1
|
Laemmerer A, Lehmann C, Mayr L, Bruckner K, Gabler L, Senfter D, Meyer P, Balber T, Pirker C, Jaunecker CN, Kirchhofer D, Vician P, Griesser M, Spiegl-Kreinecker S, Schmook MT, Traub-Weidinger T, Kuess P, Eckert F, Federico A, Madlener S, Stepien N, Robl B, Baumgartner A, Hainfellner JA, Dieckmann K, Dorfer C, Roessler K, Corsini NS, Holzmann K, Schmidt WM, Peyrl A, Azizi AA, Haberler C, Beck A, Pfister SM, Schueler J, Lötsch-Gojo D, Knoblich JA, Berger W, Gojo J. Alternative lengthening of telomere-based immortalization renders H3G34R-mutant diffuse hemispheric glioma hypersensitive to PARP inhibitor combination regimens. Neuro Oncol 2025; 27:811-827. [PMID: 39556024 PMCID: PMC11889718 DOI: 10.1093/neuonc/noae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Diffuse hemispheric glioma, H3 G34R/V-mutant (DHG-H3G34) is characterized by poor prognosis and lack of effective treatment options. DHG-H3G34R further harbor deactivation of alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX; DHG-H3G34R_ATRX) suggesting a unique interaction of these 2 oncogenic alterations. In this study, we dissect their cell biological interplay, investigate the impact on telomere stabilization, and consequently validate a targeted therapy approach. METHODS We characterized patient-derived primary pediatric high-grade glioma (pHGG) models for telomere-maintenance mechanisms, DNA damage stress (including protein expression, pH2AX/Rad51 foci, cell-cycle arrest) and their sensitivity towards poly-ADP ribose polymerase inhibitor (PARPi) combinations. Human induced pluripotent stem cells (iPSCs) were used for modeling the disease. The anticancer activity of PARPi combinations in vivo was studied in Chorioallantoic Membrane (CAM) and orthotopic in vivo experiments. Finally, we treated a DHG-H3G34R_ATRX patient with PARPi combination therapy. RESULTS We elaborate that alternative lengthening of telomeres (ALT) is a key characteristic of DHG-H3G34R_ATRX. A dominant cooperative effect between H3G34R and ATRX loss in ALT activation also became apparent in iPSCs, which endogenously exert telomerase activity. In both, patient-derived DHG-H3G34R_ATRX models and H3G34R+/ATRX- iPSCs, the ALT-phenotype was associated with increased basal DNA damage stress, mediating synergistic susceptibility towards PARPi (talazoparib, niraparib) combinations with topoisomerase-I inhibitors (topotecan, irinotecan). In a first-of-its-kind case, treatment of a DHG-H3G34R_ATRX patient with the brain-penetrant PARP inhibitor niraparib and topotecan resulted in significant tumor reduction. CONCLUSIONS Our preclinical and clinical data strongly support the further development of PARPi together with DNA damage stress-inducing treatment regimens for DHG-H3G34R_ATRX.
Collapse
Affiliation(s)
- Anna Laemmerer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Lehmann
- Vienna BioCenter (VBC), PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katharina Bruckner
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Philipp Meyer
- Charles River Laboratories Germany GmbH, Freiburg, Germany
| | - Theresa Balber
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Carola N Jaunecker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michelle Griesser
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Maria T Schmook
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Aniello Federico
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Bernhard Robl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Alicia Baumgartner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Karl Roessler
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nina S Corsini
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Klaus Holzmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Schmidt
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan M Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
| | - Julia Schueler
- Charles River Laboratories Germany GmbH, Freiburg, Germany
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jürgen A Knoblich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Chang MR, Matnurov EM, Wu C, Arakelyan J, Choe HJ, Kushnarev V, Yap JY, Soo XX, Chow MJ, Berger W, Ang WH, Babak MV. Leveraging Immunogenic Cell Death to Enhance the Immune Response against Malignant Pleural Mesothelioma Tumors. J Am Chem Soc 2025; 147:7908-7920. [PMID: 39992709 PMCID: PMC11887451 DOI: 10.1021/jacs.4c17966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Although various metal-based compounds have exhibited excellent immunogenic cell death (ICD)-inducing properties both in vitro and in vivo, the majority of these compounds have been discovered serendipitously. In this work, we have successfully synthesized and characterized 35 cyclometalated Au(III) complexes containing dithiocarbamate ligands, with 25 of these complexes being previously unreported. Their ability to induce phagocytosis in vitro against immunologically "cold" malignant pleural mesothelioma (MPM) cells was strongly dependent on the cyclometalated scaffold and the overall lipophilicity of the complexes. We elucidated the role of cell death mechanisms in the observed ICD effects and identified correlations between the ability of the complexes to induce necrotic cell death and ICD, both in vitro and in vivo. Complex 2G, with its high phagocytosis rates and low necrosis rates, was recognized as a bona fide ICD inducer, demonstrating a remarkably long-lasting immune response in vaccinated mice. In contrast, complex 1C, characterized by high phagocytosis rates and high necrosis rates, failed to elicit a sustained immune response upon following vaccination; however, it triggered selective activation of calreticulin in tumors upon direct in vivo administration. Overall, this study offers a framework for predicting ICD effects in vivo for structurally similar Au(III) complexes, with the potential for extension to other series of metal complexes.
