1
|
Zhao Y, Zhang L, Xia L, E H, Wang T, Lu H, Chen H, She Y, Tang H, Wu J, Zhao D, Chen C. A METTL3-NFE2L3 axis mediates tumor stemness and progression in lung adenocarcinoma. SCIENCE ADVANCES 2025; 11:eadt7682. [PMID: 40249818 PMCID: PMC12007586 DOI: 10.1126/sciadv.adt7682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
The progression of lung adenocarcinoma is primarily driven by cancer stem cells (CSCs), which have self-renewal capabilities and confer resistance to therapies, including neoadjuvant treatments combining chemotherapy and immune checkpoint inhibitors. In this study, we identified that OV6+ tumor cells exhibit stem-like characteristics and are notably enriched in patients with non-major pathological response, closely associated with resistance to combination therapies. Hypoxia and HIF1α were found to drive the formation of OV6+ CSCs. METTL3, a methyltransferase, was revealed as a critical regulator of OV6+ CSCs by stabilizing NFE2L3 messenger RNA via an N6-methyladenosine-dependent manner, thereby up-regulating NFE2L3 and activating the intrinsic WNT signaling pathway essential for maintaining stemness. OV6+ tumor cells promoted M2 macrophage infiltration and the formation of an immunosuppressive tumor microenvironment (TME). Targeting METTL3 effectively eliminated OV6+ CSCs and suppressed tumor progression. Moreover, the combination of STM2457 with cisplatin overcame chemoresistance, remodeled the TME, and provided promising insights for enhancing the efficacy of neoadjuvant combination therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lang Xia
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoran E
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huinan Lu
- Peking University Yangtze Center of Future Health Technology, Wuxi, Jiangsu, China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Miroshnichenko E, Kosyreva A, Fatkhudinov T. The Role of Macrophages in Various Types of Tumors and the Possibility of Their Use as Targets for Antitumor Therapy. Cancers (Basel) 2025; 17:342. [PMID: 39941714 PMCID: PMC11815841 DOI: 10.3390/cancers17030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
In solid tumors, tumor-associated macrophages (TAMs) are one of the most numerous populations and play an important role in the processes of tumor cell invasion, metastasis, and angiogenesis. Therefore, TAMs are considered promising diagnostic and prognostic biomarkers of tumors, and many attempts have been made to influence these cells as part of antitumor therapy. There are several key principles of action on ТАМs: the inhibition of monocyte/macrophage transition; the destruction of macrophages; the reprogramming of macrophage phenotypes (polarization of M2 macrophages to M1); the stimulation of phagocytic activity of macrophages and CAR-M therapy. Despite the large number of studies in this area, to date, there are no adequate approaches using antitumor therapy based on alterations in TAM functioning that would show high efficacy when administered in a mono-regimen for the treatment of malignant neoplasms. Studies devoted to the evaluation of the efficacy of drugs acting on TAMs are characterized by a small sample and the large heterogeneity of patient groups; in addition, in such studies, chemotherapy or immunotherapy is used, which significantly complicates the evaluation of the effectiveness of the agent acting on TAMs. In this review, we attempted to systematize the evidence on attempts to influence TAMs in malignancies such as lung cancer, breast cancer, colorectal cancer, cervical cancer, prostate cancer, gastric cancer, head and neck squamous cell cancer, and soft tissue sarcomas.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Ekaterina Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| |
Collapse
|
3
|
Datta S, Rahman MA, Koka S, Boini KM. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024; 13:1946. [PMID: 39682695 PMCID: PMC11639863 DOI: 10.3390/cells13231946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure-function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA;
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
4
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
5
|
Cao T, Sun Q, Shi X, Lin X, Lin Q, Zhu J, Xu J, Cui D, Shi Y, Jing Y, Guo W. EAF2 Downregulation Recruits Tumor-associated Macrophages in Prostate Cancer through Upregulation of MIF. Biol Proced Online 2024; 26:21. [PMID: 38969982 PMCID: PMC11225222 DOI: 10.1186/s12575-024-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The role of tumor inflammatory microenvironment in the advancement of cancer, particularly prostate cancer, is widely acknowledged. ELL-associated factor 2 (EAF2), a tumor suppressor that has been identified in the prostate, is often downregulated in prostate cancer. Earlier investigations have shown that mice with EAF2 gene knockout exhibited a substantial infiltration of inflammatory cells into the prostatic stroma. METHODS A cohort comprising 38 patients who had been diagnosed with prostate cancer and subsequently undergone radical prostatectomy (RP) was selected. These patients were pathologically graded according to the Gleason scoring system and divided into two groups. The purpose of this selection was to investigate the potential correlation between EAF2 and CD163 using immunohistochemistry (IHC) staining. Additionally, in vitro experimentation was conducted to verify the relationship between EAF2 expression, macrophage migration and polarization. RESULTS Our study demonstrated that in specimens of human prostate cancer, the expression of EAF2 was notably downregulated, and this decrease was inversely associated with the number of CD163-positive macrophages that infiltrated the cancerous tissue. Cell co-culture experiments revealed that the chemotactic effect of tumor cells towards macrophages was intensified and that macrophages differentiated into tumor-associated macrophages (TAMs) when EAF2 was knocked out. Additionally, the application of cytokine protein microarray showed that the expression of chemokine macrophage migration inhibitory factor (MIF) increased after EAF2 knockout. CONCLUSIONS Our findings suggested that EAF2 was involved in the infiltration of CD163-positive macrophages in prostate cancer via MIF.
Collapse
Affiliation(s)
- Tianyu Cao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Sun
- Department of Urology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqin Shi
- Department of Pathology , Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuke Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junhao Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Youwei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China.
| | - Yifeng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wenhuan Guo
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00825-z. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
7
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Zamora I, Freeman MR, Encío IJ, Rotinen M. Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer. Int J Mol Sci 2023; 24:13673. [PMID: 37761978 PMCID: PMC10531052 DOI: 10.3390/ijms241813673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.
Collapse
Affiliation(s)
- Irene Zamora
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
9
|
Di S, Gong M, Lv J, Yang Q, Sun Y, Tian Y, Qian C, Chen W, Zhou W, Dong K, Shi X, Wang Y, Wang H, Chu J, Gan S, Pan X, Cui X. Glycolysis-related biomarker TCIRG1 participates in regulation of renal cell carcinoma progression and tumor immune microenvironment by affecting aerobic glycolysis and AKT/mTOR signaling pathway. Cancer Cell Int 2023; 23:186. [PMID: 37649034 PMCID: PMC10468907 DOI: 10.1186/s12935-023-03019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a hypermetabolic disease. Abnormal up-regulation of glycolytic signaling promotes tumor growth, and glycolytic metabolism is closely related to immunotherapy of renal cancer. The aim of the present study was to determine whether and how the glycolysis-related biomarker TCIRG1 affects aerobic glycolysis, the tumor microenvironment (TME) and malignant progression of clear cell renal cell carcinoma (ccRCC). METHODS Based on The Cancer Genome Atlas (TCGA, n = 533) and the glycolysis-related gene set from MSigDB, we identified the glycolysis-related gene TCIRG1 by bioinformatics analysis, analyzed its immunological properties in ccRCC and observed how it affected the biological function and glycolytic metabolism using online databases such as TIMER 2.0, UALCAN, LinkedOmics and in vitro experiments. RESULTS It was found that the expression of TCIRG1, was significantly increased in ccRCC tissue, and that high TCIRG1 expression was associated with poor overall survival (OS) and short progression-free interval (PFI). In addition, TCIRG1 expression was highly correlated with the infiltration immune cells, especially CD4+T cell Th1, CD8+T cell, NK cell, and M1 macrophage, and positively correlated with PDCD1, CTLA4 and other immunoinhibitors, CCL5, CXCR3 and other chemokines and chemokine receptors. More importantly, TCIRG1 may regulate aerobic glycolysis in ccRCC via the AKT/mTOR signaling pathway, thereby affecting the malignant progression of ccRCC cell lines. CONCLUSIONS Our results demonstrate that the glycolysis-related biomarker TCIRG1 is a tumor-promoting factor by affecting aerobic glycolysis and tumor immune microenvironment in ccRCC, and this finding may provide a new idea for the treatment of ccRCC by combination of metabolic intervention and immunotherapy.
Collapse
Grants
- No. 81974391, 82072806, 82173265,82002664;2022LJ002;23QC1401400;23ZR1441300;20204Y0042;21XHDB06; No. 2020-QN-02 Xingang Cui, Xiuwu Pan, Sishun Gan, Jian Chu, Qiwei Yang
- No. 81974391, 82072806, 82173265,82002664;2022LJ002;23QC1401400;23ZR1441300;20204Y0042;21XHDB06; No. 2020-QN-02 Xingang Cui, Xiuwu Pan, Sishun Gan, Jian Chu, Qiwei Yang
- No. 81974391, 82072806, 82173265,82002664;2022LJ002;23QC1401400;23ZR1441300;20204Y0042;21XHDB06; No. 2020-QN-02 Xingang Cui, Xiuwu Pan, Sishun Gan, Jian Chu, Qiwei Yang
- No. 81974391, 82072806, 82173265,82002664;2022LJ002;23QC1401400;23ZR1441300;20204Y0042;21XHDB06; No. 2020-QN-02 Xingang Cui, Xiuwu Pan, Sishun Gan, Jian Chu, Qiwei Yang
- No. 81974391, 82072806, 82173265,82002664;2022LJ002;23QC1401400;23ZR1441300;20204Y0042;21XHDB06; No. 2020-QN-02 Xingang Cui, Xiuwu Pan, Sishun Gan, Jian Chu, Qiwei Yang
Collapse
Affiliation(s)
- Sichen Di
- Department of Urinary Surgery, Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Min Gong
- Department of Urology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jianmin Lv
- Department of Urology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Qiwei Yang
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200100, China
| | - Ye Sun
- Department of Urinary Surgery, Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yijun Tian
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Cheng Qian
- Department of Urinary Surgery, Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wenjin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yuning Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Hongru Wang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jian Chu
- Department of Urology, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China.
| | - Sishun Gan
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urinary Surgery, Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia, China.
