1
|
Sullo FG, Garinet S, Blons H, Taieb J, Laurent-Puig P, Gallois C. Molecular features and clinical actionability of gene fusions in colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104656. [PMID: 39922396 DOI: 10.1016/j.critrevonc.2025.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death and accounts for 10 % of cancer diagnoses worldwide. Despite the advancements achieved over the latest decades, CRC treatments are still based on conventional chemotherapy whose efficacy is limited by acquired resistance and unfavorable toxicity profile, making the search for novel actionable targets a priority. In this context, gene fusions are emerging as promising -albeit very rare - new markers because of their recurrence across different tumor types and their potential actionability. The aim of this review is to investigate the role of gene fusions in CRC by focusing on pathogenesis, screening strategies as well as their clinical implications.
Collapse
Affiliation(s)
- Francesco Giulio Sullo
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; Institut du Cancer Paris CARPEM, AP-HP.Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Simon Garinet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; APHP.Centre, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; APHP.Centre, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| | - Julien Taieb
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; Institut du Cancer Paris CARPEM, AP-HP.Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; APHP.Centre, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| | - Claire Gallois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; Institut du Cancer Paris CARPEM, AP-HP.Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
2
|
Boulanger MC, Schneider JL, Lin JJ. Advances and future directions in ROS1 fusion-positive lung cancer. Oncologist 2024; 29:943-956. [PMID: 39177972 PMCID: PMC11546726 DOI: 10.1093/oncolo/oyae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
ROS1 gene fusions are an established oncogenic driver comprising 1%-2% of non-small cell lung cancer (NSCLC). Successful targeting of ROS1 fusion oncoprotein with oral small-molecule tyrosine kinase inhibitors (TKIs) has revolutionized the treatment landscape of metastatic ROS1 fusion-positive (ROS1+) NSCLC and transformed outcomes for patients. The preferred Food and Drug Administration-approved first-line therapies include crizotinib, entrectinib, and repotrectinib, and currently, selection amongst these options requires consideration of the systemic and CNS efficacy, tolerability, and access to therapy. Of note, resistance to ROS1 TKIs invariably develops, limiting the clinical benefit of these agents and leading to disease relapse. Progress in understanding the molecular mechanisms of resistance has enabled the development of numerous next-generation ROS1 TKIs, which achieve broader coverage of ROS1 resistance mutations and superior CNS penetration than first-generation TKIs, as well as other therapeutic strategies to address TKI resistance. The approach to subsequent therapy depends on the pace and pattern of progressive disease on the initial ROS1 TKI and, if known, the mechanisms of TKI resistance. Herein, we describe a practical approach for the selection of initial and subsequent therapies for metastatic ROS1+ NSCLC based on these clinical considerations. Additionally, we explore the evolving evidence for the optimal treatment of earlier-stage, non-metastatic ROS1+ NSCLC, while, in parallel, highlighting future research directions with the goal of continuing to build on the tremendous progress in the management of ROS1+ NSCLC and ultimately improving the longevity and well-being of people living with this disease.
Collapse
Affiliation(s)
- Mary C Boulanger
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Jaime L Schneider
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Jessica J Lin
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
3
|
Thu YM, Suzawa K, Tomida S, Ochi K, Tsudaka S, Takatsu F, Date K, Matsuda N, Iwata K, Nakata K, Shien K, Yamamoto H, Okazaki M, Sugimoto S, Toyooka S. PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer. PLoS One 2024; 19:e0300644. [PMID: 38758826 PMCID: PMC11101109 DOI: 10.1371/journal.pone.0300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 05/19/2024] Open
Abstract
Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma.
Collapse
Affiliation(s)
- Yin Min Thu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Kosuke Ochi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shimpei Tsudaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumiaki Takatsu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichi Date
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoki Matsuda
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuma Iwata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Nakata
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Li S, Zhang H, Chen T, Zhang X, Shang G. Current treatment and novel insights regarding ROS1-targeted therapy in malignant tumors. Cancer Med 2024; 13:e7201. [PMID: 38629293 PMCID: PMC11022151 DOI: 10.1002/cam4.7201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The proto-oncogene ROS1 encodes an intrinsic type I membrane protein of the tyrosine kinase/insulin receptor family. ROS1 facilitates the progression of various malignancies via self-mutations or rearrangements. Studies on ROS1-directed tyrosine kinase inhibitors have been conducted, and some have been approved by the FDA for clinical use. However, the adverse effects and mechanisms of resistance associated with ROS1 inhibitors remain unknown. In addition, next-generation ROS1 inhibitors, which have the advantage of treating central nervous system metastases and alleviating endogenous drug resistance, are still in the clinical trial stage. METHOD In this study, we searched relevant articles reporting the mechanism and clinical application of ROS1 in recent years; systematically reviewed the biological mechanisms, diagnostic methods, and research progress on ROS1 inhibitors; and provided perspectives for the future of ROS1-targeted therapy. RESULTS ROS1 is most expressed in malignant tumours. Only a few ROS1 kinase inhibitors are currently approved for use in NSCLC, the efficacy of other TKIs for NSCLC and other malignancies has not been ascertained. There is no effective standard treatment for adverse events or resistance to ROS1-targeted therapy. Next-generation TKIs appear capable of overcoming resistance and delaying central nervous system metastasis, but with a greater incidence of adverse effects. CONCLUSIONS Further research on next-generation TKIs regarding the localization of ROS1 and its fusion partners, binding sites for targeted drugs, and coadministration with other drugs is required. The correlation between TKIs and chemotherapy or immunotherapy in clinical practice requires further study.
Collapse
Affiliation(s)
- Shizhe Li
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - He Zhang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Ting Chen
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaowen Zhang
- Medical Research CenterShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Guanning Shang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
6
|
Liao Y, Remsing Rix LL, Li X, Fang B, Izumi V, Welsh EA, Monastyrskyi A, Haura EB, Koomen JM, Doebele RC, Rix U. Differential network analysis of ROS1 inhibitors reveals lorlatinib polypharmacology through co-targeting PYK2. Cell Chem Biol 2024; 31:284-297.e10. [PMID: 37848034 PMCID: PMC10922442 DOI: 10.1016/j.chembiol.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Multiple tyrosine kinase inhibitors (TKIs) are often developed for the same indication. However, their relative overall efficacy is frequently incompletely understood and they may harbor unrecognized targets that cooperate with the intended target. We compared several ROS1 TKIs for inhibition of ROS1-fusion-positive lung cancer cell viability, ROS1 autophosphorylation and kinase activity, which indicated disproportionately higher cellular potency of one TKI, lorlatinib. Quantitative chemical and phosphoproteomics across four ROS1 TKIs and differential network analysis revealed that lorlatinib uniquely impacted focal adhesion signaling. Functional validation using pharmacological probes, RNA interference, and CRISPR-Cas9 knockout uncovered a polypharmacology mechanism of lorlatinib by dual targeting ROS1 and PYK2, which form a multiprotein complex with SRC. Rational multi-targeting of this complex by combining lorlatinib with SRC inhibitors exhibited pronounced synergy. Taken together, we show that systems pharmacology-based differential network analysis can dissect mixed canonical/non-canonical polypharmacology mechanisms across multiple TKIs enabling the design of rational drug combinations.
