1
|
Zhang H, Nie J, Bao Z, Shi Y, Gong J, Li H. FOXC1 promotes EMT and colorectal cancer progression by attracting M2 macrophages via the TGF-β/Smad2/3/snail pathway. Cell Signal 2025; 130:111680. [PMID: 39978609 DOI: 10.1016/j.cellsig.2025.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer is a highly prevalent and deadly malignancy worldwide. Current treatment strategies, including surgery, chemotherapy, and targeted therapy, still face limitations due to recurrence and metastasis. By conducting a weighted gene coexpression network analysis on gene expression data from The Cancer Genome Atlas, we pinpointed critical genes linked to M2 macrophages and tumor metastasis. Among these, FOXC1 emerged as a significant prognostic indicator within our predictive model. Clinical sample analysis further confirmed that FOXC1 is upregulated in colorectal cancer tissues and associated with an unfavorable patient outcome. Both in vivo and in vitro experimental results revealed that FOXC1 promotes CRC cell migration, invasion and proliferation by regulating the expression of Snail and TGF-β/Smad2/3 pathways, thereby facilitating the epithelial-mesenchymal transition process. Additionally, FOXC1 recruits M2 macrophages to the tumor microenvironment by regulating CXCL2 expression through Snail. The TGF-β factor secreted by M2 macrophages further activates the TGF-β/Smad2/3 pathway, forming a positive feedback loop. In these processes, FOXC1 plays a critical regulatory role. In summary, this study highlights the critical significance of FOXC1 in CRC progression and indicates its viability as a therapeutic target, offering a novel theoretical foundation for the development of future CRC treatment strategies.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jinlin Nie
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China; Department of Hepatobiliary Pancreatic Hernia Surgery, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Zhen Bao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Yangdong Shi
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jin Gong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| | - Hailiang Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China.
| |
Collapse
|
2
|
Liu X, Zhang J, Yi T, Li H, Tang X, Liu D, Wu D, Li Y. Decoding tumor angiogenesis: pathways, mechanisms, and future directions in anti-cancer strategies. Biomark Res 2025; 13:62. [PMID: 40251641 PMCID: PMC12007322 DOI: 10.1186/s40364-025-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/20/2025] Open
Abstract
Angiogenesis, a crucial process in tumor growth and metastasis, necessitates targeted therapeutic intervention. This review reviews the latest knowledge of anti-angiogenesis targets in tumors, with emphasis on the molecular mechanisms and signaling pathways that regulate this process. We emphasize the tumor microenvironment's role in angiogenesis, examine endothelial cell metabolic changes, and evaluated potential therapeutic strategies targeting the tumor vascular system. At the same time, we analyzed the signaling pathway and molecular mechanism of tumor angiogenesis in detail. In addition, this paper also looks at the development trend of tumor anti-angiogenesis drugs, including their future development direction and challenges, aiming to provide prospective insight into the development of this field. Despite their potential, anti-angiogenic therapies encounter challenges like drug resistance and side effects, necessitating ongoing research to enhance cancer treatment strategies and the efficacy of these therapies.
Collapse
Affiliation(s)
- Xueru Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
3
|
Park R, Chung CH. Advanced Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma: Unmet Need and Emerging Therapies. Mol Cancer Ther 2024; 23:1717-1730. [PMID: 39301607 PMCID: PMC11612620 DOI: 10.1158/1535-7163.mct-24-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Despite notable progress in the treatment of advanced head and neck squamous cell carcinoma (HNSCC), survival remains poor in patients with recurrent and/or metastatic (R/M) human papillomavirus (HPV)-negative HNSCC. Worse outcomes in patients who are HPV-negative may be partly related to loss of cell-cycle regulators and tumor suppressors as well as a noninflamed and hypoxic tumor microenvironment, both of which contribute to treatment resistance and disease progression. Anti-programmed cell death protein 1-based regimens as current standard-of-care treatment for R/M HNSCC are associated with durable responses in a limited number of patients. The anti-EGFR mAb, cetuximab, has antitumor activity in this treatment setting, but responses are short-lived and inevitably curtailed due to treatment resistance. Crosstalk between the EGFR and hepatocyte growth factor-dependent mesenchymal-epithelial transition (c-MET) receptor tyrosine kinase pathway is a known mechanism of resistance to cetuximab. Dual targeting of EGFR and c-MET pathways may overcome resistance to cetuximab in patients with HPV-negative HNSCC. Here, we review clinical data of treatments evaluated in patients with R/M HPV-negative HNSCC and highlight the potential role of combining hepatocyte growth factor/c-MET and EGFR pathway inhibitors to overcome cetuximab resistance in this population.
Collapse
Affiliation(s)
- Robin Park
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
4
|
Saba NF, Chaudhary R, Kirtane K, Marra A, Ekpenyong A, McCook-Veal A, Schmitt NC, Gross JH, Patel MR, Remick J, Bates JE, McDonald MW, Rudra SF, Stokes WA, Biernacki M, Song X, Slebos RJC, Liu Y, Steuer CE, Shin DM, Teng Y, Chung CH. Pembrolizumab and Cabozantinib in Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Long-term Survival Update with a Biomarker Analysis. Clin Cancer Res 2024; 30:4601-4608. [PMID: 39167623 PMCID: PMC11479816 DOI: 10.1158/1078-0432.ccr-24-1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Anti-programmed cell death protein 1 (PD-1) therapy is a standard of care in recurrent and/or metastatic head and neck squamous cell carcinoma (RMHNSCC). Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKI) have immunomodulatory properties and improve clinical outcomes in combination with anti-PD-1 therapy in different malignancies. We report the long-term efficacy and safety of pembrolizumab and cabozantinib in patients with RMHNSCC and include a correlative biomarker analysis. PATIENTS AND METHODS This open-label, single-arm, multicenter, phase 2 study screened 50 patients with RMHNSCC, of whom 36 received pembrolizumab and cabozantinib. The primary endpoint was overall response rate (ORR), safety, and tolerability. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and correlative studies of tissue and blood. We report the long-term PFS, OS, and safety of treated patients and describe correlative biomarkers evaluating p-MET expression and tumor immune microenvironment (TIME) using multiplex immunohistochemistry. RESULTS With median follow-up of 22.4 months, the median PFS was 12.8 months with a 2-year PFS of 32.6% (95% CI, 18.8%-56.3%) and the median OS was 27.7 months with a 2-year OS of 54.7% [95% confidence interval (CI), 38.9%-76.8%]. The median duration of response was 12.6 months with a 2-year rate of 38.5% (95% CI, 30.8%-81.8%). Long-term treatment-related adverse events included manageable hypothyroidism (5.5%) and grade 1 elevated aspartate aminotransferase and alanine aminotransferase (2.8%). Baseline tumor p-MET expression correlated with ORR (P = 0.0055). Higher density of CD8+, CD103+, and CSF1-R+ cells at baseline correlated with improved OS [hazard ratio (HR) = 5.27, P = 0.030; HR = 8.79, P = 0.017; HR = 6.87, P = 0.040, respectively]. CONCLUSIONS Pembrolizumab and cabozantinib provided prolonged encouraging long-term disease control and survival with a maintained favorable safety profile. The prognostic significance of higher density of CD8+, CD103+, and CSF1-R+ cells in TIME deserve further evaluation in similar clinical settings.
Collapse
MESH Headings
- Humans
- Anilides/therapeutic use
- Anilides/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Male
- Female
- Middle Aged
- Pyridines/therapeutic use
- Pyridines/administration & dosage
- Aged
- Squamous Cell Carcinoma of Head and Neck/drug therapy
- Squamous Cell Carcinoma of Head and Neck/mortality
- Squamous Cell Carcinoma of Head and Neck/pathology
- Biomarkers, Tumor/metabolism
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Adult
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/mortality
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/metabolism
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Aged, 80 and over
- Neoplasm Metastasis
Collapse
Affiliation(s)
- Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Angelo Marra
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Asari Ekpenyong
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ashley McCook-Veal
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Nicole C. Schmitt
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Otolaryngology, Emory University, Atlanta, GA, USA
| | - Jennifer H. Gross
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Otolaryngology, Emory University, Atlanta, GA, USA
| | - Mihir R. Patel
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Otolaryngology, Emory University, Atlanta, GA, USA
| | - Jill Remick
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - James E. Bates
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Mark W. McDonald
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Soumon F. Rudra
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - William A. Stokes
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Maria Biernacki
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Xiaofei Song
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Robbert J. C. Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Yuan Liu
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Conor E. Steuer
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
5
|
Li C, Fang Y, Xu S, Zhao J, Dong D, Li S. Nanomedicine in HNSCC therapy-a challenge to conventional therapy. Front Pharmacol 2024; 15:1434994. [PMID: 39469621 PMCID: PMC11513379 DOI: 10.3389/fphar.2024.1434994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a difficult-to-treat cancer and treatment is challenging due to recurrence or metastasis. Therefore, there is an urgent need to explore more effective targeted therapies to improve the clinical outcomes and survival of HNSCC patients. The nanomedicine is emerging as a promising strategy to achieve maximal anti-tumor effect in cancer therapy. In this review, we summarize some important signaling pathways and present the current and potential roles of various nanomaterial drug-delivery formulations in HNSCC treatment, aiming to understand the pathogenesis of HNSCC and further improve the therapeutic efficacy of nanomaterial HNSCC. This article seeks to highlight the exciting potential of novel nanomaterials for targeted cancer therapy in HNSCC and thus provide motivation for further research in this field.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuan Fang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sanchun Xu
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Clinical Laboratory Center, Central Hospital of Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Liu Y, Zhang N, Wen Y, Wen J. Head and neck cancer: pathogenesis and targeted therapy. MedComm (Beijing) 2024; 5:e702. [PMID: 39170944 PMCID: PMC11338281 DOI: 10.1002/mco2.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Head and neck cancer (HNC) is a highly aggressive type of tumor characterized by delayed diagnosis, recurrence, metastasis, relapse, and drug resistance. The occurrence of HNC were associated with smoking, alcohol abuse (or both), human papillomavirus infection, and complex genetic and epigenetic predisposition. Currently, surgery and radiotherapy are the standard treatments for most patients with early-stage HNC. For recurrent or metastatic (R/M) HNC, the first-line treatment is platinum-based chemotherapy combined with the antiepidermal growth factor receptor drug cetuximab, when resurgery and radiation therapy are not an option. However, curing HNC remains challenging, especially in cases with metastasis. In this review, we summarize the pathogenesis of HNC, including genetic and epigenetic changes, abnormal signaling pathways, and immune regulation mechanisms, along with all potential therapeutic strategies such as molecular targeted therapy, immunotherapy, gene therapy, epigenetic modifications, and combination therapies. Recent preclinical and clinical studies that may offer therapeutic strategies for future research on HNC are also discussed. Additionally, new targets and treatment methods, including antibody-drug conjugates, photodynamic therapy, radionuclide therapy, and mRNA vaccines, have shown promising results in clinical trials, offering new prospects for the treatment of HNC.
