1
|
Huang ZH, Zhu YF, Zeng YY, Huang HY, Liu JQ, Cen WC, Su S. Pulmonary sarcomatoid carcinoma coexisting with tuberculosis: a case report and literature review. Front Oncol 2025; 14:1492574. [PMID: 39868375 PMCID: PMC11757094 DOI: 10.3389/fonc.2024.1492574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is a rare non-small-cell lung cancer with sarcomatous components or sarcomatoid differentiation, high degree of malignancy, and insensitivity to chemotherapy or radiotherapy. The management of PSC coexisting with tuberculosis (TB) poses a greater challenge, as it necessitates concurrent administration of both anti-TB and anti-neoplastic therapies. The efficacy of anti-PD-1 immunotherapy in non-small-cell lung cancer is promising, but its safety in patients with co-existent TB remains uncertain. Here, we describe a case of advanced PSC coexisting with TB, which experienced progression-free survival (PFS) of over 36 months after receiving anti-TB and anti-neoplastic therapy composed of chemotherapy, vascular targeting therapy, and PD-1 inhibitors simultaneously. The patient is still being followed up with a satisfactory quality of life. This paper is focused on the characteristics and treatment of PSC and discuss the clinical strategies of lung cancer coexisting with TB.
Collapse
Affiliation(s)
- Zhi-Hao Huang
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Yu-Fei Zhu
- Graduate School, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun-Yun Zeng
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Hui-Yi Huang
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Jia-Qi Liu
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Wen-Chang Cen
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Shan Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| |
Collapse
|
2
|
Peng D, Xiong L, Luo Y, Chen J, Zheng Y, Zeng X, Liu S, Liu A, Wang X, Zeng Z. Comparison of clinical outcomes in patients with advanced pulmonary sarcomatoid carcinoma treated with immunotherapy-based regimens or chemotherapy: A study based on the SEER database and multicentric real-world settings. J Cancer Res Ther 2024; 20:2110-2117. [PMID: 39792422 DOI: 10.4103/jcrt.jcrt_479_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Pulmonary sarcomatoid carcinoma (PSC) is a rare lung cancer characterized by early metastasis and invasion. It is predominantly diagnosed at a locally advanced or metastatic stage, hindering the possibility of surgical intervention. However, a standard treatment for advanced PSC remains unestablished. This study evaluated the effects of chemotherapy and immunotherapy-based strategies in patients with advanced PSC. METHODS The Surveillance, Epidemiology, and End Results (SEER) database and data from three cancer centers were used in this retrospective study. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Univariate and multivariate analyses were conducted to identify the prognostic factors. RESULTS In total, 202 patients with stage IV PSC were identified from the SEER database (median OS, 5 months). The median follow-up time of patients from the three centers was 18.8 months. First-line treatment with immunotherapy-based regimens and chemotherapy was administered to 12 and 27 patients, respectively. The median PFS was 2.1 and 7.3 months [hazard ratio (HR), 0.16; 95% confidence interval (CI), 0.06-0.40; P < 0.001], while the median OS was 3.6 and 21.4 months (HR, 0.21; 95% CI, 0.09-0.50; P < 0.001) in the chemotherapy and immune-based groups, respectively. The immunotherapy-based regimen was an independent prognostic factor for PFS (HR, 0.21; 95% CI, 0.08-0.55; P = 0.001) and OS (HR, 0.20; 95% CI, 0.08-0.49; P < 0.001). CONCLUSIONS Conventional chemotherapy offered limited benefits in patients with advanced PSC; however, those who received first-line immunotherapy-based regimens exhibited significantly improved responses.
Collapse
Affiliation(s)
- Duanyang Peng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Le Xiong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yuxi Luo
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Junxing Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yue'e Zheng
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiaoli Zeng
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi Province, PR China
| | - Shubin Liu
- Department of Oncology, The Ganzhou People's Hospital, Ganzhou, Jiangxi Province, PR China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
3
|
Roma L, Ercan C, Conticelli F, Akyürek N, Savic Prince S, Mertz KD, Diebold J, Lardinois D, Piscuoglio S, Ng CK, Bubendorf L. Tracing Tumor Heterogeneity of Pleomorphic Carcinoma of the Lung. J Thorac Oncol 2024; 19:1284-1296. [PMID: 38723776 DOI: 10.1016/j.jtho.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Pulmonary pleomorphic carcinoma (PPC) is an aggressive and highly heterogeneous NSCLC whose underlying biology is still poorly understood. METHODS A total of 42 tumor areas from 20 patients with PPC were microdissected, including 39 primary tumors and three metastases, and the histologically distinct components were subjected to whole exome sequencing separately. We further performed in silico analysis of microdissected bulk RNA sequencing and methylation data of 28 samples from 14 patients with PPC. We validated our findings using immunohistochemistry. RESULTS The epithelial and the sarcomatoid components of PPCs shared a large number of genomic alterations. Most mutations in cancer driver genes were clonal and truncal between the two components of PPCs suggesting a common ancestor. The high number of alterations in the RTK-RAS pathway suggests that it plays an important role in the evolution of PPC. The metastases morphologically and genetically resembled the epithelial or the sarcomatoid components of the tumor. The transcriptomic and epigenetic profiles of the sarcomatoid components of PPCs with matched squamous-like or adenocarcinoma-like components differed from each other, and they shared more similarities to their matched epithelial components. NCAM1/CD56 was preferentially expressed in the sarcomatoid component of squamous-like PPCs, whereas CDH1/E-Cadherin expression was down-regulated in the sarcomatoid component of most PPCs. CONCLUSION Lung adenocarcinoma-like PPCs are mainly driven by RTK-RAS signaling, whereas epithelial-mesenchymal transition programs as highlighted by increased NCAM1 and decreased CDH1 expression govern the epithelial-sarcomatoid transition between the clonally related tumor components. Several alterations in PPCs pinpoint therapeutic opportunities.
Collapse
Affiliation(s)
- Luca Roma
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Caner Ercan
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Floriana Conticelli
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Nalan Akyürek
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Spasenija Savic Prince
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kirsten D Mertz
- Institute for Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Joachim Diebold
- Institute of Pathology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Didier Lardinois
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Charlotte Ky Ng
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Feng Q, Liu Q, Liu Z, Xu J, Yang Y, Zhu Y, Lu G, Xu G, Wu D, Wang F, Liu B, Wang W, Ding X. USP9X inhibits metastasis in pulmonary sarcomatoid carcinoma by regulating epithelial-mesenchymal transition, angiogenesis and immune infiltration. Transl Oncol 2024; 47:101950. [PMID: 38964032 PMCID: PMC11283126 DOI: 10.1016/j.tranon.2024.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Pulmonary sarcomatoid carcinoma (PSC) is a highly invasive pulmonary malignancy with an extremely poor prognosis. The results of previous studies suggest that ubiquitin-specific peptidase 9X (USP9X) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of USP9X in the metastasis of PSC. METHODS Immunohistochemistry and western blotting were used to detect USP9X expression levels in PSC tissues and cells. Wound healing, transwell, enzyme-linked immunosorbent assay (ELISA), tube formation, and aortic ring assays were used to examine the function and mechanism of USP9X in the metastasis of PSC. RESULTS Expression of USP9X was markedly decreased and significantly correlated with metastasis and prognosis of patients with PSC. Then we revealed that USP9X protein levels were negatively associated with the levels of epithelial-mesenchymal transition (EMT) markers and the migration of PSC cells. It was confirmed that USP9X in PSC cells reduced VEGF secretion and inhibited tubule formation of human umbilical vein endothelial cells (HUVEC) in vitro. USP9X was detected to downregulate MMP9. Meanwhile, MMP9 was positively related to EMT, angiogenesis and was negatively related to immune infiltration in the public databases. USP9X was significantly negatively associated with the expression of MMP9, EMT markers, CD31, and positively associated with CD4, and CD8 in PSC tissues. CONCLUSION The present study reveals the vital role of USP9X in regulating EMT, angiogenesis and immune infiltration and inhibiting metastasis of PSC via downregulating MMP9, which provides a new effective therapeutic target for PSC.