Collapse
Affiliation(s)
- Yi Liao
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xueli Li
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric A Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andrii Monastyrskyi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Robert C Doebele
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
7
|
Ohishi Y, Nakanishi Y, Hirotani Y, Suzuki A, Tanino T, Nishimaki‐Watanabe H, Kobayashi H, Nozaki F, Ohni S, Tang X, Hayashi K, Nakagawa Y, Shimizu T, Tsujino I, Takahashi N, Gon Y, Masuda S. Different effects of crizotinib treatment in two non-small cell lung cancer patients with SDC4::ROS1 fusion variants. Thorac Cancer 2024; 15:89-93. [PMID: 38093515 PMCID: PMC10761618 DOI: 10.1111/1759-7714.15168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/04/2024] Open
Abstract
The possibility of stratifying patients according to differences in ROS proto-oncogene 1 (ROS1) fusion partners has been discussed. This study aimed to clarify the clinicopathological differences between two SDC4::ROS1 positive NSCLC cases who had different responses to crizotinib. Cytology and pathology samples from two NSCLC cases with SDC4::ROS1 who were diagnosed and treated with crizotinib at Nihon University Itabashi Hospital were obtained. Case 1 has been well-controlled with crizotinib for over 5 years, but case 2 was worse and overall survival was 19 months. Sequencing analysis of ROS1 fusion genes was performed by reverse-transcription-PCR and Sanger's sequencing methods. In addition, thyroid transcription factor (TTF)-1, ROS-1, Ki67, and phosphorylated extracellular signal-regulated kinase (pERK)1/2 expression were investigated using immunohistochemistry. Sequencing analysis showed SDC4 exon2::ROS1 exon 32 (exon33 deleted) in case 1, and coexistence of SDC4 exon2::ROS1 exon 34 and SDC4 exon2::ROS1 exon35 in case 2. The Ki67 index was not different, but ROS1 and pERK1/2 expression levels tended to be higher in the tumor cells of case 2 than in case 1. Therapeutic response to crizotinib and patients' prognosis in ROS1 rearranged NSCLC may be related to the activation of ROS1 signaling, depending on ROS1 and pERK1/2 overexpression status, even if the ROS1 fusion partner is the same.
Collapse
Affiliation(s)
- Yuta Ohishi
- Nihon University Itabashi HospitalTokyoJapan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Yukari Hirotani
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Atsuko Suzuki
- Division of Pathology LaboratoryNihon University Itabashi HospitalTokyoJapan
| | - Tomoyuki Tanino
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Haruna Nishimaki‐Watanabe
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Hiroko Kobayashi
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Fumi Nozaki
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Sumie Ohni
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Xiaoyan Tang
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Kentaro Hayashi
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Yoshiko Nakagawa
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Ichiro Tsujino
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Noriaki Takahashi
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| |
Collapse
|
8
|
Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother 2023; 169:115891. [PMID: 37979378 DOI: 10.1016/j.biopha.2023.115891] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Lung cancer accounts for a relatively high proportion of malignant tumors. As the most prevalent type of lung cancer, non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality. Presently, the arsenal of treatment strategies encompasses surgical resection, chemotherapy, targeted therapy and radiotherapy. However, despite these options, the prognosis remains distressingly poor with a low 5-year survival rate. Therefore, it is urgent to pursue a paradigm shift in treatment methodologies. In recent years, the advent of sophisticated biotechnologies and interdisciplinary integration has provided innovative approaches for the treatment of lung cancer. This article reviews the cutting-edge developments in the nano drug delivery system, molecular targeted treatment system, photothermal treatment strategy, and immunotherapy for lung cancer. Overall, by systematically summarizing and critically analyzing the latest progress and current challenges in these treatment strategies of lung cancer, we aim to provide a theoretical basis for the development of novel drugs for lung cancer treatment, and thus improve the therapeutic outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
9
|
Fabbri L, Di Federico A, Astore M, Marchiori V, Rejtano A, Seminerio R, Gelsomino F, De Giglio A. From Development to Place in Therapy of Lorlatinib for the Treatment of ALK and ROS1 Rearranged Non-Small Cell Lung Cancer (NSCLC). Diagnostics (Basel) 2023; 14:48. [PMID: 38201357 PMCID: PMC10804309 DOI: 10.3390/diagnostics14010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Following the results of the CROWN phase III trial, the third-generation macrocyclic ALK inhibitor lorlatinib has been introduced as a salvage option after the failure of a first-line TKI in ALK-rearranged NSCLC, while its precise role in the therapeutic algorithm of ROS1 positive disease is still to be completely defined. The ability to overcome acquired resistance to prior generation TKIs (alectinib, brigatinib, ceritinib, and crizotinib) and the high intracranial activity in brain metastatic disease thanks to increased blood-brain barrier penetration are the reasons for the growing popularity and interest in this molecule. Nevertheless, the major vulnerability of this drug resides in a peculiar profile of related collateral events, with neurological impairment being the most conflicting and debated clinical issue. The cognitive safety concern, the susceptibility to heterogeneous resistance pathways, and the absence of a valid alternative in the second line are strongly jeopardizing a potential paradigm shift in this oncogene-addicted disease. So, when prescribing lorlatinib, clinicians must face two diametrically opposed characteristics: a great therapeutic potential without the intrinsic limitations of its precursor TKIs, a cytotoxic activity threatened by suboptimal tolerability, and the unavoidable onset of resistance mechanisms we cannot properly manage yet. In this paper, we give a critical point of view on the stepwise introduction of this promising drug into clinical practice, starting from its innovative molecular and biochemical properties to intriguing future developments, without forgetting its weaknesses.
