1
|
Karmakar S, Chatterjee M, Basu M, Ghosh MK. CK2: The master regulator in tumor immune-microenvironment - A crucial target in oncotherapy. Eur J Pharmacol 2025; 994:177376. [PMID: 39952582 DOI: 10.1016/j.ejphar.2025.177376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
A constitutively active serine/threonine kinase, casein kinase 2 (CK2) is involved in several physiological functions, such as DNA repair, apoptosis, and cell cycle control. New research emphasizes how critical CK2 is to the immune system's dysregulation in the tumor immune-microenvironment (TIME). The inhibition of immunological responses, including the downregulation of immune effector cells and the elevation of immunosuppressive proteins that aid in the development of tumor and immune evasion, has been linked to CK2 overexpression. CK2 maintains an immunosuppressive milieu that impedes anti-tumor immunity by encouraging the expressions and activities of immune checkpoint markers, regulating cytokines release, and boosting immune-suppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) to maintain immune evasion. It is a promising target for cancer treatment due to its complex role in immune regulation and oncogenic pathways. In this study, we address the therapeutic perspectives of targeting CK2 in oncotherapy and investigate the mechanisms by which it controls immunological responses in the TME. This review, comprehending the function of CK2 in immune suppression can facilitate the creation of innovative treatment approaches aimed at augmenting anti-tumor immunity and enhancing immunotherapy effectiveness.
Collapse
Affiliation(s)
- Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mouli Chatterjee
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Dakshin Barasat, WB, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
2
|
Bova V, Mannino D, Capra AP, Lanza M, Palermo N, Filippone A, Esposito E. CK and LRRK2 Involvement in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:11661. [PMID: 39519213 PMCID: PMC11546471 DOI: 10.3390/ijms252111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are currently the most widespread neuronal pathologies in the world. Among these, the most widespread are Alzheimer's disease (AD), dementia, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD)-all characterized by a progressive loss of neurons in specific regions of the brain leading to varied clinical symptoms. At the basis of neurodegenerative diseases, an emerging role is played by genetic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene that cause increased LRRK2 activity with consequent alteration of neuronal autophagy pathways. LRRK2 kinase activity requires GTPase activity which functions independently of kinase activity and is required for neurotoxicity and to potentiate neuronal death. Important in the neurodegeneration process is the upregulation of casein kinase (CK), which causes the alteration of the AMPK pathway by enhancing the phosphorylation of α-synuclein and huntingtin proteins, known to be involved in PD and HD, and increasing the accumulation of the amyloid-β protein (Aβ) for AD. Recent research has identified CK of the kinases upstream of LRRK2 as a regulator of the stability of the LRRK2 protein. Based on this evidence, this review aims to understand the direct involvement of individual kinases in NDDs and how their crosstalk may impact the pathogenesis and early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Nicoletta Palermo
- Department of Biochemical, Dental, Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| |
Collapse
|
3
|
Mudaliar D, Mansky RH, White A, Baudhuin G, Hawkinson J, Wong H, Walters MA, Gomez-Pastor R. Discovery of a CK2α'-Biased ATP-Competitive Inhibitor from a High-Throughput Screen of an Allosteric-Inhibitor-Like Compound Library. ACS Chem Neurosci 2024; 15:2703-2718. [PMID: 38908003 PMCID: PMC11987140 DOI: 10.1021/acschemneuro.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Protein kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes, including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP-binding site. Using computational analyses, we found a potential type IV ("D" pocket) allosteric site that contained different residues between CK2α and CK2α' and was distal from the ATP-binding pocket featured in both kinases. We decided to look for allosteric modulators that might interact in a biased fashion with the type IV pocket on both CK2α and CK2α'. We screened a commercial library containing ∼29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo Kinase assay. Obtained hits were counter-screened against CK2α using the ADP-Glo Kinase assay, revealing two CK2α'-biased compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.
Collapse
Affiliation(s)
- Deepti Mudaliar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rachel H Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Angel White
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Grace Baudhuin
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | | | - Henry Wong
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
4
|
Deng H, Rao X, Zhang S, Chen L, Zong Y, Zhou R, Meng R, Dong X, Wu G, Li Q. Protein kinase CK2: An emerging regulator of cellular metabolism. Biofactors 2024; 50:624-633. [PMID: 38158592 DOI: 10.1002/biof.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The protein kinase casein kinase 2 (CK2) exerts its influence on the metabolism of three major cellular substances by phosphorylating essential protein molecules involved in various cellular metabolic pathways. These substances include hormones, especially insulin, rate-limiting enzymes, transcription factors of key genes, and cytokines. This regulatory role of CK2 is closely tied to important cellular processes such as cell proliferation and apoptosis. Additionally, tumor cells undergo metabolic reprogramming characterized by aerobic glycolysis, accelerated lipid β-oxidation, and abnormally active glutamine metabolism. In this context, CK2, which is overexpressed in various tumors, also plays a pivotal role. Hence, this review aims to summarize the regulatory mechanisms of CK2 in diverse metabolic pathways and tumor development, providing novel insights for the diagnosis, treatment, and prognosis of metabolism-related diseases and cancers.
Collapse
Affiliation(s)
- Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Jiang L, Ren X, Yang J, Chen H, Zhang S, Zhou X, Huang J, Jiang C, Gu Y, Tang J, Yang G, Chi H, Qin J. Mitophagy and clear cell renal cell carcinoma: insights from single-cell and spatial transcriptomics analysis. Front Immunol 2024; 15:1400431. [PMID: 38994370 PMCID: PMC11236570 DOI: 10.3389/fimmu.2024.1400431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type of kidney cancer, characterized by high heterogeneity and complexity. Recent studies have identified mitochondrial defects and autophagy as key players in the development of ccRCC. This study aims to delve into the changes in mitophagic activity within ccRCC and its impact on the tumor microenvironment, revealing its role in tumor cell metabolism, development, and survival strategies. METHODS Comprehensive analysis of ccRCC tumor tissues using single cell sequencing and spatial transcriptomics to reveal the role of mitophagy in ccRCC. Mitophagy was determined to be altered among renal clear cells by gene set scoring. Key mitophagy cell populations and key prognostic genes were identified using NMF analysis and survival analysis approaches. The role of UBB in ccRCC was also demonstrated by in vitro experiments. RESULTS Compared to normal kidney tissue, various cell types within ccRCC tumor tissues exhibited significantly increased levels of mitophagy, especially renal clear cells. Key genes associated with increased mitophagy levels, such as UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their high expression closely linked to poor patient prognosis. Particularly, the ubiquitination process involving the UBB gene was found to be crucial for mitophagy and its quality control. CONCLUSION This study highlights the central role of mitophagy and its regulatory factors in the development of ccRCC, revealing the significance of the UBB gene and its associated ubiquitination process in disease progression.
Collapse
Affiliation(s)
- Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xing Ren
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yuheng Gu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jingyi Tang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jianhua Qin
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Bradley D, Garand C, Belda H, Gagnon-Arsenault I, Treeck M, Elowe S, Landry CR. The substrate quality of CK2 target sites has a determinant role on their function and evolution. Cell Syst 2024; 15:544-562.e8. [PMID: 38861992 DOI: 10.1016/j.cels.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Most biological processes are regulated by signaling modules that bind to short linear motifs. For protein kinases, substrates may have full or only partial matches to the kinase recognition motif, a property known as "substrate quality." However, it is not clear whether differences in substrate quality represent neutral variation or if they have functional consequences. We examine this question for the kinase CK2, which has many fundamental functions. We show that optimal CK2 sites are phosphorylated at maximal stoichiometries and found in many conditions, whereas minimal substrates are more weakly phosphorylated and have regulatory functions. Optimal CK2 sites tend to be more conserved, and substrate quality is often tuned by selection. For intermediate sites, increases or decreases in substrate quality may be deleterious, as we demonstrate for a CK2 substrate at the kinetochore. The results together suggest a strong role for substrate quality in phosphosite function and evolution. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- David Bradley
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Chantal Garand
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Axe de Reproduction, Santé de la mère et de l'enfant, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Hugo Belda
- Signalling in Host-Pathogen Interaction Laboratory, The Francis Crick Institute, London NW11AT, UK
| | - Isabelle Gagnon-Arsenault
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Moritz Treeck
- Signalling in Host-Pathogen Interaction Laboratory, The Francis Crick Institute, London NW11AT, UK; Cell Biology of Host-Pathogen Interaction Laboratory, The Gulbenkian Institute of Science, Oeiras 2780-156, Portugal
| | - Sabine Elowe
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Axe de Reproduction, Santé de la mère et de l'enfant, CHU de Québec, Université Laval, Québec City, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université Laval, Québec City, QC, Canada; Centre de Recherche sur le Cancer, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Wang Y, Liu X, Zuo X, Wang C, Zhang Z, Zhang H, Zeng T, Chen S, Liu M, Chen H, Song Q, Li Q, Yang C, Le Y, Xing J, Zhang H, An J, Jia W, Kang L, Zhang H, Xie H, Ye J, Wu T, He F, Zhang X, Li Y, Zhou G. NRDE2 deficiency impairs homologous recombination repair and sensitizes hepatocellular carcinoma to PARP inhibitors. CELL GENOMICS 2024; 4:100550. [PMID: 38697125 PMCID: PMC11099347 DOI: 10.1016/j.xgen.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.