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
10
|
Yang F, Li J, Ge Q, Zhang Y, Zhang M, Zhou J, Wang H, Du J, Gao S, Liang C, Meng J. Non-coding RNAs: emerging roles in the characterization of immune microenvironment and immunotherapy of prostate cancer. Biochem Pharmacol 2023:115669. [PMID: 37364622 DOI: 10.1016/j.bcp.2023.115669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Prostate cancer is the most common tumor among men. Although the prognosis for early-stage prostate cancer is good, patients with advanced disease often progress to metastatic castration-resistant prostate cancer (mCRPC), which usually leads to death owing to resistance to existing treatments and lack of long-term effective therapy. In recent years, immunotherapy, especially immune checkpoint inhibitors (ICIs), has made great progress in the treatment of various solid tumors, including prostate cancer. However, the ICIs have only shown modest outcomes in mCRPC compared with other tumors. Previous studies have suggested that the suppressive tumor immune microenvironment (TIME) of prostate cancer leads to poor anti-tumor immune response and tumor resistance to immunotherapy. It has been reported that non-coding RNAs (ncRNAs) are capable of regulating upstream signaling at the transcriptional level, leading to a "cascade of changes" in downstream molecules. As a result, ncRNAs have been identified as an ideal class of molecules for cancer treatment. The discovery of ncRNAs provides a new perspective on TIME regulation in prostate cancer. ncRNAs have been associated with establishing an immunosuppressive microenvironment in prostate cancer through multiple pathways to modulate the immune escape of tumor cells which can promote resistance of prostate cancer to immunotherapy. Targeting these related ncRNAs presents an opportunity to improve the effectiveness of immunotherapy in this patient population.
Collapse
Affiliation(s)
- Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yuchen Zhang
- First School of Clinical Medicine, Anhui Medical University, Hefei 230022, China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Haitao Wang
- Center for Cancer Research, Clinical Research/NCI/NIH, Bethesda, MD 20892, USA
| | - Juan Du
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China; Gonghe County Hospital of Traditional Chinese Medicine, Hainan 813099, Qinghai, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
11
|
Xu W, Liu L, Cui Z, Li M, Ni J, Huang N, Zhang Y, Luo J, Sun L, Sun F. Identification of key enzalutamide-resistance-related genes in castration-resistant prostate cancer and verification of RAD51 functions. Open Med (Wars) 2023; 18:20230715. [PMID: 37251536 PMCID: PMC10224628 DOI: 10.1515/med-2023-0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Patients with castration-resistant prostate cancer (CRPC) often develop drug resistance after treatment with enzalutamide. The goal of our study was to identify the key genes related to enzalutamide resistance in CRPC and to provide new gene targets for future research on improving the efficacy of enzalutamide. Differential expression genes (DEGs) associated with enzalutamide were obtained from the GSE151083 and GSE150807 datasets. We used R software, the DAVID database, protein-protein interaction networks, the Cytoscape program, and Gene Set Cancer Analysis for data analysis. The effect of RAD51 knockdown on prostate cancer (PCa) cell lines was demonstrated using Cell Counting Kit-8, clone formation, and transwell migration experiments. Six hub genes with prognostic values were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which were significantly associated with immune cell infiltration in PCa. High RAD51, BLM, EXO1, and RFC2 expression was associated with androgen receptor signaling pathway activation. Except for APOE, high expression of hub genes showed a significant negative correlation with the IC50 of Navitoclax and NPK76-II-72-1. RAD51 knockdown inhibited the proliferation and migration of PC3 and DU145 cell lines and promoted apoptosis. Additionally, 22Rv1 cell proliferation was more significantly inhibited with RAD51 knockdown than without RAD51 knockdown under enzalutamide treatment. Overall, six key genes associated with enzalutamide resistance were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which are potential therapeutic targets for enzalutamide-resistant PCa in the future.
Collapse
Affiliation(s)
- Wen Xu
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Liu
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Mingyang Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Jie Luo
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Fenyong Sun
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Shanghai Clinical College, Anhui Medical University, No. 301, Yanchang Middle Road, Jingan District, Shanghai, 200072, China
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, No. 301, Yanchang Middle Road, Jingan District, 200072, Shanghai, China
| |
Collapse
|
12
|
Wen YC, Tram VTN, Chen WH, Li CH, Yeh HL, Thuy Dung PV, Jiang KC, Li HR, Huang J, Hsiao M, Chen WY, Liu YN. CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer. Cell Death Dis 2023; 14:304. [PMID: 37142586 PMCID: PMC10160040 DOI: 10.1038/s41419-023-05836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Current treatment options for prostate cancer focus on targeting androgen receptor (AR) signaling. Inhibiting effects of AR may activate neuroendocrine differentiation and lineage plasticity pathways, thereby promoting the development of neuroendocrine prostate cancer (NEPC). Understanding the regulatory mechanisms of AR has important clinical implications for this most aggressive type of prostate cancer. Here, we demonstrated the tumor-suppressive role of the AR and found that activated AR could directly bind to the regulatory sequence of muscarinic acetylcholine receptor 4 (CHRM4) and downregulate its expression. CHRM4 was highly expressed in prostate cancer cells after androgen-deprivation therapy (ADT). CHRM4 overexpression may drive neuroendocrine differentiation of prostate cancer cells and is associated with immunosuppressive cytokine responses in the tumor microenvironment (TME) of prostate cancer. Mechanistically, CHRM4-driven AKT/MYCN signaling upregulated the interferon alpha 17 (IFNA17) cytokine in the prostate cancer TME after ADT. IFNA17 mediates a feedback mechanism in the TME by activating the CHRM4/AKT/MYCN signaling-driven immune checkpoint pathway and neuroendocrine differentiation of prostate cancer cells. We explored the therapeutic efficacy of targeting CHRM4 as a potential treatment for NEPC and evaluated IFNA17 secretion in the TME as a possible predictive prognostic biomarker for NEPC.
Collapse
Affiliation(s)
- Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
| | - Van Thi Ngoc Tram
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
13
|
Chen WY, Thuy Dung PV, Yeh HL, Chen WH, Jiang KC, Li HR, Chen ZQ, Hsiao M, Huang J, Wen YC, Liu YN. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer. Redox Biol 2023; 62:102686. [PMID: 36963289 PMCID: PMC10060381 DOI: 10.1016/j.redox.2023.102686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
Conventional treatment of prostate cancer (PCa) uses androgen-deprivation therapy (ADT) to inhibit androgen receptor (AR) signaling-driven tumor progression. ADT-induced PCa recurrence may progress to an AR-negative phenotype with neuroendocrine (NE) histologic features, which are associated with metabolic disturbances and poor prognoses. However, the metabolic pathways that regulate NE differentiation (NED) in PCa remain unclear. Herein, we show a regulatory mechanism in NED-associated metabolism dysfunction induced by ADT, whereby overexpression of pyruvate kinase L/R (PKLR) mediates oxidative stress through upregulation of reactive oxygen species modulator 1 (ROMO1), thereby promoting NED and aggressiveness. ADT mediates the nuclear translocation of PKLR, which binds to the MYCN/MAX complex to upregulate ROMO1 and NE-related genes, leading to altered mitochondrial function and NED of PCa. Targeting nuclear PKLR/MYCN using bromodomain and extra-terminal motif (BET) inhibitors has the potential to reduce PKLR/MYCN-driven NED. Abundant ROMO1 in serum samples may provide prognostic information in patients with ADT. Our results suggest that ADT resistance leads to upregulation of PKLR/MYCN/ROMO1 signaling, which may drive metabolic reprogramming and NED in PCa. We further show that increased abundance of serum ROMO1 may be associated with the development of NE-like PCa.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zi-Qing Chen
- Division of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
LOX-1 Activation by oxLDL Induces AR and AR-V7 Expression via NF-κB and STAT3 Signaling Pathways Reducing Enzalutamide Cytotoxic Effects. Int J Mol Sci 2023; 24:ijms24065082. [PMID: 36982155 PMCID: PMC10049196 DOI: 10.3390/ijms24065082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The oxidized low-density lipoprotein receptor 1 (LOX-1) is one of the most important receptors for modified LDLs, such as oxidated (oxLDL) and acetylated (acLDL) low-density lipoprotein. LOX-1 and oxLDL are fundamental in atherosclerosis, where oxLDL/LOX1 promotes ROS generation and NF-κB activation inducing the expression of IL-6, a STAT3 activator. Furthermore, LOX-1/oxLDL function has been associated with other diseases, such as obesity, hypertension, and cancer. In prostate cancer (CaP), LOX-1 overexpression is associated with advanced stages, and its activation by oxLDL induces an epithelial-mesenchymal transition, increasing angiogenesis and proliferation. Interestingly, enzalutamide-resistant CaP cells increase the uptake of acLDL. Enzalutamide is an androgen receptor (AR) antagonist for castration-resistant prostate cancer (CRPC) treatment, and a high percentage of patients develop a resistance to this drug. The decreased cytotoxicity is promoted in part by STAT3 and NF-κB activation that induces the secretion of the pro-inflammatory program and the expression of AR and its splicing variant AR-V7. Here, we demonstrate for the first time that oxLDL/LOX-1 increases ROS levels and activates NF-κB, inducing IL-6 secretion and the activation of STAT3 in CRPC cells. Furthermore, oxLDL/LOX1 increases AR and AR-V7 expression and decreases enzalutamide cytotoxicity in CRPC. Thus, our investigation suggests that new factors associated with cardiovascular pathologies, such as LOX-1/oxLDL, may also promote important signaling axes for the progression of CRPC and its resistance to drugs used for its treatment.