Collapse
Affiliation(s)
- Laura Fabbri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Alessandro Di Federico
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| | - Martina Astore
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Virginia Marchiori
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Agnese Rejtano
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Renata Seminerio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Francesco Gelsomino
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
10
|
Lei P, Ju Y, Peng F, Luo J. Applications and advancements of CRISPR-Cas in the treatment of lung cancer. Front Cell Dev Biol 2023; 11:1295084. [PMID: 38188023 PMCID: PMC10768725 DOI: 10.3389/fcell.2023.1295084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer is one of the most malignant diseases and a major contributor to cancer-related deaths worldwide due to the deficiency of early diagnosis and effective therapy that are of great importance for patient prognosis and quality of life. Over the past decade, the advent of clustered regularly interspaced short palindromic repeats/CRISPR associated protein (CRISPR/Cas) system has significantly propelled the progress of both fundamental research and clinical trials of lung cancer. In this review, we review the current applications of the CRISPR/Cas system in diagnosis, target identification, and treatment resistance of lung cancer. Furthermore, we summarize the development of lung cancer animal models and delivery methods based on CRISPR system, providing novel insights into clinical diagnosis and treatment strategies of lung cancer.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Fenfen Peng
- Department of Pharmacy, Jianyang City Hospital of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Jianyang, Sichuan, China
| | - Jie Luo
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
11
|
Wang W, Jiang K, Liu X, Li J, Zhou W, Wang C, Cui J, Liang T. FBXW7 and human tumors: mechanisms of drug resistance and potential therapeutic strategies. Front Pharmacol 2023; 14:1278056. [PMID: 38027013 PMCID: PMC10680170 DOI: 10.3389/fphar.2023.1278056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Drug therapy, including chemotherapy, targeted therapy, immunotherapy, and endocrine therapy, stands as the foremost therapeutic approach for contemporary human malignancies. However, increasing drug resistance during antineoplastic therapy has become a substantial barrier to favorable outcomes in cancer patients. To enhance the effectiveness of different cancer therapies, an in-depth understanding of the unique mechanisms underlying tumor drug resistance and the subsequent surmounting of antitumor drug resistance is required. Recently, F-box and WD Repeat Domain-containing-7 (FBXW7), a recognized tumor suppressor, has been found to be highly associated with tumor therapy resistance. This review provides a comprehensive summary of the underlying mechanisms through which FBXW7 facilitates the development of drug resistance in cancer. Additionally, this review elucidates the role of FBXW7 in therapeutic resistance of various types of human tumors. The strategies and challenges implicated in overcoming tumor therapy resistance by targeting FBXW7 are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Elkrief A, Odintsov I, Markov V, Caeser R, Sobczuk P, Tischfield SE, Bhanot U, Vanderbilt CM, Cheng EH, Drilon A, Riely GJ, Lockwood WW, de Stanchina E, Tirunagaru VG, Doebele RC, Quintanal-Villalonga Á, Rudin CM, Somwar R, Ladanyi M. Combination Therapy With MDM2 and MEK Inhibitors Is Effective in Patient-Derived Models of Lung Adenocarcinoma With Concurrent Oncogenic Drivers and MDM2 Amplification. J Thorac Oncol 2023; 18:1165-1183. [PMID: 37182602 PMCID: PMC10524759 DOI: 10.1016/j.jtho.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Although targeted therapies have revolutionized the therapeutic landscape of lung adenocarcinomas (LUADs), disease progression on single-agent targeted therapy against known oncogenic drivers is common, and therapeutic options after disease progression are limited. In patients with MDM2 amplification (MDM2amp) and a concurrent oncogenic driver alteration, we hypothesized that targeting of the tumor-suppressor pathway (by means of restoration of p53 using MDM2 inhibition) and simultaneous targeting of co-occurring MAPK oncogenic pathway might represent a more durably effective therapeutic strategy. METHODS We evaluated genomic next-generation sequencing data using the Memorial Sloan Kettering Cancer Center-Integrated Mutation Profiling of Actionable Cancer Targets platform to nominate potential targets for combination therapy in LUAD. We investigated the small molecule MDM2 inhibitor milademetan in cell lines and patient-derived xenografts of LUAD with a known driver alteration and MDM2amp. RESULTS Of 10,587 patient samples from 7121 patients with LUAD profiled by next-generation sequencing, 6% (410 of 7121) harbored MDM2amp. MDM2amp was significantly enriched among tumors with driver alterations in METex14 (36%, p < 0.001), EGFR (8%, p < 0.001), RET (12%, p < 0.01), and ALK (10%, p < 0.01). The combination of milademetan and the MEK inhibitor trametinib was synergistic in growth inhibition of ECLC5-GLx (TRIM33-RET/MDM2amp), LUAD12c (METex14/KRASG12S/MDM2amp), SW1573 (KRASG12C, TP53 wild type), and A549 (KRASG12S) cells and in increasing expression of proapoptotic proteins PUMA and BIM. Treatment of ECLC5-GLx and LUAD12c with single-agent milademetan increased ERK phosphorylation, consistent with previous data on ERK activation with MDM2 inhibition. This ERK activation was effectively suppressed by concomitant administration of trametinib. In contrast, ERK phosphorylation induced by milademetan was not suppressed by concurrent RET inhibition using selpercatinib (in ECLC5-GLx) or MET inhibition using capmatinib (in LUAD12c). In vivo, combination milademetan and trametinib was more effective than either agent alone in ECLC5-GLx, LX-285 (EGFRex19del/MDM2amp), L13BS1 (METex14/MDM2amp), and A549 (KRASG12S, TP53 wild type). CONCLUSIONS Combined MDM2/MEK inhibition was found to have efficacy across multiple patient-derived LUAD models harboring MDM2amp and concurrent oncogenic drivers. This combination, potentially applicable to LUADs with a wide variety of oncogenic driver mutations and kinase fusions activating the MAPK pathway, has evident clinical implications and will be investigated as part of a planned phase 1/2 clinical trial.
Collapse
Affiliation(s)
- Arielle Elkrief
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Igor Odintsov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pawel Sobczuk
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sam E Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Umesh Bhanot
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - William W Lockwood
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
13
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
14
|
Terrones M, de Beeck KO, Van Camp G, Vandeweyer G. Pre-clinical modelling of ROS1+ non-small cell lung cancer. Lung Cancer 2023; 180:107192. [PMID: 37068393 DOI: 10.1016/j.lungcan.2023.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous group of diseases which accounts for 80% of newly diagnosed lung cancers. In the previous decade, a new molecular subset of NSCLC patients (around 2%) harboring rearrangements of the c-ros oncogene 1 was defined. ROS1+ NSCLC is typically diagnosed in young, nonsmoker individuals presenting an adenocarcinoma histology. Patients can benefit from tyrosine kinase inhibitors (TKIs) such as crizotinib and entrectinib, compounds initially approved to treat ALK-, MET- or NTRK- rearranged malignancies respectively. Given the low prevalence of ROS1-rearranged tumors, the use of TKIs was authorized based on pre-clinical evidence using limited experimental models, followed by basket clinical trials. After initiating targeted therapy, disease relapse is reported in approximately 50% of cases as a result of the appearance of resistance mechanisms. The restricted availability of TKIs active against resistance events critically reduces the overall survival. In this review we discuss the pre-clinical ROS1+ NSCLC models developed up to date, highlighting their strengths and limitations with respect to the unmet clinical needs. By combining gene-editing tools and novel cell culture approaches, newly developed pre-clinical models will enhance the development of next-generation tyrosine kinase inhibitors that overcome resistant tumor cell subpopulations.
Collapse
Affiliation(s)
- Marc Terrones
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| |
Collapse
|
15
|
Evolution of acquired resistance in a ROS1 + KRAS G12C + NSCLC through the MAPK pathway. NPJ Precis Oncol 2023; 7:9. [PMID: 36690705 PMCID: PMC9871013 DOI: 10.1038/s41698-023-00349-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Patients with metastatic NSCLC bearing a ROS1 gene fusion usually experience prolonged disease control with ROS1-targeting tyrosine kinase inhibitors (TKI), but significant clinical heterogeneity exists in part due to the presence of co-occurring genomic alterations. Here, we report on a patient with metastatic NSCLC with a concurrent ROS1 fusion and KRAS p.G12C mutation at diagnosis who experienced a short duration of disease control on entrectinib, a ROS1 TKI. At progression, the patient continued entrectinib and started sotorasib, a small molecule inhibitor of KRAS p.G12C. A patient-derived cell line generated at progression on entrectinib demonstrated improved TKI responsiveness when treated with entrectinib and sotorasib. Cell-line growth dependence on both ROS1 and KRAS p.G12C was further reflected in the distinct downstream signaling pathways activated by each driver. Clinical benefit was not observed with combined therapy of entrectinib and sotorasib possibly related to an evolving KRAS p.G12C amplification identified on repeated molecular testing. This case supports the need for broad molecular profiling in patients with metastatic NSCLC for potential therapeutic and prognostic information.
