1
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Vasiukova AA, Abramova OV, Lipatova AV, Yusubalieva GM, Chekhonin VP. Comparison of the L3-23K and L5-Fiber Regions for Arming the Oncolytic Adenovirus Ad5-Delta-24-RGD with Reporter and Therapeutic Transgenes. Int J Mol Sci 2025; 26:3700. [PMID: 40332328 DOI: 10.3390/ijms26083700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
The insertion of a transgene downstream of the L3-23K or L5-Fiber region was reported as a vital strategy for arming E3 non-deleted oncolytic adenoviruses. However, depending on the percentage of codons with G/C at the third base position (GC3%) and the type of splicing acceptor, an insert downstream of the L5-Fiber region may substantially affect virus fitness. Since the insertion of transgenes downstream of the L3-23K and L5-Fiber regions has never been compared in terms of their expression levels and impact on virus fitness, we assessed the total virus yield, cytolytic efficacy, and plaque size of Ad5-delta-24-RGD (Ad5Δ24RGD) armed with EGFP, FLuc, the suppressor of RNA silencing p19, soluble wild-type human/mouse and high-affinity human programmed cell death receptor-1 (PD-1/PDCD1) ectodomains, and soluble human hyaluronidase PH20/SPAM1. The insertion of transgenes downstream of the L3-23K region ensures their production at considerably higher levels. However, the insertion of transgenes downstream of either region differentially and unpredictably affects the oncolytic potency of Ad5Δ24RGD, which cannot be explained by GC3% or expression level alone. Surprisingly, the expression of the human and mouse PD-1 ectodomains with 83.1% and 70.1% GC3%, respectively, does not affect cytolytic efficacy but increases the plaque size in a cell line-dependent manner.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Anastasiia O Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marat P Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiia A Vasiukova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, 119034 Moscow, Russia
| | - Olga V Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, 119034 Moscow, Russia
| | - Anastasiia V Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M Yusubalieva
- Laboratory of Cell Technologies, Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of the Russian Federation, 115682 Moscow, Russia
- Laboratory of Immunotherapy of Solid Tumors, Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of the Russian Federation, 117513 Moscow, Russia
- Laboratory of Molecular Mechanisms of Regeneration, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| |
Collapse
|
2
|
Soko GF, Kosgei BK, Meena SS, Ng YJ, Liang H, Zhang B, Liu Q, Xu T, Hou X, Han RPS. Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses. Front Immunol 2025; 15:1535647. [PMID: 39845957 PMCID: PMC11751056 DOI: 10.3389/fimmu.2024.1535647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Immunologically inert or cold tumors pose a substantial challenge to the effectiveness of immunotherapy. The use of oncolytic viruses (OVs) to induce immunogenic cell death (ICD) in tumor cells is a well-established strategy for initiating the cancer immunity cycle (CIC). This process promotes the trafficking and infiltration of CD8+ T cells into tumors, thereby eliciting a tumor-specific immune response. Despite the potential of OVs for handling cold tumors, clinical outcomes have fallen short of expectations. To better understand the obstacles faced by oncolytic virus immunotherapy (OVI), we would like to revisit the OV issue. Growing evidence indicates that limited intratumoral penetration and inadequate intratumoral distribution of OVs are critical factors contributing to the suboptimal response to OVI. Aberrant expressions of matrix proteins by cancer-associated fibroblasts (CAFs) alter the mechanical properties of the tumor extracellular matrix (ECM). This results in increased ECM desmoplasia and elevated intratumoral interstitial fluid pressure (IFP), creating physical barriers that impede the penetration and dissemination of OVs within tumors. This review explores the latest advancements in strategies designed to improve the intratumoral penetration of OVs to facilitate the penetration of tumor-infiltrating lymphocytes (TILs) into cold tumors. Additionally, we investigated current clinical trials and challenges associated with translating these strategies into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Geofrey F. Soko
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Benson K. Kosgei
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Stephene S. Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Ying Jing Ng
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huihui Liang
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bing Zhang
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingjun Liu
- Biosensor National Special Laboratory & Key Laboratory for Biomedical Engineering of Education Ministry, Dept. of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Tielong Xu
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xinju Hou
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Dept. of Rehabilitation, Nanchang Hongdu Hospital of Chinese Medicine, Nanchang, China
| | - Ray P. S. Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Garcia-Moure M, Laspidea V, Gupta S, Gillard AG, Khatua S, Parthasarathy A, He J, Lang FF, Fueyo J, Alonso MM, Gomez-Manzano C. The emerging field of viroimmunotherapy for pediatric brain tumors. Neuro Oncol 2024; 26:1981-1993. [PMID: 39148489 PMCID: PMC11534321 DOI: 10.1093/neuonc/noae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Indexed: 08/17/2024] Open
Abstract
Pediatric brain tumors are the most common solid tumors in children. Even to date, with the advances in multimodality therapeutic management, survival outcomes remain dismal in some types of tumors, such as pediatric-type diffuse high-grade gliomas or central nervous system embryonal tumors. Failure to understand the complex molecular heterogeneity and the elusive tumor and microenvironment interplay continues to undermine therapeutic efficacy. Developing a strategy that would improve survival for these fatal tumors remains unmet in pediatric neuro-oncology. Oncolytic viruses (OVs) are emerging as a feasible, safe, and promising therapy for brain tumors. The new paradigm in virotherapy implies that the direct cytopathic effect is followed, under certain circumstances, by an antitumor immune response responsible for the partial or complete debulking of the tumor mass. OVs alone or combined with other therapeutic modalities have been primarily used in adult neuro-oncology. A surge in encouraging preclinical studies in pediatric brain tumor models recently led to the clinical translation of OVs with encouraging results in these tumors. In this review, we summarize the different virotherapy tested in preclinical and clinical studies in pediatric brain tumors, and we discuss the limitations and future avenues necessary to improve the response of these tumors to this type of therapy.
Collapse
Affiliation(s)
- Marc Garcia-Moure
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Virginia Laspidea
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain
| | - Sumit Gupta
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew G Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Soumen Khatua
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhila Parthasarathy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta M Alonso
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain
- Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Dong W, Luo Y, He D, Zhang M, Zeng J, Chen Y. Oncolytic virotherapy against lung cancer: key receptors and signaling pathways of viral entry. Front Immunol 2024; 15:1473288. [PMID: 39430750 PMCID: PMC11486668 DOI: 10.3389/fimmu.2024.1473288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer accounts for the highest cancer-related mortality worldwide. While immunotherapies targeting anti-tumor immune responses have demonstrated efficacy in clinical practice, the demand for novel treatment modalities remains urgent. Oncolytic viruses (OVs), which selectively kill tumor cells while stimulating an anti-tumor immune response, represent a potential breakthrough in lung cancer therapy. The induction of anti-tumor immunity by OVs is central to their overall therapeutic effectiveness. Many natural receptors on the surface of cancer cells are dysregulated, providing potential entry points for OVs. Furthermore, the inherent dysregulation of some key signaling pathways in lung cancer cells promotes proliferation, progression and metastasis, which may facilitate selective viral replication. In this review, we explore the application of OVs in lung cancer by analyzing several major OVs and their corresponding entry receptors. Then, we also examine the key signaling pathways and molecules with the potential to synergize with OVs in modulating the immune tumor microenvironment. Finally, we discuss the combination and administration strategies that warrant further clinical trials for validation. Despite certain limitations, the tolerability of OVs positions virotherapy as a promising avenue in the future of lung cancer treatment.
Collapse
Affiliation(s)
- Wenxun Dong
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ying Luo
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Daqian He
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
| | - Jingtong Zeng
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ying Chen
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
5
|
Constantin M, Chifiriuc MC, Mihaescu G, Corcionivoschi N, Burlibasa L, Bleotu C, Tudorache S, Mitache MM, Filip R, Munteanu SG, Gradisteanu Pircalabioru G. Microbiome and cancer: from mechanistic implications in disease progression and treatment to development of novel antitumoral strategies. Front Immunol 2024; 15:1373504. [PMID: 38715617 PMCID: PMC11074409 DOI: 10.3389/fimmu.2024.1373504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a very aggressive disease and one of mankind's most important health problems, causing numerous deaths each year. Its etiology is complex, including genetic, gender-related, infectious diseases, dysbiosis, immunological imbalances, lifestyle, including dietary factors, pollution etc. Cancer patients also become immunosuppressed, frequently as side effects of chemotherapy and radiotherapy, and prone to infections, which further promote the proliferation of tumor cells. In recent decades, the role and importance of the microbiota in cancer has become a hot spot in human biology research, bringing together oncology and human microbiology. In addition to their roles in the etiology of different cancers, microorganisms interact with tumor cells and may be involved in modulating their response to treatment and in the toxicity of anti-tumor therapies. In this review, we present an update on the roles of microbiota in cancer with a focus on interference with anticancer treatments and anticancer potential.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology, Bucharest of Romanian Academy, Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
- Romanian Academy of Scientists, Bucharest, Romania
| | | | - Coralia Bleotu
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Sorin Tudorache
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Suceava Emergency County Hospital, Suceava, Romania
| | | | - Gratiela Gradisteanu Pircalabioru
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy of Scientists, Bucharest, Romania
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| |
Collapse
|
6
|
Shirazi MMA, Saedi TA, Moghaddam ZS, Nemati M, Shiri R, Negahdari B, Goradel NH. Nanotechnology and nano-sized tools: Newer approaches to circumvent oncolytic adenovirus limitations. Pharmacol Ther 2024; 256:108611. [PMID: 38387653 DOI: 10.1016/j.pharmthera.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oncolytic adenoviruses (OAds), engineered Ads preferentially infect and lyse tumor cells, have attracted remarkable attention as immunotherapy weapons for the treatment of various malignancies. Despite hopeful successes in preclinical investigations and translation into clinical phases, they face some challenges that thwart their therapeutic effectiveness, including low infectivity of cancer cells, liver sequestration, pre-existing neutralizing antibodies, physical barriers to the spread of Ads, and immunosuppressive TME. Nanotechnology and nano-sized tools provide several advantages to overcome these limitations of OAds. Nano-sized tools could improve the therapeutic efficacy of OAds by enhancing infectivity and cellular uptake, targeting and protecting from pre-existing immune responses, masking and preventing liver tropism, and co-delivery with other therapeutic agents. Herein, we reviewed the constructs of various OAds and their application in clinical trials, as well as the limitations they have faced. Furthermore, we emphasized the potential applications of nanotechnology to solve the constraints of OAds to improve their anti-tumor activities.