Collapse
Affiliation(s)
- Qin Feng
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Qian Liu
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zi Liu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Jianyu Xu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Yang Yang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ying Zhu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Guangxian Lu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Guangjuan Xu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Dan Wu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Feng Wang
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Biao Liu
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Wenjuan Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China.
| | - Xinyuan Ding
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
5
|
Wen Y, Dong Y, Yi L, Yang G, Xiao M, Li Q, Zhao C, Ye D, Yao Y. Anlotinib combined with pembrolizumab as first-line treatment for advanced pulmonary sarcomatoid carcinoma: a case report and literature review. Front Oncol 2023; 13:1241475. [PMID: 37920159 PMCID: PMC10618617 DOI: 10.3389/fonc.2023.1241475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is an uncommon variant of non-small cell lung cancer (NSCLC), known for its unfavorable prognosis. Previous studies have elucidated that PSC generally exhibits a significant expression of programmed death-ligand 1 (PD-L1), an elevated tumor mutation burden, and marked vascular invasion. These factors imply the possible effectiveness of treatments like immunotherapy and anti-angiogenic therapy. The subject of this case was a 65-year-old male diagnosed with advanced PSC, characterized by high PD-L1 expression and devoid of known driver gene mutations. Owing to the restrictions imposed by the COVID-19 pandemic, the patient initially underwent home-based treatment with anlotinib, which led to symptomatic improvement after a single treatment cycle. Subsequent hospitalization allowed for the administration of anlotinib plus Pembrolizumab, resulting in a partial response. Radiotherapy was necessitated due to local disease progression. But after 15 cycles of treatment with Pembrolizumab, hyperprogression was observed. The patient's overall survival spanned 14 months, with no evident adverse reactions to the medications. Genomic analysis revealed potential associations between treatment efficacy and mutations in the TP53, NF1, and MET genes. This case underscores the effectiveness and safety of a first-line treatment regimen combining pan-target anti-angiogenic therapy (anlotinib) with anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yingmei Wen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Dong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lina Yi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxia Xiao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Yichun People's Hospital, Yichun, China
| | - Qingqing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dafu Ye
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China
| |
Collapse
|
6
|
Torricelli F, Donati B, Reggiani F, Manicardi V, Piana S, Valli R, Lococo F, Ciarrocchi A. Spatially resolved, high-dimensional transcriptomics sorts out the evolution of biphasic malignant pleural mesothelioma: new paradigms for immunotherapy. Mol Cancer 2023; 22:114. [PMID: 37460925 PMCID: PMC10351128 DOI: 10.1186/s12943-023-01816-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Malignant Pleural Mesothelioma (MPM) is a dreadful disease escaping the classical genetic model of cancer evolution and characterized by wide heterogeneity and transcriptional plasticity. Clinical evolution of MPM is marked by a progressive transdifferentiation that converts well differentiated epithelioid (E) cells into undifferentiated and pleomorphic sarcomatoid (S) phenotypes. Catching the way this transition takes place is necessary to understand how MPM develops and progresses and it is mandatory to improve patients' management and life expectancy. Bulk transcriptomic approaches, while providing a significant overview, failed to resolve the timing of this evolution and to identify the hierarchy of molecular events through which this transition takes place. METHODS We applied a spatially resolved, high-dimensional transcriptomic approach to study MPM morphological evolution. 139 regions across 8 biphasic MPMs (B-MPMs) were profiled using the GeoMx™Digital Spatial Profiler to reconstruct the positional context of transcriptional activities and the spatial topology of MPM cells interactions. Validation was conducted on an independent large cohort of 84 MPMs by targeted digital barcoding analysis. RESULTS Our results demonstrated the existence of a complex circular ecosystem in which, within a strong asbestos-driven inflammatory environment, MPM and immune cells affect each other to support S-transdifferentiation. We also showed that TGFB1 polarized M2-Tumor Associated Macrophages foster immune evasion and that TGFB1 expression correlates with reduced survival probability. CONCLUSIONS Besides providing crucial insights into the multidimensional interactions governing MPM clinical evolution, these results open new perspectives to improve the use of immunotherapy in this disease.
Collapse
Affiliation(s)
- F Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - B Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - F Reggiani
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - V Manicardi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - S Piana
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - R Valli
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - F Lococo
- Thoracic Surgery Unit, IRCCS-Fondazione Policlinico Gemelli, Roma, Italia
- Catholic University of the Sacred Heart, Roma, Italia
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy.
| |
Collapse
|
7
|
Wang C, Yuan X, Xue J. Targeted therapy for rare lung cancers: Status, challenges, and prospects. Mol Ther 2023; 31:1960-1978. [PMID: 37179456 PMCID: PMC10362419 DOI: 10.1016/j.ymthe.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer causes the most cancer-related deaths worldwide. In recent years, molecular and immunohistochemical techniques have rapidly developed, further inaugurating an era of personalized medicine for lung cancer. The rare subset of lung cancers accounts for approximately 10%, each displaying distinct clinical characteristics. Treatments for rare lung cancers are mainly based on evidence from common counterparts, which may lead to unsolid clinical benefits considering intertumoral heterogeneity. The increasing knowledge of molecular profiling of rare lung cancers has made targeting genetic alterations and immune checkpoints a powerful strategy. Additionally, cellular therapy has emerged as a promising way to target tumor cells. In this review, we first discuss the current status of targeted therapy and preclinical models for rare lung cancers, as well as provide mutational profiles by integrating the results of existing cohorts. Finally, we point out the challenges and future directions for developing targeted agents for rare lung cancer.
Collapse
Affiliation(s)
- Chunsen Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Yuan
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Wang F, Cali Daylan AE, Deng L, Yang J, Sharma J, Su C, Li S, Zang X, Halmos B, Borczuk A, Cheng H. Heterogeneous Expression of PD-L1, B7x, B7-H3, and HHLA2 in Pulmonary Sarcomatoid Carcinoma and the Related Regulatory Signaling Pathways. Cancers (Basel) 2023; 15:3372. [PMID: 37444481 DOI: 10.3390/cancers15133372] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Immunotherapy has transformed lung cancer management, but PSC remains an aggressive subtype with a poor prognosis. This study investigates the differential expression of PD-L1 and alternative immune checkpoints (ICs; B7x, B7-H3, and HHLA2), and genetic alterations in PSCs. Tumor specimens of 41 PSC patients were evaluated. PD-L1, B7x, B7-H3, and HHLA2 were positive in 75.0%, 67.6%, 73.0%, and 91.9% of tumors, respectively. PD-L1 expression was significantly higher in the epithelial compared to the sarcomatoid component (median TPS: 50% vs. 0%, p = 0.010). Expression of PD-L1 in both components was only seen in 32.1% of patients. However, at least one IC was expressed in 92.9% of epithelial and 100% of sarcomatoid components. Furthermore, METex14 was detected in 19.5% of patients and was associated with a higher sarcomatoid percentage. Our preclinical studies revealed that METex14 induced PD-L1 expression via MAPK or PI3K/Akt pathways, and MET inhibitors decreased PD-L1 expression. Our findings demonstrate distinct expressions of ICs in PSC subcomponents. Thus, combination IC inhibition as a therapeutic strategy in PSC warrants further exploration. A high percentage of METex14 in PSC and its role in regulating PD-L1 expression reveal different therapeutic targets in this aggressive NSCLC subtype.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Lei Deng
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Jihua Yang
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Janaki Sharma
- Department of Medicine, University of Miami Health System, Miami, FL 33136, USA
| | - Christopher Su
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Shenduo Li
- Department of Medicine, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA
| | - Xingxing Zang
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Haiying Cheng
- Department of Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| |
Collapse
|
9
|
Garcia D, Mambetsariev I, Fricke J, Schmolze D, Afkhami M, Mannan R, Kim P, Therese Dingal S, Nguyen B, Babikian R, Fong Y, Salgia R. Complete response to chemoimmunotherapy with bevacizumab in synchronous multiple primary cancers: pulmonary adenocarcinoma and sarcomatoid carcinoma. Cold Spring Harb Mol Case Stud 2023; 9:mcs.a006262. [PMID: 37160318 DOI: 10.1101/mcs.a006262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023] Open
Abstract
A small percentage of patients have multiple synchronous primary cancers at presentation. In the last five years, many regimens associated with immunotherapy and chemotherapy were approved for first-line metastatic non-small-cell lung cancer (NSCLC) and other solid tumors, but the study of immunotherapy when multiple cancers are present in one patient remains incomplete. Next-generation sequencing biomarkers and immunotherapy markers including PD-L1 can be effectively utilized in the diagnosis and treatment plan for multiple synchronous primary cancers. Immune biomarkers and PD-L1 expression warrant individualized treatments in synchronous primary adenocarcinoma and pulmonary sarcomatoid carcinoma. We describe the case of a patient with pulmonary sarcomatoid carcinoma and lung adenocarcinoma, metastatic to brain de novo. The patient achieved a complete response after only three cycles of carboplatin, paclitaxel, bevacizumab, and atezolizumab and remains free of any evidence of disease after 18 mo of maintenance therapy.