Collapse
Affiliation(s)
- Yahui Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Xianbo Zuo
- Department of Dermatology, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haitao Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Tao Zeng
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hongxia Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Qingfeng Song
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City, Guangxi Province, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; Department of Neurosciences, School of Medicine, University of South China, Hengyang City, Hunan Province, P.R. China
| | - Chenning Yang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Yi Le
- Department of Hepatobiliary Surgery, the 5th Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Weihua Jia
- State Key Laboratory of Oncology in Southern China, Guangzhou City, Guangdong Province, P.R. China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou City, Guangdong Province, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City, Shaanxi Province, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China
| | - Hui Xie
- Department of Interventional Oncology, the Fifth Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Jiazhou Ye
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning City, Guangxi Province, P.R. China
| | - Tianzhun Wu
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning City, Guangxi Province, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China.
| | - Xuejun Zhang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei City, Anhui Province, P.R. China.
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, P.R. China.
| |
Collapse
|
8
|
Li Y, Zhu Q, He R, Du J, Qin X, Li Y, Liang X, Wang J. The NFκB Signaling Pathway Is Involved in the Pathophysiological Process of Preeclampsia. Geburtshilfe Frauenheilkd 2024; 84:334-345. [PMID: 38618576 PMCID: PMC11006561 DOI: 10.1055/a-2273-6318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 04/16/2024] Open
Abstract
The high prevalence of preeclampsia (PE) is a major cause of maternal and fetal mortality and affects the long-term prognosis of both mother and baby. Termination of pregnancy is currently the only effective treatment for PE, so there is an urgent need for research into its pathogenesis and the development of new therapeutic approaches. The NFκB family of transcription factors has an essential role in inflammation and innate immunity. In this review, we summarize the role of NFκB in normal and preeclampsia pregnancies, the role of NFκB in existing treatment strategies, and potential NFκB treatment strategies.
Collapse
Affiliation(s)
- Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Liu ZD, Shi YH, Xu QC, Zhao GY, Zhu YQ, Li FX, Ma MJ, Ye JY, Huang XT, Wang XY, Xu X, Wang JQ, Zhao W, Yin XY. CSNK2A1 confers gemcitabine resistance to pancreatic ductal adenocarcinoma via inducing autophagy. Cancer Lett 2024; 585:216640. [PMID: 38290659 DOI: 10.1016/j.canlet.2024.216640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Gemcitabine, a pivotal chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), frequently encounters drug resistance, posing a significant clinical challenge with implications for PDAC patient prognosis. In this study, employing an integrated approach involving bioinformatic analyses from multiple databases, we unveil CSNK2A1 as a key regulatory factor. The patient-derived xenograft (PDX) model further substantiates the critical role of CSNK2A1 in gemcitabine resistance within the context of PDAC. Additionally, targeted silencing of CSNK2A1 expression significantly enhances sensitivity of PDAC cells to gemcitabine treatment. Mechanistically, CSNK2A1's transcriptional regulation is mediated by H3K27 acetylation in PDAC. Moreover, we identify CSNK2A1 as a pivotal activator of autophagy, and enhanced autophagy drives gemcitabine resistance. Silmitasertib, an established CSNK2A1 inhibitor, can effectively inhibit autophagy. Notably, the combinatorial treatment of Silmitasertib with gemcitabine demonstrates remarkable efficacy in treating PDAC. In summary, our study reveals CSNK2A1 as a potent predictive factor for gemcitabine resistance in PDAC. Moreover, targeted CSNK2A1 inhibition by Silmitasertib represents a promising therapeutic strategy to restore gemcitabine sensitivity in PDAC, offering hope for improved clinical outcomes.
Collapse
Affiliation(s)
- Zhi-De Liu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yin-Hao Shi
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Yin Zhao
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Qin Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fu-Xi Li
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Jian Ma
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Yuan Ye
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xi-Tai Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Qin Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
Mudaliar D, Mansky RH, White A, Baudhuin G, Hawkinson J, Wong H, Walters MA, Gomez-Pastor R. Identification of CK2α' selective inhibitors by the screening of an allosteric-kinase-inhibitor-like compound library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576328. [PMID: 38328231 PMCID: PMC10849513 DOI: 10.1101/2024.01.18.576328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Protein Kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP binding site. Using computational analyses, we found a potential Type IV ("D" pocket) allosteric site on CK2α' that contained different residues than CK2α and was distal from the ATP binding pocket featured in both kinases. With this potential allosteric site in mind, we screened a commercial library containing ~29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo™ Kinase assay. Obtained hits were counter-screened against CK2α revealing two CK2α' selective compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.
Collapse
Affiliation(s)
- Deepti Mudaliar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rachel H Mansky
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Angel White
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Grace Baudhuin
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Jon Hawkinson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Henry Wong
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
11
|
Homma MK, Nakato R, Niida A, Bando M, Fujiki K, Yokota N, Yamamoto S, Shibata T, Takagi M, Yamaki J, Kozuka-Hata H, Oyama M, Shirahige K, Homma Y. Cell cycle-dependent gene networks for cell proliferation activated by nuclear CK2α complexes. Life Sci Alliance 2024; 7:e202302077. [PMID: 37907238 PMCID: PMC10618106 DOI: 10.26508/lsa.202302077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Nuclear expression of protein kinase CK2α is reportedly elevated in human carcinomas, but mechanisms underlying its variable localization in cells are poorly understood. This study demonstrates a functional connection between nuclear CK2 and gene expression in relation to cell proliferation. Growth stimulation of quiescent human normal fibroblasts and phospho-proteomic analysis identified a pool of CK2α that is highly phosphorylated at serine 7. Phosphorylated CK2α translocates into the nucleus, and this phosphorylation appears essential for nuclear localization and catalytic activity. Protein signatures associated with nuclear CK2 complexes reveal enrichment of apparently unique transcription factors and chromatin remodelers during progression through the G1 phase of the cell cycle. Chromatin immunoprecipitation-sequencing profiling demonstrated recruitment of CK2α to active gene loci, more abundantly in late G1 phase than in early G1, notably at transcriptional start sites of core histone genes, growth stimulus-associated genes, and ribosomal RNAs. Our findings reveal that nuclear CK2α complexes may be essential to facilitate progression of the cell cycle, by activating histone genes and triggering ribosomal biogenesis, specified in association with nuclear and nucleolar transcriptional regulators.
Collapse
Affiliation(s)
- Miwako Kato Homma
- Department of Biomolecular Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Japan
| | - Atsushi Niida
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato, Japan
| | - Masashige Bando
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Japan
| | - Katsunori Fujiki
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Japan
| | - Naoko Yokota
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Japan
| | - So Yamamoto
- Department of Biomolecular Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Motoki Takagi
- Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junko Yamaki
- Department of Biomolecular Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, Biomedicum, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Yoshimi Homma
- Department of Biomolecular Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
12
|
Litchfield DW, Gyenis L, Menyhart D, Roffey SE. Towards the CSNK2 phosphoproteome - With lessons from the COVID-19 pandemic to revealing the secrets of CSNK2 and its promise as a therapeutic target. Biochim Biophys Acta Gen Subj 2023; 1867:130441. [PMID: 37543358 DOI: 10.1016/j.bbagen.2023.130441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Dramatic advances in phosphoproteomics and the development of a selective chemical probe have presented new opportunities for revealing the cellular landscape of substrates for CSNK2 (formerly known as CK2 or casein kinase II). In addition to deciphering the role(s) of CSNK2 in physiology and pathophysiology, the CSNK2 phosphoproteome offers the promise of instructing the development of CSNK2-targeted therapy.
Collapse
Affiliation(s)
- David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Scott E Roffey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
13
|
Lefebvre C, Pellizzari S, Bhat V, Jurcic K, Litchfield DW, Allan AL. Involvement of the AKT Pathway in Resistance to Erlotinib and Cabozantinib in Triple-Negative Breast Cancer Cell Lines. Biomedicines 2023; 11:2406. [PMID: 37760847 PMCID: PMC10525382 DOI: 10.3390/biomedicines11092406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Resistance to protein tyrosine kinase inhibitors (TKIs) presents a significant challenge in therapeutic target development for cancers such as triple-negative breast cancer (TNBC), where conventional therapies are ineffective at combatting systemic disease. Due to increased expression, the receptor tyrosine kinases EGFR (epidermal growth factor receptor) and c-Met are potential targets for treatment. However, targeted anti-EGFR and anti-c-Met therapies have faced mixed results in clinical trials due to acquired resistance. We hypothesize that adaptive responses in regulatory kinase networks within the EGFR and c-Met signaling axes contribute to the development of acquired erlotinib and cabozantinib resistance. To test this, we developed two separate models for cabozantinib and erlotinib resistance using the MDA-MB-231 and MDA-MB-468 cell lines, respectively. We observed that erlotinib- or cabozantinib-resistant cell lines demonstrate enhanced cell proliferation, migration, invasion, and activation of EGFR or c-Met downstream signaling (respectively). Using a SILAC (Stable Isotope Labeling of Amino acids in Cell Culture)-labeled quantitative mass spectrometry proteomics approach, we assessed the effects of erlotinib or cabozantinib resistance on the phosphoproteome, proteome, and kinome. Using this integrated proteomics approach, we identified several potential kinase mediators of cabozantinib resistance and confirmed the contribution of AKT1 to erlotinib resistance in TNBC-resistant cell lines.