Collapse
Affiliation(s)
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Zahra Samadi Moghaddam
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shiri
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran; Arthropod-Borne Diseases Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Chowaniec H, Ślubowska A, Mroczek M, Borowczyk M, Braszka M, Dworacki G, Dobosz P, Wichtowski M. New hopes for the breast cancer treatment: perspectives on the oncolytic virus therapy. Front Immunol 2024; 15:1375433. [PMID: 38576614 PMCID: PMC10991781 DOI: 10.3389/fimmu.2024.1375433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a promising frontier in cancer treatment, especially for solid tumours. While immunotherapies like immune checkpoint inhibitors and CAR-T cells have demonstrated impressive results, their limitations in inducing complete tumour regression have spurred researchers to explore new approaches targeting tumours resistant to current immunotherapies. OVs, both natural and genetically engineered, selectively replicate within cancer cells, inducing their lysis while sparing normal tissues. Recent advancements in clinical research and genetic engineering have enabled the development of targeted viruses that modify the tumour microenvironment, triggering anti-tumour immune responses and exhibiting synergistic effects with other cancer therapies. Several OVs have been studied for breast cancer treatment, including adenovirus, protoparvovirus, vaccinia virus, reovirus, and herpes simplex virus type I (HSV-1). These viruses have been modified or engineered to enhance their tumour-selective replication, reduce toxicity, and improve oncolytic properties.Newer generations of OVs, such as Oncoviron and Delta-24-RGD adenovirus, exhibit heightened replication selectivity and enhanced anticancer effects, particularly in breast cancer models. Clinical trials have explored the efficacy and safety of various OVs in treating different cancers, including melanoma, nasopharyngeal carcinoma, head and neck cancer, and gynecologic malignancies. Notably, Talimogene laherparepvec (T-VEC) and Oncorine have. been approved for advanced melanoma and nasopharyngeal carcinoma, respectively. However, adverse effects have been reported in some cases, including flu-like symptoms and rare instances of severe complications such as fistula formation. Although no OV has been approved specifically for breast cancer treatment, ongoing preclinical clinical trials focus on four groups of viruses. While mild adverse effects like low-grade fever and nausea have been observed, the effectiveness of OV monotherapy in breast cancer remains insufficient. Combination strategies integrating OVs with chemotherapy, radiotherapy, or immunotherapy, show promise in improving therapeutic outcomes. Oncolytic virus therapy holds substantial potential in breast cancer treatment, demonstrating safety in trials. Multi-approach strategies combining OVs with conventional therapies exhibit more promising therapeutic effects than monotherapy, signalling a hopeful future for OV-based breast cancer treatments.
Collapse
Affiliation(s)
- Hanna Chowaniec
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Ślubowska
- Department of Biostatistics and Research Methodology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University of Warsaw, Warsaw, Poland
| | - Magdalena Mroczek
- Department of Neurology, University Hospital Basel, Univeristy of Basel, Basel, Switzerland
| | - Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Braszka
- Faculty of Medical Sciences, University College London Medical School, London, United Kingdom
| | - Grzegorz Dworacki
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Chair of Patomorphology and Clinical Immunology, Poznań University of Medical Sciences, Poznan, Poland
| | - Paula Dobosz
- University Centre of Cancer Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Wichtowski
- Surgical Oncology Clinic, Institute of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
8
|
Martinez-Perez AG, Garza-Morales R, Loera-Arias MDJ, Villa-Cedillo SA, Garcia-Garcia A, Rodriguez-Rocha H, Flores-Maldonado OE, Valdes J, Perez-Trujillo JJ, Saucedo-Cardenas O. Long-term antigen-specific immune response by an oncolytic adenovirus encoding SP-SA-E7-4-1BBL in HPV-16 cancer model. Mol Biol Rep 2024; 51:408. [PMID: 38460043 DOI: 10.1007/s11033-024-09303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND To describe an oncolytic adenovirus (OAd) encoding SP-SA-E7-4-1BBL that is capable of inducing tumor regression in therapeutic assays. Herein, we tested whether the antitumor effect is given by the induction of a tumor-specific immune response, as well as the minimum dose needed to elicit antitumor protection and monitor the OAd biodistribution over time. METHODS AND RESULTS C57BL/6 mice (n = 5) per group were immunized twice with OAds encoding SP-SA-E7-4-1BBL, SA-E7-4-1BBL, or SP-SA-4-1BBL and challenged with TC-1 cancer cells. The DNA construct SP-SA-E7-4-1BBL was employed as a control via biolistic or PBS injection. Groups without tumor development at 47 days were rechallenged with TC-1 cells, and follow-up lasted until day 90. The minimum dose of OAd to induce the antitumor effect was established by immunization using serial dilution doses. The cytometry bead assay and the ELISpot assay were used to evaluate cytokine release in response to ex vivo antigenic stimulation. The distribution profile of the OAd vaccine was evaluated in the different organs by histological, immunohistochemical and qPCR analyses. The OAd SP-SA-E7-4-1BBL-immunized mice did not develop tumors even in a rechallenge. A protective antitumor effect was observed from a dose that is one hundredth of most reports of adenoviral vaccines. Immunization with OAd increases Interferon-gamma-producing cells in response to antigen stimulation. OAd was detected in tumors over time, with significant morphological changes, contrary to nontumor tissues. CONCLUSIONS The OAd SP-SA-E7-4-1BBL vaccine confers a prophylactic, safe, long-lasting, and antigen-dependent antitumor effect mediated by a Th1 antitumor immune response.
Collapse
Affiliation(s)
- Alejandra G Martinez-Perez
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | | | - Maria de J Loera-Arias
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Sheila A Villa-Cedillo
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Aracely Garcia-Garcia
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Humberto Rodriguez-Rocha
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Orlando E Flores-Maldonado
- Department of Microbiology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Jesus Valdes
- Department of Biochemistry, CINVESTAV-Mexico, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jose J Perez-Trujillo
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico.
| | - Odila Saucedo-Cardenas
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico.
| |
Collapse
|
9
|
Yan D, Li G, Yuan Y, Li H, Cao H, Dai Y, Li Y, Zhang Z, Li F, Fang Y, Gao Q. SOCS3 inhibiting JAK-STAT pathway enhances oncolytic adenovirus efficacy by potentiating viral replication and T-cell activation. Cancer Gene Ther 2024; 31:397-409. [PMID: 38102464 DOI: 10.1038/s41417-023-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Oncolytic viruses (OVs) are emerging as a potentially useful treatment for malignancies due to the capabilities of direct oncolysis and immune induction. Improving the replication of OVs is an effective approach to enhance the oncolytic effects. Here, we observed that cancer cells with deficiencies in JAK-STAT pathway showed greater sensitivity to oncolytic adenovirus (oAd), and JAK inhibitor could enhance the replication of oAd. Therefore, we constructed a novel oAd expressing SOCS3, a major negative regulator of JAK-STAT pathway, and confirmed that oAd-SOCS3 exhibited a more significant antitumor effect than oAd-Ctrl both in vitro and in vivo. Mechanistically, SOCS3 inhibited the activation of JAK-STAT pathway, resulting in stronger tumor selective replication of oAd and downregulated expression of PD-L1 on cancer cells as well. Both benefits could collectively awaken antitumor immunity. This study highlights the importance of JAK-STAT pathway in viral replication and confirms the treatment of oAd-SOCS3 in potential clinical applications.