Collapse
|
15
|
Peng G, Wang C, Wang H, Qu M, Dong K, Yu Y, Jiang Y, Gan S, Gao X. Gankyrin-mediated interaction between cancer cells and tumor-associated macrophages facilitates prostate cancer progression and androgen deprivation therapy resistance. Oncoimmunology 2023; 12:2173422. [PMID: 36776524 PMCID: PMC9908295 DOI: 10.1080/2162402x.2023.2173422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Increasing evidence reveals that the interaction between tumor cells and tumor-associated macrophages (TAMs) facilitates the progression of prostate cancer, but the related mechanisms remained unclear. This study determined how gankyrin, a component of the 19S regulatory complex of the 26S proteasome, regulates the progression and androgen deprivation therapy (ADT) resistance of prostate cancer through tumor cell-TAM interactions. In vitro functional experiments and in vivo subcutaneous tumor models were used to explore the biological role and molecular mechanisms of gankyrin in prostate cancer cell-TAM interactions. 234 prostate cancer patients were randomly divided into training and validation cohorts to examine the prognostic value of gankyrin through immunohistochemistry (IHC) and statistical analyses, and high gankyrin expression was correlated with poor prognosis. In addition, gankyrin facilitated the progression and ADT resistance of prostate cancer. Mechanistically, gankyrin recruited and upregulated non-POU-domain-containing octamer-binding protein (NONO) expression, resulting in increased androgen receptor (AR) expression. AR then bound to the high-mobility group box 1 (HMGB1) promoter to trigger HMGB1 transcription, expression, and secretion. Moreover, HMGB1 was found to promote the recruitment and activation of TAMs, which secrete IL-6 to reciprocally promote prostate cancer progression, ADT resistance and gankyrin expression via STAT3, resulting in formation of a gankyrin/NONO/AR/HMGB1/IL-6/STAT3 positive feedback loop. Furthermore, targeting the interaction between tumor cells and TAMs by blocking this loop inhibited ADT resistance in a tumor xenograft model. Taken together, the data show that gankyrin serves as a reliable prognostic indicator and therapeutic target for prostate cancer patients.
Collapse
Affiliation(s)
- Guang Peng
- Department of Urinary Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China,Department of Orthopedic, Joint Logistic Support Force No. 925 Hospital of PLA, Guiyang, China,Department of Burns and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Chao Wang
- Department of Urinary Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China,Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China,CONTACT Chao Wang (Main corresponding author) Department of Urinary Surgery, Gongli Hospital of Shanghai Pudong New Area, 219 Miaopu Road, Shanghai, 200135, China
| | - Hongru Wang
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Keqin Dong
- Department of Urology, Chinese PLA general hospital of central theater command, Wuhan, China
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuquan Jiang
- Department of Orthopedic, Joint Logistic Support Force No. 925 Hospital of PLA, Guiyang, China,Central Lab of Joint Logistic Support Force No. 925 Hospital of PLA, Guiyang, China,Yuquan Jiang Department of Orthopedic Central Lab of Joint Logistic Support Force No. 925 Hospital of PLA, Guiyang, China
| | - Sishun Gan
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China,Sishun Gan Department of Urinary Surgery, The Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai 201805, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China,Gao Xu Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
A Novel Blood Proteomic Signature for Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041051. [PMID: 36831393 PMCID: PMC9954127 DOI: 10.3390/cancers15041051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Prostate cancer is the most common malignant tumour in men. Improved testing for diagnosis, risk prediction, and response to treatment would improve care. Here, we identified a proteomic signature of prostate cancer in peripheral blood using data-independent acquisition mass spectrometry combined with machine learning. A highly predictive signature was derived, which was associated with relevant pathways, including the coagulation, complement, and clotting cascades, as well as plasma lipoprotein particle remodeling. We further validated the identified biomarkers against a second cohort, identifying a panel of five key markers (GP5, SERPINA5, ECM1, IGHG1, and THBS1) which retained most of the diagnostic power of the overall dataset, achieving an AUC of 0.91. Taken together, this study provides a proteomic signature complementary to PSA for the diagnosis of patients with localised prostate cancer, with the further potential for assessing risk of future development of prostate cancer. Data are available via ProteomeXchange with identifier PXD025484.
Collapse
|
17
|
Jia X, Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomed Pharmacother 2023; 158:114112. [PMID: 36508999 DOI: 10.1016/j.biopha.2022.114112] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Inhibition of androgen receptor (AR) has been extensively investigated to treat prostate cancer. Resistance mechanisms such as increased levels of androgen production, increased AR gene, enhancer expression and AR point mutations always reduce the clinical efficacy. Design and discovery of small-molecule PROTAC AR degraders have been pursued as a new therapeutic strategy to overcome common resistance mechanisms developed during prostate cancer treatment. In the last two decades, potent and efficacious PROTAC AR degraders have been gotten rapid development and several such compounds have been advanced into preclinical phase and phase I/II trials for the treatment of human prostate cancers. Especially, the first PROTAC to enter the clinic, ARV-110, has shown good clinical effects in patients with mCRPC. This fully demonstrates the high clinical value of PROTAC strategy in treatment of human diseases. Here, we summarized the recent advances in the development of these potential clinical-stage PROTAC AR degraders.
Collapse
Affiliation(s)
- Xiaojuan Jia
- The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xin Han
- The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China..
| |
Collapse
|
18
|
Zhu D, Shi X, Tian Y, Li H, Tang B, Zhang Z, Zhang Z, Zuo L. Combining expression of RNF43 and infiltration level of CD163 + tumor associated macrophage predicts prognosis of clear cell renal cell carcinoma. Cancer Med 2023; 12:3962-3971. [PMID: 36097369 PMCID: PMC9972079 DOI: 10.1002/cam4.5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Searching for reliable indicators for evaluating prognosis diagnosed with clear cell renal cell carcinoma (ccRCC) is crucial for improving clinical therapies. However, current researches have looked mainly at the prognostic value of a single intratumoral indicator, neglecting tumor-infiltrating immune cells (TIICs) in the microenvironment. This study examined whether the integration of Ring finger protein 43 (RNF43) expression and CD163+ tumor-associated macrophage (TAM) infiltration in combination with clinical indexes forecast ccRCC patient outcome with relatively high accuracy. Firstly, the expression of RNF43 and CD163 were detected with immunohistochemistry. Totally, 346 ccRCC patients were random separated evenly into training and validation datasets to make further analyses. We found that RNF43 expression was negatively correlated with infiltration level of CD163+ TAM in ccRCC, which was closely associated with the TNM stage and outcome of these patients. The multiple regression analysis demonstrated that RNF43, CD163, and TNM stage could function as independent risk factors in overall survival (OS) and progression-free survival (PFS) prediction of ccRCC. Furthermore, a better postoperative prognosis index for ccRCC patients was obtained by combining RNF43 and CD163+ TAMs, which assessed with time-dependent C-index analyses and a nomogram. Consequently, combining RNF43 and CD163+ TAMs along with TNM stage acquired robust accuracy in forecasting outcome of patients with ccRCC. In conclusion, combining intratumoral RNF43 expression, CD163+ TAM infiltration, and TNM stage could significantly enhance the veracity in forecasting postoperative outcomes.
Collapse
Affiliation(s)
- Dawei Zhu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yijun Tian
- Department of Urinary Surgery, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hao Li
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Bowen Tang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Ziyi Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Ze Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
19
|
Chen WJ, Yang W, Gong M, He Y, Xu D, Chen JX, Chen WJ, Li WY, Wang YQ, Dong KQ, Song X, Pan XW, Cui XG. ENO2 affects the EMT process of renal cell carcinoma and participates in the regulation of the immune microenvironment. Oncol Rep 2022; 49:33. [PMID: 36562383 PMCID: PMC9827260 DOI: 10.3892/or.2022.8470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a frequent malignant tumor of the kidney which has a dismal prognosis. At present, targeted therapies and immunotherapy have achieved significant results; however, the overall survival rate of patients with ccRCC remains unacceptably poor. It is therefore necessary to find novel therapeutic and diagnostic targets for ccRCC. It has been reported that enolase 2 (ENO2) is an oncogene, although its function in the immune microenvironment and in the growth of ccRCC has yet to be fully elucidated. The present study analyzed the data of patients with ccRCC both from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, and from clinical samples obtained from Third Affiliated Hospital of the Second Military Medical University to investigate the role of ENO2 in the progression of ccRCC and the correlation between ENO2 and certain clinical features. It was found that the expression of ENO2 was elevated both in patients with ccRCC retrieved from the GEO and TCGA databases and in clinical ccRCC samples obtained from Third Affiliated Hospital of the Second Military Medical University. In addition, the prognosis of patients was poorer when ENO2 was highly expressed. Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) confirmed that ENO2 participated in the regulation of various pathways in ccRCC. In vitro experiments including Cell Counting Kit‑8 cell proliferation assay, Transwell and Matrigel assays confirmed that ENO2 could promote the proliferation and migration of ccRCC cells. Furthermore, a number of immunosuppressive indicators were identified that positively correlated with ENO2 expression. In conclusion, the present study revealed that ENO2 expression promotes the proliferation, invasion and migration of ccRCC cells, and may serve as a novel predictor to evaluate prognosis and the efficacy of immune checkpoint blockade treatment for patients with ccRCC.