Collapse
Affiliation(s)
- Cory Lefebvre
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Sierra Pellizzari
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Vasudeva Bhat
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada; (K.J.); (D.W.L.)
| | - David W. Litchfield
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada; (K.J.); (D.W.L.)
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Alison L. Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|
14
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
15
|
Davis-Gilbert Z, Krämer A, Dunford JE, Howell S, Senbabaoglu F, Wells CI, Bashore FM, Havener TM, Smith JL, Hossain MA, Oppermann U, Drewry DH, Axtman AD. Discovery of a Potent and Selective Naphthyridine-Based Chemical Probe for Casein Kinase 2. ACS Med Chem Lett 2023; 14:432-441. [PMID: 37077385 PMCID: PMC10108397 DOI: 10.1021/acsmedchemlett.2c00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Naphthyridine-based inhibitors were synthesized to yield a potent and cell-active inhibitor of casein kinase 2 (CK2). Compound 2 selectively inhibits CK2α and CK2α' when profiled broadly, thereby making it an exquisitely selective chemical probe for CK2. A negative control that is structurally related but lacks a key hinge-binding nitrogen (7) was designed on the basis of structural studies. Compound 7 does not bind CK2α or CK2α' in cells and demonstrates excellent kinome-wide selectivity. Differential anticancer activity was observed when compound 2 was profiled alongside a structurally distinct CK2 chemical probe: SGC-CK2-1. This naphthyridine-based chemical probe (2) represents one of the best available small molecule tools with which to interrogate biology mediated by CK2.
Collapse
Affiliation(s)
- Zachary
W. Davis-Gilbert
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andreas Krämer
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Strabe 9, Frankfurt 60438, Germany
- Structural
Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strabe 15, Frankfurt 60438, Germany
- Frankfurt
Cancer Institute, Paul-Ehrlich-Straße
42-44, Frankfurt 60596, Germany
| | - James E. Dunford
- Botnar
Research Centre, Nuffield Department of Orthopaedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford OX3 7LD, United Kingdom
| | - Stefanie Howell
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Filiz Senbabaoglu
- Botnar
Research Centre, Nuffield Department of Orthopaedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford OX3 7LD, United Kingdom
| | - Carrow I. Wells
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frances M. Bashore
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tammy M. Havener
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffery L. Smith
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mohammad A. Hossain
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Udo Oppermann
- Botnar
Research Centre, Nuffield Department of Orthopaedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford OX3 7LD, United Kingdom
- Oxford
Translational
Myeloma Centre, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - David H. Drewry
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D. Axtman
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Naghizadeh MM, Bakhshandeh B, Noorbakhsh F, Yaghmaie M, Masoudi-Nejad A. Rewiring of miRNA-mRNA bipartite co-expression network as a novel way to understand the prostate cancer related players. Syst Biol Reprod Med 2023:1-12. [PMID: 37018429 DOI: 10.1080/19396368.2023.2187268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The differential expression and direct targeting of mRNA by miRNA are two main logics of the traditional approach to constructing the miRNA-mRNA network. This approach, could be led to the loss of considerable information and some challenges of direct targeting. To avoid these problems, we analyzed the rewiring network and constructed two miRNA-mRNA expression bipartite networks for both normal and primary prostate cancer tissue obtained from PRAD-TCGA. We then calculated beta-coefficient of the regression-model when miR was dependent and mRNA independent for each miR and mRNA and separately in both networks. We defined the rewired edges as a significant change in the regression coefficient between normal and cancer states. The rewired nodes through multinomial distribution were defined and network from rewired edges and nodes was analyzed and enriched. Of the 306 rewired edges, 112(37%) were new, 123(40%) were lost, 44(14%) were strengthened, and 27(9%) weakened connections were discovered. The highest centrality of 106 rewired mRNAs belonged to PGM5, BOD1L1, C1S, SEPG, TMEFF2, and CSNK2A1. The highest centrality of 68 rewired miRs belonged to miR-181d, miR-4677, miR-4662a, miR-9.3, and miR-1301. SMAD and beta-catenin binding were enriched as molecular functions. The regulation was a frequently repeated concept in the biological process. Our rewiring analysis highlighted the impact of β-catenin and SMAD signaling as also some transcript factors like TGFB1I1 in prostate cancer progression. Altogether, we developed a miRNA-mRNA co-expression bipartite network to identify the hidden aspects of the prostate cancer mechanism, which traditional analysis -like differential expression- was not detect it.
Collapse
Affiliation(s)
- Mohammad Mehdi Naghizadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Fan J, Tong G, Chen X, Li S, Yu Y, Zhu S, Zhu K, Hu Z, Dong Y, Chen R, Zhu J, Gong W, Hu Z, Zhou B, Chen Y, Jin L, Cong W. CK2 blockade alleviates liver fibrosis by suppressing activation of hepatic stellate cells via the Hedgehog pathway. Br J Pharmacol 2023; 180:44-61. [PMID: 36070072 DOI: 10.1111/bph.15945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a serious cause of morbidity and mortality worldwide characterized by accumulation of extracellular matrix produced by hepatic stellate cells (HSCs). The protein kinase CK2 is a pro-survival kinase overexpressed in human tumours. However, the biological role of CK2 in liver fibrosis is largely unknown. We aimed to investigate the mechanism by which CK2 promotes liver fibrosis. EXPERIMENTAL APPROACH In vitro, LX-2 cells were stimulated with transforming growth factor-β (TGF-β). HSCs were also isolated for research. In vivo, the adeno-associated virus AAV-sh-csnk2a1 was used to knockdown CK2α specifically in HSCs, and CX-4945 was used to pharmacologically inhibit the enzymatic activity of CK2 in murine models of fibrosis induced by carbon tetrachloride (CCl4 ) and a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Histological and biochemical analyses were performed to study the involvement of CK2 in regulation of fibrogenic and fibrolytic factors as well as activation properties of HSCs. KEY RESULTS HSC-specific genetic invalidation of CK2α or pharmacological inhibition of CK2 protected mice treated with CCl4 or fed a DDC diet against liver fibrosis and HSC accumulation. Mechanistically, CK2α, which bound to Smoothened (SMO), was a positive regulator of the Hedgehog signal transduction pathway. CK2 prevented ubiquitination and proteasomal degradation of SMO, which was abolished by knockdown of CK2α or pharmacological inhibition of CK2. CONCLUSIONS AND IMPLICATIONS CK2 activation is critical to sustain the activated and fibrogenic phenotype of HSCs via SMO stabilization. Therefore, inactivation of CK2 by CX-4945 may be of therapeutic interest for liver fibrotic diseases.
Collapse
Affiliation(s)
- Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xixi Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shunan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kunxuan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijing Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yonggan Dong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiming Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Samec T, Alatise KL, Boulos J, Gilmore S, Hazelton A, Coffin C, Alexander-Bryant A. Fusogenic peptide delivery of bioactive siRNAs targeting CSNK2A1 for treatment of ovarian cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:95-111. [PMID: 36213692 PMCID: PMC9530961 DOI: 10.1016/j.omtn.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Ovarian cancer has shown little improvement in survival among advanced-stage patients over the past decade. Current treatment strategies have been largely unsuccessful in treating advanced disease, with many patients experiencing systemic toxicity and drug-resistant metastatic cancer. This study evaluates novel fusogenic peptide carriers delivering short interfering RNA (siRNA) targeting casein kinase II, CSNK2A1, for reducing the aggressiveness of ovarian cancer. The peptides were designed to address two significant barriers to siRNA delivery: insufficient cellular uptake and endosomal entrapment. The three peptide variants developed, DIVA3, DIV3H, and DIV3W, were able to form monodisperse nanoparticle complexes with siRNA and protect siRNAs from serum and RNase degradation. Furthermore, DIV3W demonstrated optimal delivery of bioactive siRNAs into ovarian cancer cells with high cellular uptake efficiency and mediated up to 94% knockdown of CSNK2A1 mRNA compared with non-targeting siRNAs, resulting in decreased cell migration and recolonization in vitro. Intratumoral delivery of DIV3W-siCSNK2A1 complexes to subcutaneous ovarian tumors resulted in reduced CSNK2A1 mRNA and CK2α protein expression after 48 h and reduced tumor growth and migration in a 2-week multi-dosing regimen. These results demonstrate the potential of the DIV3W peptide to deliver bioactive siRNAs and confirms the role of CSNK2A1 in cell-cell communication and proliferation in ovarian cancer.