Collapse
Affiliation(s)
- Meng Rui Chang
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
| | - Egor M. Matnurov
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Chengnan Wu
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Jemma Arakelyan
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Ho-Jung Choe
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Vladimir Kushnarev
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Jian Yu Yap
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
- NUS Graduate
School - Integrated Science and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Xiu Xuan Soo
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
| | - Mun Juinn Chow
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
| | - Walter Berger
- Center for
Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, Vienna 1090, Austria
| | - Wee Han Ang
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
- NUS Graduate
School - Integrated Science and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Maria V. Babak
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| |
Collapse
|
3
|
Andreikos D, Spandidos DA, Georgakopoulou VE. Telomeres and telomerase in mesothelioma: Pathophysiology, biomarkers and emerging therapeutic strategies (Review). Int J Oncol 2025; 66:23. [PMID: 39981889 PMCID: PMC11844339 DOI: 10.3892/ijo.2025.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant mesothelioma (MM) is a rare but aggressive cancer linked to asbestos exposure and characterized by advanced‑stage disease at presentation. Despite advances in treatment, prognosis remains abysmal, highlighting the imperative for the development of novel biomarkers and treatment approaches. Telomere biology plays a pivotal role in the tumorigenic process and has emerged as a key area in oncology research. Short telomeres have been associated with genomic instability, and substantially shorter telomere length (TL) has been identified in MM, showcasing the potential of TL in risk assessment, early detection, and disease progression monitoring. MM predominantly maintains TL through telomerase activity (TA), which in research has been identified in >90% of MM cases, underscoring the potential of TA as a biomarker in MM. Telomerase reverse transcriptase (TERT) polymorphisms may serve as valuable biomarkers, with research identifying associations between single nucleotide polymorphisms (SNPs) and the risk and prognosis of MM. Additionally, TERT promoter mutations have been associated with poor prognosis and advanced‑stage disease, with the non‑canonical functions of TERT hypothesized to contribute to the development of MM. TERT promoter mutations occur in ~12% of MM cases; C228T, C250T and A161C are the most common, while the distribution and frequency differ depending on histological subtype. Research reveals the promise of the various approaches therapeutically targeting telomerase, with favorable results in pre‑clinical models and inconclusive findings in clinical trials. The present review examines the role of telomere biology in MM and its implications in diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Dimitrios Andreikos
- School of Medicine, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
4
|
Hung YP, Chirieac LR. Molecular and Immunohistochemical Testing in Mesothelioma and Other Mesothelial Lesions. Arch Pathol Lab Med 2024; 148:e77-e89. [PMID: 38190277 DOI: 10.5858/arpa.2023-0213-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 01/10/2024]
Abstract
CONTEXT.— Molecular testing has increasingly been utilized in the evaluation of mesothelioma. Diffuse mesothelioma comprises multiple distinct genetic subgroups. While most diffuse mesotheliomas lack oncogenic kinase mutations and instead harbor alterations involving tumor suppressors and chromatin regulators, a minor subset of tumors is characterized by uncommon alterations such as germline mutations, genomic near-haploidization, ALK rearrangement, ATF1 rearrangement, or EWSR1::YY1 fusion. OBJECTIVE.— To provide updates on the salient molecular features of diffuse mesothelioma, mesothelioma in situ, and other mesothelial lesions: well-differentiated papillary mesothelial tumor, adenomatoid tumor, peritoneal inclusion cyst, and others. We consider the diagnostic, prognostic, and predictive utility of molecular testing in mesothelial lesions. DATA SOURCES.— We performed a literature review of recently described genetic features, molecular approaches, and immunohistochemical tools, including BAP1, MTAP, and merlin in mesothelioma and other mesothelial lesions. CONCLUSIONS.— Our evolving understanding of the molecular diversity of diffuse mesothelioma and other mesothelial lesions has led to considerable changes in pathology diagnostic practice, including the application of immunohistochemical markers such as BAP1, MTAP, and merlin (NF2), which are surrogates of mutation status. In young patients and/or those without significant asbestos exposure, unusual mesothelioma genetics such as germline mutations, ALK rearrangement, and ATF1 rearrangement should be considered.
Collapse
MESH Headings
- Humans
- Mesothelioma/diagnosis
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Immunohistochemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Neoplasms, Mesothelial/diagnosis
- Neoplasms, Mesothelial/genetics
- Neoplasms, Mesothelial/metabolism
- Neoplasms, Mesothelial/pathology
- Mesothelioma, Malignant/diagnosis
- Mesothelioma, Malignant/genetics
- Mesothelioma, Malignant/pathology
- Mesothelioma, Malignant/metabolism
- Mutation
- Tumor Suppressor Proteins
- Ubiquitin Thiolesterase
Collapse
Affiliation(s)
- Yin P Hung
- From the Department of Pathology, Massachusetts General Hospital. Boston (Hung)
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts (Hung, Chirieac)
| | - Lucian R Chirieac
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts (Hung, Chirieac)
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Chirieac)
| |
Collapse
|
5
|
Stockhammer P, Baumeister H, Ploenes T, Bonella F, Theegarten D, Dome B, Pirker C, Berger W, Hegedüs L, Baranyi M, Schuler M, Deshayes S, Bölükbas S, Aigner C, Blanquart C, Hegedüs B. Krebs von den Lungen 6 (KL-6) is a novel diagnostic and prognostic biomarker in pleural mesothelioma. Lung Cancer 2023; 185:107360. [PMID: 37713954 DOI: 10.1016/j.lungcan.2023.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVES Pleural mesothelioma (PM) is a rare disease with dismal outcome. Systemic treatment options include chemotherapy and immunotherapy, but biomarkers for treatment personalization are missing. The only FDA-approved diagnostic biomarker is the soluble mesothelin-related protein (SMRP). Krebs von den Lungen-6 (KL-6) is a human mucin 1 (MUC1) glycoprotein, which has shown diagnostic and prognostic value as a biomarker in other malignancies. The present study investigated whether KL-6 can serve as a diagnostic and/or prognostic biomarker in PM. MATERIALS AND METHODS Using a fully-automated chemiluminescence enzyme immunoassay (CLEIA) for KL-6 and SMRP, pleural effusion samples from 87 consecutive patients with PM and 25 patients with non-malignant pleural disorders were studied. In addition, KL-6 and SMRP levels were determined in corresponding patient sera, and in an independent validation cohort (n = 122). MUC1 mRNA and protein expression, and KL-6 levels in cell line supernatants were investigated in PM primary cell lines in vitro. RESULTS PM patients had significantly higher KL-6 levels in pleural effusion than non-malignant controls (AUC 0.78, p < 0.0001). Among PM patients, levels were highest in those with epithelioid or biphasic histologies. There was a strong positive correlation between pleural effusion levels of KL-6 and SMRP (p < 0.0001). KL-6 levels in sera similarly associated with diagnosis of PM, however, to a lesser extent (AUC 0.71, p = 0.008). PM patients with high pleural effusion KL-6 levels (≥303 IU/mL) had significantly better overall survival (OS) compared to those with low KL-6 levels (HR 0.51, p = 0.004). Congruently, high tumor cell MUC1 mRNA expression in primary cell lines associated with prolonged corresponding patient OS (HR 0.35, p = 0.004). These findings were confirmed in an independent validation cohort. CONCLUSION This is the first study demonstrating KL-6 as a potential novel liquid-based diagnostic and prognostic biomarker in PM.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany; Yale School of Medicine, Yale University, 333 Cedar St, New Haven, CT 06510, USA
| | - Hannah Baumeister
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany
| | - Till Ploenes
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany; Division of Thoracic Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Helmholtzstr. 10, 01069 Dresden, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Disease Unit, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary; National Korányi Institute of Pulmonology, Korányi Frigyes út 1, 1122 Budapest, Hungary; Department of Translational Medicine, Lund University, Box 117, 221 00 Lund, Sweden
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Luca Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany
| | - Marcell Baranyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllöi ut 93, 195, Budapest, Hungary
| | - Martin Schuler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, German
| | - Sophie Deshayes
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | - Servet Bölükbas
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany; Karl-Landsteiner-Institute for Clinical and Translational Thoracic Surgery Research, Bruenner Strasse 68, 1210 Vienna, Austria
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | - Balazs Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany.