Collapse
Affiliation(s)
- Wei-Jie Chen
- Department of Urology, Third Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Wei Yang
- Department of Urology, Third Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Min Gong
- Department of Urology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yi He
- Department of Urology, Jiaxing First Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Da Xu
- Department of Urology, Third Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jia-Xin Chen
- Department of Urology, Third Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Wen-Jin Chen
- Department of Urology, Third Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Wen-Yan Li
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yu-Qi Wang
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ke-Qin Dong
- Department of Urology, Third Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xu Song
- Department of Urology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Xiu-Wu Pan
- Department of Urology, Third Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China,Dr Xiu-Wu Pan, Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China, E-mail:
| | - Xin-Gang Cui
- Department of Urology, Third Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China,Correspondence to: Dr Xin-Gang Cui, Department of Urology, Third Affiliated Hospital of The Second Military Medical University, 225 Changhai Road, Shanghai 200433, P.R. China, E-mail:
| |
Collapse
|
20
|
Tian Y, Wang H, Guan W, Zhang X, Sun Y, Qian C, Song X, Peng B, Cui X. GBP2 serves as a novel prognostic biomarker and potential immune microenvironment indicator in renal cell carcinoma. Mol Carcinog 2022; 61:1082-1098. [PMID: 36222186 DOI: 10.1002/mc.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 11/11/2022]
Abstract
Since the application of immune checkpoint therapy (ICT) has gradually become a new strategy for clear cell renal cell carcinoma (ccRCC) treatment, biomarkers that predict the individual response to ICT is needed. This study aimed to identify a new clinical indicator for postoperative surveillance of ccRCC and prediction of ICT response. We investigated the GBP2 expression and its relation with immune cell infiltration in tumor microenvironment using public databases, clinical specimens and ccRCC cell lines. Bioinformatic analysis using public database revealed that GBP2 expression is higher in cancer tissues than in adherent normal tissues among different cancer types including ccRCC, and the same results were acquired from clinical tissue samples tested by Western Blot and PCR. In ccRCC cell lines, CCk-8 proliferation assay and apoptosis assessment suggested GBP2 facilitates the malignancy of ccRCC. 286 ccRCC patients were randomly divided into a training or validation cohort, and immunohistochemistry (IHC) and Kaplan-Meier analysis revealed that higher GBP2 expression is related to worse prognosis. C-index analysis implied that integrating GBP2 expression with TNM stage improved the accuracy in predicting prognosis of ccRCC patients compared to the solitary use of either. Bioinformatic analysis implied a relation between GBP2 and immunity, and GBP2 expression is positively related with suppressive immune markers in ccRCC microenvironment. Taken together, our study demonstrated the potential of GBP2 to sever as a prognostic predictor of ccRCC, and an association between GBP2 and tumor-infiltrating lymphocytes in ccRCC was observed, making it a promising indicator of ICT response.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Urinary Surgery, The Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Hongru Wang
- Department of Urinary Surgery, The Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiangmin Zhang
- Department of Urinary Surgery, Luodian Hospital, Shanghai, China
| | - Ye Sun
- Department of Urinary Surgery, Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Cheng Qian
- Department of Urinary Surgery, Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xu Song
- Department of Urology, Shanghai Seventh People's Hospital, Shanghai, China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xingang Cui
- Department of Urinary Surgery, The Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China.,Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
21
|
Chen J, Meng J, Liu Y, Bian Z, Niu Q, Chen J, Zhou J, Zhang L, Zhang M, Liang C. Establishment of a five-enzalutamide-resistance-related-gene-based classifier for recurrence-free survival predicting of prostate cancer. J Cell Mol Med 2022; 26:5379-5390. [PMID: 36168930 PMCID: PMC9639034 DOI: 10.1111/jcmm.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
To identify prostate cancer (PCa) patients with a high risk of recurrence is critical before delivering adjuvant treatment. We developed a classifier based on the Enzalutamide treatment resistance‐related genes to assist the currently available staging system in predicting the recurrence‐free survival (RFS) prognosis of PCa patients. We overlapped the DEGs from two datasets to obtain a more convincing Enzalutamide‐resistance‐related‐gene (ERRG) cluster. The five‐ERRG‐based classifier obtained good predictive values in both the training and validation cohorts. The classifier precisely predicted RFS of patients in four cohorts, independent of patient age, pathological tumour stage, Gleason score and PSA levels. The classifier and the clinicopathological factors were combined to construct a nomogram, which had an increased predictive accuracy than that of each variable alone. Besides, we also compared the differences between high‐ and low‐risk subgroups and found their differences were enriched in cancer progression‐related pathways. The five‐ERRG‐based classifier is a practical and reliable predictor, which adds value to the existing staging system for predicting the RFS prognosis of PCa after radical prostatectomy, enabling physicians to make more informed treatment decisions concerning adjuvant therapy.
Collapse
Affiliation(s)
- Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Zichen Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Qingsong Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyi Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China.,Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
22
|
Hellsten R, Stiehm A, Palominos M, Persson M, Bjartell A. The STAT3 inhibitor GPB730 enhances the sensitivity to enzalutamide in prostate cancer cells. Transl Oncol 2022; 24:101495. [PMID: 35917644 PMCID: PMC9344336 DOI: 10.1016/j.tranon.2022.101495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 10/25/2022] Open
Abstract
Enzalutamide is a second-generation anti-androgen which has shown increased survival in patients with metastatic prostate cancer. However, some patients do not respond to this therapy or will develop resistance to treatment over time. Signal Transducer and Activator of Transcription 3 (STAT3) is known to be involved in castration-resistant prostate cancer and to interact with androgen receptor (AR)-signaling. This study aims to investigate the combination enzalutamide and the small molecule STAT3 inhibitor GPB730 for enhanced therapeutic effect in advanced prostate cancer in vitro. The prostate cancer cell lines LNCaP (androgen dependent) and C4-2 (androgen insensitive) were used. The effect of enzalutamide and GPB730, alone and in combination, was investigated on viability and IC50 values calculated. Enzalutamide and GPB730 treated LNCaP and C4-2 cells were subjected to western blot and QPCR analyses in order to investigate the expression of AR, STAT3 and down-stream targets. C4-2 were less sensitive to growth inhibition by enzalutamide than LNCaP cells. GPB730 enhanced the growth inhibitory effect of enzalutamide in LNCaP and C4-2 cells. The addition of GPB730 to enzalutamide decreased the IC50 values for enzalutamide by 3.3-fold for LNCaP and by 12-fold for C4-2. In C4-2 cells, GPB730 alone decreased PSA expression and enhanced the enzalutamide induced decrease in NKX3.1 expression. GPB730 and enzalutamide in combination enhanced inhibition of c-myc and survivin expression. This study suggests that enzalutamide may be combined with the STAT3 inhibitor GPB730 in order to enhance the efficacy of enzalutamide, offering a new therapeutic approach in advanced prostate cancer.
Collapse
Affiliation(s)
- Rebecka Hellsten
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden.
| | - Anna Stiehm
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Macarena Palominos
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Margareta Persson
- Department of Laboratory Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Anders Bjartell
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden; Department of Urology, Skåne University Hospital, Jan Waldenströms gata 5, Malmö SE-205 02, Sweden
| |
Collapse
|
23
|
Zhou H, He Q, Li C, Alsharafi BLM, Deng L, Long Z, Gan Y. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol 2022; 10:955669. [PMID: 35938167 PMCID: PMC9355504 DOI: 10.3389/fcell.2022.955669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.
Collapse
Affiliation(s)
- Hengfeng Zhou
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangrong He
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chao Li
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Liang Deng
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Long
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| |
Collapse
|
24
|
Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer. Cancer Lett 2022; 525:9-21. [PMID: 34715253 DOI: 10.1016/j.canlet.2021.10.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in western countries. Androgen deprivation therapy (ADT) is considered the standard therapy for recurrent prostate cancer; however, this therapy may lead to ADT resistance and tumor progression, which seems to be regulated by epithelial-mesenchymal transition (EMT) and/or neuroendocrine differentiation (NED). In addition, recent data suggested the involvement of either adaptive or innate infiltrated immune cells in the initiation, progression, metastasis, and treatment of prostate cancer. In this review, we outlined the characteristics and roles of these immune cells in the initiation, progression, metastasis, and treatments of prostate cancer. We also summarized the current therapeutic strategies in targeting immune cells of the prostate tumor microenvironment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
25
|
Liu C, Cai D, Zeng W, Huang Y. Inferring Differential Networks by Integrating Gene Expression Data With Additional Knowledge. Front Genet 2021; 12:760155. [PMID: 34858477 PMCID: PMC8632038 DOI: 10.3389/fgene.2021.760155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Evidences increasingly indicate the involvement of gene network rewiring in disease development and cell differentiation. With the accumulation of high-throughput gene expression data, it is now possible to infer the changes of gene networks between two different states or cell types via computational approaches. However, the distribution diversity of multi-platform gene expression data and the sparseness and high noise rate of single-cell RNA sequencing (scRNA-seq) data raise new challenges for existing differential network estimation methods. Furthermore, most existing methods are purely rely on gene expression data, and ignore the additional information provided by various existing biological knowledge. In this study, to address these challenges, we propose a general framework, named weighted joint sparse penalized D-trace model (WJSDM), to infer differential gene networks by integrating multi-platform gene expression data and multiple prior biological knowledge. Firstly, a non-paranormal graphical model is employed to tackle gene expression data with missing values. Then we propose a weighted group bridge penalty to integrate multi-platform gene expression data and various existing biological knowledge. Experiment results on synthetic data demonstrate the effectiveness of our method in inferring differential networks. We apply our method to the gene expression data of ovarian cancer and the scRNA-seq data of circulating tumor cells of prostate cancer, and infer the differential network associated with platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer. By analyzing the estimated differential networks, we find some important biological insights about the mechanisms underlying platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer.
