsch D, Kreyling W, Aigner A. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm 2010; 77:438-49. [PMID: 21093588 DOI: 10.1016/j.ejpb.2010.11.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/03/2010] [Accepted: 11/11/2010] [Indexed: 12/01/2022]
Abstract
RNA interference (RNAi) is a promising strategy to inhibit the expression of pathologically relevant genes, which show aberrant (over-)expression, e.g. in tumors or other pathologies. The induction of RNAi relies on small interfering RNAs (siRNAs), which trigger the specific mRNA degradation. Their instability and poor delivery into target tissues including the lung, however, so far severely limits the therapeutic use of siRNAs and requires the development of nanoscale delivery systems. Polyethylenimines (PEIs) are synthetic polymers, which are able to form non-covalent complexes with siRNAs. These nanoscale complexes ('nanoplexes') allow the protection of siRNAs from nucleolytic degradation, their efficient cellular uptake through endocytosis and intracellular release through the 'proton sponge effect'. Chemical modifications of PEIs as well as the coupling of cell/tissue-specific ligands are promising approaches to increase the biocompatibility, specificity and efficacy of PEI-based nanoparticles. This review article gives a comprehensive overview of pre-clinical in vivo studies on the PEI-mediated delivery of therapeutic siRNAs in various animal models. It discusses the chemical properties of PEIs and PEI modifications, and their influences on siRNA knockdown efficacy, on adverse effects of the polymer or the nanoplex and on siRNA biodistribution in vivo. Beyond systemic application, PEI-based complexation allows the local siRNA application to the lung. Biodistribution studies demonstrate cellular uptake of PEI-complexed, but not of naked siRNAs in the lung with little systemic availability of the siRNAs, indicating the usefulness of this approach for the targeting of genes, which are pathologically relevant in lung tumors or lung metastases. Taken together, (i) PEI and PEI derivatives may represent an efficient delivery platform for siRNAs, (ii) siRNA-mediated induction of RNAi is a promising approach for the knockdown of pathologically relevant genes, and (iii) when sufficiently addressing biocompatibility issues, the locoregional delivery of PEI/siRNA complexes may become an attractive therapeutic strategy for the treatment of lung diseases with little systemic side effects.
Collapse
Affiliation(s)
- Melanie Günther
- Institute of Pharmacology, Philipps-University, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Radhakrishnan R, Ha JH, Dhanasekaran DN. Mitogenic Signaling by the gep Oncogene Involves the Upregulation of S-Phase Kinase-Associated Protein 2. Genes Cancer 2010; 1:1033-43. [PMID: 21533006 PMCID: PMC3083023 DOI: 10.1177/1947601910390516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/23/2010] [Indexed: 01/28/2023] Open
Abstract
The gep oncogene, defined by the activated mutant of the α-subunit of the G protein G(12) (Gα(12)Q229L or Gα(12)QL), potently stimulates the proliferation of many different cell types in addition to inducing neoplastic transformation of several fibroblast cell lines. While it has been demonstrated that Gα(12)QL accelerates G1- to S-phase cell cycle progression, the precise mechanism through which Gα(12) communicates to cell cycle machinery is largely unknown. In the present study, we report that the activated-mutational as well as receptor-mediated-Gα(12) transmits its proliferative signals to cell cycle machinery by modulating the levels of the S-phase kinase-associated protein 2 (Skp2), an E3 ubiquitin ligase, involved in the regulation of the cyclin-dependent kinase inhibitor (CKI), p27(Kip1). Our results show that the expression of Gα(12)QL leads to an increase in the levels of Skp2 with a correlatable decrease in p27(Kip1) levels and subsequent increase in the activities of specific CDKs. By demonstrating that the transient expression of Gα(12)QL induces an increase in Skp2 levels with resultant downregulation of p27(Kip1) in both NIH3T3 and human astrocytoma 1321N1 cells, we establish here that the effect of Gα(12) on Skp2/p27(Kip1) is cell type independent. In addition, we demonstrate that LPA-stimulated proliferation and changes in Skp2 and p27(Kip1) levels in 1321N1 cells could be inhibited by the expression of a dominant-negative mutant of Gα(12), thereby pointing to the critical role of Gα(12) in LPA-mediated mitogenic signaling. Our findings also indicate that LPA as well as Gα(12)-mediated upregulation of Skp2 requires a yet to be characterized mechanism involving JNK. Since Skp2 has been identified as an oncogene, and it is overexpressed in many cancers, our results presented here describe for the first time that Skp2 is a novel target in the cell cycle machinery through which Gα(12) and its cognate receptors transmit their oncogenic signals.
Collapse
Affiliation(s)
| | | | - Danny N. Dhanasekaran
- Corresponding Author: Danny N. Dhanasekaran, OU Cancer Institute, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC West 1468, Oklahoma City, OK 73104
| |
Collapse
|