1
|
D'Alterio C, Rea G, Napolitano M, Coppola E, Spina A, Russo D, Azzaro R, Mignogna C, Scognamiglio G, Califano D, Arenare L, Schettino C, Pisano C, Cecere SC, Di Napoli M, Passarelli A, Perrone F, Pignata S, Scala S. Association of peripheral monocytic myeloid-derived suppressor cells with molecular subtypes in single-center endometrial cancer patients receiving carboplatin + paclitaxel/avelumab (MITO-END3 trial). Cancer Immunol Immunother 2025; 74:172. [PMID: 40244420 PMCID: PMC12006586 DOI: 10.1007/s00262-025-04021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
The MITO-END3 trial compared carboplatin and paclitaxel (CP) with avelumab plus carboplatin and paclitaxel (CPA) as first-line treatment in endometrial cancer (EC) patients and demonstrated a significant interaction between avelumab response and mismatch repair status. To investigate prognostic/predictive biomarker, 29 MITO-END3-EC patients were evaluated at pretreatment (B1) and at the end of CP/CPA treatment (B2) for peripheral myeloid-derived suppressor cells (MDSC) and Tregs. At B2, effector Tregs frequency was significantly higher in patients treated with CPA as compared to CP (p = 0.038). Both treatments (CP/CPA) induced significant decrease in peripheral M-MDSC (- 5.41%) in TCGA 2-MSI-high as compared to TCGA-category 4 tumors (p = 0.004). In accordance, both treatments induced M-MDSCs (+ 5.34%) in MSS patients as compared to MSI-high patients (p = 0.001). Moreover, in a subgroup of patients, primary tumors were highly infiltrated by M-MDSCs in MSS as compared to MSI-high ECs. A post hoc analysis displayed higher frequency of M-MDSCs (p = 0.020) and lower frequency of CD4+ (p < 0.005) at pretreatment in EC patients as compared to healthy donors. In conclusion, the peripheral evaluation of MDSCs and Tregs correlated with molecular features in EC treated with CP/CPA and may add insights in identifying EC patients responder to first-line chemo/chemo-immunotherapy.
Collapse
Affiliation(s)
- C D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - G Rea
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - M Napolitano
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - E Coppola
- Uro-Gynecology Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - A Spina
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - D Russo
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - R Azzaro
- Transfusion Medicine Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - C Mignogna
- Pathology, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - G Scognamiglio
- Pathology, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - D Califano
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - L Arenare
- Clinical Trial Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - C Schettino
- Clinical Trial Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - C Pisano
- Uro-Gynecology Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - S C Cecere
- Uro-Gynecology Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - M Di Napoli
- Uro-Gynecology Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - A Passarelli
- Uro-Gynecology Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - F Perrone
- Clinical Trial Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - S Pignata
- Uro-Gynecology Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - S Scala
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", Via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
2
|
Martin SD, Thornton S, Chow C, Milne K, de Barros JS, Morris KA, Leung S, Jamieson A, Nelson BH, Cochrane DR, Huntsman DG, Gilks CB, Hoang L, McAlpine JN, Zhang AW. Activated immune infiltrates expand opportunities for targeted therapy in p53-abnormal endometrial carcinoma. J Pathol 2025. [PMID: 40223796 DOI: 10.1002/path.6429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Tumor protein p53 mutated/abnormal (p53abn) endometrial carcinomas account for over 50% of deaths but comprise only 15% of all endometrial carcinomas. Most patients show limited response to standard-of-care chemotherapy with or without radiotherapy, and only a minority of cases are amenable to targeted therapies like poly-ADP ribose polymerase (PARP) inhibitors and HER2-directed therapies. Recent immunotherapy clinical trials have demonstrated remarkable efficacy, not only in mismatch repair deficient (MMRd) tumors but also in a subset of mismatch repair-proficient (MMRp) tumors. However, the immune microenvironment and its relationship to other therapeutic targets in MMRp endometrial carcinoma remains poorly understood. Here, we characterize the immune microenvironment of p53abn endometrial carcinoma, the most clinically aggressive subtype of MMRp endometrial carcinoma, and correlate antitumor immune signatures with other targetable alterations. We accrued 256 treatment-naïve p53abn endometrial carcinomas and systemically profiled T-cell, B-cell, myeloid, and tumor-cell populations with multiplex immunofluorescence to assess the tissue localization and functional status of immune cells. Shallow whole-genome sequencing was performed on a subset of 126 cases. Patterns of immune infiltration were compared to survival outcomes and mutational signatures. Mixture modeling divided p53abn endometrial carcinoma into tumor-infiltrating lymphocyte (TIL)-rich and TIL-poor subsets. Over 50% of tumors were TIL-rich. TIL-rich cases overexpressed targetable immune evasion molecules and were associated with longer overall and disease-specific survival in multivariate analysis. This effect was particularly pronounced in advanced stage disease and in patients who did not receive adjuvant chemotherapy. TIL did not associate with homologous recombination deficient mutational signatures or HER2 amplification. Our findings demonstrate a biological rationale for immunotherapy in a substantial subset of patients with p53abn endometrial cancer and may help inform combination therapies with immune checkpoint inhibition, PARP inhibitors, and anti-HER2 agents. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Spencer D Martin
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core (MAPcore), The University of British Columbia, Vancouver, Canada
| | - Christine Chow
- Molecular and Advanced Pathology Core (MAPcore), The University of British Columbia, Vancouver, Canada
| | - Katy Milne
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
| | - Juliana Sobral de Barros
- Department of Molecular Oncology, British Columbia Cancer Agency, The University of British Columbia, Vancouver, Canada
| | - Kayleigh A Morris
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
| | - Samuel Leung
- Department of Molecular Oncology, British Columbia Cancer Agency, The University of British Columbia, Vancouver, Canada
| | - Amy Jamieson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of British Columbia, Vancouver, Canada
| | - Brad H Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, The University of British Columbia, Vancouver, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Jessica N McAlpine
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of British Columbia, Vancouver, Canada
| | - Allen W Zhang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Meng X, Yang D, Jin H, Xu H, Lu J, Liu Z, Wang Z, Wang L, Yang Z. MRI-based radiomics model for predicting endometrial cancer with high tumor mutation burden. Abdom Radiol (NY) 2025; 50:1822-1830. [PMID: 39417854 DOI: 10.1007/s00261-024-04547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE To evaluate the performance of MRI-based radiomics in predicting endometrial cancer (EC) with a high tumor mutation burden (TMB-H). METHODS A total of 122 patients with pathologically confirmed EC (40 TMB-H, 82 non-TMB-H) were included in this retrospective study. Patients were randomly divided into training and testing cohorts in a ratio of 7:3. Radiomics features were extracted from sagittal T2-weighted images and contrast-enhanced T1-weighted images. Then, the logistic regression (LR), random forest (RF), and support vector machine (SVM) algorithms were used to construct radiomics models. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the diagnostic performance of each model, and decision curve analysis was used to determine their clinical application value. RESULTS Four radiomics features were selected to build the radiomics models. The three models had similar performance, achieving 0.771 (LR), 0.892 (RF), and 0.738 (SVM) in the training cohort, and 0.787 (LR), 0.798 (RF), and 0.777 (SVM) in the testing cohort. The decision curve demonstrated the good clinical application value of the LR model. CONCLUSIONS The MRI-based radiomics models demonstrated moderate predictive ability for TMB-H EC and thus may be a tool for preoperative, noninvasive prediction of TMB-H EC.
Collapse
Affiliation(s)
- Xuxu Meng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenhao Liu
- Department of Radiology, Affiliated Hospital of Changzhi Institute of Traditional Chinese Medicine, Changzhi, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lin Y, Lin Q, Guan Q, Chen D, Zhou Y, Li S. Immune cell infiltration as a prognostic factor in endometrial cancer: a meta-analysis. Am J Cancer Res 2025; 15:1335-1345. [PMID: 40226477 PMCID: PMC11982738 DOI: 10.62347/bxzm8857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025] Open
Abstract
The immune system's role in cancer development and progression is receiving increasing attention. Endometrial cancer, common gynecological malignancy, has exhibited promising responses to immunotherapies. This study aims to assess the prognostic significance of various immune cell subsets in endometrial cancer, focusing on potential novel biomarkers and therapeutic targets. A systematic literature review and meta-analysis were conducted. Eleven eligible studies, comprising 2,319 patients with endometrial cancer, were included. The primary outcome was the association between levels of immune cell types, particularly CD8+ T cells, and overall prognosis. The meta-analysis found that high levels of tumor-infiltrating lymphocytes (TILs), particularly CD8+ T cells, were significantly associated with better overall prognosis in endometrial cancer patients. These findings suggest that the tumor immune microenvironment plays a crucial role in endometrial cancer prognosis. This meta-analysis indicates that higher levels of CD8+ T cells in the tumor microenvironment are linked to improved prognosis in endometrial cancer, underscoring the immune system's potential in prognostication and therapy.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Qiaoming Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Qi Guan
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Danru Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Yan Zhou
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Sang Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| |
Collapse
|
5
|
Kaya M, Schaddelee MCA, Creutzberg CL, Kroep JR, Horeweg N. Efficacy of PD-(L)1 inhibition in the treatment of endometrial cancer across molecular classes: a systematic review and meta-analysis. Int J Gynecol Cancer 2025:101759. [PMID: 40199646 DOI: 10.1016/j.ijgc.2025.101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE PD-(L)1 inhibitors have shown benefit in mismatch repair-deficient (MMRd) endometrial cancer. However, their efficacy in mismatch repair-proficient endometrial cancer (comprising POLE-mutated (POLEmut), p53-abnormal (p53abn), and no-specific-molecular-profile (NSMP) molecular classes) remains unclear. This systematic review and meta-analysis evaluated the efficacy of PD-(L)1 inhibitors, as monotherapy or combined with chemotherapy, across the 4 molecular classes. METHODS Systematic searches were conducted across Embase, PubMed, Cochrane, and Web of Science, with manual searches of reference lists and conference websites. A total of 7 reports on 5 clinical trials were identified, with 3 included in the meta-analysis. Overall survival and progression-free survival were assessed. RESULTS In patients with primary advanced or recurrent MMRd endometrial cancer (n=215), adding a PD-(L)1 inhibitor to platinum-based chemotherapy significantly improved overall (HR 0.36, 95% CI 0.21 to 0.62) and progression-free survival (HR 0.35, 95% CI 0.23 to 0.53). In patients with p53abn endometrial cancer, no significant benefits in overall (HR 0.91, 95% CI 0.26 to 3.22; n=135) or progression-free survival (HR 0.84, 95% CI 0.41 to 1.70; n=326) were observed, but both were affected by significant heterogeneity. In patients with NSMP endometrial cancer, a significant benefit was observed for progression-free survival (HR 0.73, 95% CI 0.57 to 0.95; n=373), but no overall survival benefit (HR 0.93, 95% CI 0.63 to 1.39; n=242). Insufficient data were available for patients with POLEmut endometrial cancer (n=12), with no events reported in 2 of 3 clinical trials comprising the majority of patients (n=11). CONCLUSIONS PD-(L)1 inhibition demonstrated significant efficacy in patients with advanced or recurrent MMRd endometrial cancer. In NSMP endometrial cancer, adding a PD-(L)1 inhibitor to platinum-based chemotherapy showed potential benefit, whereas in p53abn endometrial cancer, such benefit was not found. POLEmut endometrial cancer, although rare in recurrent or metastatic settings, was associated with a favorable prognosis, regardless of treatment. These findings underscore the relevance of the molecular classification of endometrial cancer and highlight the importance of prioritizing molecular analyses in clinical trials to guide personalized PD-(L)1 inhibition strategies.