Collapse
Affiliation(s)
- Chen Liu
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dehan Cai
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - WuCha Zeng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Huang
- Department of Geriatric Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Using ex vivo culture to assess dynamic phenotype changes in human prostate macrophages following exposure to therapeutic drugs. Sci Rep 2021; 11:19299. [PMID: 34588590 PMCID: PMC8481239 DOI: 10.1038/s41598-021-98903-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 09/09/2021] [Indexed: 01/01/2023] Open
Abstract
Within the prostate tumor microenvironment (TME) there are complex multi-faceted and dynamic communication occurring between cancer cells and immune cells. Macrophages are key cells which infiltrate and surround tumor cells and are recognized to significantly contribute to tumor resistance and metastases. Our understanding of their function in the TME is commonly based on in vitro and in vivo models, with limited research to confirm these model observations in human prostates. Macrophage infiltration was evaluated within the TME of human prostates after 72 h culture of fresh biopsies samples in the presence of control or enzalutamide. In addition to immunohistochemistry, an optimized protocol for multi-parametric evaluation of cellular surface markers was developed using flow cytometry. Flow cytometry parameters were compared to clinicopathological features. Immunohistochemistry staining for 19 patients with paired samples suggested enzalutamide increased the expression of CD163 relative to CD68 staining. Techniques to validate these results using flow cytometry of dissociated biopsies after 72 h of culture are described. In a second cohort of patients with Gleason grade group ≥ 3 prostate cancer, global macrophage expression of CD163 was unchanged with enzalutamide treatment. However, exploratory analyses of our results using multi-parametric flow cytometry for multiple immunosuppressive macrophage markers suggest subgroup changes as well as novel associations between circulating biomarkers like the neutrophil to lymphocyte ratio (NLR) and immune cell phenotype composition in the prostate TME. Further, we observed an association between B7–H3 expressing tumor-associated macrophages and the presence of intraductal carcinoma. The use of flow cytometry to evaluate ex vivo cultured prostate biopsies fills an important gap in our ability to understand the immune cell composition of the prostate TME. Our results highlight novel associations for further investigation.
Collapse
|
27
|
Han X, Zhao L, Xiang W, Qin C, Miao B, McEachern D, Wang Y, Metwally H, Wang L, Matvekas A, Wen B, Sun D, Wang S. Strategies toward Discovery of Potent and Orally Bioavailable Proteolysis Targeting Chimera Degraders of Androgen Receptor for the Treatment of Prostate Cancer. J Med Chem 2021; 64:12831-12854. [PMID: 34431670 DOI: 10.1021/acs.jmedchem.1c00882] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteolysis targeting chimera (PROTAC) small-molecule degraders have emerged as a promising new type of therapeutic agents, but the design of PROTAC degraders with excellent oral pharmacokinetics is a major challenge. In this study, we present our strategies toward the discovery of highly potent PROTAC degraders of androgen receptor (AR) with excellent oral pharmacokinetics. Employing thalidomide to recruit cereblon/cullin 4A E3 ligase and through the rigidification of the linker, we discovered highly potent AR degraders with good oral pharmacokinetic properties in mice with ARD-2128 being the best compound. ARD-2128 achieves 67% oral bioavailability in mice, effectively reduces AR protein and suppresses AR-regulated genes in tumor tissues with oral administration, leading to the effective inhibition of tumor growth in mice without signs of toxicity. This study supports the development of an orally active PROTAC AR degrader for the treatment of prostate cancer and provides insights and guidance into the design of orally active PROTAC degraders.
Collapse
Affiliation(s)
- Xin Han
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Zhao
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Weiguo Xiang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chong Qin
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bukeyan Miao
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aleksas Matvekas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Anil D, Caykoylu EU, Sanli F, Gambacorta N, Karatas OF, Nicolotti O, Algul O, Burmaoglu S. Synthesis and biological evaluation of 3,5-diaryl-pyrazole derivatives as potential antiprostate cancer agents. Arch Pharm (Weinheim) 2021; 354:e2100225. [PMID: 34467575 DOI: 10.1002/ardp.202100225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022]
Abstract
Prostate cancer is the most frequently diagnosed tumor in men and the second leading cause of cancer-associated mortality in most developed countries. 3,5-Diaryl substituted pyrazole derivatives (20-28) were prepared starting from related chalcones and biologically evaluated for in vitro growth inhibition activity against PC3 and DU145 human prostate cancer cell lines. Compounds 23, 26, and 28 were found to be more potent as compared to the other halogen-substituted derivatives. Especially, the 2-bromo-substituted pyrazole derivative (26) was found to be more potent against PC3 and DU145 cells. Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) are known to be expressed in DU145 and PC3 cancer cells. The binding mode of the most selective compound 26 toward EGFR and VEGFR2 was investigated by employing docking simulations based on GLIDE standard precision (-5.912 and -6.949 kcal/mol, respectively).
Collapse
Affiliation(s)
- Derya Anil
- Department of Chemistry and Chemical Process Technologies, Erzurum Technical Science Vocational School, Atatürk University, Erzurum, Turkey
| | - Emine U Caykoylu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Omer F Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
29
|
Culig Z. Response to Androgens and Androgen Receptor Antagonists in the Presence of Cytokines in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13122944. [PMID: 34204596 PMCID: PMC8231240 DOI: 10.3390/cancers13122944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Prostate cancer is the most frequently diagnosed non-cutaneous tumor in men in the Western world. Therapy for non-organ confined prostate cancer includes anti-androgens such as bicalutamide, enzalutamide and darolutamide. The androgen receptor is expressed during tumor initiation and progression. Androgen receptor could be activated by interleukins, which are produced by blood cells and adjacent stroma. These cytokines may affect response of tumor cells to anti-androgenic drugs, which are commonly used in prostate cancer therapy. There are several experimental studies showing an effect of anti-cytokine therapies in prostate cancer. However, the clinical translation is limited and more clinical trials are needed to improve action of anti-androgens in prostate cells which are stimulated by cytokines. Abstract Non-steroidal anti-androgens have a major role in the treatment of non-localized prostate cancer. Interleukins are involved in the regulation of many cellular functions in prostate cancer and also modify cellular response to anti-androgens. A specific role of selected IL is presented in this review. IL-8 is a cytokine expressed in prostate cancer tissue and microenvironment and promotes proliferation and androgen receptor-mediated transcription. In contrast, IL-1 displays negative effects on expression of androgen receptor and its target genes. A subgroup of prostate cancers show neuroendocrine differentiation, which may be in part stimulated by androgen ablation. A similar effect was observed after treatment of cells with IL-10. Another cytokine which is implicated in regulation of androgenic response is IL-23, secreted by myeloid cells. Most studies on androgens and IL were carried out with IL-6, which acts through the signal transducer and activator of the transcription (STAT) factor pathway. IL-6 is implicated in resistance to enzalutamide. Activation of the STAT-3 pathway is associated with increased cellular stemness. IL-6 activation of the androgen receptor in some prostate cancers is associated with increased growth in vitro and in vivo. Molecules such as galiellalactone or niclosamide have an inhibitory effect on both androgen receptor and STAT-3 pathways.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hematol 2021; 163:103370. [PMID: 34051300 DOI: 10.1016/j.critrevonc.2021.103370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed cancer and the second leading cause of cancer-related death in men in the Western society. Unfortunately, although the vast majority of patients are initially responsive to androgen-deprivation therapy (ADT), most cases eventually develop from hormone-sensitive prostate cancer (HSPC) to castration-resistant prostate cancer (CRPC). The main reason is PC heterogeneity and evolution during therapy. PC evolution is a continuously progressive process with combination of genomic alterations including canonical AR, TMPRSS2-ERG fusion, SPOP/FOXA1, TP53/RB1/PTEN, BRCA2. Meanwhile, signaling pathways including PI3K, WNT/β-catenin, SRC, IL-6/STAT3 are activated, to promote epithelial mesenchymal transition (EMT), cancer stem cell (CSC)-like features/stemness and neuroendocrine differentiation (NED) of PC. These improve our understanding of the genotype-phenotype relationships. The identification of canonical genetic alterations and signaling pathway activation in PC has shed more insight into genetic background, molecular subtype and disease landscape of PC evolution, resulting in a more flexible role of individual therapies targeting diverse genotype and phenotype presentation.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
31
|
Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front Immunol 2021; 12:641307. [PMID: 33854509 PMCID: PMC8039370 DOI: 10.3389/fimmu.2021.641307] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors evade the immune system though a myriad of mechanisms. Using checkpoint inhibitors to help reprime T cells to recognize tumor has had great success in malignancies including melanoma, lung, and renal cell carcinoma. Many tumors including prostate cancer are resistant to such treatment. However, Sipuleucel-T, a dendritic cell (DC) based immunotherapy, improved overall survival (OS) in prostate cancer. Despite this initial success, further DC vaccines have failed to progress and there has been limited uptake of Sipuleucel-T in the clinic. We know in prostate cancer (PCa) that both the adaptive and the innate arms of the immune system contribute to the immunosuppressive environment. This is at least in part due to dysfunction of DC that play a crucial role in the initiation of an immune response. We also know that there is a paucity of DC in PCa, and that those there are immature, creating a tolerogenic environment. These attributes make PCa a good candidate for a DC based immunotherapy. Ultimately, the knowledge gained by much research into antigen processing and presentation needs to translate from bench to bedside. In this review we will analyze why newer vaccine strategies using monocyte derived DC (MoDC) have failed to deliver clinical benefit, particularly in PCa, and highlight the emerging antigen loading and presentation technologies such as nanoparticles, antibody-antigen conjugates and virus co-delivery systems that can be used to improve efficacy. Lastly, we will assess combination strategies that can help overcome the immunosuppressive microenvironment of PCa.