Collapse
Affiliation(s)
- Danmei Yan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guannan Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Yuan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huayi Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heng Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yilin Dai
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ying Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zeyu Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
10
|
Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102027. [PMID: 37808925 PMCID: PMC10556817 DOI: 10.1016/j.omtn.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Adenoviral vectors have been widely used as vaccine candidates or potential vaccine candidates against infectious diseases due to the convenience of genome manipulation, their ability to accommodate large exogenous gene fragments, easy access of obtaining high-titer of virus, and high efficiency of transduction. At the same time, adenoviral vectors have also been used extensively in clinical research for cancer gene therapy and treatment of diseases caused by a single gene defect. However, application of adenovirus also faces a series of challenges such as poor targeting, strong immune response against the vector itself, and they cannot be used repeatedly. It is believed that these problems will be solved gradually with further research and technological development in related fields. Here, we review the construction methods of adenoviral vectors, including "gutless" adenovirus and discuss application of adenoviral vectors as prophylactic vaccines for infectious pathogens and their application prospects as therapeutic vaccines for cancer and other kinds of chronic infectious disease such as human papillomavirus, hepatitis B virus, and hepatitis C virus.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Hongdan Wang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Youcai An
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Ze Chen
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| |
Collapse
|
11
|
Yoon AR, Hong J, Jung BK, Ahn HM, Zhang S, Yun CO. Oncolytic adenovirus as pancreatic cancer-targeted therapy: Where do we go from here? Cancer Lett 2023; 579:216456. [PMID: 37940067 DOI: 10.1016/j.canlet.2023.216456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic cancer remains one of the deadliest cancers with extremely high mortality rate, and the number of cases is expected to steadily increase with time. Pancreatic cancer is refractory to conventional cancer treatment options, like chemotherapy and radiotherapy, and commercialized immunotherapeutics, owing to its immunosuppressive and desmoplastic phenotype. Due to these reasons, development of an innovative treatment option that can overcome these challenges posed by the pancreatic tumor microenvironment (TME) is in an urgent need. The present review aims to summarize the evolution of oncolytic adenovirus (oAd) engineering and usage as therapeutics (either monotherapy or combination therapy) over the last decade to overcome these hurdles to instigate a potent antitumor effect against desmoplastic and immunosuppressive pancreatic cancer.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Bo-Kyeong Jung
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Hyo Min Ahn
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Songnam Zhang
- Department of Medical Oncology, Yanbian University Hospital, Jilin, China
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Wang Z, Sun P, Li Z, Xiao S. Clinical Advances and Future Directions of Oncolytic Virotherapy for Head and Neck Cancer. Cancers (Basel) 2023; 15:5291. [PMID: 37958464 PMCID: PMC10650136 DOI: 10.3390/cancers15215291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Oncolytic viruses (OVs), without harming normal tissues, selectively infect and replicate within tumor cells, to release immune molecules and tumor antigens, achieving immune-mediated destruction of tumors and making them one of the most promising immunotherapies for cancer. Many clinical studies have demonstrated that OVs can provide clinical benefits for patients with different types of tumors, at various stages, including metastatic and previously untreatable cases. When OVs are used in combination with chemotherapy, radiotherapy, immunotherapy, and other treatments, they can synergistically enhance the therapeutic effects. The concept of oncolytic virotherapy (OVT) was proposed in the early 20th century. With advancements in genetic engineering, genetically modified viruses can further enhance the efficacy of cancer immunotherapy. In recent years, global research on OV treatment of malignant tumors has increased dramatically. This article comprehensively reviews the findings from relevant research and clinical trials, providing an overview of the development of OVT and its application in the clinical treatment of head and neck cancer. The aim is to offer insights for future clinical and fundamental research on OVT.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Stomatology, Wenzhou Medical University Renji College, Wenzhou 325000, China
| | - Peng Sun
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; (P.S.); (Z.L.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315000, China
| | - Zhiyong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; (P.S.); (Z.L.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315000, China
| | - Shaowen Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
13
|
Han X, Sun J, Lv X, Tang X, Zheng Y, Ma J, Sun Y. A Recombinant Oncolytic Pseudorabies Virus Expressing Interleukin-18, Interferon-Gamma and PH20 Genes Promotes Systemic Antitumor Immunity. Microorganisms 2023; 11:1850. [PMID: 37513021 PMCID: PMC10385555 DOI: 10.3390/microorganisms11071850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudorabies virus (PRV) is considered to be a promising oncolytic virus that has potential as a cancer gene therapy drug. In this study, PRV-DCD-1-70 was used as a vector to carry exogenous genes IL-18, IFN-γ and PH20 to construct novel recombinant PRV, rPRV-PH20 and rPRV-IL-18-γ-PH20, and their tumorolytic effects were evaluated in vitro and in vivo. Our study showed that recombinant PRV lysed all four tumor cell lines, Pan02, EMT-6, CT26 and H446, and rPRV-IL-18-γ-PH20 showed the best tumor lysis effect. Further studies in mice bearing Pan02 tumors showed that recombinant PRV, especially rPRV-IL-18-γ-PH20, were able to inhibit tumor growth. Moreover, an immunohistochemical analysis indicated that the recombinant PRV effectively increased the infiltration of CD4+T and CD8+T cells and enhanced the anti-tumor immune response of the organism in vivo. Overall, PRV carrying PH20 and IL-18-γ exogenous genes demonstrated anti-tumor effects, providing a foundation for the further development and application of PRV as a novel tumor oncolytic virus vector.
Collapse
Affiliation(s)
- Xiaohui Han
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jingshuai Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaocheng Lv
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoyu Tang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yubin Zheng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jinyun Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuan Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
14
|
Gross EG, Hamo MA, Estevez-Ordonez D, Laskay NMB, Atchley TJ, Johnston JM, Markert JM. Oncolytic virotherapies for pediatric tumors. Expert Opin Biol Ther 2023; 23:987-1003. [PMID: 37749907 PMCID: PMC11309584 DOI: 10.1080/14712598.2023.2245326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Many pediatric patients with malignant tumors continue to suffer poor outcomes. The current standard of care includes maximum safe surgical resection followed by chemotherapy and radiation which may be associated with considerable long-term morbidity. The emergence of oncolytic virotherapy (OVT) may provide an alternative or adjuvant treatment for pediatric oncology patients. AREAS COVERED We reviewed seven virus types that have been investigated in past or ongoing pediatric tumor clinical trials: adenovirus (AdV-tk, Celyvir, DNX-2401, VCN-01, Ad-TD-nsIL-12), herpes simplex virus (G207, HSV-1716), vaccinia (JX-594), reovirus (pelareorep), poliovirus (PVSRIPO), measles virus (MV-NIS), and Senecavirus A (SVV-001). For each virus, we discuss the mechanism of tumor-specific replication and cytotoxicity as well as key findings of preclinical and clinical studies. EXPERT OPINION Substantial progress has been made in the past 10 years regarding the clinical use of OVT. From our review, OVT has favorable safety profiles compared to chemotherapy and radiation treatment. However, the antitumor effects of OVT remain variable depending on tumor type and viral agent used. Although the widespread adoption of OVT faces many challenges, we are optimistic that OVT will play an important role alongside standard chemotherapy and radiotherapy for the treatment of malignant pediatric solid tumors in the future.
Collapse
Affiliation(s)
- Evan G Gross
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad A Hamo
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Nicholas MB Laskay
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pediatric Neurosurgery, Children’s of Alabama, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
16
|
Quillien L, Buscail L, Cordelier P. Pancreatic Cancer Cell and Gene Biotherapies: Past, Present, and Future. Hum Gene Ther 2023; 34:150-161. [PMID: 36585858 DOI: 10.1089/hum.2022.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Solid cancers remain a major health challenge in terms of research, not only due to their structure and organization but also in the molecular and genetic variations present between tumors as well as within the same tumor. When adding on the tumor microenvironment with cancer-associated cells, vasculature, and the body's immune response (or lack of), the weapons used to tackle this disease must also be diverse and intricate. Developing gene-based therapies against tumors contributes to the diverse lines of attack already established for cancers and can potentially overcome certain obstacles encountered with these strategies, the lack of tumor selectivity with chemotherapies, for example. Given the high mortality and relapse rate associated with pancreatic cancer, novel treatments, including gene therapy, are actively being investigated. Even though no gene therapy for pancreatic cancer is currently on the market, a significant amount of clinical trials are underway, especially in active and recruiting or recently completed phases.
Collapse
Affiliation(s)
- Lorraine Quillien
- Team Therapeutic Innovation in Pancreatic Cancer, CRCT, University of Toulouse, Inserm, CNRS, University of Toulouse III-Paul Sabatier, Cancer Research Centre of Toulouse, Toulouse, France
| | - Louis Buscail
- Team Therapeutic Innovation in Pancreatic Cancer, CRCT, University of Toulouse, Inserm, CNRS, University of Toulouse III-Paul Sabatier, Cancer Research Centre of Toulouse, Toulouse, France.,Department of Gastroenterology and Pancreatology, Hôpital Rangueil, CHU de Toulouse, University Toulouse Paul Sabatier, Toulouse, France
| | - Pierre Cordelier
- Team Therapeutic Innovation in Pancreatic Cancer, CRCT, University of Toulouse, Inserm, CNRS, University of Toulouse III-Paul Sabatier, Cancer Research Centre of Toulouse, Toulouse, France
| |
Collapse
|
17
|
Mansouri S, Daniel L, Amhis N, Leveille M, Boudreau JE, Alkayyal AA, Collin Y, Tai LH. Perioperative oncolytic virotherapy to counteract surgery-induced immunosuppression and improve outcomes in pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1071751. [PMID: 36874130 PMCID: PMC9978493 DOI: 10.3389/fonc.2023.1071751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a high fatality cancer with one of the worst prognoses in solid tumors. Most patients present with late stage, metastatic disease and are not eligible for potentially curative surgery. Despite complete resection, the majority of surgical patients will recur within the first two years following surgery. Postoperative immunosuppression has been described in different digestive cancers. While the underlying mechanism is not fully understood, there is compelling evidence to link surgery with disease progression and cancer metastasis in the postoperative period. However, the idea of surgery-induced immunosuppression as a facilitator of recurrence and metastatic spread has not been explored in the context of pancreatic cancer. By surveying the existing literature on surgical stress in mostly digestive cancers, we propose a novel practice-changing paradigm: alleviate surgery-induced immunosuppression and improve oncological outcome in PDAC surgical patients by administering oncolytic virotherapy in the perioperative period.