Collapse
Affiliation(s)
- Yan Liu
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
- National Facility for Translational Medicine (Sichuan)West China Hospital of Sichuan UniversityChengduChina
| | - Nannan Zhang
- National Center for Birth Defect MonitoringKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengduChina
| | - Yi Wen
- State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Jiaolin Wen
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
7
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Contreras-Zentella ML, Alatriste-Contreras MG, Suárez-Cuenca JA, Hernández-Muñoz R. Gender effect of glucose, insulin/glucagon ratio, lipids, and nitrogen-metabolites on serum HGF and EGF levels in patients with diabetes type 2. Front Mol Biosci 2024; 11:1362305. [PMID: 38654922 PMCID: PMC11035728 DOI: 10.3389/fmolb.2024.1362305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocyte growth factor (HGF) exhibits potent growth-inducing properties across various tissues, while epidermal growth factor (EGF) acts as a molecular integration point for diverse stimuli. HGF plays a crucial role in hepatic metabolism, tissue repair, and offers protective effects on epithelial and non-epithelial organs, in addition to its involvement in reducing apoptosis and inflammation, underscoring its anti-inflammatory capabilities. The HGF-Met system is instrumental in hepatic metabolism and enhancing insulin sensitivity in animal diabetes models. Similarly, the EGF and its receptor tyrosine kinase family (EGFR) are critical in regulating cell growth, proliferation, migration, and differentiation in both healthy and diseased states, with EGF also contributing to insulin sensitivity. In this observational study, we aimed to identify correlations between serum levels of HGF and EGF, insulin, glucagon, glucose, and primary serum lipids in patients with type 2 diabetes mellitus (DM), taking into account the impact of gender. We noted differences in the management of glucose, insulin, and glucagon between healthy men and women, potentially due to the distinct influences of sexual hormones on the development of type 2 DM. Additionally, metabolites such as glucose, albumin, direct bilirubin, nitrites, and ammonia might influence serum levels of growth factors and hormones. In summary, our results highlight the regulatory role of insulin and glucagon in serum glucose and lipids, along with variations in HGF and EGF levels, which are affected by gender. This link is especially significant in DM, where impaired cell proliferation or repair mechanisms lead to metabolic changes. The gender-based differences in growth factors point to their involvement in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Martha Lucinda Contreras-Zentella
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Gabriela Alatriste-Contreras
- Departamento de Métodos Cuantitativos, División de Estudios Profesionales, Facultad de Economía, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan Antonio Suárez-Cuenca
- Departamento de Medicina Interna, Hospital General “Xoco”, Secretaría de Salud (SS), Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
9
|
Hong J, Wang X, Jin H, Chen Y, Jiang Y, Du K, Chen D, Zheng S, Cao L. Environment relevant exposure of perfluorooctanoic acid accelerates the growth of hepatocellular carcinoma cells through mammalian target of rapamycin (mTOR) signal pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122910. [PMID: 37967710 DOI: 10.1016/j.envpol.2023.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic alkyl chain fluorinated compound, has emerged as a persistent organic pollutant of grave concern, casting a shadow over both ecological integrity and humans. Its insidious presence raises alarms due to its capacity to bioaccumulate within the human liver, potentially paving the treacherous path toward liver cancer. Yet, the intricate mechanisms underpinning PFOA's role in promoting the growth of hepatocellular carcinoma (HCC) remain shrouded in ambiguity. Here, we determined the proliferation and transcription changes of HCC after PFOA exposure through integrated experiments including cell culture, nude mice tests, and colony-forming assays. Based on our findings, PFOA effectively promotes the proliferation of HCC cells within the experimental range of concentrations, both in vivo and in vitro. The proliferation efficiency of HCC cells was observed to increase by approximately 10% due to overexposure to PFOA. Additionally, the cancer weight of tumor-bearing nude mice increased by 87.0% (p < 0.05). We systematically evaluated the effects of PFOA on HCC cells and found that PFOA's exposure can selectively activate the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby playing a pro-cancer effect on HCC cells Confirmation echoed through western blot assays and inhibitor combination analyses. These insights summon a response to PFOA's dual nature as both an environmental threat and a promoter of liver cancer. Our work illuminates the obscured domain of PFOA-induced hepatoxicity, shedding light on its ties to hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Xiaoyan Wang
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China.
| |
Collapse
|
10
|
Li Y, Zheng H, Luo Y, Lin Y, An M, Kong Y, Zhao Y, Yin Y, Ai L, Huang J, Chen C. An HGF-dependent positive feedback loop between bladder cancer cells and fibroblasts mediates lymphangiogenesis and lymphatic metastasis. Cancer Commun (Lond) 2023; 43:1289-1311. [PMID: 37483113 PMCID: PMC10693311 DOI: 10.1002/cac2.12470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play a vital role in facilitating tumor progression through extensive reciprocal interplay with cancer cells. Tumor-derived extracellular vesicles (EVs) are the critical mediators involved in the crosstalk between cancer cells and stromal cells, contributing to the metastasis of cancers. Yet, the biological mechanisms of tumor-derived EVs in triggering CAFs phenotype to stimulate the lymph node (LN) metastasis of bladder cancer (BCa) are largely unknown. Here, we aimed to explore the effects and molecular mechanisms of tumor-derived EV-mediated CAFs phenotype in regulating BCa LN metastasis. METHODS The high-throughput sequencing was utilized to identify the crucial long non-coding RNA (lncRNA) associated with CAF enrichment in BCa. The functional role of the transition of fibroblasts to CAFs induced by LINC00665-mediated EVs was investigated through the in vitro and in vivo assays. Chromatin isolation by RNA purification assays, fluorescence resonance energy transfer assays, cytokine profiling and patient-derived xenograft (PDX) model were performed to explore the underlying mechanism of LINC00665 in the LN metastasis of BCa. RESULTS We found that CAFs are widely enriched in the tumor microenvironment of BCa, which correlated with BCa lymphangiogenesis and LN metastasis. We then identified a CAF-associated long non-coding RNA, LINC00665, which acted as a crucial mediator of CAF infiltration in BCa. Clinically, LINC00665 was associated with LN metastasis and poor prognosis in patients with BCa. Mechanistically, LINC00665 transcriptionally upregulated RAB27B expression and induced H3K4me3 modification on the promoter of RAB27B through the recruitment of hnRNPL. Moreover, RAB27B-induced EVs secretion endowed fibroblasts with the CAF phenotype, which reciprocally induced LINC00665 overexpression to form a RAB27B-HGF-c-Myc positive feedback loop, enhancing the lymphangiogenesis and LN metastasis of BCa. Importantly, we demonstrated that blocking EV-transmitted LINC00665 or HGF broke this loop and impaired BCa lymphangiogenesis in a PDX model. CONCLUSION Our study uncovers a precise mechanism that LINC00665 sustains BCa LN metastasis by inducing a RAB27B-HGF-c-Myc positive feedback loop between BCa cells and fibroblasts, suggesting that LINC00665 could be a promising therapeutic target for patients with LN metastatic BCa.
Collapse
Affiliation(s)
- Yuting Li
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Hanhao Zheng
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Yuming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Yan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Mingjie An
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Yao Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Yue Zhao
- Department of General SurgeryGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Yina Yin
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Le Ai
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Jian Huang
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Changhao Chen
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
11
|
Ludwig ML, Michmerhuizen NL, Wang J, Birkeland AC, Majchrowski BK, Nimmagadda S, Zhai J, Bhangale A, Kulkarni A, Jiang H, Swiecicki PL, Brenner JC. Multi-kinase compensation rescues EGFR knockout in a cell line model of head and neck squamous cell carcinoma. Arch Oral Biol 2023; 156:105822. [PMID: 37844343 PMCID: PMC11209876 DOI: 10.1016/j.archoralbio.2023.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival rates. While the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab is approved for treatment, responses are limited and the molecular mechanisms driving resistance remain incompletely understood. METHODS To better understand how cells survive without EGFR activity, we developed an EGFR knockout derivative of the UM-SCC-92 cell line using CRISPR/Cas9 technology. We then characterized changes to the transcriptome with RNAseq and changes in response to kinase inhibitors with resazurin cell viability assays. Finally, we tested if inhibitors with activity in the EGFR knockout model also had synergistic activity in combination with EGFR inhibitors in either wild type UM-SCC-92 cells or a known Cetuximab-resistant model. RESULTS Functional and molecular analysis showed that knockout cells had decreased cell proliferation, upregulation of FGFR1 expression, and an enhanced mesenchymal phenotype. In fact, expression of common EMT genes including VIM, SNAIL1, ZEB1 and TWIST1 were all upregulated in the EGFR knockout. Surprisingly, EGFR knockout cells were resistant to FGFR inhibitor monotherapies, but sensitive to combinations of FGFR and either XIAP or IGF-1R inhibitors. Accordingly, both wild type UM-SCC-92 and Cetuximab-resistant UM-SCC-104 cells with were sensitive to combined inhibition of EGFR, FGFR and either XIAP or IGF-1R. CONCLUSIONS These data offer insights into EGFR inhibitor resistance and show that resistance to EGFR knockout likely occurs through a complex network of kinases. Future studies of cetuximab-resistant HNSCC tumors are warranted to determine if this EMT phenotype and/or multi-kinase resistance is observed in patients.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Nicole L Michmerhuizen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jiayu Wang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Behirda K Majchrowski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sai Nimmagadda
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jingyi Zhai
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Apurva Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Hui Jiang
- Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Paul L Swiecicki
- Department of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - J Chad Brenner
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
12
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
13
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 342] [Impact Index Per Article: 171.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
14
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Phase I Study Evaluating Glesatinib (MGCD265), An Inhibitor of MET and AXL, in Patients with Non-small Cell Lung Cancer and Other Advanced Solid Tumors. Target Oncol 2023; 18:105-118. [PMID: 36459255 DOI: 10.1007/s11523-022-00931-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Heightened signaling by mesenchymal epithelial transition factor (MET) is implicated in tumorigenesis. Glesatinib is an investigational, oral inhibitor of MET and AXL. OBJECTIVE This phase I study determined the maximum tolerated dose (MTD), recommended phase II dose (RP2D), and safety profile of glesatinib in patients with advanced or unresectable solid tumors. Antitumor activity and pharmacokinetics (PK) were secondary objectives. PATIENTS AND METHODS Four formulations of glesatinib glycolate salt (capsule, unmicronized, micronized, and micronized version 2 [V2] tablets) and two free-base formulations (free-base suspension [FBS] capsule and spray-dried dispersion [SDD] tablet), developed to enhance drug exposure and optimize manufacturing processes, were evaluated in patients with genetically unselected advanced/unresectable solid tumors. MTD, based on dose-limiting toxicities (DLTs) observed during the first 21-day treatment cycle, was further evaluated in dose-expansion cohorts comprising patients with overexpression of MET and/or AXL, MET/AXL amplification, MET-activating mutations, or MET/AXL rearrangements for confirmation as the RP2D. RESULTS Glesatinib was evaluated across 27 dose-escalation cohorts (n = 108). Due to suboptimal exposure with glesatinib glycolate salt formulations in the initial cohorts, investigations subsequently focused on the FBS capsule and SDD tablet; for these formulations, MTD was identified as 1050 mg twice daily and 750 mg twice daily, respectively. An additional 71 patients received glesatinib in the FBS and SDD dose-expansion cohorts. At MTDs, the most frequent treatment-related adverse events were diarrhea (FBS, 83.3%; SDD, 75.0%), nausea (57.1%, 30.6%), vomiting (45.2%, 25.0%), increased alanine aminotransferase (45.2%, 30.6%), and increased aspartate aminotransferase (47.6%, 27.8%). Exploratory pharmacodynamic analyses indicated target engagement and inhibition of MET by glesatinib. Antitumor activity was observed with glesatinib FBS 1050 mg twice daily and SDD 750 mg twice daily in tumors harboring MET/AXL alteration or aberrant protein expression, particularly in patients with non--small cell lung cancer (NSCLC). In patients with NSCLC, the objective response rate was 25.9% in those with MET/AXL mutation or amplification and 30.0% in a subset with MET-activating mutations. All six partial responses occurred in patients with tumors carrying MET exon 14 deletion mutations. CONCLUSIONS The safety profile of single-agent glesatinib was acceptable. SDD 750 mg twice daily was selected as the preferred glesatinib formulation and dose based on clinical activity, safety, and PK data. Observations from this study led to initiation of a phase II study of glesatinib in patients with NSCLC stratified by type of MET alteration (NCT02544633). CLINICAL TRIALS REGISTRATION ClinicalTrials.gov NCT00697632; June 2008.