Collapse
Affiliation(s)
- Merve Kaya
- Leiden University Medical Center, Department of Medical Oncology, Leiden, The Netherlands
| | | | - Carien L Creutzberg
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, The Netherlands
| | - Judith R Kroep
- Leiden University Medical Center, Department of Medical Oncology, Leiden, The Netherlands
| | - Nanda Horeweg
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, The Netherlands.
| |
Collapse
|
6
|
Molefi T, Mabonga L, Hull R, Sebitloane M, Dlamini Z. From Genes to Clinical Practice: Exploring the Genomic Underpinnings of Endometrial Cancer. Cancers (Basel) 2025; 17:320. [PMID: 39858102 PMCID: PMC11763595 DOI: 10.3390/cancers17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Endometrial cancer (EC), a prevalent gynecological malignancy, presents significant challenges due to its genetic complexity and heterogeneity. The genomic landscape of EC is underpinned by genetic alterations, such as mutations in PTEN, PIK3CA, and ARID1A, and chromosomal abnormalities. The identification of molecular subtypes-POLE ultramutated, microsatellite instability (MSI), copy number low, and copy number high-illustrates the diverse genetic profiles within EC and underscores the need for subtype-specific therapeutic strategies. The integration of multi-omics technologies such as single-cell genomics and spatial transcriptomics has revolutionized our understanding and approach to studying EC and offers a holistic perspective that enhances the ability to identify novel biomarkers and therapeutic targets. The translation of these multi-omics findings into personalized medicine and precision oncology is increasingly feasible in clinical practice. Targeted therapies such as PI3K/AKT/mTOR inhibitors have demonstrated the potential for improved treatment efficacy tailored to specific genetic alterations. Despite these advancements, challenges persist in terms of variability in patient responses, the integration of genomic data into clinical workflows, and ethical considerations. This review explores the genomic underpinnings of EC, from genes to clinical practice. It highlights the ongoing need for multidisciplinary research and collaboration to address the complexities of EC and improve diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Thulo Molefi
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
- Department of Medical Oncology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lloyd Mabonga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| | - Motshedisi Sebitloane
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| |
Collapse
|
7
|
de Biase D, Lenzi J, Ceccarelli C, Maloberti T, Grillini M, Coadǎ CA, Zamagni C, De Iaco P, Perrone AM, Santini D, Köbel M, Lee CH, Tallini G, De Leo A. Spatial Cancer-Immune Phenotypes Predict Shorter Recurrence-Free Survival in the No Specific Molecular Profile Molecular Subtype of Endometrial Carcinoma. Mod Pathol 2025; 38:100624. [PMID: 39326496 DOI: 10.1016/j.modpat.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Compartmentation of the immune response into 3 main spatial cancer-immune phenotypes (SCIs) - inflamed, excluded, and desert - has been proposed as the main predictor of response to immune checkpoint inhibitors in solid tumors. The objective of the study was to define and characterize the SCI in a consecutive series of 213 endometrial carcinomas (ECs) by correlating it with molecular subtypes, clinicopathologic features, and prognosis. Immunohistochemistry (IHC) and next-generation sequencing were used to assign surrogate molecular EC subtypes: POLE mutant (POLE), mismatch repair deficient (MMRd), TP53 mutant (p53abn), and no specific molecular profile (NSMP). Immune cell markers (CD20, CD3, CD8, CD68, PD-L1) were assessed by IHC on whole sections and quantified by digital image analysis to define the 3 SCIs. ECs were stratified into 4 molecular subtypes: 17 (8.0%) POLE, 68 (31.9%) MMRd, 42 (19.7%) p53abn, and 86 (40.4%) NSMP. SCI determination showed 105 (49.3%) inflamed, 62 (29.1%) desert, and 46 (25.6%) excluded tumors. The inflamed phenotype was more prevalent in MMRd (64.7%) and POLE (76.5%) subtypes compared with NSMP (45.3%) and p53abn (21.4%). SCI revealed a strong correlation with disease-free survival in NSMP tumors: inflamed 96.2%, desert 83.2%, and excluded 40.5%. The SCI prognostic impact was also maintained in NSMP cases treated with adjuvant therapy resulting in a significant difference in recurrence between the inflamed and excluded phenotypes. To simplify SCI determination, a subset of immune cell markers was selected as appropriate to define the 3 SCI patterns: high intraepithelial CD8 for the inflamed phenotype; CD68, CD20, and PD-L1 to discriminate between desert and excluded tumors. The integration of SCI into molecular classification could be a promising opportunity to improve the prognostic risk stratification of patients and may guide the therapeutic approach, particularly in the NSMP subtype. Thus, the different patterns of immune response are a new prognostic parameter in the NSMP subtype.
Collapse
Affiliation(s)
- Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Jacopo Lenzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Ceccarelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Grillini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Camelia Alexandra Coadǎ
- Department of Morpho-functional Sciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Claudio Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierandrea De Iaco
- Division of Gynecologic Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Myriam Perrone
- Division of Gynecologic Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Donatella Santini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, AB, Canada
| | - Giovanni Tallini
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Antonio De Leo
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| |
Collapse
|
8
|
Chen LY, Chen HY, Lai HC, Lin SF, Wen KC, Darmawi, Liew PL. The expression of BHLHE22 in endometrial carcinoma: Associations with mismatch repair protein expression status, tumor-infiltrating immune cells, programmed death-ligand 1 and clinical outcomes. Taiwan J Obstet Gynecol 2025; 64:110-119. [PMID: 39794015 DOI: 10.1016/j.tjog.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE Endometrial cancer (EC) shows substantial heterogeneity in their immune microenvironment. BHLHE22 is consistently hypermethylated in EC and high expression of BHLHE22 is likely to be immunosuppressive in the tumor microenvironment. Herein, we evaluated expression of BHLHE22, programmed cell death ligand-1 (PD-L1), CD8, CD68 and mismatch repair proteins in EC. MATERIALS AND METHODS Immunohistochemistry on tissue microarray sections in primary EC to quantify BHLHE22, PD-L1, CD8 and CD68 was performed. The associations between the clinicopathological characteristics, mismatch repair status, and Kaplan-Meier analyses (including The Cancer Genome Atlas (TCGA) dataset) were analyzed. RESULTS Twenty-nine of 109 cases (26.6 %) had high BHLHE22 expression, which was associated with higher tumoral CD8, higher stromal CD68 and lower progesterone receptor (PR). Survival analysis of the TCGA dataset showed better overall survival in subgroups with high BHLHE22/high CD8, high BHLHE22/low M2 macrophage, and high BHLHE22/low myeloid-derived suppressor cell. The transcription start site region of BHLHE22 contained many predicted PR-binding elements. In EC cells, BHLHE22 expression increased with time after exposure to progesterone. Of the 115 ECs, 29 (25.2 %) had microsatellite instability. Mismatch repair-deficient ECs exhibited significantly more CD8-positive tumoral/stromal T lymphocytes and macrophages, and a higher percentage of PD-L1-positive immune cells occupying the tumor. Low expression of stromal CD8 and tumoral CD68 was associated with better overall survival. Overall survival did not differ significantly between patients with low or high PD-L1 expression. CONCLUSION Increased numbers of CD8-positive cytotoxic T lymphocytes, CD68-positive macrophages, and PD-L1-positive tumor/immune cells were observed in MMR-deficient EC. BHLHE22 expression was associated with the PR regulatory and immune-related pathways.
Collapse
Affiliation(s)
- Lin-Yu Chen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Hsing-Yu Chen
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shiou-Fu Lin
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Darmawi
- Graduate School in Biomedical Science, Faculty of Medicine, Unicersitas Riau, Pekanbaru, 28133, Indonesia; Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, 28133, Indonesia
| | - Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
9
|
Wang X, Guan J, Feng L, Li Q, Zhao L, Li Y, Ma R, Shi M, Han B, Hao G, Wang L, Li H, Wang X. A machine learning-based immune response signature to facilitate prognosis prediction in patients with endometrial cancer. Sci Rep 2024; 14:30801. [PMID: 39730507 DOI: 10.1038/s41598-024-81040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Endometrial cancer is the most prevalent form of gynecologic malignancy, with a significant surge in incidence among youngsters. Although the advent of the immunotherapy era has profoundly improved patient outcomes, not all patients benefit from immunotherapy; some patients experience hyperprogression while on immunotherapy. Hence, there is a pressing need to further delineate the distinct immune response profiles in patients with endometrial cancer to enhance prognosis prediction and facilitate the prediction of immunotherapeutic responses. The ssGSEA method was used to evaluate the activities of the immune response pathways in patients with endometrial cancer. Unsupervised clustering was employed to identify the different immune response patterns. WGCNA was employed to identify the genes that highly correlated with the immune response patterns observed. Ninety-five machine learning combinations were utilized to identify the optimal prognosis model and the novel biomarker, SLC38A3. Experiments such as cell invasion, migration, scratch, and in vivo tumorigenicity were performed to determine the function of SLC28A3. Molecular docking techniques were employed to determine the targeted action of periodate-oxidized adenosine on SLC38A3. Patients exhibited both immune response-suppressing C1 phenotypes and immune response-activating C2 phenotypes, with significant differences in prognosis between these two phenotypes. WGCNA identified 418 genes that highly correlated with the immune response phenotypes, of which 69 genes were associated with prognosis. The immune response-related score (IRRS) established by multiple machine learning frameworks demonstrated stability in predicting patient prognosis and immune status. High expression of SLC38A3 contributes to cellular malignant traits, and periodate-oxidized adenosine bound stably to SLC38A3. IRRS accurately predicts disease prognosis and immune status in patients with endometrial cancer. SLC38A3 serves as a prognostic marker for these patients and can be stably targeted by periodate-oxidized adenosine.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Jing Guan
- Department of Radiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Li Feng
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Qingxue Li
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Liwei Zhao
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Yue Li
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Ruixiao Ma
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Mengnan Shi
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Biaogang Han
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Guorong Hao
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Lina Wang
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Hui Li
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China.
| | - Xiuli Wang
- Department of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
10
|
McHenry A, Devereaux K, Ryan E, Chow S, Allard G, Ho CC, Suarez CJ, Folkins A, Yang E, Longacre TA, Charu V, Howitt BE. Molecular classification of metastatic and recurrent endometrial endometrioid carcinoma: prognostic relevance among low- and high-stage tumours. Histopathology 2024; 85:614-626. [PMID: 38859768 DOI: 10.1111/his.15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
AIMS Molecular classification according to The Cancer Genome Atlas (TCGA) improves endometrial endometrioid carcinoma (EEC) prognostication and has specific treatment implications; however, original data were skewed towards low-grade and low-stage tumours. Herein, we molecularly classify EECs metastatic at the time of diagnosis or with subsequently documented recurrent/metastatic disease to examine correlation with clinical outcomes. METHODS TCGA categories include POLE-mutated, microsatellite instability (MSI), p53 abnormal (p53 abnl) and no specific molecular profile (NSMP). POLE targeted sequencing at exons 9, 11, 13 and 14 and immunohistochemistry (IHC) for PMS2, MSH6 and p53 were performed to establish molecular classification. RESULTS The distribution in our cohort of 141 EECs was similar to that generally reported in EEC, with nine POLE-mutated (6%), 45 MSI (32%), 16 p53 abnl (11%) and 71 NSMP (50%), with similar distributions between low- and high-stage cohorts. We demonstrate that when stratified by molecular subtype, disease-specific survival from the time of high-stage (stages III-IV) presentation or time of recurrence in low-stage (stages I-II) disease among metastatic and/or recurrent EEC is strongly associated with TCGA classification (high-stage P = 0.02, low-stage P = 0.017). Discordant molecular classification between primary and metastatic/recurrent tumours occurred in four of 105 (3.8%) patients, two related to PMS2/MSH6 IHC and two related to p53 IHC. CONCLUSIONS We demonstrate that molecular classification is prognostically relevant not only at the time of diagnosis, but also at the time of recurrence and in the metastatic setting. Rare subclonal alterations occur and suggest a role for confirming TCGA classification in recurrent/metastatic tumours.
Collapse
Affiliation(s)
- Austin McHenry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Devereaux
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily Ryan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephanie Chow
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Chandler C Ho
- Molecular Pathology and Clinical Genomics, Stanford Health Care, Palo Alto, CA, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ann Folkins
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Teri A Longacre
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivek Charu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Yasuda M. New clinicopathological concept of endometrial carcinoma with integration of histological features and molecular profiles. Pathol Int 2024; 74:557-573. [PMID: 39175262 PMCID: PMC11551833 DOI: 10.1111/pin.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The dual-stratified pathway of endometrial carcinomas (ECs) has long been dominant. However, in 2013, The Cancer Genome Atlas (TCGA) defined four EC subgroups with distinctive prognoses. Inspired by TCGA, in 2018, the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) provided four pragmatic molecular classifiers to apply surrogate immunohistochemical markers to TCGA subgroup categorization. These trends prompted the revision of 2020 WHO Classification of Female Genital Tumors, 5th edition (2020 WHO classification), in which four molecular subtypes are recognized: POLE-ultramutated; mismatch repair-deficient; p53-mutant; and no specific molecular profile. In the 2020 WHO classification, the diagnostic algorithm is characterized by prioritizing POLEmut over other molecular abnormalities. Following the 2020 WHO classification, Federation of International Gynecology and Obstetrics (FIGO) proposed a new staging system in 2023. The updated system focuses on diagnostic parameters, such as histological type and grade, lymphovascular space invasion, and molecular alterations. These new histomolecular diagnostic concepts of ECs are being accordingly introduced into the routine pathology practice. For the first time, the 2020 WHO classification includes mesonephric-like adenocarcinoma (MLA) as a novel histological entity, mimicking the conventional mesonephric adenocarcinoma, but is considered of Müllerian ductal origin.