Collapse
Affiliation(s)
- Timothy Samec
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Kharimat Lora Alatise
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Jessica Boulos
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Serena Gilmore
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Anthony Hazelton
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Carleigh Coffin
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| | - Angela Alexander-Bryant
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA
| |
Collapse
|
20
|
Chen L, Zhang S, Li Q, Li J, Deng H, Zhang S, Meng R. Emerging role of Protein Kinase CK2 in Tumor immunity. Front Oncol 2022; 12:1065027. [DOI: 10.3389/fonc.2022.1065027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase CK2, a conserved serine/threonine-protein kinase, is ubiquitous in cells and regulates various intracellular processes, especially in tumor cells. As one of the earliest discovered protein kinases in humans, CK2 plays a crucial role in phosphorylating or associating with hundreds of substrates to modulate several signaling pathways. Excellent reviews have reported that the overexpression of CK2 could be observed in many cancers and was closely associated with tumor occurrence and development. The elevation of CK2 is also an indicator of a poor prognosis. Recently, increasing attention has been paid to the relationship between CK2 and tumor immunity. However, there is no comprehensive description of how CK2 regulates the immune cells in the tumor microenvironment (TME). Also, the underlying mechanisms are still not very clear. In this review, we systematically summarized the correlation between CK2 and tumor immunity, primarily the effects on various immune cells, both in innate and adaptive immunity in the TME. With the comprehensive development of immunotherapy and the mounting transformation research of CK2 inhibitors from the bench to the clinic, this review will provide vital information to find new treatment options for enhancing the efficacy of immunotherapy.
Collapse
|
21
|
Fasciani I, Carli M, Petragnano F, Colaianni F, Aloisi G, Maggio R, Scarselli M, Rossi M. GPCRs in Intracellular Compartments: New Targets for Drug Discovery. Biomolecules 2022; 12:1343. [PMID: 36291552 PMCID: PMC9599219 DOI: 10.3390/biom12101343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 08/02/2023] Open
Abstract
The architecture of eukaryotic cells is defined by extensive membrane-delimited compartments, which entails separate metabolic processes that would otherwise interfere with each other, leading to functional differences between cells. G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors, and their signal transduction is traditionally viewed as a chain of events initiated from the plasma membrane. Furthermore, their intracellular trafficking, internalization, and recycling were considered only to regulate receptor desensitization and cell surface expression. On the contrary, accumulating data strongly suggest that GPCRs also signal from intracellular compartments. GPCRs localize in the membranes of endosomes, nucleus, Golgi and endoplasmic reticulum apparatuses, mitochondria, and cell division compartments. Importantly, from these sites they have shown to orchestrate multiple signals that regulate different cell pathways. In this review, we summarize the current knowledge of this fascinating phenomenon, explaining how GPCRs reach the intracellular sites, are stimulated by the endogenous ligands, and their potential physiological/pathophysiological roles. Finally, we illustrate several mechanisms involved in the modulation of the compartmentalized GPCR signaling by drugs and endogenous ligands. Understanding how GPCR signaling compartmentalization is regulated will provide a unique opportunity to develop novel pharmaceutical approaches to target GPCRs and potentially lead the way towards new therapeutic approaches.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Carli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesco Colaianni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
22
|
Guo Y, Zhu Z, Huang Z, Cui L, Yu W, Hong W, Zhou Z, Du P, Liu CY. CK2-induced cooperation of HHEX with the YAP-TEAD4 complex promotes colorectal tumorigenesis. Nat Commun 2022; 13:4995. [PMID: 36008411 PMCID: PMC9411202 DOI: 10.1038/s41467-022-32674-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Dysregulation of Hippo pathway leads to hyperactivation of YAP-TEAD transcriptional complex in various cancers, including colorectal cancer (CRC). In this study, we observed that HHEX (Hematopoietically expressed homeobox) may enhance transcription activity of the YAP-TEAD complex. HHEX associates with and stabilizes the YAP-TEAD complex on the regulatory genomic loci to coregulate the expression of a group of YAP/TEAD target genes. Also, HHEX may indirectly regulate these target genes by controlling YAP/TAZ expression. Importantly, HHEX is required for the pro-tumorigenic effects of YAP during CRC progression. In response to serum stimulation, CK2 (Casein Kinase 2) phosphorylates HHEX and enhances its interaction with TEAD4. A CK2 inhibitor CX-4945 diminishes the interaction between HHEX and TEAD4, leading to decreased expression of YAP/TEAD target genes. CX-4945 synergizes the antitumor activity of YAP-TEAD inhibitors verteporfin and Super-TDU. Elevated expression of HHEX is correlated with hyperactivation of YAP/TEAD and associated with poor prognosis of CRC patients. Overall, our study identifies HHEX as a positive modulator of YAP/TEAD to promote colorectal tumorigenesis, providing a new therapeutic strategy for targeting YAP/TEAD in CRC. Hippo signalling is often deregulated in cancers. Here the authors show that CK2 enhances the cooperation of HHEX with YAP-TEAD complex to promote colorectal tumorigenesis.
Collapse
Affiliation(s)
- Yuegui Guo
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Zhehui Zhu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| |
Collapse
|
23
|
Yang W, Wei H, Benavides GA, Turbitt WJ, Buckley JA, Ouyang X, Zhou L, Zhang J, Harrington LE, Darley-Usmar VM, Qin H, Benveniste EN. Protein Kinase CK2 Controls CD8 + T Cell Effector and Memory Function during Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:896-906. [PMID: 35914835 PMCID: PMC9492634 DOI: 10.4049/jimmunol.2101080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/19/2022] [Indexed: 11/05/2022]
Abstract
Protein kinase CK2 is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory subunits (CK2β). CK2 promotes cancer progression by activating the NF-κB, PI3K/AKT/mTOR, and JAK/STAT pathways, and also is critical for immune cell development and function. The potential involvement of CK2 in CD8+ T cell function has not been explored. We demonstrate that CK2 protein levels and kinase activity are enhanced upon mouse CD8+ T cell activation. CK2α deficiency results in impaired CD8+ T cell activation and proliferation upon TCR stimulation. Furthermore, CK2α is involved in CD8+ T cell metabolic reprogramming through regulating the AKT/mTOR pathway. Lastly, using a mouse Listeria monocytogenes infection model, we demonstrate that CK2α is required for CD8+ T cell expansion, maintenance, and effector function in both primary and memory immune responses. Collectively, our study implicates CK2α as an important regulator of mouse CD8+ T cell activation, metabolic reprogramming, and differentiation both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Yang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hairong Wei
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William J. Turbitt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jessica A. Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Laurie E. Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL; and
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Co-Corresponding Authors: Dr. Hongwei Qin, Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL 35294. Phone: +1-205-934-2573. , Dr. Etty (Tika) Benveniste, Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 510 20th Street South, 1203 Faculty Office Tower, Birmingham, AL 35294. Phone: +1-205-934-7667.
| |
Collapse
|
24
|
Ayisha Begam K, Kanagathara N, Marchewka M, Lo AY. DFT, hirshfeld and molecular docking studies of a hybrid compound - 2,4-Diamino-6-methyl-1,3,5-triazin-1-ium hydrogen oxalate as a promising anti -breast cancer agent. Heliyon 2022; 8:e10355. [PMID: 36061020 PMCID: PMC9433678 DOI: 10.1016/j.heliyon.2022.e10355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The six-membered heterocyclic ring - 1,3,5-triazine and its derivatives have garnered a lot of attention because they're good bioactive herbicides, cancer agents, and other things. One such triazine derivative, 2,4-diamino-6-methyl-1,3,5-triazin-1-ium hydrogen oxalate (DMTHO), was produced in this work, and the structure was optimised using density functional theory's B3LYP functional and the basis set 6-31++G (d,p). Additionally, the chemical underwent in-depth research using molecular docking analysis, Hirshfeld, and density functional theory. The electron densities distribution in the atoms is provided by natural orbital analysis, which also characterises the chemical bonding and reaction behaviour of the compound. The calculated HOMO and LUMO energies indicate that charge transfer occurs inside the molecule. Chemical reactivity traits including HOMO-LUMO energy gaps, softness, total energy, chemical hardness, electronic chemical potential, and electrophilicity of bioactive substances have all been subjected to analytical investigation. Total dipole moment (μ) and first-order hyperpolarizability (β) measurements for the investigated chemical indicate that DMTHO may exhibit microscopic nonlinear optical (NLO) behaviour with nonzero values. A quantitative description about intermolecular interactions in the produced crystal is provided by the Hirshfeld surface analysis. Further docking studies of the compound have been performed and the results reveals that the compound inhibit the breast cancer related protein - casein kinase (CK2) - and the possibility of developing as a potential anti breast cancer lead.