| |
Collapse
|
6
|
Schelch K, Emminger D, Zitta B, Johnson TG, Kopatz V, Eder S, Ries A, Stefanelli A, Heffeter P, Hoda MA, Hoetzenecker K, Dome B, Berger W, Reid G, Grusch M. Targeting YB-1 via entinostat enhances cisplatin sensitivity of pleural mesothelioma in vitro and in vivo. Cancer Lett 2023; 574:216395. [PMID: 37730104 DOI: 10.1016/j.canlet.2023.216395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Pleural mesothelioma (PM) is characterized by poor prognosis and limited therapeutic options. Y-box-binding protein 1 (YB-1) was shown to drive growth and migration of PM cells. Here, we evaluated the effect of genetic and pharmacological targeting of YB-1 on PM growth and response to cisplatin and radiation treatment. YB-1 knockdown via siRNA resulted in reduced PM cell growth, which significantly correlated with wt BAP1 and mutant NF2 and P53 status. Entinostat inhibited YB-1 deacetylation and its efficacy correlated with YB-1 knockdown-induced growth inhibition in 20 PM cell lines. Tumor growth inhibition by siRNA as well as entinostat was confirmed in mouse xenotransplant models. Furthermore, both YBX1-targeting siRNA and entinostat enhanced sensitivity to cisplatin and radiation. In particular, entinostat showed strong synergistic interactions with cisplatin which was linked to significantly increased cellular platinum uptake in all investigated cell models. Importantly, in a mouse model, the combination of cisplatin and entinostat also resulted in stronger growth inhibition than each treatment alone. Our study highlights YB-1 as an attractive target in PM and demonstrates that targeting YB-1 via entinostat is a promising approach to enhance cisplatin and radiation sensitivity.
Collapse
Affiliation(s)
- Karin Schelch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Asbestos and Dust Diseases Research Institute, Gate 3 Hospital Rd, Concord, 2139, Sydney, NSW, Australia
| | - Dominik Emminger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Benjamin Zitta
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Thomas G Johnson
- Asbestos and Dust Diseases Research Institute, Gate 3 Hospital Rd, Concord, 2139, Sydney, NSW, Australia; The University of Sydney, Camperdown, 2006, Sydney, NSW, Australia
| | - Verena Kopatz
- Department of Radiation Oncology, Applied and Translational Radiobiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Sebastian Eder
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alessia Stefanelli
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Mir A Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; National Koranyi Institute of Pulmonology, Korányi Frigyes u. 1, 1122 Budapest, Hungary; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, 1122 Budapest, Hungary
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine and the Maurice Wilkins Centre, 56 Hanover Street, Central Dunedin, Dunedin 9016, New Zealand
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
7
|
Yu P, Qu N, Zhu R, Hu J, Han P, Wu J, Tan L, Gan H, He C, Fang C, Lei Y, Li J, He C, Lan F, Shi X, Wei W, Wang Y, Ji Q, Yu FX, Wang YL. TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis. SCIENCE ADVANCES 2023; 9:eadg7125. [PMID: 37647391 PMCID: PMC10468137 DOI: 10.1126/sciadv.adg7125] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
TERT reactivation occurs frequently in human malignancies, especially advanced cancers. However, in vivo functions of TERT reactivation in cancer progression and the underlying mechanism are not fully understood. In this study, we expressed TERT and/or active BRAF (BRAF V600E) specifically in mouse thyroid epithelium. While BRAF V600E alone induced papillary thyroid cancer (PTC), coexpression of BRAF V600E and TERT resulted in poorly differentiated thyroid carcinoma (PDTC). Spatial transcriptome analysis revealed that tumors from mice coexpressing BRAF V600E and TERT were highly heterogeneous, and cell dedifferentiation was positively correlated with ribosomal biogenesis. Mechanistically, TERT boosted ribosomal RNA (rRNA) expression and protein synthesis by interacting with multiple proteins involved in ribosomal biogenesis. Furthermore, we found that CX-5461, an rRNA transcription inhibitor, effectively blocked proliferation and induced redifferentiation of thyroid cancer. Thus, TERT promotes thyroid cancer progression by inducing cancer cell dedifferentiation, and ribosome inhibition represents a potential strategy to treat TERT-reactivated cancers.
Collapse
Affiliation(s)
- Pengcheng Yu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peizhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahao Wu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Licheng Tan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cong He
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuantao Fang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yubin Lei
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Li
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenxi He
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Lan
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Ries A, Slany A, Pirker C, Mader JC, Mejri D, Mohr T, Schelch K, Flehberger D, Maach N, Hashim M, Hoda MA, Dome B, Krupitza G, Berger W, Gerner C, Holzmann K, Grusch M. Primary and hTERT-Transduced Mesothelioma-Associated Fibroblasts but Not Primary or hTERT-Transduced Mesothelial Cells Stimulate Growth of Human Mesothelioma Cells. Cells 2023; 12:2006. [PMID: 37566084 PMCID: PMC10417280 DOI: 10.3390/cells12152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.