Collapse
Affiliation(s)
- Masanori Yasuda
- International Medical Center, Department of PathologySaitama Medical UniversitySaitamaJapan
| |
Collapse
|
12
|
Lee M, Jung W, Kang J, Lee KH, Lee SJ, Hong SH, Kang J, Lee A. Prognostic Significance of the Immune Microenvironment in Endometrial Cancer. J Transl Med 2024; 104:102126. [PMID: 39174007 DOI: 10.1016/j.labinv.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
This study used artificial intelligence (AI)-based analysis to investigate the immune microenvironment in endometrial cancer (EC). We aimed to evaluate the potential of AI-based immune metrics as prognostic biomarkers. In total, 296 cases with EC were classified into 4 molecular subtypes: polymerase epsilon ultramutated (POLEmut), mismatch repair deficiency (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP). AI-based methods were used to evaluate the following immune metrics: total tumor-infiltrating lymphocytes (TIL), intratumoral TIL, stromal TIL, and tumor cells using Lunit SCOPE IO, as well as CD4+, CD8+, and FOXP3+ T cells using immunohistochemistry (IHC) by QuPath. These 7 immune metrics were used to perform unsupervised clustering. PD-L1 22C3 IHC expression was also evaluated. Clustering analysis demonstrated 3 distinct immune microenvironment groups: immune active, immune desert, and tumor dominant. The immune-active group was highly prevalent in POLEmut, and it was also seen in other molecular subtypes. Although the immune-desert group was more frequent in NSMP and p53mut, it was also detected in MMRd and POLEmut. POLEmut showed the highest levels of CD4+ and CD8+ T cells, total TIL, intratumoral TIL, and stromal TIL with the lowest levels of FOXP3+/CD8+ ratio. In contrast, p53abn in the immune-active group showed higher FOXP3+/CD4+ and FOXP3+/CD8+ ratios. The immune-active group was associated with favorable overall survival and recurrence-free survival. In the NSMP subtype, a significant association was observed between immune active and better recurrence-free survival. The PD-L1 22C3 combined positive score (CPS) showed significant differences among the 3 groups, with the immune-active group having the highest median CPS and frequency of CPS ≥ 1%. The immune microenvironment of EC was variable within molecular subtypes. Within the same immune microenvironment group, significant differences in immune metrics and T cell composition were observed according to molecular subtype. AI-based immune microenvironment groups served as prognostic markers in ECs, with the immune-active group associated with favorable outcomes.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wonkyung Jung
- Department of Oncology, Lunit, Seoul, Republic of Korea
| | | | - Keun Ho Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Jong Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Hee Hong
- Division of Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Grau Bejar JF, Yaniz Galende E, Zeng Q, Genestie C, Rouleau E, de Bruyn M, Klein C, Le Formal A, Edmond E, Moreau M, Plat A, Gouy S, Maulard A, Pautier P, Michels J, Oaknin A, Colomba-Blameble E, Leary A. Immune predictors of response to immune checkpoint inhibitors in mismatch repair-deficient endometrial cancer. J Immunother Cancer 2024; 12:e009143. [PMID: 38955419 PMCID: PMC11218029 DOI: 10.1136/jitc-2024-009143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Patients with mismatch repair-deficient (MMRd) endometrial cancer (EC) can derive great benefit from immune checkpoint inhibitors (ICI). However not all responses and predictors of primary resistance are lacking. METHODS We compared the immune tumor microenvironment of MMRd EC ICI-responders (Rs) and ICI non-responders (NRs), using spatial multiplexed immune profiling and unsupervised hierarchical clustering analysis. RESULTS Overall, NRs exhibited drastically lower CD8+, absent terminally differentiated T cells, lack of mature tertiary lymphoid structures and dendritic cells, as well as loss of human leukocyte antigen class I. However, no single marker could predict R versus NR with confidence. Clustering analysis identified a combination of four immune features that demonstrated that accurately predicted ICI response, with a discriminative power of 92%. Finally, 80% of NRs lacked programmed death-ligand 1, however, 60% exhibited another actionable immune checkpoint (T-cell immunoglobulin and mucin containing protein-3, indoleamine 2,3-dioxygenase 1, or lymphocyte activation gene 3). CONCLUSIONS These findings underscore the potential of immune tumor microenvironment features for identifying patients with MMRd EC and primary resistance to ICI who should be oriented towards trials testing novel immunotherapeutic combinations.
Collapse
Affiliation(s)
- Juan Francisco Grau Bejar
- Gynecological Oncology Programme, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Elisa Yaniz Galende
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Qinghe Zeng
- Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
- Centre d'Histologie, Imagerie cellulaire et Cytométrie (CHIC), Centre de Recherche des Cordeliers, Centre de Recherche des Cordeliers, Paris, France
| | | | - Etienne Rouleau
- Department of Medical Biology and Pathology, Cancer Genetics Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Marco de Bruyn
- Obstetrics & Gynecology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Christophe Klein
- Centre d'Histologie, Imagerie cellulaire et Cytométrie (CHIC), Centre de Recherche des Cordeliers, Centre de Recherche des Cordeliers, Paris, France
| | - Audrey Le Formal
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Elodie Edmond
- Experimental and Translational Pathology Platform (PETRA), AMMICa Inserm US23/UAR CNRS 3655, Gustave Roussy Institute, Villejuif, France
| | - Maëva Moreau
- Department of Medical Biology and Pathology, Cancer Genetics Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Annechien Plat
- Obstetrics & Gynecology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Sebastien Gouy
- Department of Gynecologic Surgery, Department of Surgery, Gustave Roussy Institute, Villejuif, France
| | - Amandine Maulard
- Department of Gynecologic Surgery, Department of Surgery, Gustave Roussy Institute, Villejuif, France
| | - Patricia Pautier
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Judith Michels
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Ana Oaknin
- Gynecological Oncology Programme, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Emeline Colomba-Blameble
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Alexandra Leary
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
14
|
Chen M, Wang D, Xu Y, Yang C. Upregulation of sperm-associated antigen 5 expression in endometrial carcinoma was associated with poor prognosis and immune dysregulation, and promoted cell migration and invasion. Sci Rep 2024; 14:13415. [PMID: 38862557 PMCID: PMC11166665 DOI: 10.1038/s41598-024-64354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
Sperm-associated antigen 5 (SPAG5) regulates cancer cell invasion and is involved in the progression of many cancers. However, the role of SPAG5 in endometrial carcinoma (EC) is still unknown. The purpose of this study was to explore the role of SPAG5 in EC and its potential molecular mechanism. The UALCAN tool and cBioPortal were used to analyze the expression and alterations of SPAG5 in EC, respectively. OncoLnc was used for survival analysis. We analyzed the effects of SPAG5 on immune cell infiltration and the expression levels of immune checkpoints. We also overexpressed and knocked down SPAG5 in EC cells to explore the effect of SPAG5 regulation on migration, invasion, apoptosis, and the cell cycle of EC cells. We found that SPAG5 was overexpressed and the SPAG5 gene was often mutated in EC. High SPAG5 expression was significantly associated with poor overall survival in patients with EC. SPAG5 also affected the level of immune cell infiltration in the TIME and the expression of immune checkpoints lymphocyte activating 3 (LAG3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) in patients with EC. It may also be involved in the immunotherapy response in these patients. In vitro experiments showed that SPAG5 promotes cancer cell migration and invasion. In conclusion, this study lays the foundation for further understanding the molecular mechanisms of EC involving SPAG5 and contributes to diagnosing and managing this disease.
Collapse
Affiliation(s)
- Manru Chen
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Dan Wang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, China
| | - Yanyu Xu
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, China
| | - Chenggang Yang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, China.
- Department of Research and Development, Gu'an Bojian Bio-Technology Co., LTD, Langfang, China.
| |
Collapse
|
15
|
Guo J, Tang B, Fu J, Zhu X, Xie W, Wang N, Ding Z, Song Z, Yang Y, Xu G, Xiao X. High-plex spatial transcriptomic profiling reveals distinct immune components and the HLA class I/DNMT3A/CD8 modulatory axis in mismatch repair-deficient endometrial cancer. Cell Oncol (Dordr) 2024; 47:573-585. [PMID: 37847338 PMCID: PMC11090934 DOI: 10.1007/s13402-023-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
PURPOSE Tumors bearing mismatch repair deficiency (MMRd) are characterized by a high load of neoantigens and are believed to trigger immunogenic reactions upon immune checkpoint blockade treatment such as anti-PD-1/PD-L1 therapy. However, the mechanisms are still ill-defined, as multiple cancers with MMRd exhibit variable responses to immune checkpoint inhibitors (ICIs). In endometrial cancer (EC), a distinct tumor microenvironment (TME) exists that may correspond to treatment-related efficacies. We aimed to characterize EC patients with aberrant MMR pathways to identify molecular subtypes predisposed to respond to ICI therapies. METHODS We applied digital spatial profiling, a high-plex spatial transcriptomic approach covering over 1,800 genes, to obtain a highly resolved TME landscape in 45 MMRd-EC patients. We cross-validated multiple biomarkers identified using immunohistochemistry and multiplexed immunofluorescence using in-study and independent cohorts totaling 123 MMRd-EC patients and validated our findings using external TCGA data from microsatellite instability endometrial cancer (MSI-EC) patients. RESULTS High-plex spatial profiling identified a 14-gene signature in the MMRd tumor-enriched regions stratifying tumors into "hot", "intermediate" and "cold" groups according to their distinct immune profiles, a finding highly consistent with the corresponding CD8 + T-cell infiltration status. Our validation studies further corroborated an existing coregulatory network involving HLA class I and DNMT3A potentially bridged through dynamic crosstalk incorporating CCL5. CONCLUSION Our study confirmed the heterogeneous TME status within MMRd-ECs and showed that these ECs can be stratified based on potential biomarkers such as HLA class I, DNMT3A and CD8 in pathological settings for improved ICI therapeutic efficacy in this subset of patients.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Baijie Tang
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Fu
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuan Zhu
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Wenlong Xie
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Jinan, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Jinan, China
| | - Zhentao Song
- Mills Institute for Personalized Cancer Care, Jinan, China
| | - Yue Yang
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Xu
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Xiao
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
16
|
Mao M, Jiang F, Han R, Xiang Y. Identification of the prognostic immune subtype in copy-number high endometrial cancer. J Gynecol Oncol 2024; 35:e8. [PMID: 37857563 PMCID: PMC10792215 DOI: 10.3802/jgo.2024.35.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE The TCGA molecular subtype of endometrial cancer (EC) is widely applied, among which the copy-number high (CNH) subtype has the poorest prognosis. However, the heterogeneity of this subtype remains elusive. In this study, we aimed to identify heterogeneous immune subtypes in CNH EC and explore their prognostic significance. METHODS We collected 60 CNH EC cases in the TCGA database and performed unsupervised cluster analysis based on the enrichment scores of immune-related gene signatures to identify immune subtypes. We described their immune characteristics and prognoses and conducted differential gene analysis and lasso regression to identify a prognostic biomarker, GZMM. For experimental validation, we performed immunohistochemical staining of GZMM in 39 p53-positive EC surgical samples. RESULTS We defined two immune subtypes, immune-hot (IH) and immune-cold (IC), which differed in immune cell infiltration, cytokine and chemokine expression and prognosis. The IH subtype has significantly stronger immune activation than the IC subtype, showing a significant infiltration of immune effector cells and high expression of relevant chemokines, with better prognosis. Moreover, the immunohistochemical staining of GZMM in a cohort of 39 p53-positive EC surgical samples confirmed GZMM as a unique prognostic biomarker, with high expression in both tumor cells and lymphocytes predicting a better prognosis. CONCLUSION Our study revealed heterogeneous immune subtypes in CNH EC and identified GZMM as a prognostic biomarker. The stratified classification strategy combining molecular and immune subtypes provides valuable insights for future clinical practice.