Collapse
|
16
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
17
|
Yang S, Tian Z, Feng Y, Zhang K, Pan Y, Li Y, Wang Z, Wei W, Qiao X, Zhou R, Yan L, Li Q, Guo H, Yuan J, Li P, Lv Z. Transcriptomics and metabolomics reveal changes in the regulatory mechanisms of osteosarcoma under different culture methods in vitro. BMC Med Genomics 2022; 15:265. [PMID: 36536381 PMCID: PMC9762085 DOI: 10.1186/s12920-022-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recently, increasing attention has been drawn to the impact of the tumor microenvironment (TME) on the occurrence and progression of malignant tumors. A variety of 3D culture techniques have been used to simulate TME in vitro. The purpose of this study was to reveal the differences in transcriptional and metabolic levels between osteosarcoma (OS) 2D cells, 3D cells, 3D cell-printed tissue, isolated tissue, and transplanted tumor tissue in vivo. METHODS We cultured the OS Saos-2 cell line under different culture methods as 2D cells, 3D cells, 3D cell-printed tissue and isolated tissue for 14 days and transplanted tumors in vivo as a control group. Through transcriptomic and metabonomic analyses, we determined the changes in gene expression and metabolites in OS tissues under different culture methods. RESULTS At the transcriptional level, 166 differentially expressed genes were found, including the SMAD family, ID family, BMP family and other related genes, and they were enriched in the TGF-β signaling pathway, complement and coagulation cascades, signaling pathways regulating pluripotency of stem cells, Hippo signaling pathway, ferroptosis, cGMP-PKG signaling pathway and other pathways. At the metabolic level, 362 metabolites were significantly changed and enriched in metabolic pathways such as the Fc Epsilon RI signaling pathway, histidine metabolism, primary bile acid biosynthesis, steroid biosynthesis, protein digestion and absorption, ferroptosis, and arachidonic acid metabolism. After integrating the transcriptome and metabolomics data, it was found that 44 metabolic pathways were changed, and the significantly enriched pathways were ferroptosis and pyrimidine metabolism. CONCLUSION Different culture methods affect the gene expression and metabolite generation of OS Saos-2 cells. Moreover, the cell and tissue culture method in vitro cannot completely simulate TME in vivo, and the ferroptosis and pyrimidine metabolism pathways mediate the functional changes of OS Saos-2 cells in different microenvironments.
Collapse
Affiliation(s)
- Sen Yang
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,Department of Orthopedics, The Second People’s Hospital of Changzhi City, 83 Peace West Street, Shanxi 046000 Changzhi, People’s Republic of China
| | - Zhi Tian
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Yi Feng
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Kun Zhang
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Yongchun Pan
- Department of Orthopedics, The Third people’s Hospital of Datong City, Shanxi 037006 Datong, People’s Republic of China
| | - Yuan Li
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Zhichao Wang
- grid.470966.aShanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, People’s Republic of China
| | - Wenhao Wei
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Xiaochen Qiao
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.263452.40000 0004 1798 4018Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, 689 Huitong South Road, Shanxi 030600 Jinzhong, People’s Republic of China
| | - Ruhao Zhou
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Lei Yan
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Qian Li
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Hua Guo
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Jie Yuan
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Pengcui Li
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| | - Zhi Lv
- grid.263452.40000 0004 1798 4018Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China ,grid.452845.a0000 0004 1799 2077Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Shanxi 030001 Taiyuan, People’s Republic of China
| |
Collapse
|
18
|
Wang H, Tran TT, Duong KT, Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm 2022; 19:4487-4505. [PMID: 36305753 DOI: 10.1021/acs.molpharmaceut.2c00775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.
Collapse
Affiliation(s)
- Hongbin Wang
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
- Master of Pharmaceutical Sciences College of Graduate Study, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Tuan T Tran
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Katherine T Duong
- CVS Pharmacy, 18872 Beach Boulevard, Huntington Beach, California 92648, United States
| | - Trieu Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Uyen M Le
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| |
Collapse
|
19
|
Sha YL, Liu Y, Yang JX, Wang YY, Gong BC, Jin Y, Qu TY, Xia FT, Han L, Zhao Q. B3GALT4 remodels the tumor microenvironment through GD2-mediated lipid raft formation and the c-met/AKT/mTOR/IRF-1 axis in neuroblastoma. J Exp Clin Cancer Res 2022; 41:314. [PMID: 36284313 PMCID: PMC9594894 DOI: 10.1186/s13046-022-02523-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Beta-1,3-galactosyltransferase-4 (B3GALT4) plays a critical regulatory role in tumor biology. However, the role of B3GALT4 in modulating the tumor microenvironment (TME) of neuroblastoma (NB) remains unknown. METHODS Public datasets and clinical NB samples were collected to evaluate the expression and clinical significance of GD2 and B3GALT4 in NB patients. CCK-8, colony formation, and transwell assays and experiments in tumor-bearing mouse models were conducted to investigate the function of B3GALT4. Flow cytometry, ELISA, immunohistochemistry, immunofluorescence, western blotting, and chemotaxis assays were conducted to ascertain the immunomodulatory mechanism of B3GALT4. The combined therapeutic effect of the lipid raft inhibitor MβCD and anti-GD2 mAb was validated in a murine model of NB. RESULTS GD2 was overexpressed in NB tissues and high expression of GD2 was associated with poor prognosis in NB patients. B3GALT4 was downregulated in NB tissues, and low expression of B3GALT4 indicated poor prognosis in NB patients. Silencing B3GALT4 significantly enhanced tumor progression both in vitro and in vivo. Meanwhile, the overexpression of B3GALT4 increased the recruitment of CD8+ T lymphocytes via the chemokines CXCL9 and CXCL10. Additionally, B3GALT4 regulated NB-cell GD2 expression and lipid raft formation. Mechanistically, B3GALT4 regulated the expression of CXCL9 and CXCL10 via the c-Met signaling in the lipid rafts and the downstream AKT/mTOR/IRF-1 pathway. The lipid raft inhibitor, MβCD, attenuated B3GALT4 deficiency-induced tumor progression and immune evasion. Last, MβCD combined with anti-GD2 mAb treatment significantly enhanced the antitumor effect and the infiltration of CD8+ T cells. CONCLUSIONS Upregulation of B3GALT4 promotes the secretion of CXCL9 and CXCL10 to recruit CD8+ T lymphocytes via the GD2-mediated lipid rafts and the c-Met/AKT/mTOR/IRF-1 pathway. Moreover, lipid raft inhibitors may enhance the efficacy of anti-GD2 immunotherapy for NB.
Collapse
Affiliation(s)
- Yong-Liang Sha
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jia-Xing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bao-Cheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tong-Yuan Qu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan-Tong Xia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
20
|
Hagege A, Saada-Bouzid E, Ambrosetti D, Rastoin O, Boyer J, He X, Rousset J, Montemagno C, Doyen J, Pedeutour F, Parola J, Bourget I, Luciano F, Bozec A, Cao Y, Pagès G, Dufies M. Targeting of c-MET and AXL by cabozantinib is a potential therapeutic strategy for patients with head and neck cell carcinoma. Cell Rep Med 2022; 3:100659. [PMID: 36130479 PMCID: PMC9512663 DOI: 10.1016/j.xcrm.2022.100659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/14/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Local or metastatic relapse following surgery, radiotherapy, and cisplatin is the leading cause of death in patients with head and neck squamous cell carcinoma (HNSCC). Our study shows overexpression of c-MET and AXL in HNSCC cells and patients resistant to radiotherapy and cisplatin. We demonstrate that cabozantinib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), c-MET, and AXL, decreases migration, invasion, and proliferation and induces mitotic catastrophe and apoptotic cell death of naive and radiotherapy- and cisplatin-resistant HNSCC cells. Cabozantinib inhibits the growth and metastatic spread of experimental HNSCC in zebrafish and the growth of experimental HNSCC in mice by blocking tumor cell proliferation and angiogenesis. The efficacy of cabozantinib is also confirmed on viable sections of surgically removed specimens of human HNSCC and on a patient who relapses after five lines of treatment. These results suggest that cabozantinib is relevant for the treatment of patients with HNSCC after relapse under radiotherapy and cisplatin. AXL and c-MET are overexpressed in radiotherapy- and cisplatin-resistant HNSCC Overexpression of AXL and c-MET contributes to tumor aggressiveness and poor prognosis Cabozantinib has anti-tumor and anti-metastatic efficacy in mice and zebrafish models Cabozantinib efficacy is shown on HNSCC biopsies and in one patient after several relapses
Collapse
|
21
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
22
|
Zhang Z, Miao L, Wang S, Zhao Y, Xie Y, Yun H, Ren Z, Wang G, Teng M, Li Y. Study on the expression of c-Met in gastric cancer and its correlation with preoperative serum tumor markers and prognosis. World J Surg Oncol 2022; 20:204. [PMID: 35710379 PMCID: PMC9202172 DOI: 10.1186/s12957-022-02659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background Studies have found that c-Met plays a critical role in the progression of solid tumors. This study aimed to investigate the expression of c-Met in gastric cancer (GC) and its correlation with preoperative serum tumor markers and prognosis, in order to provide a more theoretical basis for targeting c-Met in the treatment of GC. Methods Ninety-seven patients who underwent curative gastrectomy in our hospital from December 2013 to September 2015 were included in this study. The tissue microarray was constructed by paraffin-embedded tumor tissue of enrolled patients, including 97 GC points and 83 paracancerous points. Then, it was used for c-Met immunohistochemical staining, followed by an immunological H-score. The clinical baseline data and 5-year survival of patients with low and high c-Met expression were compared. Besides, the correlation between the expression of c-Met in tumor tissues and preoperative serum tumor markers was investigated. Finally, multivariate Cox regression analysis was used to explore the survival risk factors of patients. Results c-Met has a high expression rate in GC tissues 64.95% (63/97). The expression of c-Met was significantly different in different clinicopathological stages (p < 0.05); the high expression group also had a higher M stage and clinicopathological stage of GC. The correlation test between the c-Met H-score and CA125 was statistically significant (p = 0.004), indicating a positive correlation. Furthermore, high c-Met expression correlated with poor overall survival (OS) for 5 years (p = 0.005). It was also found that the high expression of c-Met in stage I–II patients was correlative with poor OS for 5 years (p = 0.026), while stage III–IV patients had no statistical significance (p > 0.05). Multivariate Cox regression analysis showed that c-Met might be an independent risk factor for survival 5 years after surgery. Conclusion This study found that the high expression of c-Met in GC tissues was associated with poor 5-year OS in GC patients and was an independent risk factor for 5-year survival after curative gastrectomy. The expression of c-Met in GC tissues was also positively correlated with preoperative serum CA125.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China.,Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730900, China
| | - Lele Miao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Song Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Yang Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730900, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730900, China
| | - Zhijian Ren
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Guan Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Muzhou Teng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China.