Collapse
Affiliation(s)
- K. Ayisha Begam
- Department of Physics, Saveetha Engineering College, Chennai, 602 105, India
| | - N. Kanagathara
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, India
| | - M.K. Marchewka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław, 2, P.O. Box 937, Poland
| | - An-Ya Lo
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung, 411030, Taiwan
| |
Collapse
|
25
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
26
|
Gyenis L, Menyhart D, Cruise ES, Jurcic K, Roffey SE, Chai DB, Trifoi F, Fess SR, Desormeaux PJ, Núñez de Villavicencio Díaz T, Rabalski AJ, Zukowski SA, Turowec JP, Pittock P, Lajoie G, Litchfield DW. Chemical Genetic Validation of CSNK2 Substrates Using an Inhibitor-Resistant Mutant in Combination with Triple SILAC Quantitative Phosphoproteomics. Front Mol Biosci 2022; 9:909711. [PMID: 35755813 PMCID: PMC9225150 DOI: 10.3389/fmolb.2022.909711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Casein Kinase 2 (CSNK2) is an extremely pleiotropic, ubiquitously expressed protein kinase involved in the regulation of numerous key biological processes. Mapping the CSNK2-dependent phosphoproteome is necessary for better characterization of its fundamental role in cellular signalling. While ATP-competitive inhibitors have enabled the identification of many putative kinase substrates, compounds targeting the highly conserved ATP-binding pocket often exhibit off-target effects limiting their utility for definitive kinase-substrate assignment. To overcome this limitation, we devised a strategy combining chemical genetics and quantitative phosphoproteomics to identify and validate CSNK2 substrates. We engineered U2OS cells expressing exogenous wild type CSNK2A1 (WT) or a triple mutant (TM, V66A/H160D/I174A) with substitutions at residues important for inhibitor binding. These cells were treated with CX-4945, a clinical-stage inhibitor of CSNK2, and analyzed using large-scale triple SILAC (Stable Isotope Labelling of Amino Acids in Cell Culture) quantitative phosphoproteomics. In contrast to wild-type CSNK2A1, CSNK2A1-TM retained activity in the presence of CX-4945 enabling identification and validation of several CSNK2 substrates on the basis of their increased phosphorylation in cells expressing CSNK2A1-TM. Based on high conservation within the kinase family, we expect that this strategy can be broadly adapted for identification of other kinase-substrate relationships.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Edward S Cruise
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Scott E Roffey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Darren B Chai
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Flaviu Trifoi
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Sam R Fess
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paul J Desormeaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Stephanie A Zukowski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Jacob P Turowec
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paula Pittock
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
27
|
McSwain LF, Parwani KK, Shahab SW, Hambardzumyan D, MacDonald TJ, Spangle JM, Kenney AM. Medulloblastoma and the DNA Damage Response. Front Oncol 2022; 12:903830. [PMID: 35747808 PMCID: PMC9209741 DOI: 10.3389/fonc.2022.903830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children with standard of care consisting of surgery, radiation, and chemotherapy. Recent molecular profiling led to the identification of four molecularly distinct MB subgroups – Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4. Despite genomic MB characterization and subsequent tumor stratification, clinical treatment paradigms are still largely driven by histology, degree of surgical resection, and presence or absence of metastasis rather than molecular profile. Patients usually undergo resection of their tumor followed by craniospinal radiation (CSI) and a 6 month to one-year multi-agent chemotherapeutic regimen. While there is clearly a need for development of targeted agents specific to the molecular alterations of each patient, targeting proteins responsible for DNA damage repair could have a broader impact regardless of molecular subgrouping. DNA damage response (DDR) protein inhibitors have recently emerged as targeted agents with potent activity as monotherapy or in combination in different cancers. Here we discuss the molecular underpinnings of genomic instability in MB and potential avenues for exploitation through DNA damage response inhibition.
Collapse
Affiliation(s)
- Leon F. McSwain
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Kiran K. Parwani
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Shubin W. Shahab
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Dolores Hambardzumyan
- Departments of Neurosurgery and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Jennifer M. Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Anna Marie Kenney
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- *Correspondence: Anna Marie Kenney,
| |
Collapse
|
28
|
Huang D, Chowdhury S, Wang H, Savage SR, Ivey RG, Kennedy JJ, Whiteaker JR, Lin C, Hou X, Oberg AL, Larson MC, Eskandari N, Delisi DA, Gentile S, Huntoon CJ, Voytovich UJ, Shire ZJ, Yu Q, Gygi SP, Hoofnagle AN, Herbert ZT, Lorentzen TD, Calinawan A, Karnitz LM, Weroha SJ, Kaufmann SH, Zhang B, Wang P, Birrer MJ, Paulovich AG. Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer. Cell Rep Med 2021; 2:100471. [PMID: 35028612 PMCID: PMC8714940 DOI: 10.1016/j.xcrm.2021.100471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Resistance to platinum compounds is a major determinant of patient survival in high-grade serous ovarian cancer (HGSOC). To understand mechanisms of platinum resistance and identify potential therapeutic targets in resistant HGSOC, we generated a data resource composed of dynamic (±carboplatin) protein, post-translational modification, and RNA sequencing (RNA-seq) profiles from intra-patient cell line pairs derived from 3 HGSOC patients before and after acquiring platinum resistance. These profiles reveal extensive responses to carboplatin that differ between sensitive and resistant cells. Higher fatty acid oxidation (FAO) pathway expression is associated with platinum resistance, and both pharmacologic inhibition and CRISPR knockout of carnitine palmitoyltransferase 1A (CPT1A), which represents a rate limiting step of FAO, sensitize HGSOC cells to platinum. The results are further validated in patient-derived xenograft models, indicating that CPT1A is a candidate therapeutic target to overcome platinum resistance. All multiomic data can be queried via an intuitive gene-query user interface (https://sites.google.com/view/ptrc-cell-line).
Collapse
Affiliation(s)
- Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hong Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Najmeh Eskandari
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Davide A Delisi
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Saverio Gentile
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | - Uliana J Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zahra J Shire
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N Hoofnagle
- Department of Lab Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Travis D Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Larry M Karnitz
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Birrer
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
29
|
Paprocki D, Winiewska-Szajewska M, Speina E, Kucharczyk R, Poznański J. 5,6-diiodo-1H-benzotriazole: new TBBt analogue that minutely affects mitochondrial activity. Sci Rep 2021; 11:23701. [PMID: 34880390 PMCID: PMC8654832 DOI: 10.1038/s41598-021-03136-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
4,5,6,7-Tetrabromo-1H-benzotriazole is widely used as the reference ATP-competitive inhibitor of protein kinase CK2. Herein, we study its new analogs: 5,6-diiodo- and 5,6-diiodo-4,7-dibromo-1H-benzotriazole. We used biophysical (MST, ITC) and biochemical (enzymatic assay) methods to describe the interactions of halogenated benzotriazoles with the catalytic subunit of human protein kinase CK2 (hCK2α). To trace the biological activity, we measured their cytotoxicity against four reference cancer cell lines and the effect on the mitochondrial inner membrane potential. The results obtained lead to the conclusion that iodinated compounds are an attractive alternative to brominated ones. One of them retains the cytotoxicity against selected cancer cell lines of the reference TBBt with a smaller side effect on mitochondrial activity. Both iodinated compounds are candidate leaders in the further development of CK2 inhibitors.
Collapse
Affiliation(s)
- Daniel Paprocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089, Warsaw, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
30
|
Song S, Xia X, Qi J, Hu X, Chen Q, Liu J, Ji N, Zhao H. Silmitasertib-induced macropinocytosis promoting DDP intracellular uptake to enhance cell apoptosis in oral squamous cell carcinoma. Drug Deliv 2021; 28:2480-2494. [PMID: 34766543 PMCID: PMC8592591 DOI: 10.1080/10717544.2021.2000677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cisplatin (DDP) is a first-line chemotherapeutic drug applied for the treatment of oral squamous cell carcinoma (OSCC). The anticancer activity of DDP is tightly linked to its intracellular uptake. It is unwise to increase the DDP intake by increasing the dose or shortening the dosing interval because of the severe systemic toxicity (nephrotoxicity, ototoxicity and neurotoxicity) in DDP application. The main uptake pathways of DDP include passive diffusion and active transporter transport. Therefore, finding additional uptake pathways that can improve the effective intracellular concentration of DDP is critical. Macropinocytosis, an endocytic mechanism for extracellular material absorption, contributes to the intracellular uptake of anticancer drugs. No research has been conducted to determine whether macropinocytosis can augment the intracellular uptake of DDP in OSCC cells or not. Based on that, we proved for the first time that silmitasertib (previously CX-4945) could trigger macropinocytosis, which may increase the intracellular uptake of DDP and enhance apoptosis via in vivo and in vitro experiments. We hope that our findings will inspire a new approach for the application of DDP in cancer treatment.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jiajia Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xiaopei Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Jayaraman PS, Gaston K. Targeting protein kinase CK2 in the treatment of cholangiocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:434-447. [PMID: 36045705 PMCID: PMC9400764 DOI: 10.37349/etat.2021.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a disease with a very poor prognosis and limited treatment options. Although targeted therapies directed towards specific mutations found in CCA are becoming available and are showing great potential, many tumors do not carry actionable mutations and, in those that do, the emergence of drug resistance is a likely consequence of treatment. Therapeutic targeting of enzymes and other proteins that show elevated activity in CCA cells but which are not altered by mutation is a potential strategy for the treatment of target negative and drug-resistant disease. Protein kinase CK2 (CK2) is a ubiquitously expressed kinase that has increased expression and increased activity in a variety of cancer types including CCA. Several potent CK2 inhibitors are in pre-clinical development or under assessment in a variety of clinical trials often in combination with drugs that induce DNA damage. This review outlines the importance of CK2 in CCA and assesses the progress that has been made in the evaluation of CK2 inhibition as a treatment strategy in this disease. Targeting CK2 based on the expression levels or activity of this protein and/or in combination with drugs that induce DNA damage or inhibit cell cycle progression, could be a viable option for tumors that lack actionable mutations, or for tumors that develop resistance to targeted treatments.