Collapse
Affiliation(s)
- Mingyi Mao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Fang Jiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
17
|
Zhang L, Zhu Q, Zhao Q, Lin X, Song H, Liu H, Zhu G, Lu S, Cao B. Tumor-infiltrating immune cell score as an independent prognostic predictor for endometrial carcinoma: Insights from a comprehensive analysis of the immune landscape. Cancer Rep (Hoboken) 2024; 7:e1939. [PMID: 38017652 PMCID: PMC10809205 DOI: 10.1002/cnr2.1939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Immune cells are crucial components in the tumor microenvironment and have a significant impact on the outcomes of patients. AIMS Here, we aimed to establish a prognostic score based on different types of tumor-infiltrating immune cells for Endometrial Carcinoma (EC). METHODS AND RESULTS We enrolled and analyzed 516 EC patients from The Cancer Genome Atlas. The relative abundance of 22 immune cells were estimated by using the CIBERSORTx algorithm. Cox regression was performed to identify potential prognostic immune cells, which were used to develop a Tumor-infiltrating Immune Cell Score (TICS). The prognostic and incremental value of TICS for overall survival were compared with traditional prognostic factors using the C-index and decision curves. Clustering analysis using all immune cells identified three immune landscape subtypes, which had weak correlation with survival. A TICS was constructed using CD8T cells, resting memory CD4 T cells, activated NK and activated DCs, and classified patients as low-, moderate- and high-risk subgroups. The low-risk subgroup had higher tumor mutation burden and activation of IL2/STAT5, IL2/STAT3 and IFN-gamma response pathways. Conversely, the high-risk subgroup was associated with DNA copy number variation, hypoxia and EMT process. The TICS subgroups significantly predicted overall survival, which was independent of patient age, tumor stage, grade and molecular classification. Moreover, we developed a nomogram incorporating TICS and clinicopathologic factors, which significantly improved the predictive accuracy compared to the clinicopathologic model alone. CONCLUSION The TICS is an effective and independent prognostic predictor for EC patients and may serve as a useful supplement to clinicopathological factors and molecular subtyping.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Clinical Laboratory, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical CollegeChengdu Medical CollegeChengduChina
| | - Qiaoying Zhu
- Department of Clinical Laboratory, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical CollegeChengdu Medical CollegeChengduChina
| | - Qi Zhao
- Department of Biobank, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xueping Lin
- Department of Clinical Laboratory, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical CollegeChengdu Medical CollegeChengduChina
| | - Hui Song
- Department of Clinical Laboratory, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical CollegeChengdu Medical CollegeChengduChina
| | - Hong Liu
- Department of Gynecologic Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shun Lu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bangrong Cao
- Department of Biobank, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterUniversity of Electronic Science and Technology of ChinaChengduChina
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
18
|
Wang Y, Sun Y, Sun F, Han P, Fan R, Ren F. Comparison of clinical characteristics and prognosis between type I and type II endometrial cancer: a single-center retrospective study. Discov Oncol 2023; 14:211. [PMID: 37994955 PMCID: PMC10667178 DOI: 10.1007/s12672-023-00820-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVES To explore the differences in clinical characteristics, prognosis, and risk factors between type I and type II endometrial cancer (EC). MATERIALS AND METHODS We retrospectively collected EC patients diagnosed with type I or type II EC from 2009 to 2021 in the First Affiliated Hospital of Zhengzhou University. RESULTS In total, 606 eligible EC patients (396 type I, and 210 type II) were included. Baseline analyses revealed that type II patients were older, had more advanced clinical stage, were more likely to receive chemoradiotherapy, and had higher incidence of myometrial infiltration, cervix involvement, lymph node metastasis and positive ascites cytology. Type II significantly favored poorer overall survival (OS) (HR = 9.10, 95%CI 4.79-17.28, P < 0.001) and progression-free survival (PFS) (HR = 6.07, 95%CI 2.75-13.37, P < 0.001) compared to type I. For all included EC, univariate and multivariate COX analyses revealed age, myometrial infiltration and pathological type were independent risk factors for OS and PFS. Subgroup analyses identified age, menopause, clinical stage, and lymph node metastasis as independent risk factors for type I regarding OS. While age, myometrial infiltration and chemoradiotherapy were identified as risk and protective factors for type II regrading OS. Age and cervix involvement were identified as independent risk factors for type I regarding PFS. Myometrial infiltration was identified as independent risk factor for type II regarding PFS. CONCLUSION Type II patients shared different clinical characteristics and worse prognosis compared to type I, and their independent risk and protective factors also varied.
Collapse
Affiliation(s)
- Yuanpei Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pin Han
- Department of Obstetrics and Gynecology, Luoyang Maternal and Child Health Care Hospital, Luoyang, Henan, China
| | - Rujia Fan
- Department of Obstetrics and Gynecology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| | - Fang Ren
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Dey DK, Krause D, Rai R, Choudhary S, Dockery LE, Chandra V. The role and participation of immune cells in the endometrial tumor microenvironment. Pharmacol Ther 2023; 251:108526. [PMID: 37690483 DOI: 10.1016/j.pharmthera.2023.108526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
The tumor microenvironment is surrounded by blood vessels and consists of malignant, non-malignant, and immune cells, as well as signalling molecules, which primarily affect the therapeutic response and curative effects of drugs in clinical studies. Tumor-infiltrating immune cells participate in tumor progression, impact anticancer therapy, and eventually lead to the development of immune tolerance. Immunotherapy is evolving as a promising therapeutic intervention to stimulate and activate the immune system to suppress cancer cell growth. Endometrial cancer (EC) is an immunogenic disease, and in recent years, immunotherapy has shown benefit in the treatment of recurrent and advanced EC. This review discusses the key molecular pathways associated with the intra-tumoral immune response and the involvement of circulatory signalling molecules. Specific immunologic signatures in EC which offer targets for immunomodulating agents, are also discussed. We have summarized the available literature in support of using immunotherapy in EC. Lastly, we have also discussed ongoing clinical trials that may offer additional promising immunotherapy options in the future. The manuscript also explored innovative approaches for screening and identifying effective drugs, and to reduce the financial burdens for the development of personalized treatment strategies. Collectively, we aim to provide a comprehensive review of the role of immune cells and the tumor microenvironment in the development, progression, and treatment of EC.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Danielle Krause
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Swati Choudhary
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lauren E Dockery
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Vishal Chandra
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
20
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Zhang C, Wang M, Wu Y. Features of the immunosuppressive tumor microenvironment in endometrial cancer based on molecular subtype. Front Oncol 2023; 13:1278863. [PMID: 37927462 PMCID: PMC10622971 DOI: 10.3389/fonc.2023.1278863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Endometrial cancer (EC) is one of the three most prevalent gynecological tumors affecting women and is the most prevalent gynecological malignancy in the developed world. Its incidence is rapidly increasing worldwide, mostly affecting postmenopausal women, whereas recently its prevalence has increased in younger people. EC is an immune gene disease and many studies have shown that the tumor-immunosuppressive microenvironment plays an important role in cancer progression. In recent years, findings regarding the immunosuppressive tumor microenvironment (ITME) of EC have included immune evasion mechanisms and immunotherapy, which are mostly immune checkpoint inhibitors (ICI) for EC. Recently studies on the ITME of different molecular types of EC have found that different molecular types may have different ITME. With the research on the immune microenvironment of EC, a new immunophenotype classification based on the immune microenvironment has been carried out in recent years. However, the impact of the ITME on EC remains unclear, and the immunophenotype of EC remains limited to the research stage. Our review describes recent findings regarding the ITME features of different EC molecular types. The advent of immunotherapy has brought hope for improved efficacy and prognosis in patients with advanced or recurrent EC. The efficacy and safety of ICIs combination therapy remains the focus of future research.
Collapse
Affiliation(s)
- Chong Zhang
- Departments of Obstetrics, Beijing You’an Hospital of Capital Medical University, Beijing, China
| | - Ming Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
22
|
Hao Q, Wu H, Liu E, Wang L. BUB1, BUB1B, CCNA2, and CDCA8, along with miR-524-5p, as clinically relevant biomarkers for the diagnosis and treatment of endometrial carcinoma. BMC Cancer 2023; 23:995. [PMID: 37853361 PMCID: PMC10585751 DOI: 10.1186/s12885-023-11515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Endometrial carcinoma (EC) is a malignant tumor of the female reproductive tract that has been associated with increased morbidity and mortality. This study aimed to identify biomarkers and potential therapeutic targets for EC. METHODS A publicly available transcriptome data set comprising 587 EC cases was subjected to a comprehensive bioinformatics analysis to identify candidate genes responsible for EC occurrence and development. Next, we used clinical samples and cell experiments for validation. RESULTS A total of 1,617 differentially expressed genes (DEGs) were identified. Analysis of patient survival outcomes revealed that BUB1, BUB1B, CCNA2, and CDCA8 were correlated with prognosis in patients with EC. Moreover, assessment of clinical samples confirmed that BUB1, BUB1B, CCNA2 and CDCA8 were strongly expressed in EC tissues. Additionally, bioinformatics and luciferase reporter assays confirmed that miR-524-5p can target and regulate these four genes. Overexpression of miR-524-5p significantly inhibited EC Ishikawa cells viability, migration and invasion. Inhibition of miR-524-5p showed the opposite results. CONCLUSIONS Expression of miR-524-5p reduced the migration and invasion of Ishikawa EC cells, and decreased BUB1, BUB1B, CCNA2, and CDCA8 expression. miR-524-5p, as well as BUB1, BUB1B, CCNA2, and CDCA8, may be clinically relevant biomarkers for the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Qirong Hao
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongqin Wu
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Erniao Liu
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Lina Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
23
|
Mamat @ Yusof MN, Chew KT, Kampan NC, Shafiee MN. Expression of PD-1 and PD-L1 in Endometrial Cancer: Molecular and Clinical Significance. Int J Mol Sci 2023; 24:15233. [PMID: 37894913 PMCID: PMC10607163 DOI: 10.3390/ijms242015233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The landscape of diagnosing and treating endometrial cancer is undergoing a profound transformation due to the integration of molecular analysis and innovative therapeutic approaches. For several decades, the cornerstone treatments for endometrial cancer have included surgical resection, cytotoxic chemotherapy, hormonal therapy, and radiation therapy. However, in recent years, the concept of personalised medicine has gained momentum, reshaping the way clinicians approach cancer treatment. Tailoring treatments based on specific biomarkers has evolved into a standard practice in both initial and recurrent therapy protocols. This review aims to provide an in-depth exploration of the current state of molecular analysis and treatment strategies in the context of endometrial cancer, focusing on the immunological aspect of the PD-1/PD-L1 axis. Furthermore, it seeks to shed light on emerging and innovative approaches that hold promise for the future modulation of endometrial cancer treatments. In essence, as researchers delve into the complex molecular landscape of endometrial cancer and harness the understanding of the PD-1/PD-L1 axis, we are paving the way for more targeted, effective, and personalised therapies that have the potential to significantly improve the outcomes and quality of life for patients with this challenging disease.
Collapse
Affiliation(s)
| | | | | | - Mohamad Nasir Shafiee
- Gynaecologic-Oncology Unit, Department of Obstetrics and Gynaecology, Hospital Canselor Tuanku Muhriz, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
24
|
Heinze K, Cairns ES, Thornton S, Harris B, Milne K, Grube M, Meyer C, Karnezis AN, Fereday S, Garsed DW, Leung SC, Chiu DS, Moubarak M, Harter P, Heitz F, McAlpine JN, DeFazio A, Bowtell DD, Goode EL, Pike M, Ramus SJ, Pearce CL, Staebler A, Köbel M, Kommoss S, Talhouk A, Nelson BH, Anglesio MS. The Prognostic Effect of Immune Cell Infiltration Depends on Molecular Subtype in Endometrioid Ovarian Carcinomas. Clin Cancer Res 2023; 29:3471-3483. [PMID: 37339172 PMCID: PMC10472107 DOI: 10.1158/1078-0432.ccr-22-3815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Endometrioid ovarian carcinoma (ENOC) is the second most-common type of ovarian carcinoma, comprising 10%-20% of cases. Recently, the study of ENOC has benefitted from comparisons to endometrial carcinomas including defining ENOC with four prognostic molecular subtypes. Each subtype suggests differential mechanisms of progression, although tumor-initiating events remain elusive. There is evidence that the ovarian microenvironment may be critical to early lesion establishment and progression. However, while immune infiltrates have been well studied in high-grade serous ovarian carcinoma, studies in ENOC are limited. EXPERIMENTAL DESIGN We report on 210 ENOC, with clinical follow-up and molecular subtype annotation. Using multiplex IHC and immunofluorescence, we examine the prevalence of T-cell lineage, B-cell lineage, macrophages, and populations with programmed cell death protein 1 or programmed death-ligand 1 across subtypes of ENOC. RESULTS Immune cell infiltrates in tumor epithelium and stroma showed higher densities in ENOC subtypes with known high mutation burden (POLEmut and MMRd). While molecular subtypes were prognostically significant, immune infiltrates were not (overall survival P > 0.2). Analysis by molecular subtype revealed that immune cell density was prognostically significant in only the no specific molecular profile (NSMP) subtype, where immune infiltrates lacking B cells (TILB minus) had inferior outcome (disease-specific survival: HR, 4.0; 95% confidence interval, 1.1-14.7; P < 0.05). Similar to endometrial carcinomas, molecular subtype stratification was generally superior to immune response in predicting outcomes. CONCLUSIONS Subtype stratification is critical for better understanding of ENOC, in particular the distribution and prognostic significance of immune cell infiltrates. The role of B cells in the immune response within NSMP tumors warrants further study.
Collapse
Affiliation(s)
- Karolin Heinze
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan S. Cairns
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Bronwyn Harris
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Katy Milne
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Marcel Grube
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Charlotte Meyer
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Anthony N. Karnezis
- Department of Pathology and Laboratory, UC Davis Medical Center, Sacramento, California
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Samuel C.Y. Leung
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek S. Chiu
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Malak Moubarak
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Philipp Harter
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Florian Heitz
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
- Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jessica N. McAlpine
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ellen L. Goode
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, Minnesota
| | - Malcolm Pike
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Sydney, Australia
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
| | - C. Leigh Pearce
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Annette Staebler
- Institute of Pathology, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Köbel
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Aline Talhouk
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad H. Nelson
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
| | - Michael S. Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Sun B, Zhao N, Cheng Y, Wang J. A review of basic to clinical targeted therapy and immunotherapy in uterine serous cancer. Mol Biol Rep 2023; 50:6901-6912. [PMID: 37326746 DOI: 10.1007/s11033-023-08580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Uterine serous carcinomas show more frequent mutations of TP53, FBXW7, PIK3CA, and PP2R1A. Furthermore, cyclin-dependent kinase, human epidermal growth factor receptor 2, phosphatidylinositol 3-kinase/protein kinase B, and mammalian target of rapamycin signaling pathways are involved in uterine serous carcinoma progression. However, most patients with uterine serous carcinoma develop chemoresistance to paclitaxel and carboplatin. Moreover, uterine serous carcinoma shows immunosuppressive microenvironment with lower frequency of microsatellite instability. However, some clinical trials of human epidermal growth factor receptor 2/neu and WEE1 targeted therapies showed good effects in prolonging the survival in patients with uterine serous carcinoma. More effective targeted therapies and immunotherapies need to be developed in recurrent uterine serous carcinomas.