Collapse
Affiliation(s)
- Diogo Garcia
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA
| | - Jeremy Fricke
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope, Duarte, California 91010, USA
| | - Michelle Afkhami
- Department of Pathology, City of Hope, Duarte, California 91010, USA
| | - Rifat Mannan
- Department of Pathology, City of Hope, Duarte, California 91010, USA
| | - Pauline Kim
- Department of Ambulatory Pharmacy, City of Hope, Duarte, California 91010, USA
| | | | - Bao Nguyen
- Department of Diagnostic Radiology, City of Hope, Duarte, California 91010, USA
| | - Razmig Babikian
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, California 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA;
| |
Collapse
|
10
|
The Correlation Between Histologic, Immunophenotypic, and Molecular Characteristics of Pulmonary Sarcomatoid Carcinoma Reveals That Sarcomatoid Change Is Potentially Derived From Epithelial Carcinoma Cells Undergoing Epithelial-Mesenchymal Transition. Appl Immunohistochem Mol Morphol 2023; 31:17-25. [PMID: 36165833 DOI: 10.1097/pai.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is characterized by biphasic tumors with epithelial and mesenchymal phenotype. Little is known about the correlation between histologic, immunophenotypic features and the genetic profile of PSC. We analyzed the expression of epithelial-mesenchymal transition-related markers, adenocarcinoma (ADC) and squamous cell carcinoma lineage-specific markers of 205 PSC cases. The alteration of 5 targeted genes was detected by amplification-refractory mutation system-polymerase chain reaction. The intensity of cytokeratin staining was stronger in epithelial carcinoma (EC) than that of the sarcomatoid component (SC) of pleomorphic carcinoma, while vimentin was positive in only 16.3% (17/104) of EC of pleomorphic carcinoma. There is no significant difference between thyroid transcription factor 1 (TTF-1) expression in the SC (46.5%, 33/71) of pleomorphic carcinoma with ADC components and pure PSC (44.2%, 42/95) without p40 expression ( P =0.858). Four cases with ALK rearrangement were confirmed to co-express ALK fusion protein in both the SC and EC. The incidence of EGFR/ALK/KRAS mutation was similar between pleomorphic carcinoma with ADC components (40.6%, 26/64) and TTF-1 + pure PSC (38.2%, 13/34) ( P =0.583). However, higher proportions of TTF-1 + /p40 - PSC patients (44.8%, 39/87) had EGFR/ALK/KRAS mutation than those with TTF-1 - /p40 - PSC (16.7%, 4/24) ( P =0.031). The incidence of EGFR mutation was significantly higher in TTF-1-positive (18.4%, 16/87) than TTF-1-negative (2.7%, 2/74) PSC ( P =0.002). No EGFR and ALK abnormality were observed in 24 pleomorphic carcinoma cases with squamous cell carcinoma components or pure PSC with p40 expression. Our study reveals a close correlation between SC and EC components of pleomorphic carcinoma in terms of immunophenotypic and genetic features, which suggests that pleomorphic carcinoma is potentially derived from the sarcomatoid change of EC cells undergoing epithelial-mesenchymal transition.
Collapse
|
11
|
Gugnoni M, Manzotti G, Vitale E, Sauta E, Torricelli F, Reggiani F, Pistoni M, Piana S, Ciarrocchi A. OVOL2 impairs RHO GTPase signaling to restrain mitosis and aggressiveness of Anaplastic Thyroid Cancer. J Exp Clin Cancer Res 2022; 41:108. [PMID: 35337349 PMCID: PMC8957195 DOI: 10.1186/s13046-022-02316-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Anaplastic Thyroid Cancer (ATC) is an undifferentiated and aggressive tumor that often originates from well-Differentiated Thyroid Carcinoma (DTC) through a trans-differentiation process. Epithelial-to-Mesenchymal Transition (EMT) is recognized as one of the major players of this process. OVOL2 is a transcription factor (TF) that promotes epithelial differentiation and restrains EMT during embryonic development. OVOL2 loss in some types of cancers is linked to aggressiveness and poor prognosis. Here, we aim to clarify the unexplored role of OVOL2 in ATC. Methods Gene expression analysis in thyroid cancer patients and cell lines showed that OVOL2 is mainly associated with epithelial features and its expression is deeply impaired in ATC. To assess OVOL2 function, we established an OVOL2-overexpression model in ATC cell lines and evaluated its effects by analyzing gene expression, proliferation, invasion and migration abilities, cell cycle, specific protein localization through immunofluorescence staining. RNA-seq profiling showed that OVOL2 controls a complex network of genes converging on cell cycle and mitosis regulation and Chromatin Immunoprecipitation identified new OVOL2 target genes. Results Coherently with its reported function, OVOL2 re-expression restrained EMT and aggressiveness in ATC cells. Unexpectedly, we observed that it caused G2/M block, a consequent reduction in cell proliferation and an increase in cell death. This phenotype was associated to generalized abnormalities in the mitotic spindle structure and cytoskeletal organization. By RNA-seq experiments, we showed that many pathways related to cytoskeleton and migration, cell cycle and mitosis are profoundly affected by OVOL2 expression, in particular the RHO-GTPase pathway resulted as the most interesting. We demonstrated that RHO GTPase pathway is the central hub of OVOL2-mediated program in ATC and that OVOL2 transcriptionally inhibits RhoU and RhoJ. Silencing of RhoU recapitulated the OVOL2-driven phenotype pointing to this protein as a crucial target of OVOL2 in ATC. Conclusions Collectively, these data describe the role of OVOL2 in ATC and uncover a novel function of this TF in inhibiting the RHO GTPase pathway interlacing its effects on EMT, cytoskeleton dynamics and mitosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02316-2.
Collapse
|
12
|
Bondili SK, Nandhana R, Dhanawat A, Noronha V, Joshi A, Patil VM, Menon N, Kaushal RK, Choughule A, Jiwnani SS, Janu A, Prabhash K. Characteristics and clinical outcomes of pulmonary sarcomatoid carcinoma: experience from Tata Memorial Centre. Ecancermedicalscience 2022; 16:1438. [PMID: 36200011 PMCID: PMC9470174 DOI: 10.3332/ecancer.2022.1438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background Pulmonary sarcomatoid carcinoma (PSC) constitutes a heterogeneous group of poorly differentiated non-small cell lung cancers. Since these are rare tumours, we sought to determine the characteristics and clinical outcomes of these patients treated at our centre. Methods We did a retrospective evaluation of all patients diagnosed with PSC between January 2013 and September 2020 at the Tata Memorial Hospital, Mumbai, India. Baseline demographic and treatment data and outcomes were obtained retrospectively from electronic medical records and survival was calculated by using the Kaplan-Meier method. Results Out of 151 patients diagnosed with PSC during this period, 129 were included in the final analysis. The clinical stage was stage I in 3 (2.03%), stage II in 4 (3.1%), stage III in 35 (27.1%) and stage IV in 87 (67.4%). The median follow-up duration was 32 months (range, 15.0-48.9). The median overall survival (OS) of patients who received curative surgery was 18 months (95% confidence interval (95% CI), 2.59-33.4); concurrent chemoradiation was 11 months (95% CI, 2.99-19); palliative chemotherapy was 8 months (95% CI, 5.24-10.75) and best supportive care was 1 month (95% CI, 0.43-1.57, p = 0.001). On multivariate analysis, the presence of brain metastasis (p = 0.018; hazard ratio (HR), 2.47; 95% CI, 1.34-4.49) and the administration of chemotherapy (p = 0.037; HR, 2.2; 95% CI, 1.04-4.94) were the only factors impacting the OS. Conclusion PSC usually presents in advanced stages and is associated with a poor prognosis.