Collapse
Affiliation(s)
- Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Astrid Slany
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Johanna C. Mader
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Doris Mejri
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Waehringer Guertel 38, 1090 Vienna, Austria
- ScienceConsult—DI Thomas Mohr KG, Enzianweg 10a, 2353 Guntramsdorf, Austria
| | - Karin Schelch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Daniela Flehberger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Nadine Maach
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Muhammad Hashim
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
- National Korányi Institute of Pulmonology, Korányi Frigyes u. 1, 1122 Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Rath Gyorgy u. 7-9, 1122 Budapest, Hungary
- Department of Translational Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Klaus Holzmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| |
Collapse
|
9
|
Mosleh B, Schelch K, Mohr T, Klikovits T, Wagner C, Ratzinger L, Dong Y, Sinn K, Ries A, Berger W, Grasl‐Kraupp B, Hoetzenecker K, Laszlo V, Dome B, Hegedus B, Jakopovic M, Hoda MA, Grusch M. Circulating FGF18 is decreased in pleural mesothelioma but not correlated with disease prognosis. Thorac Cancer 2023; 14:2177-2186. [PMID: 37340889 PMCID: PMC10396789 DOI: 10.1111/1759-7714.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a relatively rare malignancy with limited treatment options and dismal prognosis. We have previously found elevated FGF18 expression in PM tissue specimens compared with normal mesothelium. The objective of the current study was to further explore the role of FGF18 in PM and evaluate its suitability as a circulating biomarker. METHODS FGF18 mRNA expression was analyzed by real-time PCR in cell lines and in silico in datasets from the Cancer Genome Atlas (TCGA). Cell lines overexpressing FGF18 were generated by retroviral transduction and cell behavior was investigated by clonogenic growth and transwell assays. Plasma was collected from 40 PM patients, six patients with pleural fibrosis, and 40 healthy controls. Circulating FGF18 was measured by ELISA and correlated to clinicopathological parameters. RESULTS FGF18 showed high mRNA expression in PM and PM-derived cell lines. PM patients with high FGF18 mRNA expression showed a trend toward longer overall survival (OS) in the TCGA dataset. In PM cells with low endogenous FGF18 expression, forced overexpression of FGF18 resulted in reduced growth but increased migration. Surprisingly, despite the high FGF18 mRNA levels observed in PM, circulating FGF18 protein was significantly lower in PM patients and patients with pleural fibrosis than in healthy controls. No significant association of circulating FGF18 with OS or other disease parameters of PM patients was observed. CONCLUSIONS FGF18 is not a prognostic biomarker in PM. Its role in PM tumor biology and the clinical significance of decreased plasma FGF18 in PM patients warrant further investigation.
Collapse
Affiliation(s)
- Berta Mosleh
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Karin Schelch
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Klikovits
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Christina Wagner
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Lukas Ratzinger
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Yawen Dong
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Katharina Sinn
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Alexander Ries
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Walter Berger
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | | | | | - Viktoria Laszlo
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Balazs Dome
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- National Koranyi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgeryNational Institute of Oncology‐Semmelweis UniversityBudapestHungary
| | - Balazs Hegedus
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Marko Jakopovic
- Department for Respiratory Diseases JordanovacUniversity of Zagreb School of Medicine, University Hospital Centre ZagrebZagrebCroatia
| | - Mir Alireza Hoda
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Michael Grusch
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
10
|
Xu X, Li H, Xie M, Zhou Z, Wang D, Mao W. LncRNAs and related molecular basis in malignant pleural mesothelioma: challenges and potential. Crit Rev Oncol Hematol 2023; 186:104012. [PMID: 37116816 DOI: 10.1016/j.critrevonc.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but invasive cancer, which mainly arises from mesothelial tissues of pleura, peritoneum and pericardium. Despite significant advances in treatments, the prognosis of MPM patients remains poor, and the 5-year survival rate is less than 10%. Therefore, it is urgent to explore novel therapeutic targets for the treatment of MPM. Growing evidence has indicated that long non-coding RNAs (lncRNAs) potentially could be promising therapeutic targets for numerous cancers. In this regard, lncRNAs might also potentially therapeutic targets for MPM. Recent advances have been made to investigate the molecular basis of MPM. This review first provides a comprehensive overview of roles of lncRNAs in MPM and then discusses the relationship between molecular basis of MPM and MPM-related lncRNAs to implement them as promising therapeutic targets for MPM.
Collapse
Affiliation(s)
- Xiaoling Xu
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huihui Li
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mingying Xie
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zichao Zhou
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ding Wang
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weimin Mao
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Thoracic Surgery, Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Sekido Y, Sato T. NF2 alteration in mesothelioma. FRONTIERS IN TOXICOLOGY 2023; 5:1161995. [PMID: 37180489 PMCID: PMC10168293 DOI: 10.3389/ftox.2023.1161995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The NF2 tumor suppressor gene is a frequent somatically mutated gene in mesothelioma, with 30%-40% mesotheliomas showing NF2 inactivation. NF2 encodes merlin, a member of the ezrin, radixin, and moesin (ERM) family of proteins that regulate cytoskeleton and cell signaling. Recent genome analysis revealed that NF2 alteration may be a late event in mesothelioma development, suggesting that NF2 mutation confers a more aggressive phenotype to mesothelioma cells and may not be directly caused by asbestos exposure. The Hippo tumor-suppressive and mTOR prooncogenic signaling pathways are crucial cell-signaling cascades regulated by merlin. Although the exact role and timing of NF2 inactivation in mesothelioma cells remain to be elucidated, targeting the NF2/merlin-Hippo pathway may be a new therapeutic strategy for patients with mesothelioma.
Collapse
Affiliation(s)
- Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
12
|
Ries A, Flehberger D, Slany A, Pirker C, Mader JC, Mohr T, Schelch K, Sinn K, Mosleh B, Hoda MA, Dome B, Dolznig H, Krupitza G, Müllauer L, Gerner C, Berger W, Grusch M. Mesothelioma-associated fibroblasts enhance proliferation and migration of pleural mesothelioma cells via c-Met/PI3K and WNT signaling but do not protect against cisplatin. J Exp Clin Cancer Res 2023; 42:27. [PMID: 36683050 PMCID: PMC9869633 DOI: 10.1186/s13046-022-02582-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is an aggressive malignancy with poor prognosis. Unlike many other cancers, PM is mostly characterized by inactivation of tumor suppressor genes. Its highly malignant nature in absence of tumor driving oncogene mutations indicates an extrinsic supply of stimulating signals by cells of the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are an abundant cell type of the TME and have been shown to drive the progression of several malignancies. The aim of the current study was to isolate and characterize patient-derived mesothelioma-associated fibroblasts (Meso-CAFs), and evaluate their impact on PM cells. METHODS Meso-CAFs were isolated from surgical specimens of PM patients and analyzed by array comparative genomic hybridization, next generation sequencing, transcriptomics and proteomics. Human PM cell lines were retrovirally transduced with GFP. The impact of Meso-CAFs on tumor cell growth, migration, as well as the response to small molecule inhibitors, cisplatin and pemetrexed treatment was investigated in 2D and 3D co-culture models by videomicroscopy and automated image analysis. RESULTS Meso-CAFs show a normal diploid genotype without gene copy number aberrations typical for PM cells. They express CAF markers and lack PM marker expression. Their proteome and secretome profiles clearly differ from normal lung fibroblasts with particularly strong differences in actively secreted proteins. The presence of Meso-CAFs in co-culture resulted in significantly increased proliferation and migration of PM cells. A similar effect on PM cell growth and migration was induced by Meso-CAF-conditioned medium. Inhibition of c-Met with crizotinib, PI3K with LY-2940002 or WNT signaling with WNT-C59 significantly impaired the Meso-CAF-mediated growth stimulation of PM cells in co-culture at concentrations not affecting the PM cells alone. Meso-CAFs did not provide protection of PM cells against cisplatin but showed significant protection against the EGFR inhibitor erlotinib. CONCLUSIONS Our study provides the first characterization of human patient-derived Meso-CAFs and demonstrates a strong impact of Meso-CAFs on PM cell growth and migration, two key characteristics of PM aggressiveness, indicating a major role of Meso-CAFs in driving PM progression. Moreover, we identify signaling pathways required for Meso-CAF-mediated growth stimulation. These data could be relevant for novel therapeutic strategies against PM.