Collapse
|
16
|
Akhoundova D, Hussung S, Sivakumar S, Töpfer A, Rechsteiner M, Kahraman A, Arnold F, Angst F, Britschgi C, Zoche M, Moch H, Weber A, Sokol E, Fritsch RM. ROS1 genomic rearrangements are rare actionable drivers in microsatellite stable colorectal cancer. Int J Cancer 2022; 151:2161-2171. [PMID: 36053834 PMCID: PMC9804412 DOI: 10.1002/ijc.34257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023]
Abstract
c-Ros oncogene 1, receptor tyrosine kinase (ROS1) genomic rearrangements have been reported previously in rare cases of colorectal cancer (CRC), yet little is known about the frequency, molecular characteristics, and therapeutic vulnerabilities of ROS1-driven CRC. We analyzed a clinical dataset of 40 589 patients with CRC for ROS1 genomic rearrangements and their associated genomic characteristics (Foundation Medicine, Inc [FMI]). We moreover report the disease course and treatment response of an index patient with ROS1-rearranged metastatic CRC. ROS1 genomic rearrangements were identified in 34 (0.08%) CRC samples. GOPC-ROS1 was the most common ROS1 fusion identified (11 samples), followed by TTC28-ROS1 (3 samples). Four novel 5' gene partners of ROS1 were identified (MCM9, SRPK1, EPHA6, P4HA1). Contrary to previous reports on fusion-positive CRC, ROS1-rearrangements were found exclusively in microsatellite stable (MSS) CRCs. KRAS mutations were significantly less abundant in ROS1-rearranged vs ROS1 wild type cases. The index patient presented with chemotherapy-refractory metastatic right-sided colon cancer harboring GOPC-ROS1. Molecularly targeted treatment with crizotinib induced a rapid and sustained partial response. After 15 months on crizotinib disseminated tumor progression occurred and KRAS Q61H emerged in tissue and liquid biopsies. ROS1 rearrangements define a small, yet therapeutically actionable molecular subgroup of MSS CRC. In summary, the high prevalence of GOPC-ROS1 and noncanonical ROS1 fusions pose diagnostic challenges. We advocate NGS-based comprehensive molecular profiling of MSS CRCs that are wild type for RAS and BRAF and patient enrollment in precision trials.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Saskia Hussung
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Smruthy Sivakumar
- Cancer Genomics ResearchFoundation Medicine, IncCambridgeMassachusettsUSA
| | - Antonia Töpfer
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Fabian Arnold
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Florian Angst
- Institute of Diagnostic and Interventional RadiologyUniversity Hospital of ZurichZurichSwitzerland
| | - Christian Britschgi
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Martin Zoche
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Achim Weber
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Ethan Sokol
- Cancer Genomics ResearchFoundation Medicine, IncCambridgeMassachusettsUSA
| | - Ralph M. Fritsch
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Wang Z, Xing Y, Li B, Li X, Liu B, Wang Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. MOLECULAR BIOMEDICINE 2022; 3:42. [PMID: 36508072 PMCID: PMC9743956 DOI: 10.1186/s43556-022-00107-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The discovery of tyrosine kinase inhibitors effectively targeting EGFR mutations in lung cancer patients in 2004 represented the beginning of the precision medicine era for this refractory disease. This great progress benefits from the identification of driver gene mutations, and after that, conventional and new technologies such as NGS further illustrated part of the complex molecular pathways of NSCLC. More targetable driver gene mutation identification in NSCLC patients greatly promoted the development of targeted therapy and provided great help for patient outcomes including significantly improved survival time and quality of life. Herein, we review the literature and ongoing clinical trials of NSCLC targeted therapy to address the molecular pathways and targeted intervention progress in NSCLC. In addition, the mutations in EGFR gene, ALK rearrangements, and KRAS mutations in the main sections, and the less common molecular alterations in MET, HER2, BRAF, ROS1, RET, and NTRK are discussed. The main resistance mechanisms of each targeted oncogene are highlighted to demonstrate the current dilemma of targeted therapy in NSCLC. Moreover, we discuss potential therapies to overcome the challenges of drug resistance. In this review, we manage to display the current landscape of targetable therapeutic patterns in NSCLC in this era of precision medicine.
Collapse
Affiliation(s)
- Zixi Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yurou Xing
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bingjie Li
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoyu Li
- grid.412901.f0000 0004 1770 1022Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bin Liu
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Yongsheng Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
18
|
Cheng ML, Lee JK, Kumar R, Klein H, Raskina K, Schrock AB, Michael KS, Mazor T, Cerami E, Oxnard GR, Liu D, Beltran H, Sholl LM, Nishino M, Jänne PA. Response to MEK Inhibitor Therapy in MAP2K1 ( MEK1) K57N Non-Small-Cell Lung Cancer and Genomic Landscape of MAP2K1 Mutations in Non-Small-Cell Lung Cancer. JCO Precis Oncol 2022; 6:e2200382. [PMID: 36455195 DOI: 10.1200/po.22.00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Michael L Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Present address: Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | | | - Rachit Kumar
- Harold Alfond Center for Cancer Care, MaineHealth, Augusta, MA
| | - Harry Klein
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Kesi S Michael
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Present address: Foundation Medicine, Cambridge, MA
| | - Tali Mazor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Ethan Cerami
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | - David Liu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Himisha Beltran
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
19
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
20
|
Huang L, Liao Z, Liu Z, Chen Y, Huang T, Xiao H. Application and Prospect of CRISPR/Cas9 Technology in Reversing Drug Resistance of Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:900825. [PMID: 35620280 PMCID: PMC9127258 DOI: 10.3389/fphar.2022.900825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer drug resistance has always been a major factor affecting the treatment of non-small cell lung cancer, which reduces the quality of life of patients. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology, as an efficient and convenient new gene-editing technology, has provided a lot of help to the clinic and accelerated the research of cancer and drug resistance. In this review, we introduce the mechanisms of drug resistance in non-small cell lung cancer (NSCLC), discuss how the CRISPR/Cas9 system can reverse multidrug resistance in NSCLC, and focus on drug resistance gene mutations. To improve the prognosis of NSCLC patients and further improve patients' quality of life, it is necessary to utilize the CRISPR/Cas9 system in systematic research on cancer drug resistance.
Collapse
Affiliation(s)
- Lu Huang
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhi Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhixi Liu
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingwenli Huang
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
21
|
Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, Hashemi F, Tajik F, Hashemi M, Kumar AP, Aref AR, Zarrabi A, Khan H, Hamblin MR, Nuri Ertas Y, Samarghandian S. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022; 237:2309-2344. [PMID: 35437787 DOI: 10.1002/jcp.30751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.