Collapse
Affiliation(s)
- Sarah Mansouri
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauren Daniel
- Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nawal Amhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Leveille
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jeanette E Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Yves Collin
- Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Center of the Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Center of the Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
18
|
Vorobjeva IV, Zhirnov OP. Modern approaches to treating cancer with oncolytic viruses. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-91-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
According to the World Health Organization, cancer is the second leading cause of death in the world. This serves as a powerful incentive to search for new effective cancer treatments. Development of new oncolytic viruses capable of selectively destroying cancer cells is one of the modern approaches to cancer treatment. The advantage of this method – the selective lysis of tumor cells with the help of viruses – leads to an increase in the antitumor immune response of the body, that in turn promotes the destruction of the primary tumor and its metastases. Significant progress in development of this method has been achieved in the last decade. In this review we analyze the literature data on families of oncolytic viruses that have demonstrated a positive therapeutic effect against malignant neoplasms in various localizations. We discuss the main mechanisms of the oncolytic action of viruses and assess their advantages over other methods of cancer therapy as well as the prospects for their use in clinical practice.
Collapse
Affiliation(s)
- I. V. Vorobjeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology
| | - O. P. Zhirnov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology; The Russian-German Academy of Medical and Biotechnological Sciences
| |
Collapse
|
19
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Runge A, Petersson M, Riechelmann H. [Oncolytic virotherapy in head and neck cancer]. Laryngorhinootologie 2022; 101:787-796. [PMID: 35977557 DOI: 10.1055/a-1901-9214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVE Oncolytic viruses (OV) infect and kill cancer cells and elicit an antitumoral immune response. With their potential to break through tumor immunoresistance, OV might be a future combination treatment option in patients with advanced head and neck cancer (HNC). Modes of action, biological modifications, handling and side effects of OV for treatment of HNC are reviewed. Results of preclinical and clinical trials are reported. METHODS Publications and clinical trials dealing with OV and HNC were searched in PubMed and international platforms for clinical study records. Studies on preclinical and clinical trials regarding oncolytic Herpes Simplex Virus (HSV), Adenovirus, Vacciniavirus and Reovirus were selected. RESULTS Enhanced infection and killing of tumor cells through capsid and genome modifications of OV were reported in recent preclinical studies. Most of the clinical studies were phase-I/II trials. In phase III studies, tumor regression and prolonged survival were observed after treatment with oncolytic HSV, Adenoviruses and Reoviruses. In most trials, OV were combined with chemoradiotherapy or immunotherapy. CONCLUSION In the published studies, OV treatment of HNC patients was safe, often well tolerated and showed promising results with regard to response and survival, especially in combination with chemoradiotherapy or checkpoint inhibitors.
Collapse
Affiliation(s)
- Annette Runge
- Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Universität Innsbruck, Innsbruck, Austria
| | | | - Herbert Riechelmann
- Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Nisar M, Paracha RZ, Adil S, Qureshi SN, Janjua HA. An Extensive Review on Preclinical and Clinical Trials of Oncolytic Viruses Therapy for Pancreatic Cancer. Front Oncol 2022; 12:875188. [PMID: 35686109 PMCID: PMC9171400 DOI: 10.3389/fonc.2022.875188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance and peculiar tumor microenvironment, which diminish or mitigate the effects of therapies, make pancreatic cancer one of the deadliest malignancies to manage and treat. Advanced immunotherapies are under consideration intending to ameliorate the overall patient survival rate in pancreatic cancer. Oncolytic viruses therapy is a new type of immunotherapy in which a virus after infecting and lysis the cancer cell induces/activates patients’ immune response by releasing tumor antigen in the blood. The current review covers the pathways and molecular ablation that take place in pancreatic cancer cells. It also unfolds the extensive preclinical and clinical trial studies of oncolytic viruses performed and/or undergoing to design an efficacious therapy against pancreatic cancer.
Collapse
Affiliation(s)
- Maryum Nisar
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Adil
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
22
|
de la Nava D, Selvi KM, Alonso MM. Immunovirotherapy for Pediatric Solid Tumors: A Promising Treatment That is Becoming a Reality. Front Immunol 2022; 13:866892. [PMID: 35493490 PMCID: PMC9043602 DOI: 10.3389/fimmu.2022.866892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has seen tremendous strides in the last decade, acquiring a prominent position at the forefront of cancer treatment since it has been proven to be efficacious for a wide variety of tumors. Nevertheless, while immunotherapy has changed the paradigm of adult tumor treatment, this progress has not yet been translated to the pediatric solid tumor population. For this reason, alternative curative therapies are urgently needed for the most aggressive pediatric tumors. In recent years, oncolytic virotherapy has consolidated as a feasible strategy for cancer treatment, not only for its tumor-specific effects and safety profile but also for its capacity to trigger an antitumor immune response. This review will summarize the current status of immunovirotherapy to treat cancer, focusing on pediatric solid malignancies. We will revisit previous basic, translational, and clinical research and discuss advances in overcoming the existing barriers and limitations to translate this promising therapeutic as an every-day cancer treatment for the pediatric and young adult populations.
Collapse
Affiliation(s)
- Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Kadir Mert Selvi
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
23
|
Garcia-Carbonero R, Bazan-Peregrino M, Gil-Martín M, Álvarez R, Macarulla T, Riesco-Martinez MC, Verdaguer H, Guillén-Ponce C, Farrera-Sal M, Moreno R, Mato-Berciano A, Maliandi MV, Torres-Manjon S, Costa M, Del Pozo N, Martínez de Villarreal J, Real FX, Vidal N, Capella G, Alemany R, Blasi E, Blasco C, Cascalló M, Salazar R. Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors. J Immunother Cancer 2022; 10:e003255. [PMID: 35338084 PMCID: PMC8961117 DOI: 10.1136/jitc-2021-003255] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND VCN-01 is an oncolytic adenovirus (Ad5 based) designed to replicate in cancer cells with dysfunctional RB1 pathway, express hyaluronidase to enhance virus intratumoral spread and facilitate chemotherapy and immune cells extravasation into the tumor. This phase I clinical trial was aimed to find the maximum tolerated dose/recommended phase II dose (RP2D) and dose-limiting toxicity (DLT) of the intravenous delivery of the replication-competent VCN-01 adenovirus in patients with advanced cancer. METHODS Part I: patients with advanced refractory solid tumors received one single dose of VCN-01. Parts II and III: patients with pancreatic adenocarcinoma received VCN-01 (only in cycle 1) and nab-paclitaxel plus gemcitabine (VCN-concurrent on day 1 in Part II, and 7 days before chemotherapy in Part III). Patients were required to have anti-Ad5 neutralizing antibody (NAbs) titers lower than 1/350 dilution. Pharmacokinetic and pharmacodynamic analyses were performed. RESULTS 26% of the patients initially screened were excluded based on high NAbs levels. Sixteen and 12 patients were enrolled in Part I and II, respectively: RP2D were 1×1013 viral particles (vp)/patient (Part I), and 3.3×1012 vp/patient (Part II). Fourteen patients were included in Part III: there were no DLTs and the RP2D was 1×1013 vp/patient. Observed DLTs were grade 4 aspartate aminotransferase increase in one patient (Part I, 1×1013 vp), grade 4 febrile neutropenia in one patient and grade 5 thrombocytopenia plus enterocolitis in another patient (Part II, 1×1013 vp). In patients with pancreatic adenocarcinoma overall response rate were 50% (Part II) and 50% (Part III). VCN-01 viral genomes were detected in tumor tissue in five out of six biopsies (day 8). A second viral plasmatic peak and increased hyaluronidase serum levels suggested replication after intravenous injection in all patients. Increased levels of immune biomarkers (interferon-γ, soluble lymphocyte activation gene-3, interleukin (IL)-6, IL-10) were found after VCN-01 administration. CONCLUSIONS Treatment with VCN-01 is feasible and has an acceptable safety. Encouraging biological and clinical activity was observed when administered in combination with nab-paclitaxel plus gemcitabine to patients with pancreatic adenocarcinoma. TRIAL REGISTRATION NUMBER NCT02045602.