Collapse
Affiliation(s)
- Bowen Sun
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Na Zhao
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, China
| | - Yuan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
26
|
Tu M, Xu J. Advances in immunotherapy for gynecological malignancies. Crit Rev Oncol Hematol 2023:104063. [PMID: 37385307 DOI: 10.1016/j.critrevonc.2023.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
To date, surgery, chemotherapy and radiotherapy are mainly used to treat or remove gynecological malignancies. However, these approaches have their limitations when facing complicated female diseases such as advanced cervical and endometrial cancer (EC), chemotherapy-resistant gestational trophoblastic neoplasia and platinum-resistant ovarian cancer. Instead, immunotherapy, as an alternative, could significantly improve prognosis of those patients receiving traditional treatments, with better antitumor activities and possibly less cellular toxicities. Its' development is still not fast enough to meet the current clinical needs. More preclinical studies and larger-scale clinical trials are required. This review aims to introduce the landscape and up-to-date status of immunotherapy against gynecological malignancies, with a discussion of the challenges and future direction.
Collapse
Affiliation(s)
- Mengyan Tu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
27
|
Zhang G, Yin Z, Fang J, Wu A, Chen G, Cao K. Construction of the novel immune risk scoring system related to CD8 + T cells in uterine corpus endometrial carcinoma. Cancer Cell Int 2023; 23:124. [PMID: 37349706 DOI: 10.1186/s12935-023-02966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Uterine corpus endometrial carcinoma (UCEC) is a gynecological malignant tumor with high incidence and poor prognosis. Although immunotherapy has brought significant survival benefits to advanced UCEC patients, traditional evaluation indicators cannot accurately identify all potential beneficiaries of immunotherapy. Consequently, it is necessary to construct a new scoring system to predict patient prognosis and responsiveness of immunotherapy. METHODS CIBERSORT combined with weighted gene co-expression network analysis (WGCNA), non-negative matrix factorization (NMF), and random forest algorithms to screen the module associated with CD8+ T cells, and key genes related to prognosis were selected out by univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses to develop the novel immune risk score (NIRS). Kaplan-Meier (K-M) analysis was used to compare the difference of survival between high- and low- NIRS groups. We also explored the correlations between NIRS, immune infiltration and immunotherapy, and three external validation sets were used to verify the predictive performance of NIRS. Furthermore, clinical subgroup analysis, mutation analysis, differential expression of immune checkpoints, and drug sensitivity analysis were performed to generate individualized treatments for patients with different risk scores. Finally, gene set variation analysis (GSVA) was conducted to explore the biological functions of NIRS, and qRT-PCR was applied to verify the differential expressions of three trait genes at cellular and tissue levels. RESULTS Among the modules clustered by WGCNA, the magenta module was most positively associated with CD8+ T cells. Three genes (CTSW, CD3D and CD48) were selected to construct NIRS after multiple screening procedures. NIRS was confirmed as an independent prognostic factor of UCEC, and patients with high NIRS had significantly worse prognosis compared to those with low NIRS. The high NIRS group showed lower levels of infiltrated immune cells, gene mutations, and expression of multiple immune checkpoints, indicating reduced sensitivity to immunotherapy. Three module genes were identified as protective factors positively correlated with the level of CD8+ T cells. CONCLUSIONS In this study, we constructed NIRS as a novel predictive signature of UCEC. NIRS not only differentiates patients with distinct prognoses and immune responsiveness, but also guides their therapeutic regimens.
Collapse
Affiliation(s)
- Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Yin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Anshan Wu
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Guanjun Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
28
|
Lien HE, Berg HF, Halle MK, Trovik J, Haldorsen IS, Akslen LA, Krakstad C. Single-cell profiling of low-stage endometrial cancers identifies low epithelial vimentin expression as a marker of recurrent disease. EBioMedicine 2023; 92:104595. [PMID: 37146405 PMCID: PMC10277918 DOI: 10.1016/j.ebiom.2023.104595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Identification of aggressive low-stage endometrial cancers is challenging. So far, studies have failed to pinpoint robust features or biomarkers associated with risk of recurrence for these patients. METHODS Imaging mass cytometry was used to examine single-cell expression of 23 proteins in 36 primary FIGO IB endometrial cancers, of which 17 recurred. Single-cell information was extracted for each tumor and unsupervised clustering was used to identify cellular phenotypes. Distinct phenotypes and cellular neighborhoods were compared in relation to recurrence. Cellular differences were validated in a separate gene expression dataset and the TCGA EC dataset. Vimentin protein expression was evaluated by IHC in pre-operative samples from 518 patients to validate its robustness as a prognostic marker. FINDINGS The abundance of epithelial, immune or stromal cell types did not associate with recurrence. Clustering of patients based on tumor single cell marker expression revealed distinct patient clusters associated with outcome. A cell population neighboring CD8+ T cells, defined by vimentin, ER, and PR expressing epithelial cells, was more prevalent in non-recurrent tumors. Importantly, lower epithelial vimentin expression and lower gene expression of VIM associated with worse recurrence-free survival. Loss and low expression of vimentin was validated by IHC as a robust marker for recurrence in FIGO I stage disease and predicted poor prognosis also when including all patients and in endometrioid patients only. INTERPRETATION This study reveals distinct characteristics in low-stage tumors and points to vimentin as a clinically relevant marker that may aid in identifying a here to unidentified subgroup of high-risk patients. FUNDING A full list of funding that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Hilde E Lien
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Hege F Berg
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Mari K Halle
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Jone Trovik
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
29
|
Zhang Y, Lu H, Yu Y. ZAP70 interaction with 13 mRNAs as a potential immunotherapeutic target for endometrial cancer. Oncol Lett 2023; 25:213. [PMID: 37123018 PMCID: PMC10131270 DOI: 10.3892/ol.2023.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
For advanced, refractory endometrial cancer (EC), it is advisable to find effective immunotherapeutic targets. In the present study, genes affecting the immune status of uterine corpus endometrial carcinoma (UCEC) samples within The Cancer Genome Atlas were explored by weighted correlation network analysis and differential gene expression analysis. The protein function and immune correlation of 14 key genes, including ζ-chain-associated protein kinase 70 (ZAP70), were analyzed. Based on the expression levels of key genes, the patients with UCEC were divided into two groups using consensus clustering, low expression (group 1) and high expression (group 2). Next, the functions of differentially expressed genes (DEGs) between the two groups were identified using Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes analysis and Gene Set Enrichment Analysis. The immune status of the patients in the two groups was evaluated using immune infiltration score and the expression levels of targets of immune checkpoint inhibitors. The role of ZAP70 in the prognosis of patients with UCEC and the differences in ZAP70 expression between EC tissues and healthy intimal tissues were determined by reverse transcription-quantitative PCR and immunohistochemistry. The present study found strong correlations between key genes, including ZAP70, LCK, FOXP3, TIGIT, CTLA4, ICOS, CD5, IL2RG, PDCD1, TNFRSF4, CD27, CCR7, GZMB, CXCL9. From the enrichment analyses, it was found that the functions of these DEGs were related to T cells. Patients in group 2 had stronger immune infiltration and higher immune checkpoints expression compared with those in group 1. ZAP70 was expressed at higher levels in EC tissues compared with in normal tissues, and may act as a protective factor in EC. In conclusion, ZAP70 interaction with 13 mRNAs may affect the immune status of patients with EC and may be a potential target for immunotherapy.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Hai'ou Lu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
- Correspondence to: Professor Yuexin Yu, Department of Reproductive Medicine, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P.R. China, E-mail:
| |
Collapse
|
30
|
Dessources K, Ferrando L, Zhou QC, Iasonos A, Abu-Rustum NR, Reis-Filho JS, Riaz N, Zamarin D, Weigelt B. Impact of immune infiltration signatures on prognosis in endometrial carcinoma is dependent on the underlying molecular subtype. Gynecol Oncol 2023; 171:15-22. [PMID: 36804617 PMCID: PMC10040428 DOI: 10.1016/j.ygyno.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVES Increased numbers of tumor infiltrating lymphocytes (TIL) in endometrial cancer (EC) are associated with improved survival, but it is unclear how this prognostic significance relates to the underlying EC molecular subtype. In this explorative hypothesis-generating study, we sought to define the immune signatures associated with the molecular subtypes of EC (i.e., POLE-mutated, microsatellite unstable (MSI-high), copy number (CN)-low, and CN-high) and to determine their correlation with patient outcomes. METHODS RNA-sequencing and molecular subtype data of 232 primary ECs were obtained from The Cancer Genome Atlas. Deconvolution of bulk gene expression data was performed using single sample Gene Set Enrichment Analysis (ssGSEA) and Cell type Identification By Estimating Relative Subsets Of known RNA Transcripts (CIBERSORT). The association of the resultant immune signatures with overall survival was determined across molecular subtypes. RESULTS Statistically significant differences in enrichment were identified in 16/30 and 6/23 immune gene sets by ssGSEA and CIBERSORT, respectively. Signature of CD8+ cells in ECs of CN-high molecular subtype was associated with improved overall survival by ssGSEA (p = 0.0108), while CD8 signatures did not appear to be prognostic in MSI-high (p = 0.74) or CN-low EC molecular subtypes (p = 0.793). Of all molecular subtypes, CN-high ECs exhibited the lowest levels of CD8+ T cell infiltration. Consistent with antigen-induced T cell activation and exhaustion, enrichment for immunomodulatory receptors was predominantly observed in ECs of MSI-high and POLE-mutated molecular subtypes. CONCLUSIONS Deconvolution of bulk gene expression data can be used to identify populations of immune infiltrated endometrial cancers with improved survival. These data support the existence of unique mechanisms of immune resistance within molecular subgroups of the disease.
Collapse
Affiliation(s)
- Kimberly Dessources
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Ferrando
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Current address: IRCCS - Ospedale Policlinico San Martino, Genova, Italy
| | - Qin C Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Abstract
The pathological classification of endometrial carcinomas, one of the cornerstones in patient clinical management, has traditionally been based on morphologic features. However, this classification system does not fully reflect the biological diversity of endometrial carcinomas and has limited reproducibility. In the last decade, several studies have reported the strong prognostic value of the molecular endometrial carcinoma subgroups and, more recently, its potential to inform adjuvant treatment decisions. This has in turn resulted in a transition from a purely morphological classification towards an integrated histological and molecular system in the latest World Health Organization (WHO) classification of tumors of female reproductive organs. The new European treatment guidelines combine the molecular subgroups with traditional clinicopathological features in order to guide treatment decision-making. Accurate molecular subgroup assignment is therefore essential for adequate patient management. This review aims to address caveats and evolution of molecular techniques relevant in the implementation of the molecular endometrial carcinoma classification, as well as challenges in the integration of the molecular subgroups with traditional clinicopathological features.