| | - Yumin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
23
|
Wang H, Shao R, Liu W, Peng S, Bai S, Fu B, Zhao C, Lu Y. Integrative analysis identifies CXCL11 as an immune-related prognostic biomarker correlated with cell proliferation and immune infiltration in multiple myeloma microenvironment. Cancer Cell Int 2022; 22:187. [PMID: 35568859 PMCID: PMC9107742 DOI: 10.1186/s12935-022-02608-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Purpose The interaction between tumor cells and tumor microenvironment (TME) has an important impact on progression and prognosis of multiple myeloma (MM), and has been proven to be promising therapeutic targets. This study intended to explore the relationship between TME and prognosis and identify valuable biomarkers of MM. Methods The transcriptomic and clinical information of MM retrieved from the Gene Expression Omnibus (GEO) were used to establish the model. The curve of Kaplan–Meier survival and the time-dependent receiver operating characteristic (ROC) were used to appraise the predictive ability. A nomogram was established for clinical application. Furthermore, the CIBERSORT algorithm was used to investigate the relation between IRGPI with the infiltration of immune cells. We also used histology, as well as in vitro and in vivo experiments to validate these findings. Results The results demonstrated an immune-related gene-based prognostic index (IRGPI) combined with clinical information. Patients were separated into high- and low-risk groups based on risk score, which had significantly difference in survival status and immune infiltrations. Furthermore, we identified CXCL11 as a key factor, which positively promotes the progression of MM and correlate with macrophage M2-like polarization and tumor immune cells infiltration. Conclusion Our findings suggest the IRGPI significantly demonstrate the differential prognosis and prediction of immune cells infiltration. It provides some insights into the complex interaction between myeloma tumor cells and the TME, as well as in the development of a novel biomarker target for anti-MM therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02608-9.
Collapse
Affiliation(s)
- Huizhong Wang
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Ruonan Shao
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Wenjian Liu
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Shumei Peng
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, 510060, China
| | - Shenrui Bai
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Bibo Fu
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Congling Zhao
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, 510060, China.
| | - Yue Lu
- Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China. .,State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China. .,Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
24
|
Xiao X, Shan H, Niu Y, Wang P, Li D, Zhang Y, Wang J, Wu Y, Jiang H. TMPRSS2 Serves as a Prognostic Biomarker and Correlated With Immune Infiltrates in Breast Invasive Cancer and Lung Adenocarcinoma. Front Mol Biosci 2022; 9:647826. [PMID: 35558557 PMCID: PMC9086397 DOI: 10.3389/fmolb.2022.647826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
TMPRSS2 is a transmembrane serine protease and plays a pivotal role in coronavirus disease 2019 (COVID-19). However, the correlation of TMPRSS2 with prognosis and immune infiltration in tumors has not yet been explored. Here, we analyzed the expression of TMPRSS2 in Oncomine and TIMER databases, the correlation between TMPRSS2 and overall survival in the PrognoScan, Kaplan-Meier plotter, and GEPIA databases. The association between TMPRSS2 and immune infiltration levels was investigated in the TIMER database. In addition, the prognosis of TMPRSS2 related to immune cells in cancers was analyzed. Quantitative real-time PCR (qRT-PCR) confirmed that TMPRSS2 was upregulated in lung adenocarcinoma (LUAD) and downregulated in breast invasive carcinoma (BRCA). We demonstrated that high TMPRSS2 expression was associated with favorable prognosis in LUAD, but it was associated with poor prognosis in BRCA. Interestingly, we found that TMPRSS2 expression was significantly correlated with immune infiltration of B cells, CD4+ T cells, macrophages, and dendritic cells in LUAD, and it was positively correlated with the infiltrating levels of CD8+ T cells, CD4+ T cells, neutrophils, and dendric cells in BRCA. Consistent with the prognosis of TMPRSS2 in LUAD and BRCA, the high expression level of TMPRSS2 has a favorable prognosis in enriched immune cells such as B cells, macrophages, and CD4+ T cells in LUAD, and it has a poor prognosis in CD4+ T cells and CD8+ T cells in BRCA. In conclusion, our results indicate that the prognosis of TMPRSS2 in LUAD and BRCA is significantly correlated with immune cells infiltration. Our study comprehensively revealed the relationship between the prognosis of TMPRSS2 in pan-cancers and tumor immunity.
Collapse
Affiliation(s)
- Xinhua Xiao
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, China
- *Correspondence: Hua Jiang, ; Xinhua Xiao,
| | - Huizhuang Shan
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangyang Niu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peihong Wang
- State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghe Li
- State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyin Zhang
- State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, China
| | - Yingli Wu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Tong Ren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jiang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, China
- *Correspondence: Hua Jiang, ; Xinhua Xiao,
| |
Collapse
|
25
|
Wu Y, Wu H, Lu X, Chen Y, Zhang X, Ju J, Zhang D, Zhu B, Huang S. Development and Evaluation of Targeted Optical Imaging Probes for Image‐Guided Surgery in Head and Neck Cancer. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Wu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Xiaoya Lu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Yi Chen
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Xue Zhang
- University of Jinan Jinan Shandong 250021 China
| | - Jiandong Ju
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Baocun Zhu
- University of Jinan Jinan Shandong 250021 China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| |
Collapse
|
26
|
Ma Y, Wang Y, Hui X, Lin B, Yuan Y, Tao X, Lv R. Dual-molecular targeted NIR II probe with enhanced response for head and neck squamous cell carcinoma imaging. NANOTECHNOLOGY 2022; 33:225101. [PMID: 35189605 DOI: 10.1088/1361-6528/ac56f9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In this research, a fluorescent probe of 7-(diethylamine) coumarin derivatives with multiple binding sites to detect biothiols in tumor cell with strong NIR II luminescencein vivowas synthesized. The biothiols include cysteine (Cys) and glutathione (GSH) in tumor cells, and the tumor-response luminescence was proved by the cell experiment. Importantly, the monolayer functional phospholipid (DSPE-PEG) coating and aggregation induced emission (AIE) dye of TPE modification made the probe have good stability and biocompatibility with little luminescence quenching in aqueous phase, which was proved byin vitroandin vivoexperiments. The final aqueous NIR II probe combined with bevacizumab (for VEGF recognition in the cancer cells) and Capmatinib (for Met protein recognition in the cancer cells) has stronger targeted imaging on head and neck squamous cell carcinoma (HNSCC) cancer with intravenous injection. This GSH/Cys detection in the tumor cell and strong dual-molecular NIR II bioimagingin vivomay provide new strategy to tumor detection.
Collapse
Affiliation(s)
- Yaqun Ma
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Xin Hui
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| |
Collapse
|
27
|
Raj S, Kesari KK, Kumar A, Rathi B, Sharma A, Gupta PK, Jha SK, Jha NK, Slama P, Roychoudhury S, Kumar D. Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer. Mol Cancer 2022; 21:31. [PMID: 35081970 PMCID: PMC8790852 DOI: 10.1186/s12943-022-01503-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractHead and neck cancer is the sixth most common cancer across the globe. This is generally associated with tobacco and alcohol consumption. Cancer in the pharynx majorly arises through human papillomavirus (HPV) infection, thus classifying head and neck squamous cell carcinoma (HNSCC) into HPV-positive and HPV-negative HNSCCs. Aberrant, mesenchymal-epithelial transition factor (c-MET) signal transduction favors HNSCC progression by stimulating proliferation, motility, invasiveness, morphogenesis, and angiogenesis. c-MET upregulation can be found in the majority of head and neck squamous cell carcinomas. c-MET pathway acts on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K), alpha serine/threonine-protein kinase (Akt), mitogen-activated protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. c-MET also establishes a crosstalk pathway with epidermal growth factor receptor (EGFR) and contributes towards chemoresistance in HNSCC. In recent years, the signaling communications of c-MET/HGF in metabolic dysregulation, tumor-microenvironment and immune modulation in HNSCC have emerged. Several clinical trials have been established against c-MET/ hepatocyte growth factor (HGF) signaling network to bring up targeted and effective therapeutic strategies against HNSCC. In this review, we discuss the molecular mechanism(s) and current understanding of c-MET/HGF signaling and its effect on HNSCC.
Graphical abstract
Collapse
|
28
|
He X, Chen S, Tang Y, Zhao X, Yan L, Wu L, Wu Z, Liu W, Chen X, Wang X. Hepatocyte Growth Factor Overexpression Slows the Progression of 4NQO-Induced Oral Tumorigenesis. Front Oncol 2022; 11:756479. [PMID: 34970484 PMCID: PMC8712676 DOI: 10.3389/fonc.2021.756479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives To investigate the role of hepatocyte growth factor (HGF)/c-Met signaling in oral malignant transformation. Methods We used immunohistochemistry to investigate HGF and c-Met expression in 53 oral squamous cell carcinoma (OSCC) specimens and 21 adjacent nontumor specimens and evaluated the associations between HGF and c-Met expression and clinicopathological parameters. Additionally, HGF-overexpression transgenic (HGF-Tg) and wild-type (Wt) mice were treated with 4-nitroquinoline-1-oxide (4NQO) to induce oral carcinogenesis for 16 weeks. At 16, 20, and 24 weeks, tongue lesions were collected for clinical observation; estimation of HGF, c-Met, and PCNA expression; apoptosis (TUNEL) assays; and RNA sequencing (RNA-seq). Results HGF and c-Met were positively expressed in 92.5% and 64% of OSCC samples, respectively. High HGF expression was significantly associated with smaller tumor size (p = 0.006) and inferior TNM stage (p = 0.032). No correlation between HGF and c-Met levels and other clinical parameters or prognosis was noted. In addition, HGF and c-Met expression was elevated in 4NQO-induced lesions of Wt mice. Compared with Wt mice, HGF-Tg mice have lower tumor incidence, number, volume, and lesion grade. In addition, the percentage of PCNA-positive cells in Wt mice was significantly higher than that in HGF-Tg mice at different time points. At 16 weeks, HGF-Tg mice exhibited less apoptotic cells compared with Wt mice (p < 0.000), and these levels gradually increased until the levels were greater than that of Wt mice at 24 weeks (p < 0.000). RNA-seq data revealed that 140 genes were upregulated and 137 genes were downregulated in HGF-Tg mice. KEGG enrichment analysis showed that upregulated differentially expressed genes (DEGs) are highly correlated with oxidative and metabolic signaling and that downregulated DEGs are related to MAPK and PI3K-AKT signaling. Conclusions HGF and c-Met expression is upregulated in OSCC tissues and is associated with the occurrence and development of OSCC. HGF overexpression in normal oral epithelial tissue can inhibit 4NQO-induced tumorigenesis potentially through inhibiting proliferation and accelerating apoptosis via MAPK and PI3K-AKT signaling.