Collapse
Affiliation(s)
- Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Daniela Flehberger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Johanna C Mader
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Waehringer Guertel 38, 1090, Vienna, Austria
- ScienceConsult - DI Thomas Mohr KG, Enzianweg 10a, 2353, Guntramsdorf, Austria
| | - Karin Schelch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Katharina Sinn
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Berta Mosleh
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
- National Korányi Institute of Pulmonology, Korányi Frigyes u. 1, Budapest, 1122, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, 1090, Vienna, Austria
| | - Georg Krupitza
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Leonhard Müllauer
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Walter M, Schenkeveld WD, Tomatis M, Schelch K, Peter-Vörösmarty B, Geroldinger G, Gille L, Bruzzoniti MC, Turci F, Kraemer SM, Grusch M. The Potential Contribution of Hexavalent Chromium to the Carcinogenicity of Chrysotile Asbestos. Chem Res Toxicol 2022; 35:2335-2347. [PMID: 36410050 PMCID: PMC9768810 DOI: 10.1021/acs.chemrestox.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Chrysotile asbestos is a carcinogenic mineral that has abundantly been used in industrial and consumer applications. The carcinogenicity of the fibers is partly governed by reactive Fe surface sites that catalyze the generation of highly toxic hydroxyl radicals (HO•) from extracellular hydrogen peroxide (H2O2). Chrysotile also contains Cr, typically in the low mass permille range. In this study, we examined the leaching of Cr from fibers at the physiological lung pH of 7.4 in the presence and absence of H2O2. Furthermore, we investigated the potential of cells from typical asbestos-burdened tissues and cancers to take up Cr leached from chrysotile in PCR expression, immunoblot, and cellular Cr uptake experiments. Finally, the contribution of Cr to fiber-mediated H2O2 decomposition and HO• generation was studied. Chromium readily dissolved from chrysotile fibers in its genotoxic and carcinogenic hexavalent redox state upon oxidation by H2O2. Lung epithelial, mesothelial, lung carcinoma, and mesothelioma cells expressed membrane-bound Cr(VI) transporters and accumulated Cr up to 10-fold relative to the Cr(VI) concentration in the spiked medium. Conversely, anion transporter inhibitors decreased cellular Cr(VI) uptake up to 45-fold. Finally, chromium associated with chrysotile neither decomposed H2O2 nor contributed to fiber-mediated HO• generation. Altogether, our results support the hypothesis that Cr may leach from inhaled chrysotile in its hexavalent state and subsequently accumulate in cells of typically asbestos-burdened tissues, which could contribute to the carcinogenicity of chrysotile fibers. However, unlike Fe, Cr did not significantly contribute to the adverse radical production of chrysotile.
Collapse
Affiliation(s)
- Martin Walter
- Department
of Environmental Geosciences, University
of Vienna, Althanstraße
14 (UZA II), 1090Vienna, Austria
| | - Walter D.C. Schenkeveld
- Department
of Environmental Geosciences, University
of Vienna, Althanstraße
14 (UZA II), 1090Vienna, Austria
| | - Maura Tomatis
- Department
of Veterinary Sciences, University of Torino, L.go Paolo Braccini, 2, Grugliasco, 10095 (TO), Italy
- “G.Scansetti”
Interdepartmental Center for Studies of Asbestos and Other Toxic Particulates, Via Pietro Giuria, 7, 10125Torino, Italy
| | - Karin Schelch
- Center
for Cancer Research, Medical University
of Vienna, Borschkegasse 8a, 1090Vienna, Austria
| | | | - Gerald Geroldinger
- Institute
of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210Vienna, Austria
| | - Lars Gille
- Institute
of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210Vienna, Austria
| | - Maria C. Bruzzoniti
- Department
of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125Torino, Italy
| | - Francesco Turci
- “G.Scansetti”
Interdepartmental Center for Studies of Asbestos and Other Toxic Particulates, Via Pietro Giuria, 7, 10125Torino, Italy
- Department
of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125Torino, Italy
| | - Stephan M. Kraemer
- Department
of Environmental Geosciences, University
of Vienna, Althanstraße
14 (UZA II), 1090Vienna, Austria
| | - Michael Grusch
- Center
for Cancer Research, Medical University
of Vienna, Borschkegasse 8a, 1090Vienna, Austria
| |
Collapse
|
14
|
Hiltbrunner S, Fleischmann Z, Sokol ES, Zoche M, Felley-Bosco E, Curioni-Fontecedro A. Genomic landscape of pleural and peritoneal mesothelioma tumours. Br J Cancer 2022; 127:1997-2005. [PMID: 36138075 PMCID: PMC9681755 DOI: 10.1038/s41416-022-01979-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Malignant pleural and peritoneal mesotheliomas are rare malignancies with unacceptable poor prognoses and limited treatment options. The genomic landscape is mainly characterised by the loss of tumour suppressor genes and mutations in DNA repair genes. Currently, data from next-generation sequencing (NGS) of mesothelioma tumours is restricted to a limited number of cases; moreover, data comparing molecular features of mesothelioma from the pleural and peritoneal origin with NGS are lacking. METHODS We analysed 1113 pleural mesothelioma and 355 peritoneal mesothelioma samples. All tumours were sequenced with the FoundationOne® or FoundationOne®CDx assay for detection of substitutions, insertion-deletions, copy-number alterations and selected rearrangements in at least 324 cancer genes. RESULTS This analysis revealed alterations in 19 genes with an overall prevalence of at least 2%. Alterations in BAP1, CDKN2A, CDKN2B, NF2, MTAP, TP53 and SETD2 occurred with a prevalence of at least 10%. Peritoneal, compared to pleural mesothelioma, was characterised by a lower prevalence of alterations in CDKN2A, CDKN2B and MTAP. Moreover, we could define four distinct subgroups according to alterations in BAP1 and CDKN2A/B. Alterations in Hedgehog pathway-related genes (PTCH1/2 and SUFU) and Hippo pathway-related gene (NF2) as well as KRAS, EGFR, PDGFRA/B, ERBB2 and FGFR3 were detected in both cohorts. CONCLUSION Here, we report the molecular aberrations from the largest cohort of patients with mesothelioma. This analysis identified a proportion of patients with targetable alterations and suggests that molecular profiling can identify new treatment options for patients with mesothelioma.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- grid.412004.30000 0004 0478 9977Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650University of Zurich, Zurich, Switzerland
| | - Zoe Fleischmann
- grid.418158.10000 0004 0534 4718Foundation Medicine, Cambridge, MA USA
| | - Ethan S. Sokol
- grid.418158.10000 0004 0534 4718Foundation Medicine, Cambridge, MA USA
| | - Martin Zoche
- grid.412004.30000 0004 0478 9977Pathology Department, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- grid.7400.30000 0004 1937 0650University of Zurich, Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Chang GA, Robinson E, Wiggins JM, Zhang Y, Tadepalli JS, Schafer CN, Darvishian F, Berman RS, Shapiro R, Shao Y, Osman I, Polsky D. Associations between TERT Promoter Mutations and Survival in Superficial Spreading and Nodular Melanomas in a Large Prospective Patient Cohort. J Invest Dermatol 2022; 142:2733-2743.e9. [PMID: 35469904 PMCID: PMC9509439 DOI: 10.1016/j.jid.2022.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 01/19/2023]