Collapse
Affiliation(s)
- Rocio Garcia-Carbonero
- Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Madrid, Spain
| | | | - Marta Gil-Martín
- Medical Oncology Department, Institut Catala d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Álvarez
- Centro Integral Oncológico Clara Campal (CIOCC), Madrid, Spain
| | - Teresa Macarulla
- Vall d'Hebron University Hospital & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Maria C Riesco-Martinez
- Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Madrid, Spain
| | - Helena Verdaguer
- Vall d'Hebron University Hospital & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Martí Farrera-Sal
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ProCure Program, Institut Catala d'Oncologia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Moreno
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ProCure Program, Institut Catala d'Oncologia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Silvia Torres-Manjon
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ProCure Program, Institut Catala d'Oncologia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marcel Costa
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ProCure Program, Institut Catala d'Oncologia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Jaime Martínez de Villarreal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Noemí Vidal
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Gabriel Capella
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain, Spain
| | - Ramon Alemany
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ProCure Program, Institut Catala d'Oncologia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Emma Blasi
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
| | - Carmen Blasco
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
| | - Manel Cascalló
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
| | - Ramon Salazar
- Medical Oncology Department, Institut Catala d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Bazan-Peregrino M, Garcia-Carbonero R, Laquente B, Álvarez R, Mato-Berciano A, Gimenez-Alejandre M, Morgado S, Rodríguez-García A, Maliandi MV, Riesco MC, Moreno R, Ginestà MM, Perez-Carreras M, Gornals JB, Prados S, Perea S, Capella G, Alemany R, Salazar R, Blasi E, Blasco C, Cascallo M, Hidalgo M. VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects. J Immunother Cancer 2022; 9:jitc-2021-003254. [PMID: 35149591 PMCID: PMC8578996 DOI: 10.1136/jitc-2021-003254] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by dense desmoplastic stroma that limits the delivery of anticancer agents. VCN-01 is an oncolytic adenovirus designed to replicate in cancer cells with a dysfunctional RB1 pathway and express hyaluronidase. Here, we evaluated the mechanism of action of VCN-01 in preclinical models and in patients with pancreatic cancer. Methods VCN-01 replication and antitumor efficacy were evaluated alone and in combination with standard chemotherapy in immunodeficient and immunocompetent preclinical models using intravenous or intratumoral administration. Hyaluronidase activity was evaluated by histochemical staining and by measuring drug delivery into tumors. In a proof-of-concept clinical trial, VCN-01 was administered intratumorally to patients with PDAC at doses up to 1×1011 viral particles in combination with chemotherapy. Hyaluronidase expression was measured in serum by an ELISA and its activity within tumors by endoscopic ultrasound elastography. Results VCN-01 replicated in PDAC models and exerted antitumor effects which were improved when combined with chemotherapy. Hyaluronidase expression by VCN-01 degraded tumor stroma and facilitated delivery of a variety of therapeutic agents such as chemotherapy and therapeutic antibodies. Clinically, treatment was generally well-tolerated and resulted in disease stabilization of injected lesions. VCN-01 was detected in blood as secondary peaks and in post-treatment tumor biopsies, indicating virus replication. Patients had increasing levels of hyaluronidase in sera over time and decreased tumor stiffness, suggesting stromal disruption. Conclusions VCN-01 is an oncolytic adenovirus with direct antitumor effects and stromal disruption capabilities, representing a new therapeutic agent for cancers with dense stroma. Trial registration number EudraCT number: 2012-005556-42 and NCT02045589.
Collapse
Affiliation(s)
| | - Rocio Garcia-Carbonero
- Oncology Department, Hospital Universitario 12 de Octubre, Imas12, UCM, CNIO, CIBERONC, Madrid, Spain
| | - Berta Laquente
- Medical Oncology Department, IDIBELL-Institut Catala d' Oncologia, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Rafael Álvarez
- Centro Integral Oncológico Clara Campal (CIOCC), Oña 10, 28050, Madrid, Spain
| | | | | | - Sara Morgado
- VCN Biosciences, Sant Cugat del Valles, Barcelona, 08174, Spain
| | - Alba Rodríguez-García
- Virotherapy and Gene Therapy Group, Oncobell and ProCure Programs, IDIBELL-Instituto Catalan d'Oncología, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | | | - M Carmen Riesco
- Oncology Department, Hospital Universitario 12 de Octubre, Imas12, UCM, CNIO, CIBERONC, Madrid, Spain
| | - Rafael Moreno
- Virotherapy and Gene Therapy Group, Oncobell and ProCure Programs, IDIBELL-Instituto Catalan d'Oncología, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mireia M Ginestà
- Hereditary Cancer Program, Oncobell Program, CIBERONC, IDIBELL-Instituto Catalan d'Oncología, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Mercedes Perez-Carreras
- Endoscopic Unit, Servicio Aparato Digestivo, University Hospital 12 De Octubre, Madrid, Spain
| | - Joan B Gornals
- Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Susana Prados
- Centro Integral Oncológico Clara Campal (CIOCC), Oña 10, 28050, Madrid, Spain
| | - Sofía Perea
- Centro Integral Oncológico Clara Campal (CIOCC), Oña 10, 28050, Madrid, Spain
| | - Gabriel Capella
- Hereditary Cancer Program, Oncobell Program, CIBERONC, IDIBELL-Instituto Catalan d'Oncología, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Alemany
- Virotherapy and Gene Therapy Group, Oncobell and ProCure Programs, IDIBELL-Instituto Catalan d'Oncología, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Salazar
- Medical Oncology Department, IDIBELL-Institut Catala d' Oncologia, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Emma Blasi
- VCN Biosciences, Sant Cugat del Valles, Barcelona, 08174, Spain
| | - Carmen Blasco
- VCN Biosciences, Sant Cugat del Valles, Barcelona, 08174, Spain
| | - Manel Cascallo
- VCN Biosciences, Sant Cugat del Valles, Barcelona, 08174, Spain
| | - Manuel Hidalgo
- Centro Integral Oncológico Clara Campal (CIOCC), Oña 10, 28050, Madrid, Spain .,Div. of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
25
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
26
|
Concepts in Oncolytic Adenovirus Therapy. Int J Mol Sci 2021; 22:ijms221910522. [PMID: 34638863 PMCID: PMC8508870 DOI: 10.3390/ijms221910522] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic adenovirus therapy is gaining importance as a novel treatment option for the management of various cancers. Different concepts of modification within the adenovirus vector have been identified that define the mode of action against and the interaction with the tumour. Adenoviral vectors allow for genetic manipulations that restrict tumour specificity and also the expression of specific transgenes in order to support the anti-tumour effect. Additionally, replication of the virus and reinfection of neighbouring tumour cells amplify the therapeutic effect. Another important aspect in oncolytic adenovirus therapy is the virus induced cell death which is a process that activates the immune system against the tumour. This review describes which elements in adenovirus vectors have been identified for modification not only to utilize oncolytic adenovirus vectors into conditionally replicating adenoviruses (CRAds) that allow replication specifically in tumour cells but also to confer specific characteristics to these viruses. These advances in development resulted in clinical trials that are summarized based on the conceptual design.
Collapse
|
27
|
Cheng G, Dong H, Yang C, Liu Y, Wu Y, Zhu L, Tong X, Wang S. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int 2021; 21:406. [PMID: 34332576 PMCID: PMC8325213 DOI: 10.1186/s12935-021-02024-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC), which includes lip and oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx malignancies, is one of the most common cancers worldwide. Due to the interaction of tumor cells with immune cells in the tumor microenvironment, immunotherapy of HNCs, along with traditional treatments such as chemotherapy, radiotherapy, and surgery, has attracted much attention. Four main immunotherapy strategies in HNCs have been developed, including oncolytic viruses, monoclonal antibodies, chimeric antigen receptor T cells (CAR-T cells), and therapeutic vaccines. Oncorine (H101), an approved oncolytic adenovirus in China, is the pioneer of immunotherapy for the treatment of HNCs. Pembrolizumab and nivolumab are mAbs against PD-L1 that have been approved for recurrent and metastatic HNC patients. To date, several clinical trials using immunotherapy agents and their combination are under investigation. In this review, we summarize current the interaction of tumor cells with immune cells in the tumor microenvironment of HNCs, the main strategies that have been applied for immunotherapy of HNCs, obstacles that hinder the success of immunotherapies in patients with HNCs, as well as solutions for overcoming the challenges to enhance the response of HNCs to immunotherapies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Dong
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Yang
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi Wu
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Lifen Zhu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China. .,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
28
|
Núñez-Manchón E, Farrera-Sal M, Otero-Mateo M, Castellano G, Moreno R, Medel D, Alemany R, Villanueva E, Fillat C. Transgene codon usage drives viral fitness and therapeutic efficacy in oncolytic adenoviruses. NAR Cancer 2021; 3:zcab015. [PMID: 34316705 PMCID: PMC8210037 DOI: 10.1093/narcan/zcab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 11/14/2022] Open
Abstract
Arming oncolytic adenoviruses with therapeutic transgenes is a well-established strategy for multimodal tumour attack. However, this strategy sometimes leads to unexpected attenuated viral replication and a loss of oncolytic effects, preventing these viruses from reaching the clinic. Previous work has shown that altering codon usage in viral genes can hamper viral fitness. Here, we have analysed how transgene codon usage impacts viral replication and oncolytic activity. We observe that, although transgenes with optimized codons show high expression levels at the first round of infection, they impair viral fitness and are therefore not expressed in a sustained manner. Conversely, transgenes encoded by suboptimal codons do not compromise viral replication and are thus stably expressed over time, allowing a greater oncolytic activity both in vitro and in vivo. Altogether, our work shows that fine-tuning codon usage leads to a concerted optimization of transgene expression and viral replication paving the way for the rational design of more efficacious oncolytic therapies.