Collapse
Affiliation(s)
- Sarah I. M. Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L. G. Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Wang C, Wang Y, Hong T, Ye J, Chu C, Zuo L, Zhang J, Cui X. Targeting a positive regulatory loop in the tumor-macrophage interaction impairs the progression of clear cell renal cell carcinoma. Cell Death Differ 2021; 28:932-951. [PMID: 33009518 PMCID: PMC7937678 DOI: 10.1038/s41418-020-00626-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Although the interaction between tumors and tumor-associated macrophages (TAMs) has been reported to facilitate the targeted drug resistance and progression of clear cell renal cell carcinoma (ccRCC), the related mechanisms remain unknown. Here, we report that SOX17 serves as a novel tumor suppressor in ccRCC and a positive regulatory loop, SOX17low/YAP/TEAD1/CCL5/CCR5/STAT3, facilitates the ccRCC-TAM interaction. SOX17 expression was commonly downregulated and negatively correlated with TAM infiltration in ccRCC specimens, and the integration of SOX17 and TAMs with the existing clinical indicators TNM stage or SSIGN score achieved better accuracy for predicting the prognosis of ccRCC patients. Mechanistically, SOX17 knockdown activated YAP signaling by promoting the transcription and nuclear distribution of YAP, which recruited TEAD1 to trigger CCL5 transcription. Then, CCL5 educated macrophages toward TAMs, which reciprocally enhanced ccRCC progression through CCL5/CCR5 and activated STAT3/SOX17low/YAP. However, SOX17 overexpression in ccRCC achieved the opposite effect. Thus, a positive regulatory loop, SOX17low/YAP/TEAD1/CCL5/CCR5/STAT3, was identified in the ccRCC-TAM interaction. Furthermore, targeting tumor-TAM interactions by blocking this positive regulatory network impaired the metastasis and targeted drug resistance of ccRCC in in vivo mouse models of lung metastasis and orthotopic ccRCC. These findings provide a new mechanism underlying the tumor-TAM interplay in ccRCC progression and present a potential target for inhibiting targeted drug resistance and metastasis in advanced ccRCC.
Collapse
Affiliation(s)
- Chao Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
- Department of Urology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213000, Jiangsu, China
| | - Yuning Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
| | - Tianyu Hong
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
| | - Jianqing Ye
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai, 201805, China
| | - Chuanmin Chu
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai, 201805, China
| | - Li Zuo
- Department of Urology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213000, Jiangsu, China
| | - Jing Zhang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
| | - Xingang Cui
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China.
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai, 201805, China.
| |
Collapse
|
33
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
34
|
Liu F, Wang C, Huang H, Yang Y, Dai L, Han S, Xing N, Ren S. SEMA3A-mediated crosstalk between prostate cancer cells and tumor-associated macrophages promotes androgen deprivation therapy resistance. Cell Mol Immunol 2021; 18:752-754. [PMID: 33558684 DOI: 10.1038/s41423-021-00637-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Fei Liu
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China. .,Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,State Key Laboratory of Kidney Diseases, Beijing, China.
| | - Chao Wang
- Department of Urinary Surgery, Gongli Hospital, the Second Military Medical University, Shanghai, China
| | - Hai Huang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiao tong University School of Medicine, Shanghai, China
| | - Yue Yang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Lihe Dai
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China.
| |
Collapse
|
35
|
Wang L, Xu M, Kao CY, Tsai SY, Tsai MJ. Small molecule JQ1 promotes prostate cancer invasion via BET-independent inactivation of FOXA1. J Clin Invest 2020; 130:1782-1792. [PMID: 31874106 DOI: 10.1172/jci126327] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Recent findings have shown that inhibitors targeting bromodomain and extraterminal domain (BET) proteins, such as the small molecule JQ1, are potent growth inhibitors of many cancers and hold promise for cancer therapy. However, some reports have also revealed that JQ1 can activate additional oncogenic pathways and may affect epithelial-to-mesenchymal transition (EMT). Therefore, it is important to address the potential unexpected effect of JQ1 treatment, such as cell invasion and metastasis. Here, we showed that in prostate cancer, JQ1 inhibited cancer cell growth but promoted invasion and metastasis in a BET protein-independent manner. Multiple invasion pathways including EMT, bone morphogenetic protein (BMP) signaling, chemokine signaling, and focal adhesion were activated by JQ1 to promote invasion. Notably, JQ1 induced upregulation of invasion genes through inhibition of Forkhead box protein A1 (FOXA1), an invasion suppressor in prostate cancer. JQ1 directly interacted with FOXA1 and inactivated FOXA1 binding to its interacting repressors TLE3, HDAC7, and NFIC, thereby blocking FOXA1-repressive function and activating the invasion genes. Our findings indicate that JQ1 has an unexpected effect of promoting invasion in prostate cancer. Thus, the ill effect of JQ1 or its derived therapeutic agents cannot be ignored during cancer treatment, especially in FOXA1-related cancers.
Collapse
Affiliation(s)
- Leiming Wang
- Department of Molecular and Cellular Biology, and
| | - Mafei Xu
- Department of Molecular and Cellular Biology, and
| | | | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, and.,Department of Medicine and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, and.,Department of Medicine and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Wang Y, Chen J, Wu Z, Ding W, Gao S, Gao Y, Xu C. Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol 2020; 178:239-261. [PMID: 33150960 DOI: 10.1111/bph.15300] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men and androgen deprivation therapy is the first-line therapy. However, most cases will eventually develop castration-resistant prostate cancer after androgen deprivation therapy treatment. Enzalutamide is a second-generation androgen receptor antagonist approved by the Food and Drug Administration to treat patients with castration-resistant prostate cancer. Unfortunately, patients receiving enzalutamide treatment will ultimately develop resistance via various complicated mechanisms. This review examines the emerging information on these resistance mechanisms, including androgen receptor-related signalling pathways, glucocorticoid receptor-related pathways and metabolic effects. Notably, lineage plasticity and phenotype switching, gene polymorphisms and the relationship between microRNAs and drug resistance are addressed. Furthermore, potential therapeutic strategies for enzalutamide-resistant castration-resistant prostate cancer treatment are suggested, which can help discover more effective and specific regimens to overcome enzalutamide resistance.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiyuan Chen
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhengjie Wu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shen Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
37
|
Zhang E, He J, Zhang H, Shan L, Wu H, Zhang M, Song Y. Immune-Related Gene-Based Novel Subtypes to Establish a Model Predicting the Risk of Prostate Cancer. Front Genet 2020; 11:595657. [PMID: 33281882 PMCID: PMC7691641 DOI: 10.3389/fgene.2020.595657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is significant heterogeneity in prostate cancer (PCa), but immune status can reflect its prognosis. This study aimed to explore immune-related gene-based novel subtypes and to use them to create a model predicting the risk of PCa. METHODS We downloaded the data of 487 PCa patients from The Cancer Genome Atlas (TCGA) database. We used immunologically relevant genes as input for consensus clustering and applied survival analysis and principal component analysis to determine the properties of the subtypes. We also explored differences of somatic variations, copy number variations, TMPRSS2-ERG fusion, and androgen receptor (AR) scores among the subtypes. Then, we examined the infiltration of different immune cells into the tumor microenvironment in each subtype. We next performed Gene Set Enrichment Analysis (GSEA) to illustrate the characteristics of the subtypes. Finally, based on the subtypes, we constructed a risk predictive model and verified it in TCGA, Gene Expression Omnibus (GEO), cBioPortal, and International Cancer Genome Consortium (ICGC) databases. RESULTS Four PCa subtypes (C1, C2, C3, and C4) were identified on immune status. Patients with the C3 subtype had the worst prognosis, while the other three groups did not differ significantly from each other in terms of their prognosis. Principal component analysis clearly distinguished high-risk (C3) and low-risk (C1 + 2 + 4) patients. Compared with the case in the low-risk subtype, the Speckle-type POZ Protein (SPOP) had a higher mutation frequency and lower transcriptional level in the high-risk subtype. In C3, there was also a higher frequency of copy number alterations (CNA) of Clusterin (CLU) and lower CLU expression. In addition, C3 had a higher frequency of TMPRSS2-ERG fusion and higher AR scores. M2 macrophages also showed significantly higher infiltration in the high-risk subtype, while CD8+ T cells and dendritic cells had significantly higher infiltration in the low-risk subtype. GSEA revealed that MYC, androgen, and KRAS were relatively activated and p53 was relatively suppressed in high-risk subtype, compared with the levels in the low-risk subtype. Finally, we trained a six-gene signature risk predictive model, which performed well in TCGA, GEO, cBioPortal, and ICGC databases. CONCLUSION PCa can be divided into four subtypes based on immune-related genes, among which the C3 subtype is associated with a poor prognosis. Based on these subtypes, a risk predictive model was developed, which could indicate patient prognosis.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jieqian He
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liping Shan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongliang Wu
- Department of Spine and Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mo Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol 2020; 10:566511. [PMID: 33194645 PMCID: PMC7642726 DOI: 10.3389/fonc.2020.566511] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes. TAMs' variability strongly depends on cancer type, stage, and intratumor heterogeneity. Majority of TAMs are programmed by tumor microenvironment to support primary tumor growth and metastatic spread. However, TAMs can also restrict tumor growth and metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor growth, metastasis and in the response to cancer therapy in patients with five aggressive types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently metastasize into distant organs resulting in high mortality of the patients. Two major TAM parameters are applied for the evaluation of TAM correlation with the cancer progression: total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers. We summarized the data generated in the wide range of international patient cohorts on the correlation of TAMs with clinical and pathological parameters of tumor progression including lymphatic and hematogenous metastasis, recurrence, survival, therapy efficiency. We described currently available biomarkers for TAMs that can be measured in patients' samples (tumor tissue and blood). CD68 is the major biomarker for the quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163, CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used as biomarkers for the functional TAM polarization. We also considered that specific role of TAMs in tumor progression can depend on the localization in the intratumoral compartments. We have made the conclusion for the role of TAMs in primary tumor growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in colorectal cancer have protective role for the patient and interfere with primary tumor growth and metastasis. The accumulated data are essential for using TAMs as biomarkers and therapeutic targets to develop cancer-specific immunotherapy and to design efficient combinations of traditional therapy and new immunomodulatory approaches.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gulnara Tuguzbaeva
- Department of Pathophysiology, Bashkir State Medical University, Ufa, Russia
| | - Anastasia Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Stakheyeva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Evgeniy Choinzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
39
|
Wu SQ, Su H, Wang YH, Zhao XK. Role of tumor-associated immune cells in prostate cancer: angel or devil? Asian J Androl 2020; 21:433-437. [PMID: 31134920 PMCID: PMC6732889 DOI: 10.4103/aja.aja_47_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the most common malignancy in the reproductive system of older males. Androgen deprivation therapy (ADT) is an important treatment for prostate cancer patients. However, almost all prostate cancer patients unavoidably progress to the castration-resistant stage after ADT treatment. Recent studies have shown that tumor-associated immune cells play major roles in the initiation, progression, and metastasis of prostate cancer. Various phenotypes of tumor-associated immune cells have tumor-promoting or antitumor functions mediated by interacting with tumor cells. Here, we review the current knowledge of tumor-associated immune cells in prostate cancer.