Collapse
Affiliation(s)
- Mahmood K Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad H Gholami
- Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alan P Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amir R Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
22
|
Liu J, Zhang Y, Tao J, Yu T, Zhang T. Heat shock factor 2-binding protein promotes tumor progression via activation of MAPK signaling pathway in lung adenocarcinoma. Bioengineered 2022; 13:10324-10334. [PMID: 35435115 PMCID: PMC9161939 DOI: 10.1080/21655979.2022.2063561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a malignant tumor that causes a serious public health burden. The biological functions and potential mechanism of heat shock factor 2-binding protein (HSF2BP) in LUAD have not been studied. This study aimed to explore the HSF2BP expression pattern and its potential biological function in LUAD. The transcriptome data and relevant clinical data of LUAD were downloaded from The Cancer Genome Atlas (TCGA) database. The mRNA levels and prognosis of HSF2BP were determined using TCGA datasets. The protein and mRNA expression levels of HSF2BP were identified by conducting western blot analysis and quantitative real-time polymerase chain reaction in tissues and cells, respectively. To determine whether HSF2BP affected the biological function of LUAD cell lines, a series of functional experiments were performed in vitro and in vivo. In addition, gene set enrichment analysis was applied to determine the pathways that HSF2BP regulated, which was further confirmed by western blotting, and the high expression of HSF2BP was observed in LUAD, which was correlated with the unfavorable prognosis in LUAD patients. Clinical correlation analysis revealed that tumor stage was positively correlated with high HSF2BP expression. Furthermore, HSF2BP could serve as an independent risk factor for overall survival. In vitro, HSF2BP knockdown suppressed the proliferation and migration of A549 and H1299 cells. We observed the same results in vivo experiments. Mechanistically, the HSF2BP regulates the mitogen-activated protein kinase signaling pathway to perform its biological function. The HSF2BP plays a role in the development of LUAD and could be a useful anticancer target for the treatment of LUAD.
Collapse
Affiliation(s)
- Junyuan Liu
- Department of Thoracic Oncology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Yuting Zhang
- Department of Geriatrics, The Fifth Clinical Medical College of Xinjiang Medical University, Urumqi, XinjiangChina
| | - Jie Tao
- Department of Thoracic Oncology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Tingting Yu
- Department of Thoracic Oncology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Zhang Y, Huang Z, Zeng L, Zhang X, Li Y, Xu Q, Yang H, Lizaso A, Xu C, Liu J, Wang W, Song Z, Ou SHI, Yang N. Disease progression patterns and molecular resistance mechanisms to crizotinib of lung adenocarcinoma harboring ROS1 rearrangements. NPJ Precis Oncol 2022; 6:20. [PMID: 35361870 PMCID: PMC8971474 DOI: 10.1038/s41698-022-00264-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
This retrospective study investigated the association between the pattern of disease progression and molecular mechanism of acquired resistance in a large cohort of 49 patients with ROS1-rearranged advanced non-small-cell lung cancer treated with first-line crizotinib. We found that treatment-emergent ROS1 point mutations were the major molecular mechanism of crizotinib resistance, particularly for patients who developed extracranial-only disease progression. Our findings highlight the importance of rebiopsy and gene testing for subsequent-line therapeutic management.
Collapse
Affiliation(s)
- Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China. .,Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China.,Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Xiangyu Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Yizhi Li
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, 810000, Xining, China
| | - Haiyan Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | | | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jun Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wenxian Wang
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Zhengbo Song
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China. .,Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
24
|
Iyer SR, Odintsov I, Schoenfeld AJ, Siau E, Mattar MS, de Stanchina E, Khodos I, Drilon A, Riely GJ, Ladanyi M, Somwar R, Davare MA. MYC promotes tyrosine kinase inhibitor resistance in ROS1 fusion-positive lung cancer. Mol Cancer Res 2022; 20:722-734. [PMID: 35149545 DOI: 10.1158/1541-7786.mcr-22-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Targeted therapy of ROS1 fusion-driven non-small cell lung cancer (NSCLC) has achieved notable clinical success. Despite this, resistance to therapy inevitably poses a significant challenge. MYC amplification was present in ~19% of lorlatinib-resistant ROS1-driven NSCLC. We hypothesized that MYC overexpression drives ROS1-TKI resistance. Using complementary approaches in multiple models, including a MYC-amplified patient-derived cell line and xenograft (LUAD-0006), we established that MYC overexpression induces broad ROS1 TKI resistance. Pharmacological inhibition of ROS1 combined with MYC knockdown were essential to completely suppress LUAD-0006 cell proliferation compared to either treatment alone. We interrogated cellular signaling in ROS1-TKI resistant LUAD-0006 and discovered significant differential regulation of targets associated with cell cycle, apoptosis, and mitochondrial function. Combinatorial treatment of mitochondrial inhibitors with crizotinib revealed inhibitory synergism, suggesting increased reliance on glutamine metabolism and fatty-acid synthesis in chronic ROS1-TKI treated LUAD-0006 cells. In vitro experiments further revealed that CDK4/6 and BET bromodomain inhibitors effectively mitigate ROS1 TKI resistance in MYC-overexpressing cells. Notably, in vivo studies demonstrate that tumor control may be regained by combining ROS1 TKI and CDK4/6 inhibition. Our results contribute to the broader understanding of ROS1-TKI resistance in NSCLC. Implications: This study functionally characterizes MYC overexpression as a novel form of therapeutic resistance to ROS1 tyrosine kinase inhibitors in non-small-cell lung cancer and proposes rational combination treatment strategies.