Collapse
|
32
|
Zhang Y, Yang R, Xu C, Zhang Y, Deng M, Wu D, Tang F, Liu X, Han Y, Zhan Y, Miao J. Risk stratification and molecular heterogeneity of endometrial cancer and expression profile of TIM-3: A retrospective cohort study. Gynecol Oncol 2023; 170:210-220. [PMID: 36709662 DOI: 10.1016/j.ygyno.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The present study aimed to implement ProMisE classification and risk grouping on a retrospective cohort of 628 patients with endometrial cancer (EC) and determine the molecular heterogeneity across subtypes and subgroups, as well as to investigate the potential beneficiary for TIM-3 checkpoint inhibition in ECs. METHODS Protein expressions of p53, MMR, TIM-3 and CD8 were measured by immunohistochemistry, and massively parallel sequencing was conducted for 128 cancer-related genes. Patients were categorized into four ProMisE subtypes: MMR-deficient (MMRd), POLE-ultramutated (POLEmut), p53-wild type (p53wt), and p53-abnormal (p53abn), and were subjected to risk classification. RESULTS 43 (6.9%) patients belonged to POLEmut, 118 (18.8%) to MMRd, 69 (11%) to p53abn, and 398 (63.3%) to p53wt. Compared to the 2016 stratification system, the 2021 ESGO/ESTRO/ESP risk stratification integrated with molecular classification revealed that 11 patients (11/628, 1.8%) were upgraded due to the p53abn signature, whereas 23 patients (23/628, 3.7%) were downgraded due to the POLEmut signature. JAK1 and RAD50 mutations showed higher frequencies in patients with aggressive phenotypes. RAD51B mutation was significantly related to poor RFS of the p53wt subtype but not of the other three molecular subgroups. TIM-3 expression was detected in 30.9% immune cells (ICs) and 29.0% tumor cells (TCs) in ECs, respectively. It was frequently expressed in POLEmut and MMRd ECs as compared to that in the other two molecular subtypes in TCs and ICs. CONCLUSIONS Our study revealed the molecular heterogeneity across subtypes and subgroups. The new risk stratification system changed the risk grouping of some patients due to the integration of molecular features. RAD51B mutation can further stratify the recurrence risk in the p53wt subtype. Patients with MMRd or POLEmut may benefit most from immunotherapy against TIM-3.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruiye Yang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chunyu Xu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Mengqi Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Di Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fan Tang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xinyu Liu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yiding Han
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yang Zhan
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China.
| |
Collapse
|
33
|
Jamieson A, McAlpine JN. Molecular Profiling of Endometrial Cancer From TCGA to Clinical Practice. J Natl Compr Canc Netw 2023; 21:210-216. [PMID: 36791751 DOI: 10.6004/jnccn.2022.7096] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 02/17/2023]
Abstract
Molecular classification provides an objective, reproducible framework for categorization of endometrial cancers (ECs), informing prognosis and selection of therapy. Currently, the uptake of molecular classification, integration in to EC management algorithms, and enrollment in molecular subtype-specific clinical trials lags behind what it could be. Access to molecular testing is not uniform, and subsequent management (surgical, adjuvant therapy) is unacceptably variable. We are in the midst of a critical landscape change in this disease site, with increasing emphasis on the integration of molecular features in EC care that can potentially improve standard of care globally. This article summarizes the rationale for molecular classification of ECs, strategies for implementation in low and high resource settings, and actionable opportunities based on this information.
Collapse
Affiliation(s)
- Amy Jamieson
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, Canada
| | - Jessica N McAlpine
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
34
|
Jiang F, Jiang S, Cao D, Mao M, Xiang Y. Immunologic Signatures across Molecular Subtypes and Potential Biomarkers for Sub-Stratification in Endometrial Cancer. Int J Mol Sci 2023; 24:1791. [PMID: 36675305 PMCID: PMC9861911 DOI: 10.3390/ijms24021791] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Current molecular classification approaches for endometrial cancer (EC) often employ multiple testing platforms. Some subtypes still lack univocal prognostic significance, highlighting the need for risk sub-stratification. The tumor immune microenvironment (TIME) is associated with tumor progression and prognosis. We sought to investigate the feasibility of classifying EC via DNA sequencing and interrogate immunologic signatures and prognostic markers across and within subtypes, respectively. Formalin-fixed paraffin-embedding (FFPE) samples from 50 EC patients underwent targeted DNA and RNA sequencing, and multiplex immunofluorescence assay for TIME. DNA sequencing classified 10%, 20%, 52%, and 18% of patients into the subtype of POLE-mutant, microsatellite instability-high (MSI-H), TP53-wt, and TP53-mutant. POLE-mutant tumors expressed the highest T-effector and IFN-γ signature and the lowest innate anti-PD-1 resistance signature among subtypes. TP53-wt revealed a converse enrichment trend for these immunologic signatures. Survival analyses using the Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) dataset identified associations of CCR5 (hazard ratio (HR) = 0.71, p = 0.035), TNFRSF14 (HR = 0.58, p = 0.028), and IL-10 (HR = 2.5, p = 0.012) with overall survival within MSI-H, TP53-mutant, and TP53-wt subtype, respectively. A TIME comparison between the sub-stratified subgroups of our cohort revealed upregulated tumor infiltration of immune cells in the low-risk subgroups. Our study demonstrates that targeted DNA sequencing is an effective one-stop strategy to classify EC. Immunomodulatory genes may serve as prognostic markers within subtypes.
Collapse
Affiliation(s)
| | | | | | | | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China
| |
Collapse
|
35
|
Fan CT, Hsu ST, Sun L, Hwang SF, Liu CK, Shih YH, Chen MJ, Li HN, Wang JS, Wen MC, Lu CH. Improved Progression-Free Survival Associated with Tumor-Infiltrating Lymphocytes in High-Grade Endometrial Cancer. J Clin Med 2023; 12:jcm12020603. [PMID: 36675532 PMCID: PMC9860815 DOI: 10.3390/jcm12020603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have emerged as a prognostic marker in endometrial cancer (EC). However, the role of TILs in EC with distinct histology grades and molecular types (such as mismatch repair [MMR] deficiency) has not yet been made clear. We retrospectively included 237 patients with primary EC who underwent a standard staging operation of laparoscopic or laparotomy total hysterectomy and bilateral salpingo-oophorectomy for analyses. An independent pathologist who was blind to the study patients' information reviewed the pathologic slides to assess TILs according to the method introduced by the International Immuno-Oncology Biomarkers Working Group in 2017. The outcomes of interest included both progression-free survival (PFS) and overall survival (OS). The Kaplan-Meier method was used to determine the curves of PFS and OS according to TILs, and also in the relevant subgroups (low-grade vs. high-grade, MMR-proficient vs. MMR-deficient). After a median follow-up duration of 1.82 years, 18 patients had experienced either disease progression or death. Overall, TILs (+) were not associated with PFS or OS. We did observe, however, that TILs (+) were associated with a better PFS (p = 0.045) in patients with high-grade EC, but not in those with low-grade tumors (p = 0.733). The effect of TILs on PFS was not observed in patients with MMR-proficient (p = 0.347) or MMR-deficient (p = 0.168) EC. TILs were associated with a better PFS in patients with high-grade EC. Our results suggest that TILs may be a potential prognostic marker in these patients.
Collapse
Affiliation(s)
- Chun-Ting Fan
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Shih-Tien Hsu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Lou Sun
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Sheau-Feng Hwang
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chih-Ku Liu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Yu-Hsiang Shih
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Ming-Jer Chen
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Ni Li
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Jun-Sing Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Biomedical Sciences and Rong-Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung 40227, Taiwan
- Correspondence: (J.-S.W.); (M.-C.W.); (C.-H.L.)
| | - Mei-Chin Wen
- Division of Pathology, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan
- Correspondence: (J.-S.W.); (M.-C.W.); (C.-H.L.)
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Biomedical Sciences and Rong-Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung 40227, Taiwan
- Correspondence: (J.-S.W.); (M.-C.W.); (C.-H.L.)
| |
Collapse
|
36
|
Zheng G, Lu Y, Yang Z, Chen H, Liang Q, Zhu Q, Li Y, Xiao X, He Z, Zhu Y, Li B, Huang L, Dong N, Hu S, Pan Y, Zhang C, Zhu C. Immune desert in MMR-deficient tumors predicts poor responsiveness of immune checkpoint inhibition. Front Immunol 2023; 14:1142862. [PMID: 37187745 PMCID: PMC10175608 DOI: 10.3389/fimmu.2023.1142862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Although many efforts have been devoted to identify biomarkers to predict the responsiveness of immune checkpoint inhibitors, including expression of programmed death-ligand 1 (PD-L1) and major histocompatibility complex (MHC) I, microsatellite instability (MSI), mismatch repair (MMR) defect, tumor mutation burden (TMB), tertiary lymphoid structures (TLSs), and several transcriptional signatures, the sensitivity of these indicators remains to be further improved. Materials and methods Here, we integrated T-cell spatial distribution and intratumor transcriptional signals in predicting the response to immune checkpoint therapy in MMR-deficient tumors including tumors of Lynch syndrome (LS). Results In both cohorts, MMR-deficient tumors displayed personalized tumor immune signatures, including inflamed, immune excluded, and immune desert, which were not only individual-specific but also organ-specific. Furthermore, the immune desert tumor exhibited a more malignant phenotype characterized by low differentiation adenocarcinoma, larger tumor sizes, and higher metastasis rate. Moreover, the tumor immune signatures associated with distinct populations of infiltrating immune cells were comparable to TLSs and more sensitive than transcriptional signature gene expression profiles (GEPs) in immunotherapy prediction. Surprisingly, the tumor immune signatures might arise from the somatic mutations. Notably, patients with MMR deficiency had benefited from the typing of immune signatures and later immune checkpoint inhibition. Conclusion Our findings suggest that compared to PD-L1 expression, MMR, TMB, and GEPs, characterization of the tumor immune signatures in MMR-deficient tumors improves the efficiency of predicting the responsiveness of immune checkpoint inhibition.
Collapse
Affiliation(s)
- Guoxing Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
- *Correspondence: Guoxing Zheng, ; Chengming Zhu,
| | - Yingsi Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zheng Yang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
| | - Hong Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qian Liang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingqing Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xing Xiao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhuzhen He
- The Obstetrics, Shenzhen Amcare Maternity Hospital, Shenzhen, Guangdong, China
| | - Yifan Zhu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
| | - Leilei Huang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nan Dong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shuang Hu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
| | - Changhua Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
| | - Chengming Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
- *Correspondence: Guoxing Zheng, ; Chengming Zhu,
| |
Collapse
|
37
|
Jungen SH, Noti L, Christe L, Galvan JA, Zlobec I, Müller MD, Imboden S, Siegenthaler F, Carlson JW, Pellinen T, Heredia-Soto V, Ruz-Caracuel I, Hardisson D, Redondo A, Mendiola M, Rau TT. Spatial distribution of CD3- and CD8-positive lymphocytes as pretest for POLE wild-type in molecular subgroups of endometrial carcinoma. Front Med (Lausanne) 2023; 10:1110529. [PMID: 37035329 PMCID: PMC10076655 DOI: 10.3389/fmed.2023.1110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Over the years, the molecular classification of endometrial carcinoma has evolved significantly. Both POLEmut and MMRdef cases share tumor biological similarities like high tumor mutational burden and induce strong lymphatic reactions. While therefore use case scenarios for pretesting with tumor-infiltrating lymphocytes to replace molecular analysis did not show promising results, such testing may be warranted in cases where an inverse prediction, such as that of POLEwt, is being considered. For that reason we used a spatial digital pathology method to quantitatively examine CD3+ and CD8+ immune infiltrates in comparison to conventional histopathological parameters, prognostics and as potential pretest before molecular analysis. Methods We applied a four-color multiplex immunofluorescence assay for pan-cytokeratin, CD3, CD8, and DAPI on 252 endometrial carcinomas as testing and compared it to further 213 cases as validation cohort from a similar multiplexing assay. We quantitatively assessed immune infiltrates in microscopic distances within the carcinoma, in a close distance of 50 microns, and in more distant areas. Results Regarding prognostics, high CD3+ and CD8+ densities in intra-tumoral and close subregions pointed toward a favorable outcome. However, TCGA subtyping outperforms prognostication of CD3 and CD8 based parameters. Different CD3+ and CD8+ densities were significantly associated with the TCGA subgroups, but not consistently for histopathological parameter. In the testing cohort, intra-tumoral densities of less than 50 intra-tumoral CD8+ cells/mm2 were the most suitable parameter to assume a POLEwt, irrespective of an MMRdef, NSMP or p53abn background. An application to the validation cohort corroborates these findings with an overall sensitivity of 95.5%. Discussion Molecular confirmation of POLEmut cases remains the gold standard. Even if CD3+ and CD8+ cell densities appeared less prognostic than TCGA, low intra-tumoral CD8+ values predict a POLE wild-type at substantial percentage rates, but not vice versa. This inverse correlation might be useful to increase pretest probabilities in consecutive POLE testing. Molecular subtyping is currently not conducted in one-third of cases deemed low-risk based on conventional clinical and histopathological parameters. However, this percentage could potentially be increased to two-thirds by excluding sequencing of predicted POLE wild-type cases, which could be determined through precise quantification of intra-tumoral CD8+ cells.