Collapse
Affiliation(s)
- Xiaoxi He
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Si Chen
- Key Laboratory for Oral Biomedical Engineering of the Ministry of Education, Department of Oral Implantology, School and Hospital of Stomatology of Wuhan University, Wuhan, China
| | - Yinghua Tang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiaomin Zhao
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liting Yan
- Department of Periodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Lihong Wu
- Department of Basic Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhicong Wu
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Weijia Liu
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinming Chen
- Department of Pathology, School and Hospital of Stomatology of Wuhan University, Wuhan, China
| | - Xinhong Wang
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
29
|
Yang X, Liao HY, Zhang HH. Roles of MET in human cancer. Clin Chim Acta 2021; 525:69-83. [PMID: 34951962 DOI: 10.1016/j.cca.2021.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
The MET proto-oncogene was first identified in osteosarcoma cells exposed to carcinogens. Although expressed in many normal cells, MET is overexpressed in many human cancers. MET is involved in the initiation and development of various human cancers and mediates proliferation, migration and invasion. Accordingly, MET has been successfully used as a biomarker for diagnosis and prognosis, survival, post-operative recurrence, risk assessment and pathologic grading, as well as a therapeutic target. In addition, recent work indicates that inhibition of MET expression and function has potential clinical benefit. This review summarizes the role, mechanism, and clinical significance of MET in the formation and development of human cancer.
Collapse
Affiliation(s)
- Xin Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
30
|
Oliva M, Chepeha D, Araujo DV, Diaz-Mejia JJ, Olson P, Prawira A, Spreafico A, Bratman SV, Shek T, de Almeida J, R Hansen A, Hope A, Goldstein D, Weinreb I, Smith S, Perez-Ordoñez B, Irish J, Torti D, Bruce JP, Wang BX, Fortuna A, Pugh TJ, Der-Torossian H, Shazer R, Attanasio N, Au Q, Tin A, Feeney J, Sethi H, Aleshin A, Chen I, Siu L. Antitumor immune effects of preoperative sitravatinib and nivolumab in oral cavity cancer: SNOW window-of-opportunity study. J Immunother Cancer 2021; 9:jitc-2021-003476. [PMID: 34599023 PMCID: PMC8488751 DOI: 10.1136/jitc-2021-003476] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Sitravatinib, a tyrosine kinase inhibitor that targets TYRO3, AXL, MERTK and the VEGF receptor family, is predicted to increase the M1 to M2-polarized tumor-associated macrophages ratio in the tumor microenvironment and have synergistic antitumor activity in combination with anti-programmed death-1/ligand-1 agents. SNOW is a window-of-opportunity study designed to evaluate the immune and molecular effects of preoperative sitravatinib and nivolumab in patients with oral cavity squamous cell carcinoma. METHODS Patients with newly-diagnosed untreated T2-4a, N0-2 or T1 >1 cm-N2 oral cavity carcinomas were eligible. All patients received sitravatinib 120 mg daily from day 1 up to 48 hours pre-surgery and one dose of nivolumab 240 mg on day 15. Surgery was planned between day 23 and 30. Standard of care adjuvant radiotherapy was given based on clinical stage. Tumor photographs, fresh tumor biopsies and blood samples were collected at baseline, at day 15 after sitravatinib alone, and at surgery after sitravatinib-nivolumab combination. Tumor flow cytometry, multiplex immunofluorescence staining and single-cell RNA sequencing (scRNAseq) were performed on tumor biopsies to study changes in immune-cell populations. Tumor whole-exome sequencing and circulating tumor DNA and cell-free DNA were evaluated at each time point. RESULTS Ten patients were included. Grade 3 toxicity occurred in one patient (hypertension); one patient required sitravatinib dose reduction, and one patient required discontinuation and surgery delay due to G2 thrombocytopenia. Nine patients had clinical-to-pathological downstaging, with one complete response. Independent pathological treatment response (PTR) assessment confirmed a complete PTR and two major PTRs. With a median follow-up of 21 months, all patients are alive with no recurrence. Circulating tumor DNA and cell-free DNA dynamics correlated with clinical and pathological response and distinguished two patient groups with different tumor biological behavior after sitravatinib alone (1A) versus sitravatinib-nivolumab (1B). Tumor immunophenotyping and scRNAseq analyses revealed differential changes in the expression of immune cell populations and sitravatinib-targeted and hypoxia-related genes in group 1A vs 1B patients. CONCLUSIONS The SNOW study shows sitravatinib plus nivolumab is safe and leads to deep clinical and pathological responses in oral cavity carcinomas. Multi-omic biomarker analyses dissect the differential molecular effects of sitravatinib versus the sitravatinib-nivolumab and revealed patients with distinct tumor biology behavior. TRIAL REGISTRATION NUMBER NCT03575598.
Collapse
Affiliation(s)
- Marc Oliva
- Department of Medical Oncology, Institut Catala d' Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain.,Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Douglas Chepeha
- Department of Otolaryngology and Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel V Araujo
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Division of Medical Oncology, Hospital de Base São Jose do Rio Preto, Sao Paulo, Brazil
| | - J Javier Diaz-Mejia
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Peter Olson
- Department of Research, Mirati Therapeutics, San Diego, California, USA
| | - Amy Prawira
- Department of Medical Oncology, The Kinghorn Cancer Centre, St Vincent's Hospital, Sidney, New South Wales, Australia
| | - Anna Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Scott V Bratman
- Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Tina Shek
- Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - John de Almeida
- Department of Otolaryngology and Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron R Hansen
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew Hope
- Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David Goldstein
- Department of Otolaryngology and Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ilan Weinreb
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Smith
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | | | - Jonathan Irish
- Department of Otolaryngology and Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dax Torti
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jeffrey P Bruce
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ben X Wang
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Fortuna
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ronald Shazer
- Clinical Development, Mirati Therapeutics, San Diego, California, USA
| | | | - Qingyan Au
- Neogenomics Laboratories, Fort Myers, Florida, USA
| | | | | | | | | | - Isan Chen
- Clinical Development, Mirati Therapeutics, San Diego, California, USA
| | - Lillian Siu
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Zhang ZS, Yang RH, Yao X, Cheng YY, Shi HX, Yao CY, Gao ZX, Qi DF, Zhang WK, Dou YY, Guo J, Hu MW, Zhao H, Fang D. HGF/c-MET pathway contributes to cisplatin-mediated PD-L1 expression in hepatocellular carcinoma. Cell Biol Int 2021; 45:2521-2533. [PMID: 34486197 DOI: 10.1002/cbin.11697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin has been reported to promote the expression of programmed cell death ligand-1 (PD-L1) in some cancer cells. However, the underlying mechanism through which PD-L1 is transcriptionally regulated by cisplatin in hepatocellular carcinoma (HCC) cells remains largely unknown. In the present study, we found that the expression of hepatocyte growth factor (HGF), p-Akt, p-ERK, and PD-L1 was increased in cisplatin-treated SNU-368 and SNU-739 cells. HGF stimulation also increased PD-L1 expression in these cells. Moreover, Inhibition of HGF/c-MET, PI3K/Akt, and MEK/ERK signaling pathways can dramatically block cisplatin or HGF-induced PD-L1 expression in SNU-368 and SNU-739 cells. In vivo, combination PHA665752 with cisplatin significantly reduced tumor weight with increased infiltration of CD8+ T cells in the tumor. Taken together, our study suggested that HGF/c-Met axis-induced the activation of PI3K/Akt and MEK/ERK pathways contributes to cisplatin-mediated PD-L1 expression. These findings may provide an alternative avenue for the treatment of HCC.
Collapse
Affiliation(s)
- Zhan-Sheng Zhang
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Ruo-Han Yang
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin Yao
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Yue-Ying Cheng
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Hong-Xiang Shi
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Chao-Yan Yao
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Zi-Xuan Gao
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - De-Fei Qi
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Wen-Ke Zhang
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Yuan-Yuan Dou
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Juan Guo
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Meng-Wen Hu
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Hui Zhao
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Dong Fang
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China.,Department of Pharmacology, Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
32
|
Chang X, Ma Z, Zhu G, Lu Y, Yang J. New perspective into mesenchymal stem cells: Molecular mechanisms regulating osteosarcoma. J Bone Oncol 2021; 29:100372. [PMID: 34258182 PMCID: PMC8254115 DOI: 10.1016/j.jbo.2021.100372] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with significant potential for regenerative medicine. The tumorigenesis of osteosarcoma is an intricate system and MSCs act as an indispensable part of this, interacting with the tumor microenvironment (TME) during the process. MSCs link to cells by acting on each component in the TME via autocrine or paracrine extracellular vesicles for cellular communication. Because of their unique characteristics, MSCs can be modified and processed into good biological carriers, loaded with drugs, and transfected with anticancer genes for the targeted treatment of osteosarcoma. Previous high-quality reviews have described the biological characteristics of MSCs; this review will discuss the effects of MSCs on the components of the TME and cellular communication and the prospects for clinical applications of MSCs.