Collapse
Affiliation(s)
| | - Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | - Evan Siau
- Medicine, Icahn School of Medicine at Mount Sinai
| | - Marissa S Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center
| | | | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center
| | | | | | - Marc Ladanyi
- Pathology, Memorial Sloan Kettering Cancer Center
| | - Romel Somwar
- Pathology, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
25
|
Jiang H, Jiang Q, He Y, Li X, Xu Y, Liu X. XBP1s promotes the development of lung adenocarcinoma via the p‑JNK MAPK pathway. Int J Mol Med 2022; 49:34. [PMID: 35059734 PMCID: PMC8815418 DOI: 10.3892/ijmm.2022.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Spliced X-box binding protein 1 (XBP1s) has been reported to participate in the pathogenesis of numerous types of cancer; however, whether XBP1s plays a role in lung cancer remains to be elucidated. In the present study, bioinformatics analysis was performed to determine the mRNA expression level of XBP1 in lung cancer and adjacent normal tissues. Gene Ontology terms, pathway enrichment and Pearson's correlation analysis were performed to investigate the possible mechanism involved. Western blot and reverse transcription-quantitative PCR were performed to quantify the protein and mRNA expression level of target proteins, respectively. Small interfering RNA or overexpression plasmid were used to knockdown or overexpress the expression level of XBP1s. EdU staining, colony formation, Cell Counting Kit-8, Transwell and wound healing assays, and flow cytometry were performed to detect the proliferation, colony forming ability, cell viability, migration and invasion ability, and the apoptosis rate. The results showed that the mRNA and protein expression level of XBP1 was higher in tumor tissues compared with that in adjacent normal tissues using data from the TIMER2.0, ONCOMINE and UALCAN online databases. In addition, the mRNA expression level of XBP1 was also associated with clinical features, including age, smoking habit, individual cancer stage and nodal metastasis status. In the in vitro experiments, the mRNA and protein expression level of XBP1s was increased in the A549 cell line compared with that in the human bronchial epithelial (HBE), H1299, PC9 and H460 cell lines. Hypoxia further increased the protein expression level of XBP1s in the A549 cell line. Knockdown of XBP1s expression in the A549 cell line resulted in decreased proliferation, colony formation, cell viability, migration and invasion, and increased apoptosis. By contrast, overexpressing XBP1s in the HBE cell line led to the opposite results. To investigate the mechanism involved, proteins associated with XBP1 were analyzed using the LinkedOmics database. Pathway enrichment revealed the MAPK pathway to be the possible XBP1 downstream target. Furthermore, Pearson's correlation and western blot analyses verified that phosphorylated (p)-JNK rather than p-ERK or p-p38 was the downstream effector of XBP1s. Phosphorylation of JNK was decreased when XBP1s expression was knocked down in the A549 cell line under normoxic and hypoxic conditions. Inhibiting p-JNK with SP600125 reversed the increased prosurvival effects caused by XBP1s overexpression. The results from the present study suggest that XBP1s/p-JNK function as a prosurvival factors in the A549 cell line and could be a potential target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianqian Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
26
|
Keddy C, Shinde P, Jones K, Kaech S, Somwar R, Shinde U, Davare MA. Resistance profile and structural modeling of next-generation ROS1 tyrosine kinase inhibitors. Mol Cancer Ther 2021; 21:336-346. [PMID: 34907086 DOI: 10.1158/1535-7163.mct-21-0395] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
ROS1 fusion proteins resulting from chromosomal rearrangements of the ROS1 gene are targetable oncogenic drivers in diverse cancers. Acquired resistance to targeted inhibitors curtails clinical benefit and response durability. Entrectinib, a NTRK/ROS1/ALK targeted tyrosine kinase inhibitor (TKI), was approved for the treatment of ROS1 fusion-positive NSCLC in 2019. In addition, lorlatinib and repotrectinib are actively being explored in the setting of treatment naïve or crizotinib-resistant ROS1 fusion driven NSCLC. Here, we employ an unbiased forward mutagenesis screen in Ba/F3 CD74-ROS1 and EZR-ROS1 cells to identify resistance liabilities to entrectinib, lorlatinib, and repotrectinib. ROS1F2004C emerged as a recurrent entrectinib resistant mutation and ROS1G2032R was discovered in entrectinib and lorlatinib-resistant clones. Cell-based and modeling data show that entrectinib is a dual type I/II mode inhibitor, and thus liable to both types of resistant mutations. Comprehensive profiling of all clinically relevant kinase domain mutations showed that ROS1L2086F is broadly resistant to all type I inhibitors, but remains sensitive to type II inhibitors. ROS1F2004C/I/V are resistant to type I inhibitors, entrectinib and crizotinib, and type II inhibitor, cabozantinib, but retain sensitivity to the type I macrocyclic inhibitors. Development of new, more selective type II ROS1 inhibitor(s) or potentially cycling type I and type II inhibitors may be one way to expand durability of ROS1 targeted agents.
Collapse
Affiliation(s)
- Clare Keddy
- Pediatrics, Oregon Health & Science University
| | | | - Kristen Jones
- Pediatrics, Oregon Health & Science University School of Medicine
| | - Stefanie Kaech
- Neurology, Oregon Health & Science University School of Medicine
| | - Romel Somwar
- Pathology, Memorial Sloan Kettering Cancer Center
| | | | | |
Collapse
|
27
|
Millán-Esteban D, Peña-Chilet M, García-Casado Z, Manrique-Silva E, Requena C, Bañuls J, López-Guerrero JA, Rodríguez-Hernández A, Traves V, Dopazo J, Virós A, Kumar R, Nagore E. Mutational Characterization of Cutaneous Melanoma Supports Divergent Pathways Model for Melanoma Development. Cancers (Basel) 2021; 13:5219. [PMID: 34680367 PMCID: PMC8533762 DOI: 10.3390/cancers13205219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
According to the divergent pathway model, cutaneous melanoma comprises a nevogenic group with a propensity to melanocyte proliferation and another one associated with cumulative solar damage (CSD). While characterized clinically and epidemiologically, the differences in the molecular profiles between the groups have remained primarily uninvestigated. This study has used a custom gene panel and bioinformatics tools to investigate the potential molecular differences in a thoroughly characterized cohort of 119 melanoma patients belonging to nevogenic and CSD groups. We found that the nevogenic melanomas had a restricted set of mutations, with the prominently mutated gene being BRAF. The CSD melanomas, in contrast, showed mutations in a diverse group of genes that included NF1, ROS1, GNA11, and RAC1. We thus provide evidence that nevogenic and CSD melanomas constitute different biological entities and highlight the need to explore new targeted therapies.
Collapse
Affiliation(s)
- David Millán-Esteban
- School of Medicine, Universidad Católica de València San Vicente Mártir, 46001 Valencia, Spain;
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud, Hospital Virgen del Rocío, 41013 Sevilla, Spain; (M.P.-C.); (J.D.)
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
| | - Zaida García-Casado
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - Esperanza Manrique-Silva
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| | - Celia Requena
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
| | - José Bañuls
- Department of Dermatology, El Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain;
| | - Jose Antonio López-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - Aranzazu Rodríguez-Hernández
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| | - Víctor Traves
- Department of Pathological Anatomy, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud, Hospital Virgen del Rocío, 41013 Sevilla, Spain; (M.P.-C.); (J.D.)
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
- Fundación Progreso y Salud-ELIXIR-es, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Amaya Virós
- Skin Cancer and Aging Lab, Cancer Research UK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK;
| | - Rajiv Kumar
- Division of Functional Genome Analysis, Deutsches Krebsforschüngzentrum, 69120 Heidelberg, Germany;
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, 142 20 Prague, Czech Republic
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69117 Heidelberg, Germany
| | - Eduardo Nagore
- School of Medicine, Universidad Católica de València San Vicente Mártir, 46001 Valencia, Spain;
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| |
Collapse
|
28
|
Velthaus JL, Iglauer P, Simon R, Bokemeyer C, Bannas P, Beumer N, Imbusch CD, Goekkurt E, Loges S. Lorlatinib Induces Durable Disease Stabilization in a Pancreatic Cancer Patient with a ROS1 p.L1950F Mutation: Case Report. Oncol Res Treat 2021; 44:495-502. [PMID: 34320493 DOI: 10.1159/000517616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The prognosis of pancreatic cancer has improved only modestly in recent years. This is partly due to the lack of development in precision oncology including immune oncology in this entity. Rearrangements of the proto-oncogene tyrosine protein kinase ROS1 gene represent driver alterations found especially in lung cancer. Tyrosine kinase inhibitors (TKI) with activity against ROS1 including lorlatinib substantially improved the outcome of this patient population. Anecdotal evidence reports treatment of pancreatic cancer harboring ROS1 fusions with ROS1 TKI, but data concerning treatment of patients with ROS1 point mutations are lacking. CASE PRESENTATION This case describes a pancreatic cancer patient harboring a ROS1 point mutation that occurred without an underlying ROS1 rearrangement and thus not in the resistance situation. The heavily pretreated patient showed a strong decrease of the tumor biomarkers (CA19-9 and CEA) and radiologically a durable stable disease to the targeted treatment with lorlatinib, thereby achieving a progression-free survival of 12 months. CONCLUSION Our data are the first to show a clinical benefit from targeted treatment with ROS1 TKI in a cancer patient with a thus far undescribed ROS1 point mutation without a concomitant ROS1 rearrangement. Furthermore, they indicate that ROS1 could be an oncogenic driver in pancreatic cancer. This subgroup could be eligible for targeted treatments, which may contribute to the urgently needed improvement in patient outcome.