Collapse
Affiliation(s)
- Estela Núñez-Manchón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Martí Farrera-Sal
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - Marc Otero-Mateo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Giancarlo Castellano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Rafael Moreno
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - David Medel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Ramon Alemany
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| |
Collapse
|
29
|
Lu SY, Hua J, Xu J, Wei MY, Liang C, Meng QC, Liu J, Zhang B, Wang W, Yu XJ, Shi S. Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. Int J Biol Sci 2021; 17:2666-2682. [PMID: 34326701 PMCID: PMC8315022 DOI: 10.7150/ijbs.59117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system with a very high mortality rate. While gemcitabine-based chemotherapy is the predominant treatment for terminal pancreatic cancer, its therapeutic effect is not satisfactory. Recently, many studies have found that microorganisms not only play a consequential role in the occurrence and progression of pancreatic cancer but also modulate the effect of chemotherapy to some extent. Moreover, microorganisms may become an important biomarker for predicting pancreatic carcinogenesis and detecting the prognosis of pancreatic cancer. However, the existing experimental literature is not sufficient or convincing. Therefore, further exploration and experiments are imperative to understanding the mechanism underlying the interaction between microorganisms and pancreatic cancer. In this review, we primarily summarize and discuss the influences of oncolytic viruses and bacteria on pancreatic cancer chemotherapy because these are the two types of microorganisms that are most often studied. We focus on some potential methods specific to these two types of microorganisms that can be used to improve the efficacy of chemotherapy in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Farrera-Sal M, Moya-Borrego L, Bazan-Peregrino M, Alemany R. Evolving Status of Clinical Immunotherapy with Oncolytic Adenovirus. Clin Cancer Res 2021; 27:2979-2988. [PMID: 33526422 DOI: 10.1158/1078-0432.ccr-20-1565] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapy targeting immune checkpoint inhibitors shows efficacy in several human cancers, but "cold tumors" that lack immune cells are typically unresponsive. Among the potential therapeutic approaches that could "heat" or promote lymphocyte infiltration of cold tumors, oncolytic viruses have attracted interest for their lytic and immunogenic mechanisms of action. In this article, we review the use of oncolytic adenoviruses in cancer immunotherapy, with a particular focus on preclinical and clinical data of oncolytic adenovirus-triggered immune responses against tumor antigens. We also discuss parameters to consider in clinical trial design and the combination of oncolytic adenoviruses with conventional treatments or other immunotherapies.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- ProCure Program, IDIBELL-Institut Català d'Oncologia, Barcelona, Spain.,VCN Biosciences SL, Barcelona, Spain
| | | | | | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Català d'Oncologia, Barcelona, Spain.
| |
Collapse
|
31
|
Hyaluronidase expression within tumors increases virotherapy efficacy and T cell accumulation. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:27-35. [PMID: 34377767 PMCID: PMC8321894 DOI: 10.1016/j.omto.2021.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 12/28/2022]
Abstract
Oncolytic viruses (OVs) preferentially infect and selectively replicate in cancer cells. OVs have been tested in clinical trials as monotherapy or in combination with chemotherapy, radiotherapy, and immunotherapy. However, the dense extracellular matrix hampers the intratumoral spreading and efficacy of OVs. Previously we described VCN-01, an oncolytic adenovirus expressing a soluble version of human sperm hyaluronidase (hyal) PH20, which exhibited enhanced intratumoral distribution and antitumor activity in different models. Here, we present two oncolytic adenoviruses designed to increase the secretion of PH20 compared to VCN-01. ICO15K-40SAPH20, encoding PH20 under an Ad40 splice acceptor, and ICO15K-E1aPH20 expressing PH20 fused to the E1A gene by P2A peptide. We demonstrate that increased hyal activity improves antitumor efficacy in both a sensitive immunodeficient model and an immunocompetent model. Moreover, we show that hyal activity impacts T cell accumulation in tumors, highlighting the value of a hyaluronidase-expressing virus for combinations with other immunotherapies in cancers involving dense stroma.
Collapse
|
32
|
Calinescu AA, Kauss MC, Sultan Z, Al-Holou WN, O'Shea SK. Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol 2021; 10:CNS73. [PMID: 34006134 PMCID: PMC8162173 DOI: 10.2217/cns-2020-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, the deadliest form of primary brain tumor, remains a disease without cure. Treatment resistance is in large part attributed to limitations in the delivery and distribution of therapeutic agents. Over the last 20 years, numerous preclinical studies have demonstrated the feasibility and efficacy of stem cells as antiglioma agents, leading to the development of trials to test these therapies in the clinic. In this review we present and analyze these studies, discuss mechanisms underlying their beneficial effect and highlight experimental progress, limitations and the emergence of promising new therapeutic avenues. We hope to increase awareness of the advantages brought by stem cells for the treatment of glioblastoma and inspire further studies that will lead to accelerated implementation of effective therapies. Glioblastoma is the deadliest and most common form of brain tumor, for which there is no cure. It is very difficult to deliver medicine to the tumor cells, because they spread out widely into the normal brain, and local blood vessels represent a barrier that most medicines cannot cross. It was shown, in many studies over the last 20 years, that stem cells are attracted toward the tumor and that they can deliver many kinds of therapeutic agents directly to brain cancer cells and shrink the tumor. In this review we analyze these studies and present new discoveries that can be used to make stem cell therapies for glioblastoma more effective to prolong the life of patients with brain tumors.
Collapse
Affiliation(s)
| | - McKenzie C Kauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Literature Science & Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zain Sultan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sue K O'Shea
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Zhang Y, Li Y, Chen K, Qian L, Wang P. Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int 2021; 21:262. [PMID: 33985527 PMCID: PMC8120729 DOI: 10.1186/s12935-021-01972-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It has been intensively reported that the immunosuppressive tumor microenvironment (TME) results in tumor resistance to immunotherapy, especially immune checkpoint blockade and chimeric T cell antigen therapy. As an emerging therapeutic agent, oncolytic viruses (OVs) can specifically kill malignant cells and modify immune and non-immune TME components through their intrinsic properties or genetically incorporated with TME regulators. Strategies of manipulating OVs against the immunosuppressive TME include serving as a cancer vaccine, expressing proinflammatory factors and immune checkpoint inhibitors, and regulating nonimmune stromal constituents. In this review, we summarized the mechanisms and applications of OVs against the immunosuppressive TME, and strategies of OVs in combination with immunotherapy. We also introduced future directions to achieve efficient clinical translation including optimization of preclinical models that simulate the human TME and achieving systemic delivery of OVs.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Moaven O, Mangieri CW, Stauffer JA, Anastasiadis PZ, Borad MJ. Strategies to Develop Potent Oncolytic Viruses and Enhance Their Therapeutic Efficacy. JCO Precis Oncol 2021; 5:PO.21.00003. [PMID: 34250395 DOI: 10.1200/po.21.00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advancements in cancer therapy that have occurred over the past several decades, successful treatment of advanced malignancies remains elusive. Substantial resources and significant efforts have been directed toward the development of novel therapeutic modalities to improve patient outcomes. Oncolytic viruses (OVs) are emerging tools with unique characteristics that have attracted great interest in developing effective anticancer treatment. The original attraction was directed toward selective replication and cell-specific toxicity, two unique features that are either inherent to the virus or could be conferred by genetic engineering. However, recent advancements in the knowledge and understanding of OVs are shifting the therapeutic paradigm toward a greater focus on their immunomodulatory role. Nonetheless, there are still significant obstacles that remain to be overcome to enhance the efficiency of OVs as effective therapeutic modalities and potentially establish them as part of standard treatment regimens. In this review, we discuss advances in the design of OVs, strategies to enhance their therapeutic efficacy, functional translation into the clinical settings, and various obstacles that are still encountered in the efforts to establish them as effective anticancer treatments.
Collapse
Affiliation(s)
- Omeed Moaven
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | - Christopher W Mangieri
- Section of Surgical Oncology, Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - John A Stauffer
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | | | - Mitesh J Borad
- Division of Medical Oncology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
35
|
Mato-Berciano A, Morgado S, Maliandi MV, Farrera-Sal M, Gimenez-Alejandre M, Ginestà MM, Moreno R, Torres-Manjon S, Moreno P, Arias-Badia M, Rojas LA, Capellà G, Alemany R, Cascallo M, Bazan-Peregrino M. Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies: VCN-11. J Control Release 2021; 332:517-528. [PMID: 33675877 DOI: 10.1016/j.jconrel.2021.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022]
Abstract
Tumor targeting and intratumoral virus spreading are key features for successful oncolytic virotherapy. VCN-11 is a novel oncolytic adenovirus, genetically modified to express hyaluronidase (PH20) and display an albumin-binding domain (ABD) on the hexon. ABD allows the virus to self-coat with albumin when entering the bloodstream and evade neutralizing antibodies (NAbs). Here, we validate VCN-11 mechanism of action and characterize its toxicity. VCN-11 replication, hyaluronidase activity and binding to human albumin to evade NAbs was evaluated. Toxicity and efficacy of VCN-11 were assessed in mice and hamsters. Tumor targeting, and antitumor activity was analyzed in the presence of NAbs in several tumor models. VCN-11 induced 450 times more cytotoxicity in tumor cells than in normal cells. VCN-11 hyaluronidase production was confirmed by measuring PH20 activity in vitro and in virus-infected tumor areas in vivo. VCN-11 evaded NAbs from different sources and tumor targeting was demonstrated in the presence of high levels of NAbs in vivo, whereas the control virus without ABD was neutralized. VCN-11 showed a low toxicity profile in athymic nude mice and Syrian hamsters, allowing treatments with high doses and fractionated administrations without major toxicities (up to 1.2x1011vp/mouse and 7.5x1011vp/hamster). Fractionated intravenous administrations improved circulation kinetics and tumor targeting. VCN-11 antitumor efficacy was demonstrated in the presence of NAbs against Ad5 and itself. Oncolytic adenovirus VCN-11 disrupts tumor matrix and displays antitumor effects even in the presence of NAbs. These features make VCN-11 a safe promising candidate to test re-administration in clinical trials.
