1
|
Zhao H, Xiao Q, An Y, Wang M, Zhong J. Phospholipid metabolism and drug resistance in cancer. Life Sci 2025; 372:123626. [PMID: 40210119 DOI: 10.1016/j.lfs.2025.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Phospholipids, complex lipids prevalent in the human body, play crucial roles in various pathophysiological processes. Beyond their synthesis and degradation, phospholipids can influence chemoresistance by participating in ferroptosis. Extensive evidence highlights the significant link between tumor drug resistance and phospholipids. Therefore, drugs targeting phospholipid metabolism itself or the synthesis of corresponding composite materials will effectively overcome the difficulties of clinical tumor treatment.
Collapse
Affiliation(s)
- Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yangfang An
- Yiyang Central Hospital, Yiyang, Hunan 413099, PR China
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
2
|
Evtimov VJ, Nguyen NYN, Hammett MV, Pupovac A, Hudson PJ, Zhuang J, Lee JY, Kim S, Trounson AO, Boyd RL, Shu R. CRISPR-Cas9 knockout of DGKα/ζ improves the anti-tumor activities of TAG-72 CAR-T cells in ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200962. [PMID: 40207199 PMCID: PMC11981736 DOI: 10.1016/j.omton.2025.200962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
High recurrence and chemoresistance in solid tumors, like ovarian cancer, stress the need for new therapies. Chimeric antigen receptor (CAR)-T cells show promise but face challenges due to tumor heterogeneity and immune suppression in the tumor microenvironment (TME). Thus, novel approaches are needed to further enhance the efficacy of CAR-T cell therapies. In T cell therapies, inhibiting checkpoint molecules is crucial for overcoming exhaustion and boosting anti-tumor activity. Additionally, prioritizing safety by engineering cells to target markers absent on normal healthy cells reduces off-target risks. We targeted tumor-associated glycoprotein 72 (TAG-72), an oncofetal antigen highly expressed in adenocarcinomas like ovarian cancer, by engineering TAG-72 CAR-T cells and used CRISPR-Cas9 to knock out the T cell-inhibitory enzymes diacylglycerol kinase (DGK) α and ζ. DGKα/ζ knockout (KO) did not impact CAR-T cell viability or phenotype. These cells selectively killed TAG-72-expressing cancer cells in vitro and ablated established tumors in vivo for up to 100 days, whereas non-deleted control TAG-72 CAR-T cells showed tumor relapse around 40 days. These findings highlight the potential of CRISPR-induced DGKα/ζ KO to enhance CAR-T cell efficacy against solid tumors such as ovarian cancer, offering a promising avenue for improved cancer therapies.
Collapse
Affiliation(s)
- Vera J. Evtimov
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Nhu-Y N. Nguyen
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Maree V. Hammett
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Aleta Pupovac
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Peter J. Hudson
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Junli Zhuang
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | | | | | - Alan O. Trounson
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Richard L. Boyd
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Runzhe Shu
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
| |
Collapse
|
3
|
Hoxhallari L, Katsikis K, Makri A, Pouliou M, Kanaki Z, Vatsellas G, Sonou C, Telios D, Giotakis E, Giotakis A, Makrythanasis P, Agelopoulos M, Psyrri A, Rampias T. Regulation of nucleotide excision repair by wild-type HRAS signaling in head and neck cancer. Cancer Gene Ther 2025:10.1038/s41417-025-00902-y. [PMID: 40221503 DOI: 10.1038/s41417-025-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a high rate of locoregional or distant relapse among patients. It is well established that resistance to chemotherapeutic drugs has an important role in the emergence of the recurrent and/or metastatic type of this malignancy which is associated with poor prognosis. Therefore, understanding the molecular basis of chemoresistance in head and neck cancer is required for the development of effective therapeutic strategies. Activating mutations in the HRAS gene are driver events in human cancer. Although numerous studies have demonstrated that oncogenic HRAS mutations promote chemoresistance in HNSCC, the molecular profile of HNSCC tumors that overexpress wild-type HRAS (wtHRASov) and their response to chemotherapy is poorly investigated. To gain deeper insights into the characteristics of wtHRASov tumors, we conducted a gene expression analysis using transcriptome data from The Cancer Genome Atlas (TCGA). This analysis revealed a distinct signature of overexpressed nucleotide excision repair (NER) genes in wtHRASov tumors, which are associated with chemoresistance. We further explored the role of these NER components in response to genotoxic stress, utilizing a diverse panel of HNSCC cell lines and patient-derived xenografts. Our findings indicate that in a specific cluster of head and neck tumors, ERK/cJun signaling activation is strongly reliant on HRAS activity. Inhibiting HRAS in these tumors results in a significant downregulation of the NER signature components, re-sensitizing cancer cells to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Lorena Hoxhallari
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Konstantinos Katsikis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Antigoni Makri
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Marialena Pouliou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Christina Sonou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Dimitrios Telios
- 2nd Department of Otolaryngology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangelos Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, University General Hospital "Hippocration", Athens, Greece
| | - Aristeidis Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, University General Hospital "Hippocration", Athens, Greece
| | - Periklis Makrythanasis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Marios Agelopoulos
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Amanda Psyrri
- Internal Medicine/Medical Oncology Department, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Theodoros Rampias
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece.