Collapse
Affiliation(s)
- Janna-Lisa Velthaus
- Department of Hematology, Oncology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Peter Iglauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Hematology, Oncology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Niklas Beumer
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Applied Bioinformatics (B330), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics (B330), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eray Goekkurt
- Department of Hematology, Oncology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hematology-Oncology Practice Hamburg (HOPE), Hamburg, Germany
| | - Sonja Loges
- Department of Hematology, Oncology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
29
|
Odintsov I, Somwar R, Ladanyi M, Drilon A. ROS1 at the Crossroads of Clinical Oncology, Molecular Diagnostics, and Drug Development. JCO Oncol Pract 2021; 17:15-16. [PMID: 33434449 DOI: 10.1200/op.20.00969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
30
|
Odintsov I, Lui AJW, Sisso WJ, Gladstone E, Liu Z, Delasos L, Kurth RI, Sisso EM, Vojnic M, Khodos I, Mattar MS, de Stanchina E, Leland SM, Ladanyi M, Somwar R. The Anti-HER3 mAb Seribantumab Effectively Inhibits Growth of Patient-Derived and Isogenic Cell Line and Xenograft Models with Oncogenic NRG1 Fusions. Clin Cancer Res 2021; 27:3154-3166. [PMID: 33824166 DOI: 10.1158/1078-0432.ccr-20-3605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/02/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Oncogenic fusions involving the neuregulin 1 (NRG1) gene are found in approximately 0.2% of cancers of diverse histologies. The resulting chimeric NRG1 proteins bind predominantly to HER3, leading to HER3-HER2 dimerization and activation of downstream growth and survival pathways. HER3 is, therefore, a rational target for therapy in NRG1 fusion-driven cancers. EXPERIMENTAL DESIGN We developed novel patient-derived and isogenic models of NRG1-rearranged cancers and examined the effect of the anti-HER3 antibody, seribantumab, on growth and activation of signaling networks in vitro and in vivo. RESULTS Seribantumab inhibited NRG1-stimulated growth of MCF-7 cells and growth of patient-derived breast (MDA-MB-175-VII, DOC4-NRG1 fusion) and lung (LUAD-0061AS3, SLC3A2-NRG1 fusion) cancer cells harboring NRG1 fusions or NRG1 amplification (HCC-95). In addition, seribantumab inhibited growth of isogenic HBEC cells expressing a CD74-NRG1 fusion (HBECp53-CD74-NRG1) and induced apoptosis in MDA-MB-175-VII and LUAD-0061AS3 cells. Induction of proapoptotic proteins and reduced expression of the cell-cycle regulator, cyclin D1, were observed in seribantumab-treated cells. Treatment of MDA-MB-175-VII, LUAD-0061AS3, and HBECp53-CD74-NRG1 cells with seribantumab reduced phosphorylation of EGFR, HER2, HER3, HER4, and known downstream signaling molecules, such as AKT and ERK1/2. Significantly, administration of seribantumab to mice bearing LUAD-0061AS3 patient-derived xenograft (PDX) and OV-10-0050 (ovarian cancer with CLU-NRG1 fusion) PDX tumors induced regression of tumors by 50%-100%. Afatinib was much less effective at blocking tumor growth. CONCLUSIONS Seribantumab treatment blocked activation of the four ERBB family members and of downstream signaling, leading to inhibition of NRG1 fusion-dependent tumorigenesis in vitro and in vivo in breast, lung, and ovarian patient-derived cancer models.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allan J W Lui
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Whitney J Sisso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Gladstone
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zebing Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lukas Delasos
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renate I Kurth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Exequiel M Sisso
- Development Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Morana Vojnic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Inna Khodos
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marissa S Mattar
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
31
|
NF1-Mutant Cancer and Immune Checkpoint Inhibitors: A Large Database Analysis. Clin Lung Cancer 2021; 22:480-481. [PMID: 33895104 DOI: 10.1016/j.cllc.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/10/2023]
|
32
|
Lin JJ, Choudhury NJ, Yoda S, Zhu VW, Johnson TW, Sakhtemani R, Dagogo-Jack I, Digumarthy SR, Lee C, Do A, Peterson J, Prutisto-Chang K, Malik W, Hubbeling HG, Langenbucher A, Schoenfeld AJ, Falcon CJ, Temel JS, Sequist LV, Yeap BY, Lennerz JK, Shaw AT, Lawrence MS, Ou SHI, Hata AN, Drilon A, Gainor JF. Spectrum of Mechanisms of Resistance to Crizotinib and Lorlatinib in ROS1 Fusion-Positive Lung Cancer. Clin Cancer Res 2021; 27:2899-2909. [PMID: 33685866 DOI: 10.1158/1078-0432.ccr-21-0032] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Current standard initial therapy for advanced, ROS proto-oncogene 1, receptor tyrosine kinase fusion (ROS1)-positive (ROS1+) non-small cell lung cancer (NSCLC) is crizotinib or entrectinib. Lorlatinib, a next-generation anaplastic lymphoma kinase/ROS1 inhibitor, recently demonstrated efficacy in ROS1+ NSCLC, including in crizotinib-pretreated patients. However, mechanisms of lorlatinib resistance in ROS1+ disease remain poorly understood. Here, we assessed mechanisms of resistance to crizotinib and lorlatinib. EXPERIMENTAL DESIGN Biopsies from patients with ROS1 + NSCLC progressing on crizotinib or lorlatinib were profiled by genetic sequencing. RESULTS From 55 patients, 47 post-crizotinib and 32 post-lorlatinib biopsies were assessed. Among 42 post-crizotinib and 28 post-lorlatinib biopsies analyzed at distinct timepoints, ROS1 mutations were identified in 38% and 46%, respectively. ROS1 G2032R was the most commonly occurring mutation in approximately one third of cases. Additional ROS1 mutations included D2033N (2.4%) and S1986F (2.4%) post-crizotinib and L2086F (3.6%), G2032R/L2086F (3.6%), G2032R/S1986F/L2086F (3.6%), and S1986F/L2000V (3.6%) post-lorlatinib. Structural modeling predicted ROS1L2086F causes steric interference to lorlatinib, crizotinib, and entrectinib, while it may accommodate cabozantinib. In Ba/F3 models, ROS1L2086F, ROS1G2032R/L2086F, and ROS1S1986F/G2032R/L2086F were refractory to lorlatinib but sensitive to cabozantinib. A patient with disease progression on crizotinib and lorlatinib and ROS1 L2086F received cabozantinib for nearly 11 months with disease control. Among lorlatinib-resistant biopsies, we also identified MET amplification (4%), KRAS G12C (4%), KRAS amplification (4%), NRAS mutation (4%), and MAP2K1 mutation (4%). CONCLUSIONS ROS1 mutations mediate resistance to crizotinib and lorlatinib in more than one third of cases, underscoring the importance of developing next-generation ROS1 inhibitors with potency against these mutations, including G2032R and L2086F. Continued efforts are needed to elucidate ROS1-independent resistance mechanisms.