Collapse
Key Words
- 3TSR, Three type 1 repeats
- 5 FC, 5-fluorocytosine
- AD-MSCs, Adipose-derived MSCs
- AQP1, Aquaporin-1
- BMSC-derived exosomes, BMSC-Exos
- BMSCs, Bone marrow mesenchymal stem cells
- CAFs, Carcinoma-associated-fibroblasts
- CRC, Colorectal cancer
- CSF, Colony-stimulating factor
- Cellular communication
- Clinical application
- DOX, Doxorubicin
- DP-MSCs, Dental pulp-derived MSCs, hUC-MSCs, Human umbilical cord MSCs
- ECM, Extracellular matrix
- ESCs, embryonic stem cells
- EVs, Extracellular vesicles
- GBM, Glioblastoma
- HCC, hepatocellular carcinoma
- LINE-1, Long interspersing element 1
- MCP-1, Monocyte chemoattractant protein-1
- MSC-Exos, MSC-derived exosomes
- MSC-MVs, MSC microvesicles
- MSCs
- MSCs, Mesenchymal stem cells
- OPG, osteoprotegerin
- OS, osteosarcoma
- Osteosarcoma
- PDGFRα, Platelet derived growth factor receptor α
- PDGFRβ, Platelet derived growth factor receptor β
- PDGFα, Platelet derived growth factor α
- S TRAIL, Secretable variant of the TNF-related apoptosis-inducing ligand
- SD-MSCs, stressed MSCs
- SDF-1, Stromal cell-derived factor 1
- TGF, Transforming growth factor
- TME
- TME, Tumor microenvironment
- TNF, Tumor necrosis factor
- TRA2B, Transformer 2β
- VEGF, Vascular endothelial growth factor
- hASCs, human adipose stem cells
- iPSCs, induced pluripotent stem cells
- yCD::UPRT, Yeast cytosine deaminase::uracil phosphoribosyl transferase
Collapse
Affiliation(s)
- Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
33
|
FOXD1 expression in head and neck squamous carcinoma: a study based on TCGA, GEO and meta-analysis. Biosci Rep 2021; 41:229252. [PMID: 34269372 PMCID: PMC8319493 DOI: 10.1042/bsr20210158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/19/2023] Open
Abstract
Forkhead box D1 (FOXD1) is a new member of FOX transcription factor family. FOXD1 has demonstrated multi-level roles during normal development and several diseases' pathogenesis. However, litter is known about the role of FOXD1 in the progression of head and neck squamous cancer (HNSC). In the present study, we analyzed FOXD1 expression pattern using TCGA dataset, GEO datasets, HNSC cell lines and HNSC tissues. Then, we analyzed the correlation between FOXD1 expression and clinical characteristics, and evaluated the prognostic value of FOXD1 in HNSC. Moreover, we assessed the relationship between FOXD1 expression and tumor environment (TME) and immune cell infiltration using ESTIMATE and CIBERSORT algorithms. Finally, we predicted the FOXD1-related biological processes and signal pathways. FOXD1 was up-regulated in HNSC tissues in TCGA datasets, validated by GEO datasets, HNSC cell lines and HNSC tissues. FOXD1 expression was significantly associated with tumor site and HPV infection. Univariate and multivariate Cox regression analyses showed that FOXD1 expression was an independent prognostic factor. Moreover, we found that the proportions of naïve B cells, plasma cells, and resting dendritic cells were negatively correlated with FOXD1 expression, otherwise, the proportion of activated mast cells was positively correlated with FOXD1 expression using CIBERSORT algorithm. GSEA analyses revealed that FOXD1 was mainly involved in cancer-related signaling pathway and metabolism-related pathways. FOXD1 was a potential oncogene, and might represent an indicator for predicting overall survival of HNSC patients. Moreover, many cancer-related pathways and metabolism-related processes may be regulated by FOXD1.
Collapse
|
34
|
Chandel V, Kumar D. Targeting Signalling Cross-Talk between Cancer Cells and Cancer-Associated Fibroblast through Monocarboxylate Transporters in Head and Neck Cancer. Anticancer Agents Med Chem 2021; 21:1369-1378. [PMID: 32698754 DOI: 10.2174/1871520620666200721135230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive malignancy affecting more than 600,000 cases worldwide annually, associated with poor prognosis and significant morbidity. HNSCC tumors are dysplastic, with up to 80% fibroblasts. It has been reported that Cancer-Associated Fibroblasts (CAFs) facilitate HNSCC progression. Unlike normal cells, malignant cells often display increased glycolysis, even in the presence of oxygen; a phenomenon known as the Warburg effect. As a consequence, there is an increase in Lactic Acid (LA) production. Earlier, it has been reported that HNSCC tumors exhibit high LA levels that correlate with reduced survival. It has been reported that the activation of the receptor tyrosine kinase, c- MET, by CAF-secreted Hepatocyte Growth Factor (HGF) is a major contributing event in the progression of HNSCC. In nasopharyngeal carcinoma, c-MET inhibition downregulates the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) and NADPH production resulting in apoptosis. Previously, it was demonstrated that HNSCC tumor cells are highly glycolytic. Further, CAFs show a higher capacity to utilize LA as a carbon source to fuel mitochondrial respiration than HNSCC. Earlier, we have reported that in admixed cultures, both cell types increase the expression of Monocarboxylate Transporters (MCTs) for a bidirectional LA transporter. Consequently, MCTs play an important role in signalling cross-talk between cancer cells and cancer associate fibroblast in head and neck cancer, and targeting MCTs would lead to the development of a potential therapeutic approach for head and neck cancer. In this review, we focus on the regulation of MCTs in head and neck cancer through signalling cross-talk between cancer cells and cancer-associated fibroblasts, and targeting this signalling cross talk would lead to the development of a potential therapeutic approach for head and neck cancer.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| |
Collapse
|
35
|
Dempke WCM, Fenchel K. Has programmed cell death ligand-1 MET an accomplice in non-small cell lung cancer?-a narrative review. Transl Lung Cancer Res 2021; 10:2667-2682. [PMID: 34295669 PMCID: PMC8264346 DOI: 10.21037/tlcr-21-124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Recently approved and highly specific small-molecule inhibitors of c-MET exon 14 skipping mutations (e.g., capmatinib, tepotinib) are a new and important therapeutic option for the treatment of non-small cell lung cancer (NSCLC) patients harbouring c-MET alterations. Several experimental studies have provided compelling evidence that c-MET is involved in the regulation of the immune response by up-regulating inhibitory molecules (e.g., PD-L1) and down-regulating of immune stimulators (e.g., CD137, CD252, CD70, etc.). In addition, c-MET was found to be implicated in the regulation of the inflamed tumour microenvironment (TME) and thereby contributing to an increased immune escape of tumour cells from T cell killing. Moreover, it is a major resistance mechanism following treatment of epidermal growth factor receptor mutations (EGFRmut) with tyrosine kinase receptor inhibitors (TKIs). In line with these findings c-MET alterations have also been shown to be associated with a worse clinical outcome and a poorer prognosis in NSCLC patients. However, the underlying mechanisms for these experimental observations are neither fully evaluated nor conclusive, but clearly multifactorial and most likely tumour-specific. In this regard the clinical efficacy of checkpoint inhibitors (CPIs) and TKIs against EGFRmut in NSCLC patients harbouring c-MET alterations is also not yet established, and further research will certainly provide some guidance as to optimally utilise CPIs and c-MET inhibitors in the future.
Collapse
Affiliation(s)
- Wolfram C M Dempke
- Department of Haematology and Oncology, University of Munich, Munich, Germany
| | | |
Collapse
|
36
|
Targeted molecular imaging of head and neck squamous cell carcinoma: a window into precision medicine. Chin Med J (Engl) 2021; 133:1325-1336. [PMID: 32404691 PMCID: PMC7289307 DOI: 10.1097/cm9.0000000000000751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor biomarkers play important roles in tumor growth, invasion, and metastasis. Imaging of specific biomarkers will help to understand different biological activities, thereby achieving precise medicine for each head and neck squamous cell carcinoma (HNSCC) patient. Here, we describe various molecular targets and molecular imaging modalities for HNSCC imaging. An extensive search was undertaken in the PubMed database with the keywords including “HNSCC,” “molecular imaging,” “biomarker,” and “multimodal imaging.” Imaging targets in HNSCC consist of the epidermal growth factor receptor, cluster of differentiation 44 variant 6 (CD44v6), and mesenchymal-epithelial transition factor and integrins. Targeted molecular imaging modalities in HNSCC include optical imaging, ultrasound, magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. Making the most of each single imaging method, targeted multimodal imaging has a great potential in the accurate diagnosis and therapy of HNSCC. By visualizing tumor biomarkers at cellular and molecular levels in vivo, targeted molecular imaging can be used to identify specific genetic and metabolic aberrations, thereby accelerating personalized treatment development for HNSCC patients.
Collapse
|
37
|
Hou P, Lin T, Meng S, Shi M, Chen F, Jiang T, Li Z, Li M, Chu S, Zheng J, Bai J. Long noncoding RNA SH3PXD2A-AS1 promotes colorectal cancer progression by regulating p53-mediated gene transcription. Int J Biol Sci 2021; 17:1979-1994. [PMID: 34131400 PMCID: PMC8193262 DOI: 10.7150/ijbs.58422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various human cancers. We aimed to determine the key lncRNAs mediating colorectal cancer (CRC) progression. We identified some lncRNAs aberrantly expressed in CRC tissues by using lncRNA microarrays and demonstrated that SH3PXD2A-AS1 was one of the most highly overexpressed lncRNAs in CRC. We further aimed to explore the roles and possible molecular mechanisms of SH3PXD2A-AS1 in CRC. RNA ISH revealed that SH3PXD2A-AS1 was overexpressed in CRC compared with adjacent normal colon tissues and indicated poor prognosis in CRC. Functional analyses showed that SH3PXD2A-AS1 enhanced cell proliferation, angiogenesis, and metastasis. Mechanistically, SH3PXD2A-AS1 can directly interact with p53 protein and regulate p53-mediated gene transcription in CRC. We provided mechanistic insights into the regulation of SH3PXD2A-AS1 on p53-mediated gene transcription and suggested its potential as a new prognostic biomarker and target for the clinical management of CRC.
Collapse
Affiliation(s)
- Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tian Lin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meilin Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
38
|
Fuiten AM, Fankhauser RG, Smit DJ, Stark MS, Enright TF, Wood MA, DePatie NA, Pivik K, Sturm RA, Berry EG, Kulkarni RP. Genetic analysis of multiple primary melanomas arising within the boundaries of congenital nevi depigmentosa. Pigment Cell Melanoma Res 2021; 34:1123-1130. [PMID: 33884765 DOI: 10.1111/pcmr.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we present a rare case of a patient who developed multiple primary melanomas within the boundaries of two nevi depigmentosa. The melanomas were excised, and as a preventive measure, the remainder of the nevi depigmentosa were removed. We performed whole-exome sequencing on excised tissue from the nevus depigmentosus, adjacent normal skin, and saliva to explain this intriguing phenomenon. We also performed a GeneTrails Comprehensive Solid Tumor Panel analysis on one of the melanoma tissues. Genetic analysis revealed germline MC1R V92M and TYR R402Q polymorphisms and a MET E168D germline mutation that may have increased the risk of melanoma development. This genetic predisposition, combined with a patient-reported history of substantial sun exposure and sunburns, which were more severe within the boundaries of the nevi depigmentosa due to the lack of photoprotective melanin, produced numerous somatic mutations in the melanocytes of the nevi depigmentosa. Fitting with this paradigm for melanoma development in chronically sun-damaged skin, the patient's melanomas harbored somatic mutations in CDKN2A (splice site), NF1, and ATRX and had a tumor mutation burden in the 90-95th percentile for melanoma.