Collapse
Affiliation(s)
| | | | | | - Vanita Noronha
- Tata Memorial Hospital, Mumbai, Maharashtra, 400 012, India
| | - Amit Joshi
- Tata Memorial Hospital, Mumbai, Maharashtra, 400 012, India
| | | | - Nandini Menon
- Tata Memorial Hospital, Mumbai, Maharashtra, 400 012, India
| | | | | | | | - Amit Janu
- Tata Memorial Hospital, Mumbai, Maharashtra, 400 012, India
| | - Kumar Prabhash
- Tata Memorial Hospital, Mumbai, Maharashtra, 400 012, India
| |
Collapse
|
13
|
Lázaro S, Lorz C, Enguita AB, Seller I, Paramio JM, Santos M. Pten and p53 Loss in the Mouse Lung Causes Adenocarcinoma and Sarcomatoid Carcinoma. Cancers (Basel) 2022; 14:cancers14153671. [PMID: 35954335 PMCID: PMC9367331 DOI: 10.3390/cancers14153671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Lung cancer is the world leading cause of cancer death. Therefore, a better understanding of the disease is needed to improve patient survival. In this work, we have deleted the tumor suppressor genes Pten and Trp53 in adult mouse lungs to analyze its impact on tumor formation. Double mutant mice develop Adenocarcinoma and Pulmonary Sarcomatoid Carcinoma, two different types of Non-Small Cell Carcinoma whose biological relationships are a matter of debate. The former is very common, with various models described and some therapeutic options. The latter is very rare with very poor prognosis, no effective treatment and lack of models reported so far. Interestingly, this study reports the first mouse model of pulmonary sarcomatoid carcinoma available for preclinical research. Abstract Lung cancer remains the leading cause of cancer deaths worldwide. Among the Non-Small Cell Carcinoma (NSCLC) category, Adenocarcinoma (ADC) represents the most common type, with different reported driver mutations, a bunch of models described and therapeutic options. Meanwhile, Pulmonary Sarcomatoid Carcinoma (PSC) is one of the rarest, with very poor outcomes, scarce availability of patient material, no effective therapies and no models available for preclinical research. Here, we describe that the combined deletion of Pten and Trp53 in the lungs of adult conditional mice leads to the development of both ADC and PSC irrespective of the lung targeted cell type after naphthalene induced airway epithelial regeneration. Although this model shows long latency periods and incomplete penetrance for tumor development, it is the first PSC mouse model reported so far, and sheds light on the relationships between ADC and PSC and their cells of origin. Moreover, human ADC show strong transcriptomic similarities to the mouse PSC, providing a link between both tumor types and the human ADC.
Collapse
Affiliation(s)
- Sara Lázaro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
| | - Corina Lorz
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
- CIBERONC—Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), Ave Córdoba s/n, 28041 Madrid, Spain
| | - Ana Belén Enguita
- Pathology Department, University Hospital “12 de Octubre”, 28041 Madrid, Spain;
| | - Iván Seller
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
- CIBERONC—Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), Ave Córdoba s/n, 28041 Madrid, Spain
| | - Mirentxu Santos
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
- CIBERONC—Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), Ave Córdoba s/n, 28041 Madrid, Spain
- Correspondence:
| |
Collapse
|
14
|
Ohtaki Y, Kawabata-Iwakawa R, Nobusawa S, Goto Y, Shimizu K, Yajima T, Nakazawa S, Kawatani N, Yoshida Y, Sano T, Shirabe K. Molecular and expressional characterization of tumor heterogeneity in pulmonary carcinosarcoma. Mol Carcinog 2022; 61:924-932. [PMID: 35848137 DOI: 10.1002/mc.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
The genetic concordance and heterogeneity of the two components of pulmonary carcinosarcoma (PCS), carcinoma, and sarcoma, have not been fully elucidated because of its rare occurrence. We performed targeted sequencing of the carcinoma and sarcoma components of four PCSs to identify genetic similarities and differences. Formalin-fixed paraffin-embedded tissue samples were macroscopically or microscopically dissected. DNA was extracted from each component, and genetic alterations were analyzed separately. Moreover, we performed RNA-seq analysis on both components of one PCS to compare differences in gene expression profiles. The carcinoma part consisted of adenocarcinoma in two cases, squamous cell carcinoma in one, and adenosquamous carcinoma in the last. TP53 mutation was observed in three samples from the trunk, although it was detected only in the sarcoma part in one case. No specific driver gene mutation was observed; however, KRAS mutations were observed in one case in the trunk. RNA-seq analysis revealed that the rhabdomyosarcoma component expressed various genes related to muscle development, whereas the carcinoma component did not; and that gene expression overall was completely different between the two components. Our study revealed that the two different components of PCS shared common gene mutations in most cases. Although gene expression was different among components, if driver genes such as KRAS were detected in PCS, molecular targeted therapy could be beneficial even when the tumor contains a sarcoma component.
Collapse
Affiliation(s)
- Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research, Maebashi, Gunma, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yusuke Goto
- Department of Pathology, Gunma University Hospital, Gunma, Japan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Toshiki Yajima
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Innovative Cancer Immunotherapy, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Seshiru Nakazawa
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Natsuko Kawatani
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuka Yoshida
- Department of Pathology, Gunma University Hospital, Gunma, Japan
| | - Takaaki Sano
- Division of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
15
|
Ortiz-Cuaran S, Swalduz A, Foy JP, Marteau S, Morel AP, Fauvet F, De Souza G, Michon L, Boussageon M, Gadot N, Godefroy M, Léon S, Tortereau A, Mourksi NEH, Leonce C, Albaret MA, Dongre A, Vanbervliet B, Robert M, Tonon L, Pommier RM, Hofman V, Attignon V, Boyault S, Audoynaud C, Auclair J, Bouquet F, Wang Q, Ménétrier-Caux C, Pérol M, Caux C, Hofman P, Lantuejoul S, Puisieux A, Saintigny P. Epithelial-to-mesenchymal transition promotes immune escape by inducing CD70 in non-small cell lung cancer. Eur J Cancer 2022; 169:106-122. [PMID: 35550950 DOI: 10.1016/j.ejca.2022.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Epithelial-to-mesenchymal transition (EMT) is associated with tumor aggressiveness, drug resistance, and poor survival in non-small cell lung cancer (NSCLC) and other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with NSCLCs that display a mesenchymal phenotype (mNSCLC) could help to define subgroups of patients who may benefit from treatment strategies using immunotherapy. METHODS We evaluated ICPL expression in silico in 130 NSCLC cell lines. In vitro, CRISPR/Cas9-mediated knockdown and lentiviral expression were used to assess the impact of ZEB1 expression on CD70. Gene expression profiles of lung cancer samples from the TCGA (n = 1018) and a dataset from MD Anderson Cancer Center (n = 275) were analyzed. Independent validation was performed by immunohistochemistry and targeted-RNA sequencing in 154 NSCLC whole sections, including a large cohort of pulmonary sarcomatoid carcinomas (SC, n = 55). RESULTS We uncover that the expression of CD70, a regulatory ligand from the tumor necrosis factor ligand family, is enriched in mNSCLC in vitro models. Mechanistically, the EMT-inducer ZEB1 impacted CD70 expression and fostered increased activity of the CD70 promoter. CD70 overexpression was also evidenced in mNSCLC patient tumor samples and was particularly enriched in SC, a lung cancer subtype associated with poor prognosis. In these tumors, CD70 expression was associated with decreased CD3+ and CD8+ T-cell infiltration and increased T-cell exhaustion markers. CONCLUSION Our results provide evidence on the pivotal roles of CD70 and ZEB1 in immune escape in mNSCLC, suggesting that EMT might promote cancer progression and metastasis by not only increasing cancer cell plasticity but also reprogramming the immune response in the local tumor microenvironment.
Collapse
Affiliation(s)
- Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.
| | - Aurélie Swalduz
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jean-Philippe Foy
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Solène Marteau
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Anne-Pierre Morel
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Frédérique Fauvet
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Geneviève De Souza
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Lucas Michon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maxime Boussageon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Research Pathology, Centre Léon Bérard, Lyon, France
| | - Marion Godefroy
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Sophie Léon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Antonin Tortereau
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Nour-El-Houda Mourksi
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marie Alexandra Albaret
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Béatrice Vanbervliet
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marie Robert
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Laurie Tonon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Roxane M Pommier
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte D'Azur, CHU de Nice, University Hospital Federation OncoAge, Nice, France
| | | | - Sandrine Boyault
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | | | | | | | - Qing Wang
- Genomics Platform, Centre Léon Bérard, Lyon, France
| | - Christine Ménétrier-Caux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Christophe Caux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte D'Azur, CHU de Nice, University Hospital Federation OncoAge, Nice, France
| | - Sylvie Lantuejoul
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France; Research Pathology, Centre Léon Bérard, Lyon, France
| | - Alain Puisieux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
16
|
Multimodality Treatment of Pulmonary Sarcomatoid Carcinoma: A Review of Current State of Art. JOURNAL OF ONCOLOGY 2022; 2022:8541157. [PMID: 35368903 PMCID: PMC8975648 DOI: 10.1155/2022/8541157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is an unconventional non-small-cell lung cancer (NSCLC) that is currently managed under guidelines used for conventional NSCLC and has poor survival. Surgery is the optimal choice for resectable PSC, and the prevalence of mutations in this type of tumor laid the foundation for novel systemic therapies such as targeted therapy and immunotherapy. PSC is resistant to chemotherapy and radiotherapy, and the effects of the 2 therapies are controversial. Targeted therapies have been reported to confer survival benefits, and savolitinib, an oral selective MET tyrosine-kinase inhibitor, has been approved in metastatic patients with MET exon 14 skipping mutations. Expression and positive rate of programmed death ligand 1 in PSC are high; our previous research has also revealed a high mutational burden and a T-cell-inflamed microenvironment of PSC. Correspondingly, immune checkpoint inhibitors have shown preliminary antitumor effects (overall response rates of 40.5% (15/37) and 31.6% (6/19) in two retrospective studies, respectively) in PSC patients. In summary, patients should receive operations at an early stage and multimodality treatments are needed to maximize the benefits of patients with advanced disease.