Collapse
Affiliation(s)
| | - Sara Morgado
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
| | | | - Martí Farrera-Sal
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain; Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | | | - Mireia M Ginestà
- Hereditary Cancer Program, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Hereditary Cancer Program, Catalan Institute of Oncology- ICO, L'Hospitalet de Llobregat, Spain; CIBERONC, Barcelona, Spain
| | - Rafael Moreno
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | - Silvia Torres-Manjon
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | - Paz Moreno
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Luis A Rojas
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | - Gabriel Capellà
- Hereditary Cancer Program, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Hereditary Cancer Program, Catalan Institute of Oncology- ICO, L'Hospitalet de Llobregat, Spain; CIBERONC, Barcelona, Spain
| | - Ramon Alemany
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain; Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Virotherapy and Immunotherapy Group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
| | - Manel Cascallo
- VCN Biosciences, Sant Cugat del Vallès, Barcelona, Spain
| | | |
Collapse
|
36
|
Garcia-Moure M, Gonzalez-Huarriz M, Labiano S, Guruceaga E, Bandres E, Zalacain M, Marrodan L, de Andrea C, Villalba M, Martinez-Velez N, Laspidea V, Puigdelloses M, Gallego Perez-Larraya J, Iñigo-Marco I, Stripecke R, Chan JA, Raabe EH, Kool M, Gomez-Manzano C, Fueyo J, Patiño-García A, Alonso MM. Delta-24-RGD, an Oncolytic Adenovirus, Increases Survival and Promotes Proinflammatory Immune Landscape Remodeling in Models of AT/RT and CNS-PNET. Clin Cancer Res 2021; 27:1807-1820. [PMID: 33376098 PMCID: PMC7617079 DOI: 10.1158/1078-0432.ccr-20-3313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. EXPERIMENTAL DESIGN Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34+-NSG-SGM3). RESULTS Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (107 or 108 PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8+ T-cell infiltration. CONCLUSIONS Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.
Collapse
Affiliation(s)
- Marc Garcia-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain.
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Elizabeth Guruceaga
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Eva Bandres
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Immunology Unit, Department of Hematology, Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Lucia Marrodan
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Carlos de Andrea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Maria Villalba
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Naiara Martinez-Velez
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Montse Puigdelloses
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Jaime Gallego Perez-Larraya
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Ignacio Iñigo-Marco
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Renata Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Laboratory of Regenerative Immune Therapies Applied of the Research Network REBIRTH, German Centre for Infection Research (DZIF), partner site Hannover, Hannover, Germany
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eric H Raabe
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Pediatric Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Candelaria Gomez-Manzano
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juan Fueyo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana Patiño-García
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Marta M Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain.
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
37
|
Holbrook MC, Goad DW, Grdzelishvili VZ. Expanding the Spectrum of Pancreatic Cancers Responsive to Vesicular Stomatitis Virus-Based Oncolytic Virotherapy: Challenges and Solutions. Cancers (Basel) 2021; 13:1171. [PMID: 33803211 PMCID: PMC7963195 DOI: 10.3390/cancers13051171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with poor prognosis and a dismal survival rate, expected to become the second leading cause of cancer-related deaths in the United States. Oncolytic virus (OV) is an anticancer approach that utilizes replication-competent viruses to preferentially infect and kill tumor cells. Vesicular stomatitis virus (VSV), one such OV, is already in several phase I clinical trials against different malignancies. VSV-based recombinant viruses are effective OVs against a majority of tested PDAC cell lines. However, some PDAC cell lines are resistant to VSV. Upregulated type I IFN signaling and constitutive expression of a subset of interferon-simulated genes (ISGs) play a major role in such resistance, while other mechanisms, such as inefficient viral attachment and resistance to VSV-mediated apoptosis, also play a role in some PDACs. Several alternative approaches have been shown to break the resistance of PDACs to VSV without compromising VSV oncoselectivity, including (i) combinations of VSV with JAK1/2 inhibitors (such as ruxolitinib); (ii) triple combinations of VSV with ruxolitinib and polycations improving both VSV replication and attachment; (iii) combinations of VSV with chemotherapeutic drugs (such as paclitaxel) arresting cells in the G2/M phase; (iv) arming VSV with p53 transgenes; (v) directed evolution approach producing more effective OVs. The latter study demonstrated impressive long-term genomic stability of complex VSV recombinants encoding large transgenes, supporting further clinical development of VSV as safe therapeutics for PDAC.
Collapse
Affiliation(s)
| | | | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.C.H.); (D.W.G.)
| |
Collapse
|
38
|
Havunen R, Kalliokoski R, Siurala M, Sorsa S, Santos JM, Cervera-Carrascon V, Anttila M, Hemminki A. Cytokine-Coding Oncolytic Adenovirus TILT-123 Is Safe, Selective, and Effective as a Single Agent and in Combination with Immune Checkpoint Inhibitor Anti-PD-1. Cells 2021; 10:cells10020246. [PMID: 33513935 PMCID: PMC7911972 DOI: 10.3390/cells10020246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses provide a biologically multi-faceted treatment option for patients who cannot be cured with currently available treatment options. We constructed an oncolytic adenovirus, TILT-123, to support T-cell therapies and immune checkpoint inhibitors in solid tumors. Adenoviruses are immunogenic by nature, are easy to produce in large quantities, and can carry relatively large transgenes. They are the most commonly used gene therapy vectors and are well tolerated in patients. TILT-123 expresses two potent cytokines, tumor necrosis factor alpha and interleukin-2, to stimulate especially the T-cell compartment in the tumor microenvironment. Before entering clinical studies, the safety and biodistribution of TILT-123 was studied in Syrian hamsters and in mice. The results show that TILT-123 is safe in animals as monotherapy and in combination with an immune checkpoint inhibitor anti-PD-1. The virus treatment induces acute changes in circulating immune cell compartments, but the levels return to normal by the middle of the treatment period. The virus is rapidly cleared from healthy tissues, and it does not cause damage to vital organs. The results support the initiation of a phase 1 dose-escalation trial, where melanoma patients receiving a tumor-infiltrating lymphocyte therapy are treated with TILT-123 (NCT04217473).
Collapse
Affiliation(s)
- Riikka Havunen
- TILT Biotherapeutics Ltd., 00290 Helsinki, Finland; (R.H.); (R.K.); (M.S.); (S.S.); (J.M.S.); (V.C.-C.)
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, 00290 Helsinki, Finland
| | - Riikka Kalliokoski
- TILT Biotherapeutics Ltd., 00290 Helsinki, Finland; (R.H.); (R.K.); (M.S.); (S.S.); (J.M.S.); (V.C.-C.)
| | - Mikko Siurala
- TILT Biotherapeutics Ltd., 00290 Helsinki, Finland; (R.H.); (R.K.); (M.S.); (S.S.); (J.M.S.); (V.C.-C.)
| | - Suvi Sorsa
- TILT Biotherapeutics Ltd., 00290 Helsinki, Finland; (R.H.); (R.K.); (M.S.); (S.S.); (J.M.S.); (V.C.-C.)
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, 00290 Helsinki, Finland
| | - João M. Santos
- TILT Biotherapeutics Ltd., 00290 Helsinki, Finland; (R.H.); (R.K.); (M.S.); (S.S.); (J.M.S.); (V.C.-C.)
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, 00290 Helsinki, Finland
| | - Victor Cervera-Carrascon
- TILT Biotherapeutics Ltd., 00290 Helsinki, Finland; (R.H.); (R.K.); (M.S.); (S.S.); (J.M.S.); (V.C.-C.)
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, 00290 Helsinki, Finland
| | - Marjukka Anttila
- Pathology Unit, Finnish Food Authority, 00790 Helsinki, Finland;
| | - Akseli Hemminki
- TILT Biotherapeutics Ltd., 00290 Helsinki, Finland; (R.H.); (R.K.); (M.S.); (S.S.); (J.M.S.); (V.C.-C.)
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, 00290 Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
- Correspondence:
| |
Collapse
|
39
|
Oncolytic Adenovirus in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12113354. [PMID: 33202717 PMCID: PMC7697649 DOI: 10.3390/cancers12113354] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-selective replicating "oncolytic" viruses are novel and promising tools for immunotherapy of cancer. However, despite their first success in clinical trials, previous experience suggests that currently used oncolytic virus monotherapies will not be effective enough to achieve complete tumor responses and long-term cure in a broad spectrum of cancers. Nevertheless, there are reasonable arguments that suggest advanced oncolytic viruses will play an essential role as enablers of multi-stage immunotherapies including established systemic immunotherapies. Oncolytic adenoviruses (oAds) display several features to meet this therapeutic need. oAds potently lyse infected tumor cells and induce a strong immunogenic cell death associated with tumor inflammation and induction of antitumor immune responses. Furthermore, established and versatile platforms of oAds exist, which are well suited for the incorporation of heterologous genes to optimally exploit and amplify the immunostimulatory effect of viral oncolysis. A considerable spectrum of functional genes has already been integrated in oAds to optimize particular aspects of immune stimulation including antigen presentation, T cell priming, engagement of additional effector functions, and interference with immunosuppression. These advanced concepts have the potential to play a promising future role as enablers of multi-stage immunotherapies involving adoptive cell transfer and systemic immunotherapies.
Collapse
|
40
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
41
|
Oncolytic virotherapy: a potential therapeutic approach for cholesteatoma. Curr Opin Otolaryngol Head Neck Surg 2020; 28:281-285. [PMID: 32833886 DOI: 10.1097/moo.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To review the principles of oncolytic virotherapy and summarize the recent preliminary evidence on the efficacy of oncolytic virotherapy for cholesteatoma (CHST) treatment in vitro in human CHST cells and in a gerbil CHST model. RECENT FINDINGS The use of oncolytic virotherapy for nonmalignant lesions is innovative. In-vitro results showed that oncolytic herpes simplex virus 1 (oHSV) selectively targets and kills CHST cells. In a gerbil model of CHST, local oHSV injections were associated with a decrease in CHST volume and modulation of bony changes. SUMMARY Surgical treatment options for CHST are limited by high morbidity and recidivism, emphasizing the need for developing treatment alternatives. Preliminary results support the potential therapeutic effect of oncolytic virotherapy on CHST, yet further research is needed to evaluate this novel approach.