Collapse
Affiliation(s)
- Allison M Fuiten
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Reilly G Fankhauser
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Darren J Smit
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mitchell S Stark
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Trevor F Enright
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Mary A Wood
- Computational Biology Program, School of Medicine, Oregon Health and Science University, Portland, OR, USA.,Phase Genomics, Seattle, WA, USA
| | - Nicholas A DePatie
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | | | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth G Berry
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Rajan P Kulkarni
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Operative Care Division, VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
39
|
Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming. Front Oncol 2021; 11:626577. [PMID: 33854965 PMCID: PMC8039382 DOI: 10.3389/fonc.2021.626577] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
The attachment of cells to the extracellular matrix (ECM) is the hallmark of structure–function stability and well-being. ECM detachment in localized tumors precedes abnormal dissemination of tumor cells culminating in metastasis. Programmed cell death (PCD) is activated during tumorigenesis to clear off ECM-detached cells through “anoikis.” However, cancer cells develop several mechanisms for abrogating anoikis, thus promoting their invasiveness and metastasis. Specific factors, such as growth proteins, pH, transcriptional signaling pathways, and oxidative stress, have been reported as drivers of anoikis resistance, thus enhancing cancer proliferation and metastasis. Recent studies highlighted the key contributions of metabolic pathways, enabling the cells to bypass anoikis. Therefore, understanding the mechanisms driving anoikis resistance could help to counteract tumor progression and prevent metastasis. This review elucidates the dynamics employed by cancer cells to impede anoikis, thus promoting proliferation, invasion, and metastasis. In addition, the authors have discussed other metabolic intermediates (especially amino acids and nucleotides) that are less explored, which could be crucial for anoikis resistance and metastasis.
Collapse
Affiliation(s)
- Funmilayo O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Adeleye O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lukman O Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Cheng H, Zhou L, Long Y, Xiang J, Chen L. MACC1 Is Associated With Epithelial-Mesenchymal Transition and Can Predict Poor Prognosis in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:644120. [PMID: 33854976 PMCID: PMC8039464 DOI: 10.3389/fonc.2021.644120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Given the reported correlation between the oncogene metastasis-associated in colon cancer 1 (MACC1) and nasopharyngeal carcinoma (NPC), as well as between MACC1 and epithelial–mesenchymal transition (EMT), we speculated that EMT is a likely causative link between MACC1 expression and poor NPC prognosis. Thus, we aim to clarify the relationship between MACC1 and EMT in NPC prognosis. Material and Methods We performed immunohistochemical examination of tissue sections from 128 NPC patients that were divided into six groups corresponding to high and low protein expression of MACC1 and two EMT-related proteins, vimentin and E-cadherin, and Kaplan–Meier (KM) survival analyses were performed. Results KM survival analysis showed that upregulation of MACC1 and vimentin and downregulation of E-cadherin were significantly associated with reduced survival in NPC. Short hairpin RNA (shRNA) interference and immunoblotting in the NPC cell line HNE-1 led to increased E-cadherin but decreased vimentin levels. MACC1 overexpression was significantly correlated with poor 5-year overall survival, metastasis-free survival, and disease-free survival (P<0.05) but not with poor relapse-free survival (P>0.05). Univariate analyses revealed that MACC1, E-cadherin, and vimentin levels along with T and N tumor classifications and cancer staging are significant prognostic factors of NPC (P<0.05). Conclusion Our findings showed the association between MACC1 and EMT in NPC malignancy and support the role of MACC1 as a prognostic biomarker and molecular target for NPC treatment.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, China
| | - Linxiang Zhou
- Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Yalan Long
- Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Juanjuan Xiang
- Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Zhou M, Hou Y, Wu J, Li G, Cao P, Chen W, Hu L, Gan D. miR-93-5p promotes insulin resistance to regulate type 2 diabetes progression in HepG2 cells by targeting HGF. Mol Med Rep 2021; 23:329. [PMID: 33760164 PMCID: PMC7974269 DOI: 10.3892/mmr.2021.11968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance is a common feature of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying insulin resistance are not completely understood. The present study aimed to investigate the effect of microRNA (miR)-93-5p on insulin resistance in T2DM cells. Human hepatocellular carcinoma (HCC; HepG2) cells were cultured in medium with high glucose content (30 mM glucose) to establish an in vitro insulin-resistant cell model (IR group). Glucose consumption and glycogen synthesis assays were performed to assess glucose consumption and glycogen synthesis, respectively. By performing immunoprecipitation assays, the abundance of the Met-insulin receptor complex was detected in HepG2 cells. miR-93-5p and hepatocyte growth factor (HGF) mRNA expression levels were measured via reverse transcription-quantitative PCR, and HGF protein expression levels were measured via western blotting. A dual-luciferase reporter assay was conducted to investigate the interaction between miR-93-5p and HGF. Cell Counting Kit-8, BrdU and caspase-3 activity assays were performed to evaluate cell viability, proliferation and apoptosis, respectively, in insulin-resistant HepG2 cells following transfection with small interfering RNA-HGF, HGF overexpression vector, miR-93-5p mimic or miR-93-5p inhibitor. The results demonstrated that miR-93-5p expression was significantly increased and HGF expression was significantly decreased in HCC tissues isolated from patients with or without T2DM compared with adjacent healthy tissues isolated from patients without T2DM. Compared with the IR group, miR-93-5p overexpression significantly increased cell proliferation, glucose consumption and glycogen synthesis, but significantly inhibited apoptosis in insulin-resistant HepG2 cells. By contrast, compared with the IR group, HGF overexpression significantly inhibited cell proliferation, glucose consumption and glycogen synthesis, but significantly enhanced cell apoptosis in insulin-resistant HepG2 cells. Following co-transfection with HGF overexpression vector and miR-93-5p mimic, miR-93-5p mimic-mediated induction of HepG2 cell proliferation, glucose consumption and glycogen synthesis in insulin-resistant HepG2 cells was inhibited. Collectively, the results of the present study indicated that miR-93-5p enhanced insulin resistance to regulate T2DM progression in HepG2 cells by targeting HGF.
Collapse
Affiliation(s)
- Man Zhou
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei 430060, P.R. China
| | - Yilin Hou
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei 430060, P.R. China
| | - Jun Wu
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei 430060, P.R. China
| | - Guangli Li
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei 430060, P.R. China
| | - Ping Cao
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei 430060, P.R. China
| | - Wan Chen
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei 430060, P.R. China
| | - Lingli Hu
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei 430060, P.R. China
| | - Dingyun Gan
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
42
|
Wang G, Zhang M, Cheng M, Wang X, Li K, Chen J, Chen Z, Chen S, Chen J, Xiong G, Xu X, Wang C, Chen D. Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Lett 2021; 507:55-69. [PMID: 33741424 DOI: 10.1016/j.canlet.2021.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment has been recently reported to play a pivotal role in sustaining tumor cells survival and protecting them from immunotherapy and chemotherapy-induced death. It remains largely unknown how the specific signaling pathway exerts the tumor microenvironment in head and neck squamous cell carcinoma though previous studies have elucidated the regulatory mechanisms involve in tumor immune microenvironment, stromal cells, tumor angiogenesis and cancer stem cell. These components are responsible for tumor progression as well as anti-cancer therapy resistance, leading to rapid tumor growth and treatment failure. In this review, we focus on discussing the interaction between tumor cells and the surrounding components for better understanding of anti-cancer treatment ineffectiveness and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ganping Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, China
| | - Maosheng Cheng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaochen Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kang Li
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianwen Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gan Xiong
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, China
| | - Xiuyun Xu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, China
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, China
| | - Demeng Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
43
|
Wu J, Liu J, Lin B, Lv R, Yuan Y, Tao X. Met-Targeted Dual-Modal MRI/NIR II Imaging for Specific Recognition of Head and Neck Squamous Cell Carcinoma. ACS Biomater Sci Eng 2021; 7:1640-1650. [DOI: 10.1021/acsbiomaterials.0c01807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jun Wu
- Department of Radiology, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shanxi 710071, China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shanxi 710071, China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shanxi 710071, China
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
44
|
Fasano M, Della Corte CM, Viscardi G, Di Liello R, Paragliola F, Sparano F, Iacovino ML, Castrichino A, Doria F, Sica A, Morgillo F, Colella G, Tartaro G, Cappabianca S, Testa D, Motta G, Ciardiello F. Head and neck cancer: the role of anti-EGFR agents in the era of immunotherapy. Ther Adv Med Oncol 2021; 13:1758835920949418. [PMID: 33767760 PMCID: PMC7953226 DOI: 10.1177/1758835920949418] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
Head and neck cancers (HNC) represent the seventh most frequent cancer worldwide, with squamous cell carcinomas as the most frequent histologic subtype. Standard treatment for early stage diseases is represented by single modality surgery or radiotherapy, whereas in the locally advanced and recurrent or metastatic settings a more aggressive multi-modal approach is needed with locoregional intervention and/or systemic therapies. Epidermal Growth Factor Receptor (EGFR) plays an important role in HNC biology and has been studied extensively in preclinical and clinical settings. In this scenario, anti-EGFR targeted agent cetuximab, introduced in clinical practice a decade ago, represents the only approved targeted therapy to date, while the development of immune-checkpoint inhibitors has recently changed the available treatment options. In this review, we focus on the current role of anti-EGFR therapies in HNCs, underlying available clinical data and mechanisms of resistance, and highlight future perspectives regarding their role in the era of immunotherapy.
Collapse
Affiliation(s)
- Morena Fasano
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli. Via Sergio Pansini 5, Naples, 80131, Italy
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Viscardi
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raimondo Di Liello
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fernando Paragliola
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Sparano
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Lucia Iacovino
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Francesca Doria
- Centro radiologico Vega, Centro radiologico fisica e terapia fisica Morrone, Caserta, Italy
| | - Antonello Sica
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Colella
- Maxillo-Facial Surgery Department, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giampaolo Tartaro
- Maxillo-Facial Surgery Department, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, Radiology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Domenico Testa
- Department of Anesthesiology, Surgical and Emergency Science, Clinic of Otorhinolaryngology, Head and Neck Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetano Motta
- Department of Anesthesiology, Surgical and Emergency Science, Clinic of Otorhinolaryngology, Head and Neck Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
45
|
Ray S, Saha D, Alam N, Mitra Mustafi S, Mandal S, Sarkar A, Majumder B, Murmu N. Exposure to chewing tobacco promotes primary oral squamous cell carcinoma and regional lymph node metastasis by alterations of SDF1α/CXCR4 axis. Int J Exp Pathol 2021; 102:80-92. [PMID: 33655604 DOI: 10.1111/iep.12386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
A high incidence of oral squamous cell carcinoma (OSCC) is observed in South-East Asian countries due to addictions such as chewing tobacco. Local invasion and distant metastases are primary causes of poor prognosis in OSCC. This study aimed to understand the alterations in metastasis biomarkers, such as stromal cell-derived factor-1α (SDF-1 or SDF1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4), in OSCC patient samples that were stratified based on the history of addiction to chewing tobacco. Targeted immunohistochemical staining and Western blotting were performed on primary tumour and metastatic lymph node (LN) tissues in parallel. Overexpression of hepatocyte growth factor (HGF), activated form of its cognate receptor tyrosine kinase, c-Met (p-Met), GRB2-associated-binding protein 1 (Gab1), phospho-protein kinase B (pAkt), nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) were observed in primary tumour and metastatic lymph nodes in both chewer and non-chewer cohorts. Variance analysis showed significant positive correlation between them (P < .0001) indicating upregulation of these biomarkers upon ligand-induced activation of c-Met in both tobacco chewers and non-chewers. Significantly higher expressions of SDF1α and CXCR4 were observed in both primary tumours and metastatic lymph nodes of tobacco chewers (P < .0001) and coincided with overexpressed HGF. In contrast, no significant correlation was observed between expression of HGF and that of SDF1α and CXCR4 in non-chewers. Together, our findings provide important insights into the association of HGF/c-Met and the SDF1α/CXCR4 axis in lymph node metastasis and to an aetiological link with the habit of chewing tobacco.