Collapse
|
17
|
Zhang X, Wang X, Jia L, Yang Y, Yang F, Xiao S. CtBP1 Mediates Hypoxia-Induced Sarcomatoid Transformation in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:57-67. [PMID: 35186805 PMCID: PMC8847960 DOI: 10.2147/jhc.s340471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Sarcomatoid hepatocellular carcinoma (sHCC), a highly aggressive subtype of hepatocellular carcinoma (HCC), mostly transforms from classical hepatocellular carcinoma (cHCC). The study intended to explore the role of C-terminal binding protein 1 (CtBP1) in sarcomatoid transformation of hepatocellular carcinoma. Methods Western blotting and/or immunohistochemistry were used to confirm the expression of CtBP1 and other proteins in HCC cells, xenografts and clinical tissue samples. CtBP1 shRNA-expressing lentivirus was used to infect HepG2 cells to construct CtBP1 knockdown cells. Cell migration was determined by scratch wound assays and Transwell assays. Immunofluorescence was used to label the a-tubulin cytoskeleton to evaluate cell morphology. HepG2 cells were inoculated subcutaneously in nude mice to construct xenografts and beneath the liver capsule to evaluate in vivo metastasis. Results Compared to that in the cHCC area, CtBP1 expression was significantly upregulated in the sHCC area, as shown by immunohistochemistry. HE staining showed that cells in the sHCC area were spindle-shaped, while those in the cHCC area were polygonal. Immunohistochemically, the epithelial markers pancytokeratin (CK) and E-cadherin were partially or completely lost, while the expression of the mesenchymal marker vimentin was upregulated in the sHCC area. Moreover, HepG2, an HCC cell line with high expression of CtBP1, autonomously underwent sarcomatoid transformation, showing a sarcomatoid morphology and phenotype. HIF1a expression was upregulated in epithelial cells adjacent to the sHCC area. Hypoxia upregulated CtBP1 protein expression and induced an EMT phenotype with increased migration and a spindle-shaped morphology in HepG2 cells. Knockdown of CtBP1 partially reversed the EMT phenotype induced by hypoxia. Silencing CtBP1 completely blocked the sarcomatoid transformation of subcutaneous xenografts and decreased lung metastasis in subcapsular xenografts of the liver in nude mice. Conclusion CtBP1 plays a key role in hypoxia-induced EMT and sarcomatoid transformation in HCC and could be a candidate target for the management of sHCC.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, Guilin, People’s Republic of China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin, People’s Republic of China
- Xiaoling Zhang, Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, No. 1, Zhiyuan Road, Guilin, Guangxi Province, 541100, People’s Republic of China, Email
| | - Xiaoyu Wang
- Department of Pathology, the Second Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Liting Jia
- Department of Pathology, Affiliated Hospital of Hebei Engineering University, Handan, People’s Republic of China
| | - Yang Yang
- Department of Pathology, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Fan Yang
- Department of Pathology, the Second Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Shengjun Xiao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin, People’s Republic of China
- Department of Pathology, the Second Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
- Department of Pathology, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
- Correspondence: Shengjun Xiao, Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, No. 212, Renmin Road, Guilin, Guangxi Province, 541199, People’s Republic of China, Email
| |
Collapse
|
18
|
Evaluation of connectivity map shows limited reproducibility in drug repositioning. Sci Rep 2021; 11:17624. [PMID: 34475469 PMCID: PMC8413422 DOI: 10.1038/s41598-021-97005-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
The Connectivity Map (CMap) is a popular resource designed for data-driven drug repositioning using a large transcriptomic compendium. However, evaluations of its performance are limited. We used two iterations of CMap (CMap 1 and 2) to assess their comparability and reliability. We queried CMap 2 with CMap 1-derived signatures, expecting CMap 2 would highly prioritize the queried compounds; the success rate was 17%. Analysis of previously published prioritizations yielded similar results. Low recall is caused by low differential expression (DE) reproducibility both between CMaps and within each CMap. DE strength was predictive of reproducibility, and is influenced by compound concentration and cell-line responsiveness. Reproducibility of CMap 2 sample expression levels was also lower than expected. We attempted to identify the "better" CMap by comparison with a third dataset, but they were mutually discordant. Our findings have implications for CMap usage and we suggest steps for investigators to limit false positives.
Collapse
|
19
|
Signore M, Alfonsi R, Federici G, Nanni S, Addario A, Bertuccini L, Aiello A, Di Pace AL, Sperduti I, Muto G, Giacobbe A, Collura D, Brunetto L, Simone G, Costantini M, Crinò L, Rossi S, Tabolacci C, Diociaiuti M, Merlino T, Gallucci M, Sentinelli S, Papalia R, De Maria R, Bonci D. Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death Dis 2021; 12:636. [PMID: 34155195 PMCID: PMC8215487 DOI: 10.1038/s41419-021-03909-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-β5, Survivin, TGF-β, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.
Collapse
Affiliation(s)
- Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Simona Nanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Aurora Aiello
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy
| | - Anna Laura Di Pace
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Alessandro Giacobbe
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Devis Collura
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Lidia Brunetto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Simone
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Manuela Costantini
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Lucio Crinò
- Department of Oncology, IRST-Meldola, Meldola, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Diociaiuti
- Department of Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tania Merlino
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy
| | | | | | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Désirée Bonci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy. .,IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
20
|
Shimizu S, Sakai K, Chikugo T, Satou T, Shiraishi N, Mitsudomi T, Nishio K. Integrin-linked kinase pathway in heterogeneous pulmonary sarcomatoid carcinoma. Oncol Lett 2021; 21:320. [PMID: 33692852 DOI: 10.3892/ol.2021.12582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is classified as poorly differentiated, and non-small cell lung carcinomas that contained a component of sarcoma or sarcoma-like differentiation are rare. The underlying carcinogenetic mechanism governing PSC remains unclear. The current study investigated the underlying carcinogenetic mechanism of PSC based on the hypothesis that it involves the epithelial-mesenchymal transition (EMT) process. Mutation analysis of PSCs, including carcinosarcoma, pleomorphic carcinoma and epithelial carcinoma specimens, was performed using targeted deep sequencing, whole transcriptome analysis and digital spatial profiling (DSP). PSCs exhibit a distinct mutation profile, with TP53, SYNE1 and APC mutations. Therefore, clustering of the gene expression profiles allowed the PSCs to be distinguished from the epithelial carcinomas. Increased gene expression of fibronectin in PSC was an important contributor to differential profiles. Pathway analysis revealed enhanced activity of the integrin-linked kinase (ILK) signaling pathway in the PSCs. DSP analysis using 56 antibodies of marker proteins confirmed significantly higher expression of fibronectin in PSCs. Intratumor heterogeneity of fibronectin expression was observed in sarcoma components. In conclusion, epithelial-mesenchymal transition process mediated by ILK signaling may be associated with carcinogenetic mechanisms of PSC. Overexpression of fibronectin mediated by ILK signaling appears to serve a role in the EMT involved in the PSC transformation process.