Collapse
Affiliation(s)
- Padma-Sheela Jayaraman
- Biodiscovery Institute, University of Nottingham, NG7 2UH, UK
- Division of Translational Medical Sciences, School of Medicine, University of Nottingham, NG7 2UH, UK
| | - Kevin Gaston
- Biodiscovery Institute, University of Nottingham, NG7 2UH, UK
- Division of Translational Medical Sciences, School of Medicine, University of Nottingham, NG7 2UH, UK
| |
Collapse
|
32
|
Wei H, Yang W, Hong H, Yan Z, Qin H, Benveniste EN. Protein Kinase CK2 Regulates B Cell Development and Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:799-808. [PMID: 34301844 DOI: 10.4049/jimmunol.2100059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022]
Abstract
Protein kinase CK2 (also known as Casein Kinase 2) is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory CK2β subunits. CK2 is overexpressed and overactive in B cell acute lymphoblastic leukemia and diffuse large B cell lymphomas, leading to inappropriate activation of the NF-κB, JAK/STAT, and PI3K/AKT/mTOR signaling pathways and tumor growth. However, whether CK2 regulates normal B cell development and differentiation is not known. We generated mice lacking CK2α specifically in B cells (using CD19-driven Cre recombinase). These mice exhibited cell-intrinsic expansion of marginal zone B cells at the expense of transitional B cells, without changes in follicular B cells. Transitional B cells required CK2α to maintain adequate BCR signaling. In the absence of CK2α, reduced BCR signaling and elevated Notch2 signaling activation increased marginal zone B cell differentiation. Our results identify a previously unrecognized function for CK2α in B cell development and differentiation.
Collapse
Affiliation(s)
- Hairong Wei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Wei Yang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Huixian Hong
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Zhaoqi Yan
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and.,Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Hongwei Qin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Etty N Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
33
|
Targeting of Protein Kinase CK2 in Acute Myeloid Leukemia Cells Using the Clinical-Grade Synthetic-Peptide CIGB-300. Biomedicines 2021; 9:biomedicines9070766. [PMID: 34356831 PMCID: PMC8301452 DOI: 10.3390/biomedicines9070766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/15/2022] Open
Abstract
Protein kinase CK2 has emerged as an attractive therapeutic target in acute myeloid leukemia (AML), an advent that becomes particularly relevant since the treatment of this hematological neoplasia remains challenging. Here we explored for the first time the effect of the clinical-grade peptide-based CK2 inhibitor CIGB-300 on AML cells proliferation and viability. CIGB-300 internalization and subcellular distribution were also studied, and the role of B23/nucleophosmin 1 (NPM1), a major target for the peptide in solid tumors, was addressed by knock-down in model cell lines. Finally, pull-down experiments and phosphoproteomic analysis were performed to study CIGB-interacting proteins and identify the array of CK2 substrates differentially modulated after treatment with the peptide. Importantly, CIGB-300 elicited a potent anti-proliferative and proapoptotic effect in AML cells, with more than 80% of peptide transduced cells within three minutes. Unlike solid tumor cells, NPM1 did not appear to be a major target for CIGB-300 in AML cells. However, in vivo pull-down experiments and phosphoproteomic analysis evidenced that CIGB-300 targeted the CK2α catalytic subunit, different ribosomal proteins, and inhibited the phosphorylation of a common CK2 substrates array among both AML backgrounds. Remarkably, our results not only provide cellular and molecular insights unveiling the complexity of the CIGB-300 anti-leukemic effect in AML cells but also reinforce the rationale behind the pharmacologic blockade of protein kinase CK2 for AML-targeted therapy.
Collapse
|
34
|
El-Masry OS, Goja A, Rateb M, Owaidah AY, Alsamman K. RNA sequencing identified novel target genes for Adansonia digitata in breast and colon cancer cells. Sci Prog 2021; 104:368504211032084. [PMID: 34251294 PMCID: PMC10450698 DOI: 10.1177/00368504211032084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adansonia digitata exhibits numerous beneficial effects. In the current study, we investigated the anti-cancer effects of four different extracts of A. digitata (polar and non-polar extracts of fruit powder and fibers) on the proliferation of human colon cancer (HCT116), human breast cancer (MCF-7), and human ovarian cancer (OVCAR-3 and OVCAR-4) cell lines. RNA sequencing revealed the influence of the effective A. digitata fraction on the gene expression profiles of responsive cells. The results indicated that only the polar extract of the A. digitata fibers exhibited anti-proliferative activities against HCT116 and MCF-7 cells, but not ovarian cancer cells. Moreover, the polar extract of the fibers resulted in the modulation of the expression of multiple genes in HCT116 and MCF-7 cells. We propose that casein kinase 2 alpha 3 (CSNK2A3) is a novel casein kinase 2 (CSNK2) isoform in HCT116 cells and report, for the first time, the potential involvement of FYVE, RhoGEF, and PH domain-containing 3 (FGD3) in colon cancer. Together, these findings provide evidence supporting the anti-cancer potential of the polar extract of A. digitata fibers in this experimental model of breast and colon cancers.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Arafat Goja
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
- Marine Biodiscovery Centre, School of Natural & Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Amani Y Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
35
|
Yang Z, Liang SQ, Yang H, Xu D, Bruggmann R, Gao Y, Deng H, Berezowska S, Hall SRR, Marti TM, Kocher GJ, Zhou Q, Schmid RA, Peng RW. CRISPR-Mediated Kinome Editing Prioritizes a Synergistic Combination Therapy for FGFR1-Amplified Lung Cancer. Cancer Res 2021; 81:3121-3133. [PMID: 33685992 DOI: 10.1158/0008-5472.can-20-2276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
Oncogenic activation of the FGFR pathway is frequent in lung and other cancers. However, due to drug resistance, pharmacological blockage of aberrant FGFR signaling has provided little clinical benefit in patients with FGFR-amplified tumors. The determining factors for the limited efficacy of FGFR-targeted therapy remain incompletely understood. In this study, we performed kinome-wide CRISPR/Cas9 loss-of-function screens in FGFR1-amplified lung cancer cells treated with an FGFR inhibitor. These screens identified PLK1 as a potent synthetic lethal target that mediates a resistance mechanism by overriding DNA damage and cell-cycle arrest upon FGFR1 inhibition. Genetic and pharmacological antagonism of PLK1 in combination with FGFR inhibitor therapy synergized to enhance antiproliferative effects and drove cancer cell death in vitro and in vivo through activation of the γH2AX-CHK-E2F1 axis. These findings suggest a previously unappreciated role for PLK1 in modulating FGFR1 inhibitor sensitivity and demonstrate a synergistic drug combination for treating FGFR1-amplified lung cancer. SIGNIFICANCE: The identification of PLK1 as a potent synthetic lethal target for FGFR-targeted therapy provides an innovative rationale for the treatment of lung and other FGFR1-amplified cancers.
Collapse
Affiliation(s)
- Zhang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Shun-Qing Liang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Haibin Deng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Sean R R Hall
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Thomas M Marti
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Gregor J Kocher
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
36
|
Wei P, Demulder M, David P, Eekhout T, Yoshiyama KO, Nguyen L, Vercauteren I, Eeckhout D, Galle M, De Jaeger G, Larsen P, Audenaert D, Desnos T, Nussaume L, Loris R, De Veylder L. Arabidopsis casein kinase 2 triggers stem cell exhaustion under Al toxicity and phosphate deficiency through activating the DNA damage response pathway. THE PLANT CELL 2021; 33:1361-1380. [PMID: 33793856 DOI: 10.1093/plcell/koab005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Aluminum (Al) toxicity and inorganic phosphate (Pi) limitation are widespread chronic abiotic and mutually enhancing stresses that profoundly affect crop yield. Both stresses strongly inhibit root growth, resulting from a progressive exhaustion of the stem cell niche. Here, we report on a casein kinase 2 (CK2) inhibitor identified by its capability to maintain a functional root stem cell niche in Arabidopsis thaliana under Al toxic conditions. CK2 operates through phosphorylation of the cell cycle checkpoint activator SUPPRESSOR OF GAMMA RADIATION1 (SOG1), priming its activity under DNA-damaging conditions. In addition to yielding Al tolerance, CK2 and SOG1 inactivation prevents meristem exhaustion under Pi starvation, revealing the existence of a low Pi-induced cell cycle checkpoint that depends on the DNA damage activator ATAXIA-TELANGIECTASIA MUTATED (ATM). Overall, our data reveal an important physiological role for the plant DNA damage response pathway under agriculturally limiting growth conditions, opening new avenues to cope with Pi limitation.
Collapse
Affiliation(s)
- Pengliang Wei
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Manon Demulder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Pascale David
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | | | - Long Nguyen
- VIB Screening Core, VIB, Ghent B-9052, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent 9000, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Margot Galle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Paul Larsen
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Dominique Audenaert
- VIB Screening Core, VIB, Ghent B-9052, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent 9000, Belgium
| | - Thierry Desnos
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Laurent Nussaume
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| |
Collapse
|
37
|
Winiewska-Szajewska M, Maciejewska AM, Speina E, Poznański J, Paprocki D. Synthesis of Novel Halogenated Heterocycles Based on o-Phenylenediamine and Their Interactions with the Catalytic Subunit of Protein Kinase CK2. Molecules 2021; 26:molecules26113163. [PMID: 34070615 PMCID: PMC8198750 DOI: 10.3390/molecules26113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/07/2023] Open
Abstract
Protein kinase CK2 is a highly pleiotropic protein kinase capable of phosphorylating hundreds of protein substrates. It is involved in numerous cellular functions, including cell viability, apoptosis, cell proliferation and survival, angiogenesis, or ER-stress response. As CK2 activity is found perturbed in many pathological states, including cancers, it becomes an attractive target for the pharma. A large number of low-mass ATP-competitive inhibitors have already been developed, the majority of them halogenated. We tested the binding of six series of halogenated heterocyclic ligands derived from the commercially available 4,5-dihalo-benzene-1,2-diamines. These ligand series were selected to enable the separation of the scaffold effect from the hydrophobic interactions attributed directly to the presence of halogen atoms. In silico molecular docking was initially applied to test the capability of each ligand for binding at the ATP-binding site of CK2. HPLC-derived ligand hydrophobicity data are compared with the binding affinity assessed by low-volume differential scanning fluorimetry (nanoDSF). We identified three promising ligand scaffolds, two of which have not yet been described as CK2 inhibitors but may lead to potent CK2 kinase inhibitors. The inhibitory activity against CK2α and toxicity against four reference cell lines have been determined for eight compounds identified as the most promising in nanoDSF assay.