Collapse
Affiliation(s)
| | - Luca Noti
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Lucine Christe
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Jose A. Galvan
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Michael D. Müller
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Sara Imboden
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Franziska Siegenthaler
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Joseph W. Carlson
- Karolinska Institutet, Klinisk Patologi KS, Solna, Sweden
- Keck School of Medicine of USC, Pathology, Health Sciences Campus, Los Angeles, CA, United States
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Victoria Heredia-Soto
- Instituto de Investigación Biomédica del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - David Hardisson
- Instituto de Investigación Biomédica del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pathology, Hospital Universitario La Paz, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andres Redondo
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Marta Mendiola
- Instituto de Investigación Biomédica del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Tilman T. Rau
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
- *Correspondence: Tilman T. Rau,
| |
Collapse
|
38
|
Palomero J, Panisello C, Lozano-Rabella M, Tirtakasuma R, Díaz-Gómez J, Grases D, Pasamar H, Arregui L, Dorca Duch E, Guerra Fernández E, Vivancos A, de Andrea CE, Melero I, Ponce J, Vidal A, Piulats JM, Matias-Guiu X, Gros A. Biomarkers of tumor-reactive CD4 + and CD8 + TILs associate with improved prognosis in endometrial cancer. J Immunother Cancer 2022; 10:jitc-2022-005443. [PMID: 36581331 PMCID: PMC9806064 DOI: 10.1136/jitc-2022-005443] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Despite the growing interest in immunotherapeutic interventions for endometrial cancer (EC), the prevalence, phenotype, specificity and prognostic value of tumor infiltrating lymphocytes (TILs) in this tumor type remains unclear. METHODS To better understand the role of TILs in EC, we analyzed the phenotypic traits of CD8+ and CD4+ EC-resident T cells from 47 primary tumors by high-dimensional flow cytometry. In addition, CD8+ and CD4+ TIL subpopulations were isolated based on the differential expression of programmed cell death protein-1 (PD-1) (negative, dim and high) and CD39 (positive or negative) by fluorescence activated cell sorting (FACS), expanded in vitro, and screened for autologous tumor recognition. We further investigated whether phenotypic markers preferentially expressed on CD8+ and CD4+ tumor-reactive TIL subsets were associated with the four distinct molecular subtypes of EC, tumor mutational burden and patient survival. RESULTS We found that CD8+TILs expressing high levels of PD-1 (PD-1hi) co-expressed CD39, TIM-3, HLA-DR and CXCL13, as compared with TILs lacking or displaying intermediate levels of PD-1 expression (PD-1- and PD-1dim, respectively). Autologous tumor reactivity of sorted and in vitro expanded CD8+ TILs demonstrated that the CD8+PD-1dimCD39+ and PD-1hiCD39+ T cell subsets both contained tumor-reactive TILs and that a higher level of PD-1 expression was associated with increased CD39 and a superior frequency of tumor reactivity. With respect to CD4+ T conventional (Tconv) TILs, co-expression of inhibitory and activation markers was more apparent on PD-1hi compared with PD-1- or PD-1dim T cells, and in fact, it was the CD4+PD-1hi subpopulation that accumulated the antitumor T cells irrespective of CD39 expression. Most importantly, detection of CD8+PD-1hiCD39+ and CD4+PD-1hi tumor-reactive T-cell subsets, but also markers specifically expressed by these subpopulations of TILs, that is, PD-1hi, CD39, CXCL13 and CD103 by CD8+ TILs and PD-1hi and CXCL13 by CD4+ Tconv TILs, correlated with prolonged survival of patients with EC. CONCLUSIONS Our results demonstrate that EC are frequently infiltrated by tumor-reactive TILs, and that expression of PD-1hi and CD39 or PD-1hi can be used to select and expand CD8+ and CD4+ tumor-reactive TILs, respectively. In addition, biomarkers preferentially expressed on tumor-reactive TILs, rather than the frequency of CD3+, CD8+ and CD4+ lymphocytes, hold prognostic value suggesting their protective role in antitumor immunity.
Collapse
Affiliation(s)
- Jara Palomero
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carla Panisello
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Lozano-Rabella
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ricky Tirtakasuma
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Judit Díaz-Gómez
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Daniela Grases
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Helena Pasamar
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Arregui
- HUB-ICO-IDIBELL Biobank, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Eduard Dorca Duch
- Pathology, Bellvitge University Hospital, IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Ana Vivancos
- Cancer Genomics, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carlos E de Andrea
- Pathology, Clinica Universidad de Navarra, Pamplona, Spain,Centro de Investigación Biomedica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Centro de Investigación Biomedica en Red de Cáncer (CIBERONC), Madrid, Spain,Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research IDISNA, Pamplona, Spain
| | - Jordi Ponce
- Department of Gynaecology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - August Vidal
- Pathology, Bellvitge University Hospital, IDIBELL, L'Hospitalet de Llobregat, Spain,Centro de Investigación Biomedica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Josep Maria Piulats
- Medical Oncology, Catalan Institute of Oncology (ICO), IDIBELL-OncoBell, L'Hospitalet de Llobregat, Spain
| | - Xavier Matias-Guiu
- Pathology, Bellvitge University Hospital, IDIBELL, L'Hospitalet de Llobregat, Spain,Centro de Investigación Biomedica en Red de Cáncer (CIBERONC), Madrid, Spain,Pathology, Arnau de Vilanova University Hospital, University of LLeida, IRBLLEIDA, Lleida, Spain
| | - Alena Gros
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
39
|
Targeted Therapies in the Treatment of Uterine Serous Carcinoma. Curr Treat Options Oncol 2022; 23:1804-1817. [PMID: 36447064 DOI: 10.1007/s11864-022-01030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/05/2022]
Abstract
OPINION STATEMENT Despite the dismal prognosis of uterine serous carcinoma (USC), recent advances in molecular classification and targeted treatments have demonstrated improvements in survival outcomes for patients both in the upfront and recurrent treatment settings. After appropriate surgical staging and surgical cytoreduction as indicated, correct pathologic and molecular classification of USC is important to provide the most appropriate systemic adjuvant treatment. HER2-targeted agents are one of the most important advances in the treatment of USC in decades. Thus, for HER2-positive tumors, the addition of trastuzumab to conventional chemotherapy is indicated in those with advanced stage and/or recurrent disease. Treatment with pembrolizumab and lenvatinib suggests a 50% response rate in women with recurrent disease which serves as a promising targeted treatment strategy. Overall, emerging targeted therapeutic options with antibody-drug conjugates (i.e. targeting HER2, folic acid receptor alpha, or Trop-2), combinations of immunotherapies and tyrosine kinase inhibitors, PARP inhibitors, WEE1 inhibitors, and AKT inhibitors shed further promise in advancements of effective disease-modifying treatments for this unmet medical need for patients with USC. Several trials evaluating these targeted agents are ongoing, and those results are eagerly awaited. As such, enrollment of patients in clinical trials is highly recommended as it will provide patients with a higher level of personalized cancer care.
Collapse
|
40
|
Chen H, Molberg K, Carrick K, Niu S, Rivera Colon G, Gwin K, Lewis C, Zheng W, Castrillon DH, Lucas E. Prevalence and prognostic significance of PD-L1, TIM-3 and B7-H3 expression in endometrial serous carcinoma. Mod Pathol 2022; 35:1955-1965. [PMID: 35804040 DOI: 10.1038/s41379-022-01131-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Endometrial serous carcinoma (ESC) is an aggressive type of endometrial carcinoma with a poor prognosis. Immune checkpoint blockade has evolved as a novel treatment option for endometrial cancers; however, data on expression of immune checkpoints that may be potential targets for immunotherapy in ESC are limited. We analyzed the prevalence and prognostic significance of PD-L1, TIM-3 and B7-H3 immune checkpoints in 99 ESC and evaluated their correlation with CD8 + tumor infiltrating lymphocytes. Applying the tumor proportion score (TPS) with a cutoff of 1%, PD-L1, TIM-3 and B7-H3 expression was present in 17%, 10% and 93% of cases, respectively. Applying the combined positive score (CPS) with a cutoff of 1, PD-L1, TIM-3 and B7-H3 expression was present in 63%, 67% and 94% of cases, respectively. Expression of these markers was largely independent of one another. PD-L1 correlated with higher CD8 + T-cell density when evaluated by either TPS (p = 0.02) or CPS (p < 0.0001). TIM-3 correlated with CD8 + T-cell density when evaluated by CPS (p < 0.0001). PD-L1 positivity was associated with improved overall survival (p = 0.038) when applying CPS. No association between PD-L1 expression and survival was found using TPS, and there was no association between TIM-3 or B7-H3 positivity and survival by either TPS or CPS. Using TPS, PD-L1 correlated with a higher tumor stage but not with survival, whereas the converse was true when PD-L1 was evaluated by CPS, suggesting that PD-L1 expression in immune cells correlates with prognosis and is independent of tumor stage. In conclusion, PD-L1, TIM-3 and B7-H3 may be potential therapeutic targets in selected patients with ESC. Further investigation of their roles as predictive biomarkers is needed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Kyle Molberg
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Kelley Carrick
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Shuang Niu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Glorimar Rivera Colon
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Katja Gwin
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wenxin Zheng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diego H Castrillon
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Elena Lucas
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Pathology, Parkland Hospital, Dallas, TX, 75235, USA. .,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
41
|
Devereaux KA, Steiner DF, Ho C, Gomez AJ, Gilks B, Longacre TA, Zehnder JL, Howitt BE, Suarez CJ. A Multiplex SNaPshot Assay is a Rapid and Cost-Effective Method for Detecting POLE Exonuclease Domain Mutations in Endometrial Carcinoma. Int J Gynecol Pathol 2022; 41:541-551. [PMID: 34907997 DOI: 10.1097/pgp.0000000000000841] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Determining the replicative DNA polymerase epsilon ( POLE) mutation status in endometrial carcinomas (ECs) has important clinical implications given that the majority of "ultramutated" tumors harboring pathogenic exonuclease domain mutations in POLE ( POLE mut) have a favorable prognosis, even among high-grade histotypes. Currently, there are no specific morphologic or immunophenotypic features that allow accurate detection of POLE mut tumors without molecular testing. Consequently, identifying POLE mut tumors has been challenging without employing costly and/or time-consuming DNA sequencing approaches. Here we developed a novel SNaPshot assay to facilitate routine and efficient POLE mutation testing in EC. The SNaPshot assay interrogates 15 nucleotide sites within exons 9, 11, 13, and 14 encoding the POLE exonuclease domain. The variant sites were selected based on recurrence, evidence of functional impact, association with high tumor mutation burden and/or detection in EC clinical outcome studies. Based on the pathogenic somatic variants reported in the literature, the assay is predicted to have a clinical sensitivity of 90% to 95% for ECs. Validation studies showed 100% specificity and sensitivity for the variants covered, with expected genotypic results for both the positive (n=11) and negative (n=20) patient controls on multiple repeat tests and dilution series. Analytic sensitivity was conservatively approximated at a 10% variant allele fraction (VAF), with documented detection as low as 5% VAF. As expected, the SNaPshot assay demonstrated greater sensitivity than Sanger sequencing for VAFs below 20%, an important characteristic for somatic mutation detection. Here we have developed and validated the first SNaPshot assay to detect hotspot POLE mutations. While next-generation sequencing and Sanger sequencing-based approaches have also been used to detect POLE mutations, a SNaPshot approach provides useful balance of analytical sensitivity, cost-effectiveness, and efficiency in a high-volume case load setting.
Collapse
|
42
|
Arciuolo D, Travaglino A, Raffone A, Raimondo D, Santoro A, Russo D, Varricchio S, Casadio P, Inzani F, Seracchioli R, Mollo A, Mascolo M, Zannoni GF. TCGA Molecular Prognostic Groups of Endometrial Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911684. [PMID: 36232987 PMCID: PMC9569906 DOI: 10.3390/ijms231911684] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
The four TCGA-based molecular prognostic groups of endometrial carcinoma (EC), i.e., POLE-mutant, mismatch repair (MMR)-deficient, p53-abnormal, and “no specific molecular profile” (NSMP), have recently been integrated into ESGO-ESTRO-ESP guidelines. The POLE-mutant and MMR-deficient groups are associated with high mutational load, morphological heterogeneity, and inflammatory infiltration. These groups are frequent in high-grade endometrioid, undifferentiated/dedifferentiated, and mixed histotypes. POLE-mutant ECs show good prognosis and do not require adjuvant treatment, although the management of cases at stage >II is still undefined. MMR-deficient ECs show intermediate prognosis and are currently substratified based on clinicopathological variables, some of which might not have prognostic value. These groups may benefit from immunotherapy. P53-mutant ECs are typically high-grade and often morphologically ambiguous, accounting for virtually all serous ECs, most carcinosarcomas and mixed ECs, and half of clear-cell ECs. They show poor prognosis and are treated with chemoradiotherapy; a subset may benefit from HER2 inhibitors or PARP inhibitors. The NSMP group is the most frequent TCGA group; its prognosis is highly variable and affected by clinicopathological/molecular factors, most of which are still under evaluation. In conclusion, the TCGA classification has improved diagnosis, risk stratification, and management of EC. Further studies are needed to resolve the points of uncertainty that still exist.