Collapse
Affiliation(s)
- Shigeki Shimizu
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Takaaki Chikugo
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-Sayama, Osaka 589-8511, Japan
| | - Takao Satou
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-Sayama, Osaka 589-8511, Japan
| | - Naoki Shiraishi
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
21
|
Yang H, Yao F, Davis PF, Tan ST, Hall SRR. CD73, Tumor Plasticity and Immune Evasion in Solid Cancers. Cancers (Basel) 2021; 13:cancers13020177. [PMID: 33430239 PMCID: PMC7825701 DOI: 10.3390/cancers13020177] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tumors are ecosystems composed of cancer cells and non-tumor stroma together in a hypoxic environment often described as wounds that do not heal. Accumulating data suggest that solid tumors hijack cellular plasticity possibly to evade detection by the immune system. CD73-mediated generation of the purine nucleoside adenosine, is an important biochemical constituent of the immunosuppressive tumor microenvironment. In this review, the association between CD73 expression and features associated with cellular plasticity involving stemness, epithelial-to-mesenchymal transition and metastasis together with immune infiltration is summarized for a wide range of solid tumor types. Our analyses demonstrate that CD73 correlates with signatures associated with cellular plasticity in solid tumors. In addition, there are strong associations between CD73 expression and type of infiltrating lymphocytes. Collectively, the observations suggest a biomarker-based stratification to identify CD73-adenosinergic rich tumors may help identify patients with solid cancers who will respond to a combinatorial strategy that includes targeting CD73. Abstract Regulatory networks controlling cellular plasticity, important during early development, can re-emerge after tissue injury and premalignant transformation. One such regulatory molecule is the cell surface ectoenzyme ecto-5′-nucleotidase that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine (eADO). Ecto-5′-nucleotidase (NT5E) or cluster of differentiation 73 (CD73), is an enzyme that is encoded by NT5E in humans. In normal tissue, CD73-mediated generation of eADO has important pleiotropic functions ranging from the promotion of cell growth and survival, to potent immunosuppression mediated through purinergic G protein-coupled adenosine receptors. Importantly, tumors also utilize several mechanisms mediated by CD73 to resist therapeutics and in particular, evade the host immune system, leading to undesired resistance to targeted therapy and immunotherapy. Tumor cell CD73 upregulation is associated with worse clinical outcomes in a variety of cancers. Emerging evidence indicates a link between tumor cell stemness with a limited host anti-tumor immune response. In this review, we provide an overview of a growing body of evidence supporting the pro-tumorigenic role of CD73 and adenosine signaling. We also discuss data that support a link between CD73 expression and tumor plasticity, contributing to dissemination as well as treatment resistance. Collectively, targeting CD73 may represent a novel treatment approach for solid cancers.
Collapse
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Sean R. R. Hall
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| |
Collapse
|
22
|
Genetic heterogeneity and predictive biomarker for pulmonary sarcomatoid carcinomas. Cancer Genet 2020; 250-251:12-19. [PMID: 33217678 DOI: 10.1016/j.cancergen.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study is to investigate the genetic heterogeneity (carcinomatous vs. sarcomatous components) and predictive biomarkers in patients with pulmonary sarcomatoid carcinoma (PSC). METHODS Genetic alterations and biomarkers of immunotherapy were performed in a discovery set (n = 6) of PSC. Next-generation sequencing (NGS) on a pan-cancer gene panel was applied to detect the genetic alterations in each component, and the respective mutation profiling and tumor mutation burden (TMB) were compared as well. Immunohistochemistry (IHC) assay with SP263 antibody was used to detect the protein expression of programmed death-ligand 1 (PD-L1) in each component. RESULTS Comparative genetic analysis revealed that the separate carcinomatous and sarcomatous components shared strikingly common mutations. TP53 (4/6, 66.7%) was the most common genetic alteration in 6 PSC patients. MET exon 14 skipping was detected in one case, accounting for 16.7%. An EZR-ROS1 fusion (EZR: intron10-ROS1: intron32) was identified in one case. The TMB of the two components was similar. Nevertheless, significantly higher PD-L1 expression was found in carcinomatous components compared to sarcomatous components. MDM2 amplification was detected in 2/6 (33.3%) of cases and STK11 mutation in 1/6 (16.7%) of cases. CONCLUSIONS PSC containing carcinomatous and sarcomatous components had a mild heterogeneity; the two components may evolve from common ancestral cells. High PD-L1 expression suggests that immunotherapy could be used as a potential therapy for PSC patients, while patients with negative immune-responsive genes need to be screened out. Altogether, these findings further highlight that the detection of genetic alteration and PD-L1 expression plays an important role in treatment of patients with PSC.
Collapse
|
23
|
Li X, Wu D, Liu H, Chen J. Pulmonary sarcomatoid carcinoma: progress, treatment and expectations. Ther Adv Med Oncol 2020; 12:1758835920950207. [PMID: 32922522 PMCID: PMC7450456 DOI: 10.1177/1758835920950207] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is a unique, highly invasive pulmonary malignancy with a poor prognosis, representing 0.1-0.4% of all malignant lung tumors. Because of its highly aggressive character and propensity for frequent metastasis, PSC shows low response rates to traditional treatments such as chemotherapy, radiotherapy, and neoadjuvant therapy. In recent years, considerable progress has been made in gene sequencing, targeted therapies, and immunotherapies. One of the most promising treatment approaches is the selection of mono-targeted or multi-targeted drugs according to tumor gene-mutation sites, such as epidermal growth factor receptor or vascular endothelial growth factor receptor 2 (EGFR/VEGFR2), anaplastic lymphoma kinase (ALK), and others. Another approach is the activation of therapeutic anti-tumor immunity via pathways including programmed cell-death protein-1/programmed cell-death ligand-1 (PD-1/PD-L1), which has been used in individual cases. In this review, we will introduce the clinicopathologic features, molecular typing, and traditional treatments. We will also review the biological characteristics and the latest therapies for PSC. These novel therapies show promise in the management of PSC, and the outcomes of investigative trials will hopefully reveal a variety of treatment options for patients with PSC.
Collapse
Affiliation(s)
- Xin Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Di Wu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Anshan Road no.154, Heping District, Tianjin 300052, China
| |
Collapse
|
24
|
Kong FW, Wang WM, Liu L, Wu WB, Wang X, Zhang M. First-line albumin-bound paclitaxel/carboplatin plus apatinib in advanced pulmonary sarcomatoid carcinoma: A case series and review of the literature. Medicine (Baltimore) 2020; 99:e20667. [PMID: 32502055 PMCID: PMC7306366 DOI: 10.1097/md.0000000000020667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Pulmonary sarcomatoid carcinoma (PSC) is an uncommon type of non-small cell lung cancer, exhibiting aggressive behavior and resistance to the conventional chemoradiotherapy. To date, the optimal treatment for PSC has not been elucidated. PATIENT CONCERNS Three male patients including a 69-year-old smoker (Case 1), a 45-year-old non-smoker (Case 2), and a 69-year-old smoker (Case 3) were admitted because of cough, back pain, and loss of body weight respectively. DIAGNOSES Radiographical examinations in these patients showed bulky intrathoracic lesions, which were pathologically diagnosed as PSC staging III-IV by computed tomography-guided percutaneous biopsy and endoscopy. INTERVENTIONS Immunotherapy was not covered by their health insurance and they refused immune checkpoint inhibitors for financial reasons. In addition, a radical resection was not appropriate due to the advanced staging of these lesions. Therefore, first-line albumin-bound paclitaxel (nab-paclitaxel, 260 mg/m of the body surface area) and carboplatin (area under curve 5) combined with oral apatinib (425 mg, daily) were administered empirically. OUTCOMES Two patients achieved a partial response and the other case showed stable disease lasting for more than 6 months. However, 1 of them indicated progression on the 7-month follow up. LESSONS Nab-paclitaxel/carboplatin plus apatinib showed limited short-term efficacy in advanced, unresectable PSC. The rapid resistance of PSC to the current therapeutic regimen necessitates further researches, as more effective agents are urgently needed.
Collapse
Affiliation(s)
- Feng-Wei Kong
- Department of General Surgery, Xuzhou Infectious Disease Hospital
| | - Wei-Min Wang
- Department of General Surgery, Xuzhou Infectious Disease Hospital
| | - Lei Liu
- Department of Gastroenterology, Yichang Central People's Hospital, Institute of Digestive Disease, China Three Gorges University, Yichang
| | - Wen-Bin Wu
- Department of Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Xiang Wang
- Department of Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Miao Zhang
- Department of Surgery, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
25
|
Rossi G, Nosseir S, Jocollé G, Sartori G, Banchelli I, Busetti S, Baldovini C. Infarct-Like Spindle Cell Carcinoma of the Lung: Clinicopathologic, Immunohistochemical, and Molecular Analysis of 4 Cases. Int J Surg Pathol 2020; 28:616-623. [PMID: 32188318 DOI: 10.1177/1066896920912471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pulmonary spindle cell carcinoma is a rare and aggressive malignancy that often mimics benign conditions. We report 4 cases that simulate a pulmonary infarction, 2 of which were misdiagnosed. Patients were 3 men and 1 woman, smokers, presenting chest pain. All cases appeared as pleural-based, solitary, and rounded nodules. Patients underwent wedge resections followed by adjuvant chemotherapy (3/4) but died of disease. At histology, lesions consisted of widely necrotic nodules surrounded by organizing fibrosis and pleuritis. Examination and immunostains with pan-cytokeratins and epithelial membrane antigen (EMA) revealed atypical spindle cells encircling necrotic tissue and involving the vascular wall. Positive staining with PD-L1 was noted. Molecular analysis showed KRAS (2/4) and TP53 (1/4) mutations, whereas EGFR, ALK, and ROS1 alterations were not detected. Although in a limited series, these cases further evidence the treacherous appearance of spindle cell carcinomas and the need for careful attention when examining pulmonary infarcted tissue, thus requiring extensive sampling, meticulous examination of vascular structures, and immunostaining with cytokeratins.