Collapse
|
38
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
39
|
Basukala O, Sarabia-Vega V, Banks L. Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biol Chem 2021; 401:585-599. [PMID: 31913845 DOI: 10.1515/hsz-2019-0408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022]
Abstract
Human papillomaviruses (HPVs) are major human carcinogens, causing around 5% of all human cancers, with cervical cancer being the most important. These tumors are all driven by the two HPV oncoproteins E6 and E7. Whilst their mechanisms of action are becoming increasingly clear through their abilities to target essential cellular tumor suppressor and growth control pathways, the roles that post-translational modifications (PTMs) of E6 and E7 play in the regulation of these activities remain unclear. Here, we discuss the direct consequences of some of the most common PTMs of E6 and E7, and how this impacts upon the multi-functionality of these viral proteins, and thereby contribute to the viral life cycle and to the induction of malignancy. Furthermore, it is becoming increasingly clear that these modifications, may, in some cases, offer novel routes for therapeutic intervention in HPV-induced disease.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| |
Collapse
|
40
|
Spinello Z, Fregnani A, Quotti Tubi L, Trentin L, Piazza F, Manni S. Targeting Protein Kinases in Blood Cancer: Focusing on CK1α and CK2. Int J Mol Sci 2021; 22:ijms22073716. [PMID: 33918307 PMCID: PMC8038136 DOI: 10.3390/ijms22073716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Disturbance of protein kinase activity may result in dramatic consequences that often lead to cancer development and progression. In tumors of blood origin, both tyrosine kinases and serine/threonine kinases are altered by different types of mutations, critically regulating cancer hallmarks. CK1α and CK2 are highly conserved, ubiquitously expressed and constitutively active pleiotropic kinases, which participate in multiple biological processes. The involvement of these kinases in solid and blood cancers is well documented. CK1α and CK2 are overactive in multiple myeloma, leukemias and lymphomas. Intriguingly, they are not required to the same degree for the viability of normal cells, corroborating the idea of “druggable” kinases. Different to other kinases, mutations on the gene encoding CK1α and CK2 are rare or not reported. Actually, these two kinases are outside the paradigm of oncogene addiction, since cancer cells’ dependency on these proteins resembles the phenomenon of “non-oncogene” addiction. In this review, we will summarize the general features of CK1α and CK2 and the most relevant oncogenic and stress-related signaling nodes, regulated by kinase phosphorylation, that may lead to tumor progression. Finally, we will report the current data, which support the positioning of these two kinases in the therapeutic scene of hematological cancers.
Collapse
Affiliation(s)
- Zaira Spinello
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
- Correspondence: (F.P.); (S.M.); Tel.: +39-049-792-3263 (F.P. & S.M.); Fax: +39-049-792-3250 (F.P. & S.M.)
| | - Sabrina Manni
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
- Correspondence: (F.P.); (S.M.); Tel.: +39-049-792-3263 (F.P. & S.M.); Fax: +39-049-792-3250 (F.P. & S.M.)
| |
Collapse
|
41
|
Kim WD, Yap SQ, Huber RJ. A Proteomics Analysis of Calmodulin-Binding Proteins in Dictyostelium discoideum during the Transition from Unicellular Growth to Multicellular Development. Int J Mol Sci 2021; 22:ijms22041722. [PMID: 33572113 PMCID: PMC7915506 DOI: 10.3390/ijms22041722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Shyong Q. Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Correspondence: ; Tel.: +1-705-748-1011 (ext. 7316)
| |
Collapse
|
42
|
Rosales M, Rodríguez-Ulloa A, Besada V, Ramón AC, Pérez GV, Ramos Y, Guirola O, González LJ, Zettl K, Wiśniewski JR, Perera Y, Perea SE. Phosphoproteomic Landscape of AML Cells Treated with the ATP-Competitive CK2 Inhibitor CX-4945. Cells 2021; 10:cells10020338. [PMID: 33562780 PMCID: PMC7915770 DOI: 10.3390/cells10020338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Casein kinase 2 (CK2) regulates a plethora of proteins with pivotal roles in solid and hematological neoplasia. Particularly, in acute myeloid leukemia (AML) CK2 has been pointed as an attractive therapeutic target and prognostic marker. Here, we explored the impact of CK2 inhibition over the phosphoproteome of two cell lines representing major AML subtypes. Quantitative phosphoproteomic analysis was conducted to evaluate changes in phosphorylation levels after incubation with the ATP-competitive CK2 inhibitor CX-4945. Functional enrichment, network analysis, and database mining were performed to identify biological processes, signaling pathways, and CK2 substrates that are responsive to CX-4945. A total of 273 and 1310 phosphopeptides were found differentially modulated in HL-60 and OCI-AML3 cells, respectively. Despite regulated phosphopeptides belong to proteins involved in multiple biological processes and signaling pathways, most of these perturbations can be explain by direct CK2 inhibition rather than off-target effects. Furthermore, CK2 substrates regulated by CX-4945 are mainly related to mRNA processing, translation, DNA repair, and cell cycle. Overall, we evidenced that CK2 inhibitor CX-4945 impinge on mediators of signaling pathways and biological processes essential for primary AML cells survival and chemosensitivity, reinforcing the rationale behind the pharmacologic blockade of protein kinase CK2 for AML targeted therapy.
Collapse
Affiliation(s)
- Mauro Rosales
- Department of Animal and Human Biology, Faculty of Biology, University of Havana (UH), Havana 10400, Cuba;
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Vladimir Besada
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Ailyn C. Ramón
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - George V. Pérez
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Osmany Guirola
- Bioinformatics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba;
| | - Luis J. González
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou 425000, China
- Correspondence: (Y.P.); (S.E.P.)
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
- Correspondence: (Y.P.); (S.E.P.)
| |
Collapse
|
43
|
Cooperative Blockade of CK2 and ATM Kinases Drives Apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS Overproduction. Cancers (Basel) 2021; 13:cancers13030576. [PMID: 33540838 PMCID: PMC7867364 DOI: 10.3390/cancers13030576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is the eighth leading malignancy in the world, accounting for 4% of all cancers with poor outcome when metastatic. Protein kinases are highly druggable proteins, which are often aberrantly activated in cancers. The aim of our study was to identify candidate targets for metastatic clear cell renal cell carcinoma therapy, using chemo-genomic-based high-throughput screening. We found that the combined inhibition of the CK2 and ATM kinases in renal tumor cells and patient-derived tumor samples induces synthetic lethality. Mechanistic investigations unveil that this drug combination triggers apoptosis through HIF-2α-(Hypoxic inducible factor HIF-2α) dependent reactive oxygen species (ROS) overproduction, giving a new option for patient care in metastatic RCC. Abstract Kinase-targeted agents demonstrate antitumor activity in advanced metastatic clear cell renal cell carcinoma (ccRCC), which remains largely incurable. Integration of genomic approaches through small-molecules and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. The 786-O cell line represents a model for most ccRCC that have a loss of functional pVHL (von Hippel-Lindau). A multiplexed assay was used to study the cellular fitness of a panel of engineered ccRCC isogenic 786-O VHL− cell lines in response to a collection of targeted cancer therapeutics including kinase inhibitors, allowing the interrogation of over 2880 drug–gene pairs. Among diverse patterns of drug sensitivities, investigation of the mechanistic effect of one selected drug combination on tumor spheroids and ex vivo renal tumor slice cultures showed that VHL-defective ccRCC cells were more vulnerable to the combined inhibition of the CK2 and ATM kinases than wild-type VHL cells. Importantly, we found that HIF-2α acts as a key mediator that potentiates the response to combined CK2/ATM inhibition by triggering ROS-dependent apoptosis. Importantly, our findings reveal a selective killing of VHL-deficient renal carcinoma cells and provide a rationale for a mechanism-based use of combined CK2/ATM inhibitors for improved patient care in metastatic VHL-ccRCC.