Collapse
|
42
|
Tassone E, Muscolini M, van Montfoort N, Hiscott J. Oncolytic virotherapy for pancreatic ductal adenocarcinoma: A glimmer of hope after years of disappointment? Cytokine Growth Factor Rev 2020; 56:141-148. [PMID: 32859494 DOI: 10.1016/j.cytogfr.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and highly lethal malignancies. Existing therapeutic interventions have so far been unsuccessful in improving prognosis, and survival remains very poor. Oncolytic virotherapy represents a promising, yet not fully explored, alternative strategy for the treatment of PDAC. Oncolytic viruses (OVs) infect, replicate within and lyse tumor cells specifically and stimulate antitumor immune responses. Multiple challenges have hampered the efficacy of oncolytic virotherapy for PDAC, the most significant being the desmoplastic and immunosuppressive pancreatic tumor microenvironment (TME). The TME limits the access of therapeutic drugs and the infiltration of effector T cells and natural killer (NK) cells into the tumor mass. Additionally, cancer cells promote the secretion of immunosuppressive factors and develop mechanisms to evade the host immune system. Because of their oncolytic and immune-stimulating properties, OVs are the ideal candidates for counteracting the pancreatic immunosuppressive TME and for designing combination therapies that can be clinically exploited in clinical trials that seek to improve the prognosis of PDAC.
Collapse
Affiliation(s)
- Evelyne Tassone
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| | | | - Nadine van Montfoort
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - John Hiscott
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
43
|
Farrera-Sal M, de Sostoa J, Nuñez-Manchón E, Moreno R, Fillat C, Bazan-Peregrino M, Alemany R. Arming Oncolytic Adenoviruses: Effect of Insertion Site and Splice Acceptor on Transgene Expression and Viral Fitness. Int J Mol Sci 2020; 21:E5158. [PMID: 32708234 PMCID: PMC7404292 DOI: 10.3390/ijms21145158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Oncolytic adenoviruses (OAds) present limited efficacy in clinics. The insertion of therapeutic transgenes into OAds genomes, known as "arming OAds", has been the main strategy to improve their therapeutic potential. Different approaches were published in the decade of the 2000s, but with few comparisons. Most armed OAds have complete or partial E3 deletions, leading to a shorter half-life in vivo. We generated E3+ OAds using two insertion sites, After-fiber and After-E4, and two different splice acceptors linked to the major late promoter, either the Ad5 protein IIIa acceptor (IIIaSA) or the Ad40 long fiber acceptor (40SA). The highest transgene levels were obtained with the After-fiber location and 40SA. However, the set of codons of the transgene affected viral fitness, highlighting the relevance of transgene codon usage when arming OAds using the major late promoter.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
- VCN Biosciences S.L., 08174 Sant Cugat, Spain;
| | - Jana de Sostoa
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| | - Estela Nuñez-Manchón
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, 08036 Barcelona, Spain; (E.N.-M.); (C.F.)
| | - Rafael Moreno
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| | - Cristina Fillat
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, 08036 Barcelona, Spain; (E.N.-M.); (C.F.)
| | | | - Ramon Alemany
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| |
Collapse
|
44
|
Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol 2020; 13:84. [PMID: 32600470 PMCID: PMC7325106 DOI: 10.1186/s13045-020-00922-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains. As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors. Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.
Collapse
Affiliation(s)
- Otto Hemminki
- Division of Urologic Oncology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada. .,Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Department of Urology, Helsinki University Hospital, Helsinki, Finland.
| | - João Manuel Dos Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,TILT Biotherapeutics Ltd, Helsinki, Finland. .,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
45
|
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ, Guedan S. CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Front Immunol 2020; 11:1109. [PMID: 32625204 PMCID: PMC7311654 DOI: 10.3389/fimmu.2020.01109] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable efficacy for the treatment of hematological malignancies. However, in patients with solid tumors, objective responses to CAR-T cell therapy remain sporadic and transient. A major obstacle for CAR-T cells is the intrinsic ability of tumors to evade immune responses. Advanced solid tumors are largely composed of desmoplastic stroma and immunosuppressive modulators, and characterized by aberrant cell proliferation and vascularization, resulting in hypoxia and altered nutrient availability. To mount a curative response after infusion, CAR-T cells must infiltrate the tumor, recognize their cognate antigen and perform their effector function in this hostile tumor microenvironment, to then differentiate and persist as memory T cells that confer long-term protection. Fortunately, recent advances in synthetic biology provide a wide set of tools to genetically modify CAR-T cells to overcome some of these obstacles. In this review, we provide a comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective CAR-T cell antitumor response and we discuss the most promising strategies to prevent tumor escape to CAR-T cell therapy.
Collapse
Affiliation(s)
- Alba Rodriguez-Garcia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Laboratory, Ikerbasque Basque Foundation for Science, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sonia Guedan
- Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
46
|
Goradel NH, Negahdari B, Ghorghanlu S, Jahangiri S, Arashkia A. Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacol Ther 2020; 213:107586. [PMID: 32479843 DOI: 10.1016/j.pharmthera.2020.107586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses, effectively replicate viruses within malignant cells to lyse them without affecting normal ones, have recently shown great promise in developing therapeutic options for cancer. Adenoviruses (Ads) are one of the candidates in oncolytic virotheraoy due to its easily manipulated genomic DNA and expression of wide rane of its receptors on the various cancers. Although systematic delivery of oncolytic adenoviruses can target both primary and metastatic tumors, there are some drawbacks in the effective systematic delivery of oncolytic adenoviruses, including pre-existing antibodies and liver tropism. To overcome these limitations, intratumural (IT) administration of oncolytic viruses have been proposed. However, IT injection of Ads leaves much of the tumor mass unaffected and Ads are not able to disperse more in the tumor microenvironment (TME). To this end, various strategies have been developed to enhance the IT spread of oncolytic adenoviruses, such as using extracellular matrix degradation enzymes, junction opening peptides, and fusogenic proteins. In the present paper, we reviewed different oncolytic adenoviruses, their application in the clinical trials, and strategies for enhancing their IT spread.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ghorghanlu
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
47
|
Farrera-Sal M, Fillat C, Alemany R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers (Basel) 2020; 12:E1034. [PMID: 32340119 PMCID: PMC7226017 DOI: 10.3390/cancers12041034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- VCN Biosciences S.L., 08174 Sant Cugat, Spain
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rare Diseases Networking Biomedical Research Center (CIBERER), University of Barcelona, 08036 Barcelona, Spain;
| | - Ramon Alemany
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
48
|
Li L, Liu S, Han D, Tang B, Ma J. Delivery and Biosafety of Oncolytic Virotherapy. Front Oncol 2020; 10:475. [PMID: 32373515 PMCID: PMC7176816 DOI: 10.3389/fonc.2020.00475] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, oncolytic virotherapy has emerged as a promising anticancer therapy. Oncolytic viruses destroy cancer cells, without damaging normal tissues, through virus self-replication and antitumor immunity responses, showing great potential for cancer treatment. However, the clinical guidelines for administering oncolytic virotherapy remain unclear. Delivery routes for oncolytic virotherapy to patients vary in existing studies, depending on the tumor sites and the objective of studies. Moreover, the biosafety of oncolytic virotherapy, including mainly uncontrolled adverse events and long-term complications, remains a serious concern that needs to be accurately measured. This review provides a comprehensive and detailed overview of the delivery and biosafety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Lizhi Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shixin Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Duoduo Han
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, National Health Commission Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
49
|
Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med 2020; 14:160-184. [PMID: 32146606 PMCID: PMC7101593 DOI: 10.1007/s11684-020-0750-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.
Collapse
|
50
|
Li Y, Shen Y, Zhao R, Samudio I, Jia W, Bai X, Liang T. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam? Cancer Med 2020; 9:2943-2959. [PMID: 32130786 PMCID: PMC7196045 DOI: 10.1002/cam4.2949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional therapies have limited efficacy in hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer, especially for advanced and refractory cancers. Through a deeper understanding of antitumor immunity and the tumor microenvironment, novel immunotherapies are becoming available for cancer treatment. Oncolytic virus (OV) therapy is an emerging type of immunotherapy that has demonstrated effective antitumor efficacy in many preclinical studies and clinical studies. Thus, it may represent a potential feasible treatment for hard to treat gastrointestinal (GI) tumors. Here, we summarize the research progress of OV therapy for the treatment of hepato-bilio-pancreatic cancers. In general, most OV therapies exhibits potent, specific oncolysis both in cell lines in vitro and the animal models in vivo. Currently, several clinical trials have suggested that OV therapy may also be effective in patients with refractory hepato-bilio-pancreatic cancer. Multiple strategies such as introducing immunostimulatory genes, modifying virus capsid and combining various other therapeutic modalities have been shown enhanced specific oncolysis and synergistic anti-cancer immune stimulation. Combining OV with other antitumor therapies may become a more effective strategy than using virus alone. Nevertheless, more studies are needed to better understand the mechanisms underlying the therapeutic effects of OV, and to design appropriate dosing and combination strategies.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | | | | | - William Jia
- Virogin Biotech Canada Ltd, Vancouver, Canada
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|