Collapse
Affiliation(s)
- Shui-Qing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hao Su
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yin-Huai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiao-Kun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
40
|
Zhang L, Liu L, Li X. MiR-526b-3p mediates doxorubicin-induced cardiotoxicity by targeting STAT3 to inactivate VEGFA. Biomed Pharmacother 2020; 123:109751. [DOI: 10.1016/j.biopha.2019.109751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
|
41
|
Blocking the autocrine regulatory loop of Gankyrin/STAT3/CCL24/CCR3 impairs the progression and pazopanib resistance of clear cell renal cell carcinoma. Cell Death Dis 2020; 11:117. [PMID: 32051393 PMCID: PMC7015941 DOI: 10.1038/s41419-020-2306-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/09/2023]
Abstract
The poor prognosis of clear-cell renal cell carcinoma (ccRCC) patients is due to progression and targeted drug resistance, but the underlying molecular mechanisms need further elucidation. This study examined the biological function and related mechanisms of gankyrin in ccRCC based on the results of our previous study. To this end, in vitro functional experiments; in vivo models of subcutaneous tumor formation, lung metastasis, and orthotopic ccRCC; and antibody chip detection, co-IP, ChIP assays were performed to examine the biological role and molecular mechanisms of gankyrin in ccRCC. Two hundred fifty-six ccRCC patients were randomly divided into training and validation cohorts to examine the prognostic value of gankyrin and other markers through IHC and statistical analyses. We observed that the gankyrin-overexpressing ccRCC cell lines 786-O and 769-P exhibited increased proliferation, invasion, migration, tumorigenicity, and pazopanib resistance and decreased apoptosis, while gankyrin knockdown achieved the opposite results. Mechanistically, gankyrin recruited STAT3 via direct binding, and STAT3 binding to the CCL24 promoter promoted its expression. Reciprocally, an increase in autocrine CCL24 enhanced the expression of gankyrin and STAT3 activation via CCR3 in ccRCC, forming a positive autocrine-regulatory loop. Furthermore, in vivo experimental results revealed that blocking the positive loop through gankyrin knockdown or treatment with the CCR3 inhibitor SB328437 reversed the resistance to pazopanib and inhibited lung metastasis in ccRCC. Moreover, a positive correlation between gankyrin and STAT3 or CCL24 expression in ccRCC specimens was observed, and improved accuracy for ccRCC patient prognosis was achieved by combining gankyrin and STAT3 or CCL24 expression with existing clinical prognostic indicators, including the TNM stage and SSIGN score. In summary, targeting the gankyrin/STAT3/CCL24/CCR3 autocrine-regulatory loop may serve as a remedy for patients with advanced ccRCC, and combining gankyrin and STAT3 or CCL24 expression with the current clinical indicators better predicts ccRCC patient prognosis.
Collapse
|
42
|
Cytokines and Janus kinase/signal transducer and activator of transcription signaling in prostate cancer: overview and therapeutic opportunities. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coemr.2020.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019; 11:E1405. [PMID: 31547070 PMCID: PMC6826557 DOI: 10.3390/cancers11101405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Our understanding of neuroendocrine prostate cancer (NEPC) has assumed a new perspective in light of the recent advances in research. Although classical NEPC is rarely seen in the clinic, focal neuroendocrine trans-differentiation of prostate adenocarcinoma occurs in about 30% of advanced prostate cancer (PCa) cases, and represents a therapeutic challenge. Even though our knowledge of the mechanisms that mediate neuroendocrine differentiation (NED) is still evolving, the role of androgen deprivation therapy (ADT) as a key driver of this phenomenon is increasingly becoming evident. In this review, we discuss the molecular, cellular, and therapeutic mediators of NED, and emphasize the role of the tumor microenvironment (TME) in orchestrating the phenotype. Understanding the role of the TME in mediating NED could provide us with valuable insights into the plasticity associated with the phenotype, and reveal potential therapeutic targets against this aggressive form of PCa.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Natasha Chugh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Manisha Tripathi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
44
|
Gao Y, Li L, Li T, Ma L, Yuan M, Sun W, Cheng HL, Niu L, Du Z, Quan Z, Fan Y, Fan J, Luo C, Wu X. Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1. Int J Oncol 2019; 54:2054-2068. [PMID: 31081050 PMCID: PMC6521936 DOI: 10.3892/ijo.2019.4774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
The failure of androgen deprivation therapy in prostate cancer treatment mainly results from drug resistance to androgen receptor antagonists. Although an aberrant caveolin‑1 (Cav‑1) expression has been reported in multiple tumor cell lines, it is unknown whether it is responsible for the progression of castration‑resistant prostate cancer (CRPC). Thus, the aim of the present study was to determine whether Cav‑1 can be used as a key molecule for the prevention and treatment of CRPC, and to explore its mechanism of action in CRPC. For this purpose, tissue and serum samples from patients with primary prostate cancer and CRPC were analyzed using immunohistochemistry and enzyme‑linked immunosorbent assay, which revealed that Cav‑1 was overexpressed in CRPC. Furthermore, Kaplan‑Meier survival analysis and univariate Cox proportional hazards regression analysis demonstrated that Cav‑1 expression in tumors was an independent risk factor for the occurrence of CRPC and was associated with a shorter recurrence‑free survival time in patients with CRPC. Receiver operating characteristic curves suggested that serum Cav‑1 could be used as a diagnostic biomarker for CRPC (area under the curve, 0.876) using a cut‑off value of 0.68 ng/ml (with a sensitivity of 82.1% and specificity of 80%). In addition, it was determined that Cav‑1 induced the invasion and migration of CRPC cells by the activation of the H‑Ras/phosphoinositide‑specific phospholipase Cε signaling cascade in the cell membrane caveolae. Importantly, simvastatin was able to augment the anticancer effects of androgen receptor antagonists by downregulating the expression of Cav‑1. Collectively, the findings of this study provide evidence that Cav‑1 is a promising predictive biomarker for CRPC and that lowering cholesterol levels with simvastatin or interfering with the expression of Cav‑1 may prove to be a useful strategy with which to prevent and/or treat CRPC.
Collapse
Affiliation(s)
- Yingying Gao
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Luo Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Ting Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lei Ma
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Hong Lin Cheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lingfang Niu
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Yanru Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Jiaxin Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Chunli Luo
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| |
Collapse
|
45
|
Usmani S, Orevi M, Stefanelli A, Zaniboni A, Gofrit ON, Bnà C, Illuminati S, Lojacono G, Noventa S, Savelli G. Neuroendocrine differentiation in castration resistant prostate cancer. Nuclear medicine radiopharmaceuticals and imaging techniques: A narrative review. Crit Rev Oncol Hematol 2019; 138:29-37. [PMID: 31092382 DOI: 10.1016/j.critrevonc.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Androgen Deprivation Therapy (ADT) is the primary treatment for patients suffering from relapsing or advanced prostate cancer (PC). Hormone therapy generally guarantees adequate clinical control of the disease for some years, even in those patients affected by widespread skeletal and soft tissue metastases. Despite ADT, however, most patients treated with hormones eventually progress to castration-resistant prostate cancer (CRPC), for which there are no effective treatments. This clinical reality is an open challenge to the oncologist because of those neoplasms which elaborate neuroendocrine differentiation (NED). METHODS An online search of current and past literature on NED in CRPC was performed. Relevant articles dealing with the biological and pathological basis of NED, with nuclear medicine imaging in CRPC and somatostatin treatment in NED were analyzed. EVIDENCE FROM THE LITERATURE NED may arise in prostate cancer patients in the late stages of ADT. The onset of NED offers prognostic insight because it reflects a dramatic increase in the aggressive nature of the neoplasm. Several genetic, molecular, cytological and immunohistochemical markers are associated with this transformation. Among these, overexpression of somatostatin receptors, seen through Nuclear Medicine testing, is one of the most studied. CONCLUSIONS Preliminary studies show that the overexpression of somatostatin receptors related to NED in CRPC may easily be studied in vivo with PET/CT. This finding offers a potentially useful objective for targeted therapy in CRPC. If the overexpression of SSTRs is shown to afflict a significant segment of patients with CRPC, this will open further study of possible therapeutic options based on this marker.