Abstract
Survival outcomes in melanoma and their association with mutations in the telomerase reverse transcriptase gene TERT promoter remain uncertain. In addition, few studies have examined whether these associations are affected by a nearby common germline polymorphism or vary on the basis of melanoma histopathological subtype. We analyzed 408 primary tumors from a prospective melanoma cohort for somatic TERT-124[C>T] and TERT-146[C>T] mutations, the germline polymorphism rs2853669, and BRAFV600 and NRASQ61 mutations. We tested the associations between these variants and clinicopathologic factors and survival outcomes. TERT-124[C>T] was associated with thicker tumors, ulceration, mitoses (>0/mm2), nodular histotype, and CNS involvement. In a multivariable model controlling for the American Joint Committee on Cancer stage, TERT-124[C>T] was an independent predictor of shorter recurrence-free survival (hazard ratio = 2.58, P = 0.001) and overall survival (hazard ratio = 2.47, P = 0.029). Patients with the germline variant and TERT-124[C>T]-mutant melanomas had significantly shorter recurrence-free survival than those lacking either or both sequence variants (P < 0.04). The impact of the germline variant appeared to be more pronounced in superficial spreading than in nodular melanoma. No associations were found between survival and TERT-146[C>T], BRAF, or NRAS mutations. These findings strongly suggest that TERT-124[C>T] mutation is a biomarker of aggressive primary melanomas, an effect that may be modulated by rs2853669.
Collapse
Affiliation(s)
- Gregory A Chang
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Eric Robinson
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jennifer M Wiggins
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Yilong Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Merck, Kenilworth, New Jersey, USA
| | - Jyothirmayee S Tadepalli
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Christine N Schafer
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Farbod Darvishian
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Russell S Berman
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Division of Surgical Oncology, Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Richard Shapiro
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Division of Surgical Oncology, Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Yongzhao Shao
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA.
| |
Collapse
|
16
|
Creaney J, Patch AM, Addala V, Sneddon SA, Nones K, Dick IM, Lee YCG, Newell F, Rouse EJ, Naeini MM, Kondrashova O, Lakis V, Nakas A, Waller D, Sharkey A, Mukhopadhyay P, Kazakoff SH, Koufariotis LT, Davidson AL, Ramarao-Milne P, Holmes O, Xu Q, Leonard C, Wood S, Grimmond SM, Bueno R, Fennell DA, Pearson JV, Robinson BW, Waddell N. Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma. Genome Med 2022; 14:58. [PMID: 35637530 PMCID: PMC9150319 DOI: 10.1186/s13073-022-01060-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. Methods We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. Results The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a ‘hot’ immune environment independent of the somatic mutations. Conclusions We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01060-8.
Collapse
|
17
|
Gabler L, Jaunecker CN, Katz S, van Schoonhoven S, Englinger B, Pirker C, Mohr T, Vician P, Stojanovic M, Woitzuck V, Laemmerer A, Kirchhofer D, Mayr L, LaFranca M, Erhart F, Grissenberger S, Wenninger-Weinzierl A, Sturtzel C, Kiesel B, Lang A, Marian B, Grasl-Kraupp B, Distel M, Schüler J, Gojo J, Grusch M, Spiegl-Kreinecker S, Donoghue DJ, Lötsch D, Berger W. Fibroblast growth factor receptor 4 promotes glioblastoma progression: a central role of integrin-mediated cell invasiveness. Acta Neuropathol Commun 2022; 10:65. [PMID: 35484633 PMCID: PMC9052585 DOI: 10.1186/s40478-022-01363-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma (GBM) is characterized by a particularly invasive phenotype, supported by oncogenic signals from the fibroblast growth factor (FGF)/ FGF receptor (FGFR) network. However, a possible role of FGFR4 remained elusive so far. Several transcriptomic glioma datasets were analyzed. An extended panel of primary surgical specimen-derived and immortalized GBM (stem)cell models and original tumor tissues were screened for FGFR4 expression. GBM models engineered for wild-type and dominant-negative FGFR4 overexpression were investigated regarding aggressiveness and xenograft formation. Gene set enrichment analyses of FGFR4-modulated GBM models were compared to patient-derived datasets. Despite widely absent in adult brain, FGFR4 mRNA was distinctly expressed in embryonic neural stem cells and significantly upregulated in glioblastoma. Pronounced FGFR4 overexpression defined a distinct GBM patient subgroup with dismal prognosis. Expression levels of FGFR4 and its specific ligands FGF19/FGF23 correlated both in vitro and in vivo and were progressively upregulated in the vast majority of recurrent tumors. Based on overexpression/blockade experiments in respective GBM models, a central pro-oncogenic function of FGFR4 concerning viability, adhesion, migration, and clonogenicity was identified. Expression of dominant-negative FGFR4 resulted in diminished (subcutaneous) or blocked (orthotopic) GBM xenograft formation in the mouse and reduced invasiveness in zebrafish xenotransplantation models. In vitro and in vivo data consistently revealed distinct FGFR4 and integrin/extracellular matrix interactions. Accordingly, FGFR4 blockade profoundly sensitized FGFR4-overexpressing GBM models towards integrin/focal adhesion kinase inhibitors. Collectively, FGFR4 overexpression contributes to the malignant phenotype of a highly aggressive GBM subgroup and is associated with integrin-related therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lisa Gabler
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carola Nadine Jaunecker
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sonja Katz
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Sushilla van Schoonhoven
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Bernhard Englinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Christine Pirker
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Mirjana Stojanovic
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Valentin Woitzuck
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anna Laemmerer
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lisa Mayr
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Mery LaFranca
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | | | | | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Brigitte Marian
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Bettina Grasl-Kraupp
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Julia Schüler
- Charles River Discovery Research Services Germany GmbH, Freiburg, Germany
| | - Johannes Gojo
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University Linz, Wagner-Jauregg-Weg 15, 4020, Linz and Altenberger Strasse 69, 4020, Linz, Austria
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, 92093-0367, USA
| | - Daniela Lötsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria.