Collapse
Affiliation(s)
- Giulio Rossi
- Operative Unit of Pathologic Anatomy, AUSL della Romagna, "S. Maria delle Croci" Hospital, Ravenna, Italy
| | - Sofia Nosseir
- Operative Unit of Pathologic Anatomy, AUSL della Romagna, "S. Maria delle Croci" Hospital, Ravenna, Italy
| | - Genny Jocollé
- Operative Unit of Pathologic Anatomy, AUSL della Valle d'Aosta, "Parini" Regional Hospital, Aosta, Italy
| | - Giuliana Sartori
- Pathology Unit, AUSL/IRCSS di Reggio Emilia, "S. Maria Nuova" Hospital, Reggio Emilia, Italy
| | - Isabella Banchelli
- Operative Unit of Pathologic Anatomy, AUSL della Romagna, "S. Maria delle Croci" Hospital, Ravenna, Italy
| | | | - Chiara Baldovini
- Operative Unit of Pathologic Anatomy, AUSL della Romagna, "S. Maria delle Croci" Hospital, Ravenna, Italy
| |
Collapse
|
26
|
Liu T, Zhao X, Zheng X, Zheng Y, Dong X, Zhao N, Liao S, Sun B. The EMT transcription factor, Twist1, as a novel therapeutic target for pulmonary sarcomatoid carcinomas. Int J Oncol 2020; 56:750-760. [PMID: 32124963 PMCID: PMC7010216 DOI: 10.3892/ijo.2020.4972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Pulmonary sarcomatoid carcinomas (PSCs) are a rare subtype of non‑small‑cell lung cancer and are typically biphasic neoplasms. No effective treatment for PSCs is currently available in clinical practice. The expression of the epithelial‑mesenchymal transition (EMT) transcription factors, Twist1, Slug and Snail, as well as the EMT phenotype and vasculogenic mimicry (VM) were analysed in 41 PSC and 79 pulmonary squamous carcinoma (PSCC) samples. Compared with the PSCCs, the PSCs exhibited an EMT phenotype and VM, and they also exhibited an increased expression of the Twist1, Slug, Snail and VM markers. Twist1 expression was associated with metastasis and TNM stage. Twist1‑positive patients exhibited a poorer prognosis for overall survival (OS) than those with Twist1‑negative PSCs. Transforming growth factor β1 (TGFβ1) was used to induce an EMT transition in a PSCC cell line. SK‑MES‑1 cells treated with TGFβ1 exhibited an increased expression of Twist1. The EMT phenotype, VM and increased migratory and invasive abilities were induced following TGFβ1 treatment. Importantly, in cells treated with TGFβ1, the EMT phenotype was reversed, VM marker expression was decreased, and the migratory and invasive ability of the PSCC cell line was decreased following Twist1 knockdown. Collectively, this study provides a new perspective of Twist1 in the aggressiveness of PSCs. The identification of Twist1 as an independent marker of poor prognoses may lead to the development of novel strategies for improving the treatment of patients with PSC.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xu Zheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yanjun Zheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Shihan Liao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
27
|
Baldovini C, Rossi G, Ciarrocchi A. Approaches to Tumor Classification in Pulmonary Sarcomatoid Carcinoma. LUNG CANCER-TARGETS AND THERAPY 2019; 10:131-149. [PMID: 31824199 PMCID: PMC6901065 DOI: 10.2147/lctt.s186779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is a heterogeneous category of primary lung cancer accounting from 0.3% to 3% of all primary lung malignancies. According to the most recent 2015 World Health Organization (WHO) classification, PSC includes several different variants of malignant epithelial tumors (carcinomas) histologically mimicking sarcomas showing or entirely lacking a conventional component of non-small cell lung cancer (NSCLC). Thus, this rare subheading of lung neoplasms includes pleomorphic carcinoma, spindle cell carcinoma, giant cell carcinoma, pulmonary blastoma, and carcinosarcoma. A diagnosis of PSC may be suspected on small biopsy or cytology, but commonly requires a surgical resection to reach a conclusive definition. The majority of patients with PSC consists of elderly, smoking men with a large, peripheral mass characterized by well-defined margins. However, presentation with a central, polypoid endobronchial lesion is well-documented, particularly in pleomorphic carcinoma and carcinosarcoma showing a squamous cell carcinoma component. As expected, PSC may pose diagnostic problems and immunohistochemistry is largely used when pathologists deal these tumors in routine practice. Indeed, PSC tends to overexpress molecules associated with the epithelial-to-mesenchymal transition, such as vimentin, but the panel of immunostains also includes epithelial markers (cytokeratins, EMA), TTF-1, p40 and negative markers (e.g., melanocytic, mesothelial and sarcoma-related primary antibodies). Although rare, PSC has increased their interest among oncologist community for different reasons: a. identification of the epithelial-to-mesenchymal phenomenon as a major mechanism of secondary resistance to tyrosine kinase inhibitors; b. over-expression of PD-L1 and effective treatment with immunotherapy; c. identification of c-MET exon 14 skipping mutation representing an effective target to crizotinib and other specific inhibitors. In this review, the feasibility of the diagnosis of PSC, its differential diagnosis and novel molecular findings characterizing this group of lung tumor are discussed.
Collapse
Affiliation(s)
- Chiara Baldovini
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, Hospital S. Maria delle Croci, Ravenna, Italy
| | - Giulio Rossi
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, Hospital S. Maria delle Croci, Ravenna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia, Reggio Emilia 42123, Italy
| |
Collapse
|
28
|
Luminari S, Donati B, Casali M, Valli R, Santi R, Puccini B, Kovalchuk S, Ruffini A, Fama A, Berti V, Fragliasso V, Zanelli M, Vergoni F, Versari A, Rigacci L, Merli F, Ciarrocchi A. A Gene Expression-based Model to Predict Metabolic Response After Two Courses of ABVD in Hodgkin Lymphoma Patients. Clin Cancer Res 2019; 26:373-383. [PMID: 31645353 DOI: 10.1158/1078-0432.ccr-19-2356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/12/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Early response to ABVD, assessed with interim FDG-PET (iPET), is prognostic for classical Hodgkin lymphoma (cHL) and supports the use of response adapted therapy. The aim of this study was to identify a gene-expression profile on diagnostic biopsy to predict iPET positivity (iPET+). EXPERIMENTAL DESIGN Consecutive untreated patients with stage I-IV cHL who underwent iPET after two cycles of ABVD were identified. Expression of 770 immune-related genes was analyzed by digital expression profiling (NanoString Technology). iPET was centrally reviewed according to the five-point Deauville scale (DS 1-5). An iPET+ predictive model was derived by multivariate regression analysis and assessed in a validation set identified using the same inclusion criteria. RESULTS A training set of 121 and a validation set of 117 patients were identified, with 23 iPET+ cases in each group. Sixty-three (52.1%), 19 (15.7%), and 39 (32.2%) patients had stage I-II, III, and IV, respectively. Diagnostic biopsy of iPET+ cHLs showed transcriptional profile distinct from iPET-. Thirteen genes were stringently associated with iPET+. This signature comprises two functionally stromal-related nodes. Lymphocytes/monocytes ratio (LMR) was also associated to iPET+. In the training cohort a 5-gene/LMR integrated score predicted iPET+ [AUC, 0.88; 95% confidence interval (CI), 0.80-0.96]. The score achieved a 100% sensitivity to identify DS5 cases. Model performance was confirmed in the validation set (AUC, 0.68; 95% CI, 0.52-0.84). Finally, iPET score was higher in patients with event versus those without. CONCLUSIONS In cHL, iPET is associated with a genetic signature and can be predicted by applying an integrated gene-based model on the diagnostic biopsy.