Collapse
|
44
|
Homma MK, Kiko Y, Hashimoto Y, Nagatsuka M, Katagata N, Masui S, Homma Y, Nomizu T. Intracellular localization of CK2α as a prognostic factor in invasive breast carcinomas. Cancer Sci 2021; 112:619-628. [PMID: 33164285 PMCID: PMC7894005 DOI: 10.1111/cas.14728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/04/2020] [Accepted: 11/04/2020] [Indexed: 01/15/2023] Open
Abstract
Overexpression of the ubiquitous protein kinase, CK2α, has been reported in various human cancers. Here, we demonstrate that nuclear and nucleolar CK2α localization in invasive ductal carcinomas of the breast is a reliable predictor of poor prognosis. Cellular localization of CK2α in nuclei and nucleoli was analyzed immunohistochemically using surgical tissue blocks from 112 patients, who had undergone surgery without neoadjuvant chemotherapy. Clinical data collection and median follow-up period were for more than 5 y. In total, 93.8% of patients demonstrated elevated CK2α expression in nuclei and 36.6% of them displayed elevated expression predominantly in nucleoli. Clinicopathological malignancy was strongly correlated with elevated nuclear and nucleolar CK2α expression. Recurrence-free survival was significantly worse (P = .0002) in patients with positive nucleolar CK2α staining. The 5-y survival rate decreased to a roughly 50% in nucleolar CK2α-positive patients of triple-negative (P = .0069) and p Stage 3 (P = .0073) groups. In contrast, no patients relapsed or died in the triple-negative group who exhibited a lack of nucleolar CK2α staining. Evaluation of nucleolar CK2α staining showed a high secondary index with a hazard ratio of 6.629 (P = .001), following lymph node metastasis with a hazard ratio of 14.30 (P = .0008). Multivariate analysis demonstrated that nucleolar CK2α is an independent factor for recurrence-free survival. Therefore, we propose that histochemical evaluation of nucleolar CK2α-positive staining may be a new and robust prognostic indicator for patients who need further treatment. Functional consequences of nucleolar CK2 dysfunction may be a starting point to facilitate development of novel treatments for invasive breast carcinoma.
Collapse
Affiliation(s)
- Miwako Kato Homma
- Department of Biomolecular SciencesFukushima Medical University School of MedicineFukushimaJapan
| | - Yuichiro Kiko
- Department of Diagnostic PathologyFukushima Medical University School of MedicineFukushimaJapan
| | - Yuko Hashimoto
- Department of Diagnostic PathologyFukushima Medical University School of MedicineFukushimaJapan
| | - Miki Nagatsuka
- Department of SurgeryHoshi General HospitalFukushimaJapan
| | - Naoto Katagata
- Department of SurgeryHoshi General HospitalFukushimaJapan
| | - Seiichiro Masui
- Medical Research CenterFukushima Medical University School of MedicineFukushimaJapan
| | - Yoshimi Homma
- Department of Biomolecular SciencesFukushima Medical University School of MedicineFukushimaJapan
| | - Tadashi Nomizu
- Department of SurgeryHoshi General HospitalFukushimaJapan
| |
Collapse
|
45
|
Wells CI, Drewry DH, Pickett JE, Tjaden A, Krämer A, Müller S, Gyenis L, Menyhart D, Litchfield DW, Knapp S, Axtman AD. Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chem Biol 2021; 28:546-558.e10. [PMID: 33484635 DOI: 10.1016/j.chembiol.2020.12.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Building on the pyrazolopyrimidine CK2 (casein kinase 2) inhibitor scaffold, we designed a small targeted library. Through comprehensive evaluation of inhibitor selectivity, we identified inhibitor 24 (SGC-CK2-1) as a highly potent and cell-active CK2 chemical probe with exclusive selectivity for both human CK2 isoforms. Remarkably, despite years of research pointing to CK2 as a key driver in cancer, our chemical probe did not elicit a broad antiproliferative phenotype in >90% of >140 cell lines when tested in dose-response. While many publications have reported CK2 functions, CK2 biology is complex and an available high-quality chemical tool such as SGC-CK2-1 will be indispensable in deciphering the relationships between CK2 function and phenotypes.
Collapse
Affiliation(s)
- Carrow I Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - Julie E Pickett
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - Amelie Tjaden
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Alison D Axtman
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
Alteration of protein expression and spliceosome pathway activity during Barrett's carcinogenesis. J Gastroenterol 2021; 56:791-807. [PMID: 34227026 PMCID: PMC8370908 DOI: 10.1007/s00535-021-01802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/18/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Barrett's esophagus (BE) is a known precursor lesion and the strongest risk factor for esophageal adenocarcinoma (EAC), a common and lethal type of cancer. Prediction of risk, the basis for efficient intervention, is commonly solely based on histologic examination. This approach is challenged by problems such as inter-observer variability in the face of the high heterogeneity of dysplastic tissue. Molecular markers might offer an additional way to understand the carcinogenesis and improve the diagnosis-and eventually treatment. In this study, we probed significant proteomic changes during dysplastic progression from BE into EAC. METHODS During endoscopic mucosa resection, epithelial and stromal tissue samples were collected by laser capture microdissection from 10 patients with normal BE and 13 patients with high-grade dysplastic/EAC. Samples were analyzed by mass spectrometry-based proteomic analysis. Expressed proteins were determined by label-free quantitation, and gene set enrichment was used to find differentially expressed pathways. The results were validated by immunohistochemistry for two selected key proteins (MSH6 and XPO5). RESULTS Comparing dysplastic/EAC to non-dysplastic BE, we found in equal volumes of epithelial tissue an overall up-regulation in terms of protein abundance and diversity, and determined a set of 226 differentially expressed proteins. Significantly higher expressions of MSH6 and XPO5 were validated orthogonally and confirmed by immunohistochemistry. CONCLUSIONS Our results demonstrate that disease-related proteomic alterations can be determined by analyzing minute amounts of cell-type-specific collected tissue. Further analysis indicated that alterations of certain pathways associated with carcinogenesis, such as micro-RNA trafficking, DNA damage repair, and spliceosome activity, exist in dysplastic/EAC.
Collapse
|
47
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Nakayama S, Adachi M, Hatano M, Inahata N, Nagao T, Fukushima N. Cytosine arabinoside induces phosphorylation of histone H2AX in hippocampal neurons via a noncanonical pathway. Neurochem Int 2020; 142:104933. [PMID: 33290798 DOI: 10.1016/j.neuint.2020.104933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022]
Abstract
Cytosine arabinoside (Ara-C), an anticancer drug, is known to inhibit DNA replication in mitotic cells. Ara-C is also considered to induce DNA damage, leading to neuronal cell death. To identify the mechanism by which Ara-C kills neurons, we assessed the levels of phosphorylated histone H2AX (γ-H2AX), a marker for DNA double-strand breaks (DSBs), in hippocampal neurons cultured for 48 h with Ara-C. There was a time-dependent increase in the percentage of cells accumulating γ-H2AX, but TUNEL staining did not indicate the formation of DSBs. The nuclear spread of γ-H2AX remained after Ara-C was withdrawn. These features of Ara-C-induced γ-H2AX formation were quite distinct from those observed in proliferating pheochromocytoma cells. Furthermore, Ara-C-induced γ-H2AX formation appeared to utilize cyclin-dependent kinase 7, but not ataxia telangiectasia mutated (ATM) or ATM and Rad3 related, which are well-known kinases in γ-H2AX formation. Taken together, our findings indicated that Ara-C stimulated γ-H2AX formation in neurons without DSB formation and utilization of canonical kinases, leading to neuronal cell death.
Collapse
Affiliation(s)
- Saki Nakayama
- Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Miyu Adachi
- Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Misaki Hatano
- Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Noriyuki Inahata
- Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Tetsuji Nagao
- Department of Life Science, Kindai University, Higashiosaka, Japan
| | | |
Collapse
|
49
|
D'Amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy - potential clinical relevance. Cell Oncol (Dordr) 2020; 43:1003-1016. [PMID: 33052585 PMCID: PMC7717057 DOI: 10.1007/s13402-020-00566-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Protein kinase CK2 inhibition has long been considered as an attractive anti-cancer strategy based on the following considerations: CK2 is a pro-survival kinase, it is frequently over-expressed in human tumours and its over-expression correlates with a worse prognosis. Preclinical evidence strongly supports the feasibility of this target and, although dozens of CK2 inhibitors have been described in the literature so far, CX-4945 (silmitasertib) was the first that entered into clinical trials for the treatment of both human haematological and solid tumours. However, kinase inhibitor monotherapies turned out to be effective only in a limited number of malignancies, probably due to the multifaceted causes that underlie them, supporting the emerging view that multi-targeted approaches to treat human tumours could be more effective. CONCLUSIONS In this review, we will address combined anti-cancer therapeutic strategies described so far which involve the use of CX-4945. Data from preclinical studies clearly show the ability of CX-4945 to synergistically cooperate with different classes of anti-neoplastic agents, thereby contributing to an orchestrated anti-tumour action against multiple targets. Overall, these promising outcomes support the translation of CX-4945 combined therapies into clinical anti-cancer applications.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
50
|
Baier A, Szyszka R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020; 10:biom10111546. [PMID: 33198400 PMCID: PMC7698043 DOI: 10.3390/biom10111546] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The advantage of natural compounds is their lower number of side-effects when compared to most synthetic substances. Therefore, over the past several decades, the interest in naturally occurring compounds is increasing in the search for new potent drugs. Natural compounds are playing an important role as a starting point when developing new selective compounds against different diseases. Protein kinases play a huge role in several diseases, like cancers, neurodegenerative diseases, microbial infections, or inflammations. In this review, we give a comprehensive view of natural compounds, which are/were the parent compounds in the development of more potent substances using computational analysis and SAR studies.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Animal Physiology and Toxicology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Ryszard Szyszka
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|