Collapse
Affiliation(s)
- Sudipta Ray
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Depanwita Saha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | | | - Shyamsundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Aniruddha Sarkar
- Department of Head and Neck Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Biswanath Majumder
- Departments of Cancer Biology, Molecular Pathology and Molecular Profiling, Mitra Biotech, Electronic City, Bengaluru, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
46
|
Chen B, Cai T, Huang C, Zang X, Sun L, Guo S, Wang Q, Chen Z, Zhao Y, Han Z, Xu R, Xu W, Wang M, Shen B, Zhu W. G6PD-NF-κB-HGF Signal in Gastric Cancer-Associated Mesenchymal Stem Cells Promotes the Proliferation and Metastasis of Gastric Cancer Cells by Upregulating the Expression of HK2. Front Oncol 2021; 11:648706. [PMID: 33718248 PMCID: PMC7952978 DOI: 10.3389/fonc.2021.648706] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tumor-associated stromal cells have been widely recognized for their tumor-promoting capability involving paracrine signaling. However, the underlying mechanism and the effects of the molecules in the glycolysis pathway in gastric cancer-associated mesenchymal stem cells (GCMSCs) and gastric cancer cells on tumor progression remain unclear. Methods: The expression of hepatocyte growth factor (HGF) in GCMSCs and bone marrow mesenchymal stem cells (BMMSCs) was detected by enzyme-linked immunosorbent assay (ELISA). The effect of HGF derived from GCMSCs on the proliferation, metastasis, and HK2 expression of gastric cancer cells was evaluated in vitro and in vivo. The effects of G6PD on the production of HGF in mesenchymal stem cells (MSCs) were analyzed by immunoblotting. Results: HGF derived from GCMSCs promoted glycolysis, proliferation, and metastasis of gastric cancer by upregulating c-Myc-HK2 signal. The progression of the disease induced by GCMSCs decelerated in the absence of HK2. The expression of G6PD activated NF-κB signaling and stimulated the production of HGF in GCMSCs. Blocking HGF derived from GCMSCs decreased proliferation, metastasis, and angiogenesis of gastric cancer cells in vivo. Conclusions: GCMSCs highly expressed G6PD and facilitated the progression of gastric cancer through the G6PD-NF-κB-HGF axis coordinates. Blocking HGF derived from GCMSCs is a potential new therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Bin Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tuo Cai
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chao Huang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueyan Zang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Sun
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shuwei Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qianqian Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhihong Chen
- Department of Surgery, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiqiang Han
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongman Xu
- Department of Clinical Laboratory, Haian People's Hospital, Haian, China
| | - Wenrong Xu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
47
|
Wu X, Cheng YSL, Matthen M, Yoon A, Schwartz GK, Bala S, Taylor AM, Momen-Heravi F. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. J Exp Clin Cancer Res 2021; 40:70. [PMID: 33596979 PMCID: PMC7890893 DOI: 10.1186/s13046-021-01865-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) have been shown to play an important role in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). The miR-34 family is thought to play a role in tumor suppression, but the exact mechanism of their action in HNSCC is not well understood. Moreover, the impact of chromosomal changes and mutation status on miR-34a expression remains unknown. METHODS Differential expression of miR-34a, MET, and genomic alterations were assessed in the Cancer Genome Atlas (TCGA) datasets as well as in primary HNSCC and adjacent normal tissue. The biological functions of miR-34a in HNSCC were investigated in samples derived from primary human tumors and HNSCC cell lines. The expression of MET was evaluated using immunohistochemistry, and the molecular interaction of miR-34a and MET were demonstrated by RNA pulldown, RNA immunoprecipitation, luciferase reporter assay, and rescue experiments. Lastly, locked nucleic acid (LNA) miRs in mouse xenograft models were used to evaluate the clinical relevance of miR-34a in HNSCC tumor growth and modulation of the tumor microenvironment in vivo. RESULTS Chromosome arm 1p loss and P53 mutations are both associated with lower levels of miR-34a. In HNSCC, miR-34a acts as a tumor suppressor and physically interacts with and functionally targets the proto-oncogene MET. Our studies found that miR-34a suppresses HNSCC carcinogenesis, at least in part, by downregulating MET, consequently inhibiting HNSCC proliferation. Consistent with these findings, administration of LNA-miR-34a in an in vivo model of HNSCC leads to diminished HNSCC cell proliferation and tumor burden in vitro and in vivo, represses expression of genes involved in epithelial-mesenchymal transition, and negates the oncogenic effect of MET in mouse tumors. Consistently, LNA-miR-34a induced a decreased number of immunosuppressive PDL1-expressing tumor-associated macrophages in the tumor microenvironment. In HNSCC patient samples, higher levels of miR-34a are significantly associated with a higher frequency of Th1 cells and CD8 naïve T cells. CONCLUSIONS Our results demonstrate that miR-34a directly targets MET and maintains anti-tumor immune activity. We propose miR-34a as a potential new therapeutic approach for HNSCC.
Collapse
Affiliation(s)
- Xun Wu
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, Nanning, Guangxi, China
| | - Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Mathew Matthen
- Department of Medicine Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Yoon
- Division of Pathology, Columbia University College of Dental Medicine, New York, NY, USA
| | - Gary K Schwartz
- Department of Medicine Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Fatemeh Momen-Heravi
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Molecular phenotypes of circulating tumor cells and efficacy of nivolumab treatment in patients with head and neck squamous cell carcinoma. Sci Rep 2020; 10:21573. [PMID: 33299117 PMCID: PMC7726556 DOI: 10.1038/s41598-020-78741-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Biomarkers of the therapeutic efficacy of ICIs have been extensively investigated. In this study, we aimed to analyze whether molecular phenotypes of circulating tumor cells (CTCs) are associated with treatment responses and clinical outcomes in patients with R/M HNSCC treated with nivolumab. Peripheral blood samples were collected before treatment initiation and after four infusions of nivolumab. CTCs isolated by depletion of CD45-positive cells were analyzed to determine the expression of EPCAM, MET, KRT19, and EGFR using real-time quantitative polymerase chain reaction. CTC-positive samples were analyzed to determine the expression of PIK3CA, CCND1, SNAI1, VIM, ZEB2, CD44, NANOG, ALDH1A1, CD47, CD274, and PDCD1LG2. Of 30 patients treated with nivolumab, 28 (93.3%) were positive for CTCs. In 20 CTC-positive patients, molecular alterations in CTCs before and after nivolumab treatment were investigated. Patients with MET-positive CTCs had significantly shorter overall survival than those with MET-negative CTCs (p = 0.027). The expression level of CCND1 in CTCs of disease-controlled patients was significantly higher than that of disease-progressed patients (p = 0.034). In disease-controlled patients, the expression level of CCND1 in CTCs significantly decreased after nivolumab treatment (p = 0.043). The NANOG expression in CTCs was significantly increased in disease-controlled patients after nivolumab treatment (p = 0.036). Our findings suggest that the molecular profiling of CTCs is a promising tool to predict the treatment efficacy of nivolumab.
Collapse
|
49
|
Useckaite Z, Mukhopadhya A, Moran B, O'Driscoll L. Extracellular vesicles report on the MET status of their cells of origin regardless of the method used for their isolation. Sci Rep 2020; 10:19020. [PMID: 33149187 PMCID: PMC7642384 DOI: 10.1038/s41598-020-75817-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
MET pathway is an important actionable target across many solid tumour types and several MET inhibitors have been developed. Extracellular vesicles (EVs) are proposed to be mini-maps of their cells of origin. However, the potential of EVs to report on the MET status of their cells of origin is unknown. After applying three proposed methods of EV separation from medium conditioned by three cell lines of known MET status, this study used an extensive range of methodologies to fundamentally characterise the resulting particles (nanoparticle tracking analysis, TEM, flow cytometry, immunoblotting) and their MET status (RT-qPCR and ELISAs). The results indicated that ultracentrifugation on density-gradient (UC-DG) consistently produced the most reliable data with regards to purest EVs. EV cargo reflected MET mRNA, total MET and pMET status of their cells of origin. In conclusion, to simply determine if the general contents of conditioned medium reflect the MET status of the conditioning cells, choice of method for initial EV separation may not be crucial. However, to be confident of specifically studying EVs and thus EV-MET cargo, UC-DG followed by extensive EV characterisation is necessary.
Collapse
Affiliation(s)
- Zivile Useckaite
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anindya Mukhopadhya
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland. .,Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
50
|
Autocrine HGF/c-Met signaling pathway confers aggressiveness in lymph node adult T-cell leukemia/lymphoma. Oncogene 2020; 39:5782-5794. [PMID: 32747750 DOI: 10.1038/s41388-020-01393-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T-cell neoplasm. While ATL cells in peripheral blood (PB-ATL) are sensitive to anti-CC chemokine receptor 4 treatment, non-PB-ATLs, including lymph node ATLs (LN-ATLs), are more aggressive and resistant. We examined characteristic cytokines and growth factors that allow non-PB-ATLs to proliferate and invade compared with PB-ATLs. Protein array analysis revealed hepatocyte growth factor (HGF) and C-C motif chemokine 2 (CCL2) were significantly upregulated in non-PB-ATLs compared with PB-ATLs. The HGF membrane receptor, c-Met, was expressed in PB-ATL and non-PB-ATL cell lines, but CCR2, a CCL2 receptor, was not. Immunohistochemical analysis in clinical ATLs revealed high HGF expression in LNs, pharynx, bone marrow, and tonsils. The HGF/c-Met signaling pathway was active downstream in non-PB-ATLs. Downregulation of HGF/c-Met by siRNA or chemical inhibitors decreased in vitro and in vivo proliferation and invasion by non-PB-ATLs. Treatment with bromodomain and extra-terminal motif inhibitor suppressed HGF expression and decreased levels of histone H3 lysine 27 acetylation (H3K27Ac) and bromodomain-containing protein 4 (BRD4) binding promoter and enhancer regions, suppressing non-PB-ATL cellular growth. Our data indicate H3K27Ac/BRD4 epigenetics regulates the HGF/c-MET pathway in ATLs; targeting this pathway may improve treatment of aggressive non-PB-ATLs.
Collapse
|