Collapse
Affiliation(s)
- Damiano Arciuolo
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Antonio Travaglino
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Antonio Raffone
- Division of Gynaecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliera Univeristaria di Bologna. S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy
| | - Diego Raimondo
- Division of Gynaecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliera Univeristaria di Bologna. S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy
| | - Angela Santoro
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Daniela Russo
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Silvia Varricchio
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Paolo Casadio
- Division of Gynaecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliera Univeristaria di Bologna. S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy
| | - Frediano Inzani
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Renato Seracchioli
- Division of Gynaecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliera Univeristaria di Bologna. S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy
| | - Antonio Mollo
- Gynecology and Obstetrics Unit, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Massimo Mascolo
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
- Correspondence:
| | - Gian Franco Zannoni
- Pathology Unit, Department of Woman and Child’s Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
43
|
Immunohistochemical Markers and TILs Evaluation for Endometrial Carcinoma. J Clin Med 2022; 11:jcm11195678. [PMID: 36233549 PMCID: PMC9571045 DOI: 10.3390/jcm11195678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: The molecular classification for endometrial cancer (EC) introduced by The Cancer Genome Atlas Research Network (TCGA) and the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) proved the existence of four molecular prognostic subtypes; however, both classifications require costly technology. We suggest a prognostic model for EC based on immunohistochemistry (IHC) and tumor-infiltrating lymphocytes (TILs). Study design: One hundred patients were included. We retrospectively investigated IHC prognostic parameters: mismatch repair (MMR)-deficient tumors, p53 mutation status, progesterone receptors (PgRs), and estrogen receptors (ERs). We further evaluated TILs. These parameters were related to the clinical and morphological features and to the outcome. Results: We classified tumors into three groups (IHC analysis): MMR-deficient, p53-mutated, p53 wild-type. MMR-deficient tumors had a good prognosis, p53 wild-type tumors an intermediate one, and p53-mutated tumors had the poorest outcomes. Disease-free (DFS) and overall survival (OS) were significantly better among PgR+ tumors (respectively p = 0.011 and p = 0.001) and PgR expression is an independent prognostic factor for a better DFS frommultivariate analysis (OR = 0.3; CI: 0.1–0.9; p = 0.03).No significant correlation was observed between DFS and TILs. However, among MMR-deficient tumors, the mean value of TILs was higher than among the other tumors(111 versus 71, p = 0.01) Conclusions: The prognostic model based on IHC markers could potentially be a valid and applicable alternative to the TCGA one. The PgR determination could represent an additional prognostic factor for EC.
Collapse
|
44
|
Passarelli A, Pisano C, Cecere SC, Di Napoli M, Rossetti S, Tambaro R, Ventriglia J, Gherardi F, Iannacone E, Venanzio SS, Fiore F, Bartoletti M, Scognamiglio G, Califano D, Pignata S. Targeting immunometabolism mediated by the IDO1 Pathway: A new mechanism of immune resistance in endometrial cancer. Front Immunol 2022; 13:953115. [PMID: 36119020 PMCID: PMC9479093 DOI: 10.3389/fimmu.2022.953115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is acquiring a primary role in treating endometrial cancer (EC) with a relevant benefit for many patients. Regardless, patients progressing during immunotherapy or those who are resistant represent an unmet need. The mechanisms of immune resistance and escape need to be better investigated. Here, we review the major mechanisms of immune escape activated by the indolamine 2,3-dioxygenase 1 (IDO1) pathway in EC and focus on potential therapeutic strategies based on IDO1 signaling pathway control. IDO1 catalyzes the first rate-limiting step of the so-called “kynurenine (Kyn) pathway”, which converts the essential amino acid l-tryptophan into the immunosuppressive metabolite l-kynurenine. Functionally, IDO1 has played a pivotal role in cancer immune escape by catalyzing the initial step of the Kyn pathway. The overexpression of IDO1 is also associated with poor prognosis in EC. These findings can lead to advantages in immunotherapy-based approaches as a rationale for overcoming the immune escape. Indeed, besides immune checkpoints, other mechanisms, including the IDO enzymes, contribute to the EC progression due to the immunosuppression induced by the tumor milieu. On the other hand, the IDO1 enzyme has recently emerged as both a promising therapeutic target and an unfavorable prognostic biomarker. This evidence provides the basis for translational strategies of immune combination, whereas IDO1 expression would serve as a potential prognostic biomarker in metastatic EC.
Collapse
Affiliation(s)
- Anna Passarelli
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
- *Correspondence: Anna Passarelli,
| | - Carmela Pisano
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Sabrina Chiara Cecere
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Marilena Di Napoli
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Sabrina Rossetti
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Rosa Tambaro
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Jole Ventriglia
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Federica Gherardi
- Radiation Oncology Unit, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Eva Iannacone
- Radiation Oncology Unit, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | | | - Francesco Fiore
- Interventional Radiology Unit, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Michele Bartoletti
- Medical Oncology and Cancer Prevention Unit, Department of Medical Oncology, Oncology Referral Center, Aviano, Italy
| | - Giosuè Scognamiglio
- Surgical Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Daniela Califano
- Functional Genomic Unit, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
45
|
van der Woude H, Hally KE, Currie MJ, Gasser O, Henry CE. Importance of the endometrial immune environment in endometrial cancer and associated therapies. Front Oncol 2022; 12:975201. [PMID: 36072799 PMCID: PMC9441707 DOI: 10.3389/fonc.2022.975201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer is rising in prevalence. The standard treatment modality of hysterectomy is becoming increasingly inadequate due primarily to the direct link between endometrial cancer and high BMI which increases surgical risks. This is an immunogenic cancer, with unique molecular subtypes associated with differential immune infiltration. Despite the immunogenicity of endometrial cancer, there is limited pre-clinical and clinical evidence of the function of immune cells in both the normal and cancerous endometrium. Immune checkpoint inhibitors for endometrial cancer are the most well studied type of immune therapy but these are not currently used as standard-of-care and importantly, they represent only one method of immune manipulation. There is limited evidence regarding the use of other immunotherapies as surgical adjuvants or alternatives. Levonorgestrel-loaded intra-uterine systems can also be effective for early-stage disease, but with varying success. There is currently no known reason as to what predisposes some patients to respond while others do not. As hormones can directly influence immune cell function, it is worth investigating the immune compartment in this context. This review assesses the immunological components of the endometrium and describes how the immune microenvironment changes with hormones, obesity, and in progression to malignancy. It also describes the importance of investigating novel pathways for immunotherapy.
Collapse
Affiliation(s)
- Hannah van der Woude
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
| | | | - Margaret Jane Currie
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Claire Elizabeth Henry
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
- *Correspondence: Claire Elizabeth Henry,
| |
Collapse
|
46
|
Fremond S, Koelzer VH, Horeweg N, Bosse T. The evolving role of morphology in endometrial cancer diagnostics: From histopathology and molecular testing towards integrative data analysis by deep learning. Front Oncol 2022; 12:928977. [PMID: 36059702 PMCID: PMC9433878 DOI: 10.3389/fonc.2022.928977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer (EC) diagnostics is evolving into a system in which molecular aspects are increasingly important. The traditional histological subtype-driven classification has shifted to a molecular-based classification that stratifies EC into DNA polymerase epsilon mutated (POLEmut), mismatch repair deficient (MMRd), and p53 abnormal (p53abn), and the remaining EC as no specific molecular profile (NSMP). The molecular EC classification has been implemented in the World Health Organization 2020 classification and the 2021 European treatment guidelines, as it serves as a better basis for patient management. As a result, the integration of the molecular class with histopathological variables has become a critical focus of recent EC research. Pathologists have observed and described several morphological characteristics in association with specific genomic alterations, but these appear insufficient to accurately classify patients according to molecular subgroups. This requires pathologists to rely on molecular ancillary tests in routine workup. In this new era, it has become increasingly challenging to assign clinically relevant weights to histological and molecular features on an individual patient basis. Deep learning (DL) technology opens new options for the integrative analysis of multi-modal image and molecular datasets with clinical outcomes. Proof-of-concept studies in other cancers showed promising accuracy in predicting molecular alterations from H&E-stained tumor slide images. This suggests that some morphological characteristics that are associated with molecular alterations could be identified in EC, too, expanding the current understanding of the molecular-driven EC classification. Here in this review, we report the morphological characteristics of the molecular EC classification currently identified in the literature. Given the new challenges in EC diagnostics, this review discusses, therefore, the potential supportive role that DL could have, by providing an outlook on all relevant studies using DL on histopathology images in various cancer types with a focus on EC. Finally, we touch upon how DL might shape the management of future EC patients.
Collapse
Affiliation(s)
- Sarah Fremond
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Viktor Hendrik Koelzer
- Department of Pathology and Molecular Pathology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Nanda Horeweg
- Department of Radiotherapy, Leiden University Medical Center, Leiden, Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- *Correspondence: Tjalling Bosse,
| |
Collapse
|
47
|
Garg V, Jayaraj AS, Kumar L. Novel approaches for treatment of endometrial carcinoma. Curr Probl Cancer 2022; 46:100895. [PMID: 35986972 DOI: 10.1016/j.currproblcancer.2022.100895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Endometrial cancer (EC) is common malignancy in women and its incidence is slowly on the rise. Accurate surgical staging, with aggressive cytoreduction when indicated, remains the most critical step in the treatment. Careful pathological evaluation and/or molecular risk stratification guides for proper systemic adjuvant radiotherapy ± chemotherapy. Recurrent and metastatic EC has dismal prognosis and palliative therapies (chemotherapy, hormonal therapy or radiation) forms the backbone of treatment. There is an unmet need of newer therapies to improve survival in such cases. A number of tyrosine kinase inhibitors are currently under evaluation. Recent data on therapeutic targeting of HER2 positive serous EC is exciting. Data on check point inhibitors particularly based on biomarker select population has raised hope for potentially effective treatment for women with high risk endometrial cancer .
Collapse
Affiliation(s)
- Vikas Garg
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Aarthi S Jayaraj
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
48
|
Chen X, Ma H, Mo S, Zhang Y, Lu Z, Yu S, Chen J. Analysis of the OX40/OX40L immunoregulatory axis combined with alternative immune checkpoint molecules in pancreatic ductal adenocarcinoma. Front Immunol 2022; 13:942154. [PMID: 35936015 PMCID: PMC9352865 DOI: 10.3389/fimmu.2022.942154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint modulation has been a vital therapeutic option in many malignancies, and targeting of novel immune checkpoints, including OX40/OX40L costimulatory signaling, is being assessed in clinical trials. However, little is known about the role of OX40 and OX40L in pancreatic ductal adenocarcinoma (PDAC). Thus, we investigated the clinical significance of OX-40 and OX40L and their associations with alternative immune checkpoints, immune infiltrates, clinicopathological features, and clinical outcomes. We performed multiplexed immunofluorescence staining for OX40, OX40L, CD8, and CD68 using tissue microarrays from 255 patients. Immunohistochemistry data for PD-L1, B7-H3, B7-H4, CD3, and Foxp3 were analyzed. And the RNA sequencing data of OX40/OX40L in The Cancer Genome Atlas and International Cancer Genome Consortium databases were also evaluated. The positive rates for OX40 on tumor cells (TCs) and immune cells (ICs) were 8.6% and 10.2%, respectively, and the positive rates for OX40L on TCs, ICs, and macrophages were 20%, 40.4%, and 12.9%, respectively. OX40 was associated with favorable clinicopathological features. OX40+ on ICs, OX40L+ on TCs, or OX40L+ on macrophages, rather than the total gene and protein levels of OX40/OX40L, were associated with improved survival. OX40+ on ICs and OX40L+ on macrophages were independent factors of clinical outcomes. Moreover, we could more accurately stratify patients through the combination of OX40 on ICs and OX40L on TCs, and patients with OX40+ ICs and OX40L+CK+ showed the best outcome. And we demonstrated that patients with OX40-ICs and low CD8+ T cells infiltration had unfavorable survival. Intriguingly, OX40+ ICs or OX40L+ macrophages demonstrated superior survival in patients with PD-L1 negativity than in those with PD-L1 positivity. Furthermore, OX40+ ICs were correlated with negative B7-H4 on TCs, high densities of CD3 T cells, and high densities of Foxp3 T cells; OX40+ TCs and OX40L+ TCs were associated with low densities of Foxp3 T cells. We identified OX40 and OX40L as promising predictors for prognosis in PDAC.
Collapse
|
49
|
Rizzo A. Immune Checkpoint Inhibitors and Mismatch Repair Status in Advanced Endometrial Cancer: Elective Affinities. J Clin Med 2022; 11:3912. [PMID: 35807197 PMCID: PMC9267485 DOI: 10.3390/jcm11133912] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Since endometrial cancers (ECs) are frequently TMB-H and MSI-H/dMMR tumors, this element has provided the rationale for testing immune checkpoint inhibitors (ICIs), which have recently emerged as a potential game-changer. However, several questions remain to be addressed, including the identification of patients who may benefit from the addition of ICIs as well as those who do not need immunotherapy. In the current paper, we provide an overview of the clinical development of immunotherapy in advanced or recurrent EC, discussing the role of MMR and the "elective affinities" between ICIs and this predictive biomarker in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
50
|
Jamieson A, Barroilhet LM, McAlpine JN. Molecular classification in endometrial cancer: Opportunities for precision oncology in a changing landscape. Cancer 2022; 128:2853-2857. [DOI: 10.1002/cncr.34328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Amy Jamieson
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics University of British Columbia Vancouver British Columbia Canada
| | - Lisa M. Barroilhet
- Division of Gynecologic Oncology University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Jessica N. McAlpine
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|