Collapse
Affiliation(s)
- Sharjeel Usmani
- Department of Nuclear Medicine, Kuwait Cancer Control Center Al Sabah Medical District, 70653, Kuwait
| | - Marina Orevi
- Nuclear Medicine Division, Kiryat Hadassah, POB 12000, Jerusalem 91120, Israel
| | - Antonella Stefanelli
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Alberto Zaniboni
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | | | - Claudio Bnà
- Radiology Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Sonia Illuminati
- Radiology Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Giulia Lojacono
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Silvia Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy
| | - Giordano Savelli
- Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, via L. Bissolati, 57, 25124 Brescia, Italy.
| |
Collapse
|
46
|
Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang CY, Wang M, Zhao L, Xu T, Chinnaswamy K, Delproposto J, Stuckey J, Wang S. Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. J Med Chem 2019; 62:941-964. [PMID: 30629437 DOI: 10.1021/acs.jmedchem.8b01631] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report herein the discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69). ARD-69 induces degradation of AR protein in AR-positive prostate cancer cell lines in a dose- and time-dependent manner. ARD-69 achieves DC50 values of 0.86, 0.76, and 10.4 nM in LNCaP, VCaP, and 22Rv1 AR+ prostate cancer cell lines, respectively. ARD-69 is capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression. ARD-69 potently inhibits cell growth in these AR-positive prostate cancer cell lines and is >100 times more potent than AR antagonists. A single dose of ARD-69 effectively reduces the level of AR protein in xenograft tumor tissue in mice. Further optimization of ARD-69 may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.
Collapse
|
47
|
Dong L, Zieren RC, Xue W, de Reijke TM, Pienta KJ. Metastatic prostate cancer remains incurable, why? Asian J Urol 2019; 6:26-41. [PMID: 30775246 PMCID: PMC6363601 DOI: 10.1016/j.ajur.2018.11.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
Metastatic prostate cancer patients present in two ways-with already disseminated disease at the time of presentation or with disease recurrence after definitive local therapy. Androgen deprivation therapy is given as the most effective initial treatment to patients. However, after the initial response, almost all patients will eventually progress despite the low levels of testosterone. Disease at this stage is termed castration resistant prostate cancer (CRPC). Before 2010, the taxane docetaxel was the first and only life prolonging agent for metastatic CRPC (mCRPC). The last decade has witnessed robust progress in CRPC therapeutics development. Abiraterone, enzalutamide, apalutamide and sipuleucel-T have been evaluated as first- and second-line agents in mCRPC patients, while cabazitaxel was approved as a second-line treatment. Radium-223 dichloride was approved in symptomatic patients with bone metastases and no known visceral metastases pre- and post-docetaxel. However, despite significant advances, mCRPC remains a lethal disease. Both primary and acquired resistance have been observed in CRPC patients treated by these new agents. It could be solely cell intrinsic or it is possible that the clonal heterogeneity in treated tumors may result from the adaptive responses to the selective pressures within the tumor microenvironment. The aim of this review is to list current treatment agents of CRPC and summarize recent findings in therapeutic resistance mechanisms.
Collapse
Affiliation(s)
- Liang Dong
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard C. Zieren
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Theo M. de Reijke
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kenneth J. Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Wang C, Li Y, Chu CM, Zhang XM, Ma J, Huang H, Wang YN, Hong TY, Zhang J, Pan XW, Zheng JC, Jiang N, Hu CY, Ma X, Sun YH, Cui XG. Gankyrin is a novel biomarker for disease progression and prognosis of patients with renal cell carcinoma. EBioMedicine 2018; 39:255-264. [PMID: 30558998 PMCID: PMC6354735 DOI: 10.1016/j.ebiom.2018.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the clinic, how to stratify renal cell carcinoma (RCC) patients with different risks and to accurately predict their prognostic outcome remains a crucial issue. In this study, we assessed the expression and prognostic value of gankyrin in RCC patients. METHODS The expression of gankyrin was examined in public databases and validated in specimens from two independent centers. The clinical practice and disease correlation of gankyrin in RCC were evaluated in RCC patients, various cell lines and an orthotopic RCC model. FINDINGS Upregulation of gankyrin expression in RCC was corroborated in two independent cohorts. High gankyrin expression positively associated with disease progression and metastasis of RCC patients. A positive correlation between gankyrin and sunitinib-resistance was also observed in RCC cell lines and in an orthotopic RCC model. Kaplan-Meier analysis revealed that patients with higher gankyrin expression presented worse prognosis of RCC patients in the two cohorts. Gankyrin served as an independent prognostic factor for RCC patients even after multivariable adjustment by clinical variables. Time-dependent AUC and Harrell's c-index analysis presented that the incorporation of the gankyrin classifier into the current clinical prognostic parameters such as TNM stage, Fuhrman nuclear grade or SSIGN score achieved a greater accuracy than without it in predicting prognosis of RCC patients. All results were confirmed in randomized training and validation sets from the two patient cohorts. INTERPRETATION Gankyrin can serve as a reliable biomarker for disease progression and for prognosis of RCC patients. Combining gankyrin with the current clinical parameters may help patient management. FUND: National Natural Science Foundation of China (No. 81773154, 81772747 and 81301861), Medical Discipline Construction Project of Pudong New Area Commission of Health and Family Planning (PWYgf2018-03), the Shanghai Medical Guidance (Chinese and Western Medicine) Science and Technology Support Project (No. 17411960200), Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai (No. PWR12016-05).
Collapse
Affiliation(s)
- Chao Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China; Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), 168 Changhai Road, Shanghai 200438, China
| | - Yan Li
- Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Chuan-Min Chu
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai 201805, China; Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Xiang-Min Zhang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Jie Ma
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Hai Huang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road No. 2, Shanghai 200025, China
| | - Yu-Ning Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Tian-Yu Hong
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Zhang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Xiu-Wu Pan
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai 201805, China
| | - Jing-Cun Zheng
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Ning Jiang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China
| | - Chuan-Yi Hu
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China.
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York 10065-4805, NY, United States..
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), 168 Changhai Road, Shanghai 200438, China.
| | - Xin-Gang Cui
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai 200135, China; Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai 201805, China.
| |
Collapse
|
49
|
Thaper D, Vahid S, Kaur R, Kumar S, Nouruzi S, Bishop JL, Johansson M, Zoubeidi A. Galiellalactone inhibits the STAT3/AR signaling axis and suppresses Enzalutamide-resistant Prostate Cancer. Sci Rep 2018; 8:17307. [PMID: 30470788 PMCID: PMC6251893 DOI: 10.1038/s41598-018-35612-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Most prostate cancer patients will progress to a castration-resistant state (CRPC) after androgen ablation therapy and despite the development of new potent anti-androgens, like enzalutamide (ENZ), which prolong survival in CRPC, ENZ-resistance (ENZR) rapidly occurs. Re-activation of the androgen receptor (AR) is a major mechanism of resistance. Interrogating our in vivo derived ENZR model, we discovered that transcription factor STAT3 not only displayed increased nuclear localization but also bound to and facilitated AR activity. We observed increased STAT3 S727 phosphorylation in ENZR cells, which has been previously reported to facilitate AR binding. Strikingly, ENZR cells were more sensitive to inhibition with STAT3 DNA-binding inhibitor galiellalactone (GPA500) compared to CRPC cells. Treatment with GPA500 suppressed AR activity and significantly reduced expression of Cyclin D1, thus reducing cell cycle progression into S phase and hindering cell proliferation. In vivo, GPA500 reduced tumor volume and serum PSA in ENZR xenografts. Lastly, the combination of ENZ and GPA500 was additive in the inhibition of AR activity and proliferation in LNCaP and CRPC cells, providing rationale for combination therapy. Overall, these results suggest that STAT3 inhibition is a rational therapeutic approach for ENZR prostate cancer, and could be valuable in CRPC in combination with ENZ.
Collapse
Affiliation(s)
- Daksh Thaper
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Sahil Kumar
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Shaghayegh Nouruzi
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada. .,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
50
|
Ramnarine VR, Alshalalfa M, Mo F, Nabavi N, Erho N, Takhar M, Shukin R, Brahmbhatt S, Gawronski A, Kobelev M, Nouri M, Lin D, Tsai H, Lotan TL, Karnes RJ, Rubin MA, Zoubeidi A, Gleave ME, Sahinalp C, Wyatt AW, Volik SV, Beltran H, Davicioni E, Wang Y, Collins CC. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. Gigascience 2018; 7:4994835. [PMID: 29757368 PMCID: PMC6007253 DOI: 10.1093/gigascience/giy050] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/01/2018] [Indexed: 01/29/2023] Open
Abstract
Background Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of lncRNAs during NEtD and their clinical associations were unexplored. Results We implemented a next-generation sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n = 37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified 821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD) patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1 in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18 years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified patients undergoing ADT based on patient outcome. Discussion To date, a comprehensive characterization of the dynamic landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.
Collapse
Affiliation(s)
- Varune Rohan Ramnarine
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Fan Mo
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Noushin Nabavi
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Robert Shukin
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sonal Brahmbhatt
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Gawronski
- Department of Computer Science, Simon Fraser University, Burnaby, BC, Canada
| | - Maxim Kobelev
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mannan Nouri
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dong Lin
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Harrison Tsai
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - R Jefferey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cenk Sahinalp
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - Alexander W Wyatt
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stanislav V Volik
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Weill Cornell Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Yuzhuo Wang
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Colin C Collins
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|