Collapse
Affiliation(s)
- Jessica J Lin
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Noura J Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Satoshi Yoda
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Viola W Zhu
- Department of Medicine, University of California Irvine, Orange, California
| | - Ted W Johnson
- Pfizer Worldwide Research and Development, La Jolla, California
| | - Ramin Sakhtemani
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Ibiayi Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Charlotte Lee
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Andrew Do
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Jennifer Peterson
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kylie Prutisto-Chang
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Wafa Malik
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Harper G Hubbeling
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Adam Langenbucher
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Adam J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Christina J Falcon
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Jennifer S Temel
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Jochen K Lennerz
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Alice T Shaw
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Michael S Lawrence
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat Rev Clin Oncol 2021; 18:35-55. [PMID: 32760015 PMCID: PMC8830365 DOI: 10.1038/s41571-020-0408-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.
Collapse
Affiliation(s)
- Alexander Drilon
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Chelsea Jenkins
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Sudarshan Iyer
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Adam Schoenfeld
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Clare Keddy
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
34
|
Huang RSP, Haberberger J, Sokol E, Schrock AB, Danziger N, Madison R, Trabucco S, Jin D, Pavlick D, Ramanan V, Hole K, McGregor K, Venstrom J, Ross JS. Clinicopathologic, genomic and protein expression characterization of 356 ROS1 fusion driven solid tumors cases. Int J Cancer 2020; 148:1778-1788. [PMID: 33336398 DOI: 10.1002/ijc.33447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Based on the approvals of crizotinib and entrectinib by the Food and Drug Administration for the treatment of ROS1 positive nonsmall cell lung cancer (NSCLC), we sought to examine the mutational profile of a variety of solid tumors (excluding sarcomas) with ROS1 fusions that underwent comprehensive genomic profiling. A review of our database was performed to extract all nonsarcoma patients with ROS1 fusions that were discovered by the hybrid capture-based DNA only sequencing assays. We examined the coalterations representing potentially targetable biomarkers, resistance alterations and other alterations in these cases. In addition, we examined the histologic characteristics and protein expression with immunohistochemistry (IHC). From a series of clinically advanced nonsarcoma solid tumors, 356 unique cases with ROS1 fusions included 275 (77.2%) NSCLC and 81 (22.8%) non-NSCLC. Ten novel ROS1 fusions were discovered. Importantly, the NSCLC ROS1 fusionpos tumors had a higher PD-L1 IHC expression positivity when compared to the NSCLC ROS1 fusionneg population (P = .012, Chi-squared). The frequency of known and likely anti-ROS1 targeted therapy resistance genomic alterations in NSCLC was 7.3% (20/275) and in non-NSCLC was 4.9% (4/81). Overall, the coalteration profile of ROS1 fusionpos NSCLC and non-NSCLC was similar with only three genes altered significantly more frequently in non-NSCLC vs NSCLC: TERT, PTEN, APC. In our study, we characterized a large cohort of ROS1 fusionpos NSCLC and non-NSCLC solid tumors and discovered 10 novel ROS1 fusions.
Collapse
Affiliation(s)
| | | | - Ethan Sokol
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Sally Trabucco
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Dexter Jin
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Dean Pavlick
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Vivek Ramanan
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Kanchan Hole
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | | | | | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA.,Department of Pathology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
35
|
Nokin MJ, Ambrogio C, Nadal E, Santamaria D. Targeting Infrequent Driver Alterations in Non-Small Cell Lung Cancer. Trends Cancer 2020; 7:410-429. [PMID: 33309239 DOI: 10.1016/j.trecan.2020.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
The discovery of oncogenic driver mutations led to the development of targeted therapies with non-small cell lung cancer (NSCLC) being a paradigm for precision medicine in this setting. Nowadays, the number of clinical trials focusing on targeted therapies for uncommon drivers is growing exponentially, emphasizing the medical need for these patients. Unfortunately, similar to what is observed with most targeted therapies directed against a driver oncogene, the clinical response is almost always temporary and acquired resistance to these drugs invariably emerges. Here, we review the biology of infrequent genomic actionable alterations in NSCLC as well as the current and emerging therapeutic options for these patients. Mechanisms leading to acquired drug resistance and future challenges in the field are also discussed.
Collapse
Affiliation(s)
- Marie-Julie Nokin
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, Clinical Research in Solid Tumors (CReST) Group, Oncobell Program, IDIBELL, L'Hospitalet, Barcelona, Spain.
| | - David Santamaria
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France.
| |
Collapse
|
36
|
Sehgal K, Piper-Vallillo AJ, Viray H, Khan AM, Rangachari D, Costa DB. Cases of ROS1-rearranged lung cancer: when to use crizotinib, entrectinib, lorlatinib, and beyond? ACTA ACUST UNITED AC 2020; 3. [PMID: 32776005 PMCID: PMC7410006 DOI: 10.21037/pcm-2020-potb-02] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ROS1-rearranged (also known as ROS1 fusion-positive) non-small-cell lung cancer is an uncommon but distinct molecular subgroup seen in approximately 1–2% of cases. Oncogene addiction due to constitutive ROS1 tyrosine kinase activation has allowed development of molecularly targeted therapies with remarkable anti-tumor activity. Both crizotinib and entrectinib, multitargeted tyrosine kinase inhibitors (TKIs) have now received approval by the FDA for treatment of patients with advanced ROS1-rearranged lung cancers; however, the clinical efficacy and safety of these drugs have been derived from expansion cohorts of single-arm phase I or basket clinical trials with relatively small populations of this clinically and molecularly distinct subgroup. Both drugs lead to high objective response rates (approximately 70–80%) and have manageable side effects, although only entrectinib has potent intracranial efficacy. Lorlatinib is an oral brain-penetrant ALK/ROS1 TKI with activity in both TKI-naïve and some crizotinib-resistant settings (albeit with limited potency against the crizotinib/entrectinib-resistant ROS1-G2032R mutation). We describe cases of advanced ROS1-rearranged lung cancer receiving crizotinib, entrectinib, and/or lorlatinib in first and later line treatment settings to dissect the current state of evidence supporting management decisions for these patients. The next generation ROS1 TKIs (repotrectinib and DS-6051b), owing to their broad activity against kinase mutations including ROS1-G2032R in preclinical studies, hold promise to transform the current treatment paradigm and permit even further gains with regards to long-term outcomes in this subset of patients.
Collapse
Affiliation(s)
- Kartik Sehgal
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew J Piper-Vallillo
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hollis Viray
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adeel M Khan
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Deepa Rangachari
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel B Costa
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|