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Malignant pleural mesothelioma (MPM) is a rare, but aggressive tumor with still poor prognosis. In this article, we focus on recent developments in the management of MPM including diagnosis, staging, biomarkers, and treatment strategies. RECENT FINDINGS Molecular markers such as programmed death-ligand 1 (PDL-1), Breast Cancer gene 1-associated protein gene, and cyclin-dependent kinase inhibitor 2A (CDKN2A) have prognostic impact and should be considered for assessment in patient samples. In addition to histological subtype and tumor pattern, tumor volumetry plays an increasing important role in staging, assessment of treatment response, and prediction of survival. Several new blood-based biomarkers have been recently reported including peripheral blood DNA methylation, microRNAs, fibulin, and high-mobility group box 1, but have not been established in clinical routine use yet. Regarding treatment, targeted therapies, immunotherapy, and vaccination are considered as new promising strategies. Moreover, extended pleurectomy/decortication is favored over extrapleural pneumonectomy (EPP) and intensity-modulated radiotherapy represents a possible approach in combination with EPP and pleurectomy/decortication. Intracavitary treatment options are promising and deserve further investigations. SUMMARY Overall, there has not been a real breakthrough in the treatment of MPM. Further research and clinical trials are needed to evaluate outcome and to identify new potential treatment candidates.
Collapse
|
19
|
Rachakonda S, Hoheisel JD, Kumar R. Occurrence, functionality and abundance of the TERT promoter mutations. Int J Cancer 2021; 149:1852-1862. [PMID: 34313327 DOI: 10.1002/ijc.33750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Telomere shortening at chromosomal ends due to the constraints of the DNA replication process acts as a tumor suppressor by restricting the replicative potential in primary cells. Cancers evade that limitation primarily through the reactivation of telomerase via different mechanisms. Mutations within the promoter of the telomerase reverse transcriptase (TERT) gene represent a definite mechanism for the ribonucleic enzyme regeneration predominantly in cancers that arise from tissues with low rates of self-renewal. The promoter mutations cause a moderate increase in TERT transcription and consequent telomerase upregulation to the levels sufficient to delay replicative senescence but not prevent bulk telomere shortening and genomic instability. Since the discovery, a staggering number of studies have resolved the discrete aspects, effects and clinical relevance of the TERT promoter mutations. The promoter mutations link transcription of TERT with oncogenic pathways, associate with markers of poor outcome and define patients with reduced survivals in several cancers. In this review, we discuss the occurrence and impact of the promoter mutations and highlight the mechanism of TERT activation. We further deliberate on the foundational question of the abundance of the TERT promoter mutations and a general dearth of functional mutations within noncoding sequences, as evident from pan-cancer analysis of the whole-genomes. We posit that the favorable genomic constellation within the TERT promoter may be less than a common occurrence in other noncoding functional elements. Besides, the evolutionary constraints limit the functional fraction within the human genome, hence the lack of abundant mutations outside the coding sequences.
Collapse
Affiliation(s)
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
20
|
Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, D’Incalci M, Curioni-Fontecedro A, Grosso F. Tumor Immune Microenvironment and Genetic Alterations in Mesothelioma. Front Oncol 2021; 11:660039. [PMID: 34249695 PMCID: PMC8261295 DOI: 10.3389/fonc.2021.660039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and fatal disease of the pleural lining. Up to 80% of the MPM cases are linked to asbestos exposure. Even though its use has been banned in the industrialized countries, the cases continue to increase. MPM is a lethal cancer, with very little survival improvements in the last years, mirroring very limited therapeutic advances. Platinum-based chemotherapy in combination with pemetrexed and surgery are the standard of care, but prognosis is still unacceptably poor with median overall survival of approximately 12 months. The genomic landscape of MPM has been widely characterized showing a low mutational burden and the impairment of tumor suppressor genes. Among them, BAP1 and BLM are present as a germline inactivation in a small subset of patients and increases predisposition to tumorigenesis. Other studies have demonstrated a high frequency of mutations in DNA repair genes. Many therapy approaches targeting these alterations have emerged and are under evaluation in the clinic. High-throughput technologies have allowed the detection of more complex molecular events, like chromotripsis and revealed different transcriptional programs for each histological subtype. Transcriptional analysis has also paved the way to the study of tumor-infiltrating cells, thus shedding lights on the crosstalk between tumor cells and the microenvironment. The tumor microenvironment of MPM is indeed crucial for the pathogenesis and outcome of this disease; it is characterized by an inflammatory response to asbestos exposure, involving a variety of chemokines and suppressive immune cells such as M2-like macrophages and regulatory T cells. Another important feature of MPM is the dysregulation of microRNA expression, being frequently linked to cancer development and drug resistance. This review will give a detailed overview of all the above mentioned features of MPM in order to improve the understanding of this disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | | | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Angelica Rigutto
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Laure
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Michela Lia
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Nozza
- Department of Pathology, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
21
|
Ningarhari M, Caruso S, Hirsch TZ, Bayard Q, Franconi A, Védie AL, Noblet B, Blanc JF, Amaddeo G, Ganne N, Ziol M, Paradis V, Guettier C, Calderaro J, Morcrette G, Kim Y, MacLeod AR, Nault JC, Rebouissou S, Zucman-Rossi J. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J Hepatol 2021; 74:1155-1166. [PMID: 33338512 DOI: 10.1016/j.jhep.2020.11.052] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Telomerase activation is the earliest event in hepatocellular carcinoma (HCC) development. Thus, we aimed to elucidate the role of telomere length maintenance during liver carcinogenesis. METHODS Telomere length was measured in the tumor and non-tumor liver tissues of 1,502 patients (978 with HCC) and integrated with TERT alterations and expression, as well as clinical and molecular (analyzed by genome, exome, targeted and/or RNA-sequencing) features of HCC. The preclinical efficacy of anti-TERT antisense oligonucleotides (ASO) was assessed in vitro in 26 cell lines and in vivo in a xenograft mouse model. RESULTS Aging, liver fibrosis, male sex and excessive alcohol consumption were independent determinants of liver telomere attrition. HCC that developed in livers with long telomeres frequently had wild-type TERT with progenitor features and BAP1 mutations. In contrast, HCC that developed on livers with short telomeres were enriched in the non-proliferative HCC class and frequently had somatic TERT promoter mutations. In HCCs, telomere length is stabilized in a narrow biological range around 5.7 kb, similar to non-tumor livers, by various mechanisms that activate TERT expression. Long telomeres are characteristic of very aggressive HCCs, associated with the G3 transcriptomic subclass, TP53 alterations and poor prognosis. In HCC cell lines, TERT silencing with ASO was efficient in highly proliferative and poorly differentiated cells. Treatment for 3 to 16 weeks induced cell proliferation arrest in 12 cell lines through telomere shortening, DNA damage and activation of apoptosis. The therapeutic effect was also obtained in a xenograft mouse model. CONCLUSIONS Telomere maintenance in HCC carcinogenesis is diverse, and is associated with tumor progression and aggressiveness. The efficacy of anti-TERT ASO treatment in cell lines revealed the oncogenic addiction to TERT in HCC, providing a preclinical rationale for anti-TERT ASO treatment in HCC clinical trials. LAY SUMMARY Telomeres are repeated DNA sequences that protect chromosomes and naturally shorten in most adult cells because of the inactivation of the TERT gene, coding for the telomerase enzyme. Here we show that telomere attrition in the liver, modulated by aging, sex, fibrosis and alcohol, associates with specific clinical and molecular features of hepatocellular carcinoma, the most frequent primary liver cancer. We also show that liver cancer is dependent on TERT reactivation and telomere maintenance, which could be targeted through a novel therapeutic approach called antisense oligonucleotides.