Collapse
Affiliation(s)
- Stefano Luminari
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Riccardo Valli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | | | | | - Alessia Ruffini
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Gruppo Amici Dell'Ematologia Foundation_GrADE, Reggio Emilia, Italy
| | - Angelo Fama
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Annibale Versari
- Nuclear Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luigi Rigacci
- Hematology and Stem Cell Transplant AO San Camillo Forlanini, Roma, Italy
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
29
|
Rossi T, Pistoni M, Sancisi V, Gobbi G, Torricelli F, Donati B, Ribisi S, Gugnoni M, Ciarrocchi A. RAIN Is a Novel Enhancer-Associated lncRNA That Controls RUNX2 Expression and Promotes Breast and Thyroid Cancer. Mol Cancer Res 2019; 18:140-152. [PMID: 31624086 DOI: 10.1158/1541-7786.mcr-19-0564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
Enhancer (ENH)-associated long noncoding RNAs (lncRNA) are a peculiar class of RNAs produced by transcriptionally active ENHs, owning potential gene-regulatory function. Here, we characterized RAIN, a novel ENH-associated lncRNA. Analysis of RAIN expression in a retrospective cohort of human thyroid cancers showed that the expression of this lncRNA is restricted to cancer cells and strongly correlates with the expression of the cancer-promoting transcription factor RUNX2. We showed that RAIN, serving as a cis-regulatory element, promotes RUNX2 expression by two mechanisms. Binding WDR5 and facilitating its localization on the RUNX2 promoter, RAIN modifies the transcriptional status of the RUNX2 locus facilitating transcription initiation. In parallel, RAIN acts as decoy for negative elongation factor complex, restraining its inhibitory function on transcription elongation. In both thyroid and breast cancer cells, RAIN promotes oncogenic features. Using RNA-sequencing profiling, we showed that RAIN orchestrates the expression of a network of cancer-promoting transcription regulators, suggesting that RAIN affects cancer cell phenotype by coordinating the expression of a complex transcriptional network. IMPLICATIONS: Our data contribute to understand lncRNA function in gene regulation and to consolidate their role in cancer.
Collapse
Affiliation(s)
- Teresa Rossi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Salvatore Ribisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale (AUSL)-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
30
|
The diagnostic utility of zinc E-box 1 (ZEB1) transcription factor for identification of pulmonary sarcomatoid carcinoma in cytologic and surgical specimens. J Am Soc Cytopathol 2019; 9:55-61. [PMID: 31677963 DOI: 10.1016/j.jasc.2019.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Although uncommon, pulmonary sarcomatoid carcinoma carries a worse prognosis due to poor chemotherapeutic response. Currently, a histologic spindle and/or giant cell component indicates sarcomatoid differentiation, with zinc E-box binding homeobox 1 (ZEB1) implicated in promoting epithelial-mesenchymal transition. However, diagnostic use of ZEB1 in limited specimens, including cell block (CB) preparations, remains unclear. MATERIALS AND METHODS Pulmonary sarcomatoid (SARC, n = 15), typical (TC, n = 10) and atypical carcinoid (AC, n = 10), small cell (SCLC, n = 8) and large cell neuroendocrine carcinoma (LCNEC, n = 9), squamous cell carcinoma (SQ, n = 7), and adenocarcinoma (ADC, n = 7) CBs along with 69 SARCs, 20 TCs, 21 ACs, 9 SCLCs, 10 LCNECs, 71 SQs, 402 ADCs, 16 large cell carcinoma (LCC) and 17 other thoracic tumor (OT) surgical specimens between 2007 and 2018 were retrieved. ZEB1 (Sigma Aldrich, St. Louis, Mo and Novus Biological, Centennial, Colo) immunohistochemistry was graded 1+ to 3+, with ≥1+ and >5% staining considered positive. RESULTS Nuclear ZEB1 was seen in 80% SARC (12/15), 0% TC (0/10), 0% AC (0/10), 12.5% SCLC (1/8) and 11.1% LCNEC (1/9), 0% SQ (0/7), and 0% ADC (0/7) CBs. In surgical specimens, 75.4% SARCs (52/69), 0% TCs (0/20), 0% ACs (0/21), 11.1% SCLCs (1/9), 30% LCNECs (3/10), 0% SQs (0/71), 0.2% ADCs (1/402), 12.5% LCCs (2/16), and 11.8% OTs (2/17) demonstrated ZEB1. ZEB1 sensitivity and specificity in cytology and surgical specimens were 80% and 96.1%, and 75.4% and 98.1%, respectively. CONCLUSIONS ZEB1 is sensitive and highly specific for pulmonary sarcomatoid carcinoma in limited cytologic and surgical specimens. Diagnostic pitfalls include high-grade neuroendocrine tumors and large cell carcinoma, which are resolvable by morphologic considerations.
Collapse
|
31
|
Feng Y, Jiang Y, Wen T, Meng F, Shu X. Identifying Potential Prognostic Markers for Muscle-Invasive Bladder Urothelial Carcinoma by Weighted Gene Co-Expression Network Analysis. Pathol Oncol Res 2019; 26:1063-1072. [PMID: 31011911 DOI: 10.1007/s12253-019-00657-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Muscle-invasive bladder urothelial carcinoma (MIBC) is characterized as a genetic heterogeneous cancer with a high percentage of recurrence and worse prognosis. Identify the prognostic potentials of novel genes for muscle-invasive urothelial bladder cancer could at least provide important information for early detection and clinical treatment. Weighted gene co-expression network analysis (WGCNA) algorithm, a powerful systems biology approach, was utilized to extract co-expressed gene networks from mRNA expression dataset to construct transcriptional modules in MIBC samples, which was associated with demographic and clinical traits of MIBC patients. The potential prognostic markers of MIBC were screened out in the discovery dataset and verified in an independent external validation dataset. A total of 8 co-expression modules were detected through the WGCNA algorithm in the discovery datasets based on 401 MIBC samples. One transcriptional module enriched in cell development was observed to be correlated with the MIBC prognosis in the discovery datasets (HR = 1.48, 95%CI = 1.04-2.11) and independently verified in an external dataset (HR = 3.59, 95%CI = 1.09-11.79). High expression of hub genes including discoidin domain receptor tyrosine kinase 2 (DDR2), PDZ and LIM domain 3 (PDLIM3), zinc finger protein 521 (ZNF521), methionine sulfoxide reductase B3 (MSRB3) were significantly associated with the unfavorable survival of MIBC patients. We identified and validated four novel potential biomarkers associated with prognosis of MIBC patients by constructing genes co-expression networks. The discovery of these genetic markers may provide a new target for the development of MIBC chemotherapeutic drugs.
Collapse
Affiliation(s)
- Yueyi Feng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Yiqing Jiang
- Department of General Surgery, Harrison International Peace Hospital, Hengshui, 053000, China
| | - Tao Wen
- Medical Research Centre, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Fang Meng
- Centre of Systems Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China.
| | - Xiaochen Shu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
32
|
Whole transcriptome targeted gene quantification provides new insights on pulmonary sarcomatoid carcinomas. Sci Rep 2019; 9:3536. [PMID: 30837581 PMCID: PMC6401130 DOI: 10.1038/s41598-019-40016-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
Pulmonary sarcomatoid carcinomas (PSC) are a rare group of lung cancer with a median overall survival of 9–12 months. PSC are divided into five histotypes, challenging to diagnose and treat. The identification of PSC biomarkers is warranted, but PSC molecular profile remains to be defined. Herein, a targeted whole transcriptome analysis was performed on 14 PSC samples, evaluated also for the presence of the main oncogene mutations and rearrangements. PSC expression data were compared with transcriptome data of lung adenocarcinomas (LUAD) and squamous cell carcinomas (LUSC) from The Cancer Genome Atlas. Deregulated genes were used for pathway enrichment analysis; the most representative genes were tested by immunohistochemistry (IHC) in an independent cohort (30 PSC, 31 LUAD, 31 LUSC). All PSC cases were investigated for PD-L1 expression. Thirty-eight genes deregulated in PSC were identified, among these IGJ and SLMAP were confirmed by IHC. Moreover, Forkhead box signaling and Fanconi anemia pathways were specifically enriched in PSC. Finally, some PSC harboured alterations in genes targetable by tyrosine kinase inhibitors, as EGFR and MET. We provide a deep molecular characterization of PSC; the identification of specific molecular profiles, besides increasing our knowledge on PSC biology, might suggest new strategies to improve patients management.
Collapse
|