Collapse
Affiliation(s)
- Massih Ningarhari
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Théo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Andrea Franconi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Anne-Laure Védie
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Bénédicte Noblet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Jean-Frédéric Blanc
- Service Hépato-Gastroentérologie et Oncologie Digestive, Hôpital Haut-Lévêque, CHU de Bordeaux, F-33000, Bordeaux, France; Service de Pathologie, Hôpital Pellegrin, CHU de Bordeaux, F-33076, Bordeaux, France; Université Bordeaux, Inserm, Research in Translational Oncology, BaRITOn, F-33076, Bordeaux, France
| | - Giuliana Amaddeo
- Service d'Hépato-Gastro-Entérologie, Hôpital Henri Mondor, APHP, Université Paris Est Créteil, Inserm U955, Institut Mondor de Recherche Biomédicale, F-94010, Créteil, France
| | - Nathalie Ganne
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France; Service d'Hépatologie, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, APHP, F-93140, Bondy, France
| | - Marianne Ziol
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France; Service d'Anatomo-Pathologie, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, APHP, F-93140, Bondy, France
| | - Valérie Paradis
- Service de Pathologie, Hôpital Beaujon, APHP, F-92110, Clichy, France; Université Paris Diderot, CNRS, Centre de Recherche sur l'Inflammation (CRI), Paris, F-75890, France
| | - Catherine Guettier
- Service d'Anatomie Pathologique, CHU Bicêtre, APHP, F-94270, Le Kremlin-Bicêtre, France
| | - Julien Calderaro
- Service d'Anatomopathologie, Hôpital Henri Mondor, APHP, Institut Mondor de Recherche Biomédicale, F-94010, Créteil, France
| | - Guillaume Morcrette
- Service de Pathologie Pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, F-75019, Paris, France
| | | | | | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France; Service d'Hépatologie, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, APHP, F-93140, Bondy, France.
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France.
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France; Hôpital Européen Georges Pompidou, APHP, F-75015, Paris, France.
| |
Collapse
|
22
|
Tarnoki-Zach J, Stockhammer P, Isai DG, Mehes E, Szeder B, Kovacs I, Bugyik E, Paku S, Berger W, Thomas SM, Neufeld Z, Dome B, Hegedus B, Czirok A. Multicellular contractility contributes to the emergence of mesothelioma nodules. Sci Rep 2020; 10:20114. [PMID: 33208866 PMCID: PMC7675981 DOI: 10.1038/s41598-020-76641-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) has an overall poor prognosis and unsatisfactory treatment options. MPM nodules, protruding into the pleural cavity may have growth and spreading dynamics distinct that of other solid tumors. We demonstrate that multicellular aggregates can develop spontaneously in the majority of tested MPM cell lines when cultured at high cell density. Surprisingly, the nodule-like aggregates do not arise by excessive local cell proliferation, but by myosin II-driven cell contractility. Prominent actin cables, spanning several cells, are abundant both in cultured aggregates and in MPM surgical specimens. We propose a computational model for in vitro MPM nodule development. Such a self-tensioned Maxwell fluid exhibits a pattern-forming instability that was studied by analytical tools and computer simulations. Altogether, our findings may underline a rational for targeting the actomyosin system in MPM.
Collapse
Affiliation(s)
| | - Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elod Mehes
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Balint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ildiko Kovacs
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Edina Bugyik
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sandor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Walter Berger
- Department of Medicine, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, University of Queensland, Brisbane, Australia
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, Hungary.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
23
|
Xu D, Yang H, Schmid RA, Peng RW. Therapeutic Landscape of Malignant Pleural Mesothelioma: Collateral Vulnerabilities and Evolutionary Dependencies in the Spotlight. Front Oncol 2020; 10:579464. [PMID: 33072611 PMCID: PMC7538645 DOI: 10.3389/fonc.2020.579464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is the epitome of a recalcitrant cancer driven by pharmacologically intractable tumor suppressor proteins. A significant but largely unmet challenge in the field is the translation of genetic information on alterations in tumor suppressor genes (TSGs) into effective cancer-specific therapies. The notion that abnormal tumor genome subverts physiological cellular processes, which creates collateral vulnerabilities contextually related to specific genetic alterations, offers a promising strategy to target TSG-driven MPM. Moreover, emerging evidence has increasingly appreciated the therapeutic potential of genetic and pharmacological dependencies acquired en route to cancer development and drug resistance. Here, we review the most recent progress on vulnerabilities co-selected by functional loss of major TSGs and dependencies evolving out of cancer development and resistance to cisplatin based chemotherapy, the only first-line regimen approved by the US Food and Drug Administration (FDA). Finally, we highlight CRISPR-based functional genomics that has emerged as a powerful platform for cancer drug discovery in MPM. The repertoire of MPM-specific “Achilles heel” rises on the horizon, which holds the promise to elucidate therapeutic landscape and may promote precision oncology for MPM.
Collapse
Affiliation(s)
- Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|