| |
Collapse
|
4
|
Takemoto K, Kobatake K, Hatayama T, Tasaka S, Okazaki M, Nakano Y, Shikuma H, Yukihiro K, Iwane K, Yamanaka R, Tasaka R, Kohada Y, Naito M, Miyamoto S, Sekino Y, Kitano H, Goto K, Goriki A, Hieda K, Hinata N. DGKα Enhances Tumorigenic Activity in Bladder Cancer Patients With Chronic Kidney Disease. Cancer Med 2025; 14:e70710. [PMID: 40013327 PMCID: PMC11865707 DOI: 10.1002/cam4.70710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a risk factor for bladder cancer (BC) and is reportedly involved in its recurrence and progression. This study aimed to determine the molecular mechanisms underlying the development of BC in patients with CKD. METHODS First, we generated the CKD mouse model according to a unilateral two-stage renal ischemia-reperfusion injury protocol using wild-type C57BL/6 mice. Second, we conducted a molecular functional analysis of DGKα in BC and investigated the contribution of DGKα to cell invasion, migration, and proliferation activity using human BC cell lines. RESULTS After confirming elevated serum creatinine levels in mice, the bladder was dissected, and mRNA sequencing of bladder urothelial cells was conducted. Gene expression profiling revealed remarkable upregulation in diacylglycerol kinase alpha (DGKα) level compared to that in control urothelial cells. DGKα-knockdown cells displayed significantly decreased invasion, migration, and proliferation activity compared to the controls. Next, we conducted a clinical analysis of DGKα in BC patients and performed immunohistochemistry (IHC) on samples from patients treated with radical cystectomy. IHC staining revealed that DGKα-positive cases had significantly worse recurrence-free and cancer-specific survival rates (p = 0.036 and = 0.003, respectively). CONCLUSION DGKα expression is associated with tumorigenic activity in BC. Therefore, it is speculated that increased expression of DGKα in CKD cases is involved in the malignant potentials in BC. In conclusion, the crucial role of DGKα in BC is suggested, and it may be one of the factors contributing to poor prognosis in BC patients with CKD.
Collapse
Affiliation(s)
- Kenshiro Takemoto
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Kohei Kobatake
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Tomoya Hatayama
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Shinsaku Tasaka
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Mai Okazaki
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Yoshinori Nakano
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Hiroyuki Shikuma
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Kazuma Yukihiro
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Kyosuke Iwane
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Ryoken Yamanaka
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Ryo Tasaka
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Yuki Kohada
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Miki Naito
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Shunsuke Miyamoto
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Yohei Sekino
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Hiroyuki Kitano
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Keisuke Goto
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Akihiro Goriki
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Keisuke Hieda
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Nobuyuki Hinata
- Department of UrologyGraduate School of Biomedical and Health Sciences, Hiroshima UniversityHiroshimaJapan
| |
Collapse
|
5
|
Chen A, Yin K, Liu Y, Hu L, Cui Q, Wan X, Yang W. WEE Family Kinase Inhibitors Combined with Sorafenib Can Selectively Inhibit HCC Cell Proliferation. Curr Cancer Drug Targets 2025; 25:370-385. [PMID: 38860904 DOI: 10.2174/0115680096298370240520093003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Sorafenib is currently the first choice for the treatment of patients with advanced hepatocellular carcinoma, but its therapeutic effect is still limited. OBJECTIVES This study aims to examine whether WEE family kinase inhibitors can enhance the anticancer effect of sorafenib. METHODS We analyzed the expression levels of PKMYT1 kinase and WEE1 kinase in HCC, studied the inhibitory effect of PKMYT1 kinase inhibitor RP-6306, WEE1 kinase inhibitor adavosertib combined with sorafenib on the proliferation of HCC cells, and detected the effect of drug combination on CDK1 phosphorylation. RESULTS We found that PKMYT1 and WEE1 were upregulated in HCC and were detrimental to patient survival. Cell experiments showed that both RP-6306 and adavosertib (1-100 μM) inhibited the proliferation of HCC cell lines in a dose-dependent manner alone, and the combination of the two drugs had a synergistic effect. In HCC cell lines, sorafenib combined with RP-6306 or adavosertib showed a synergistic antiproliferation effect and less toxicity to normal cells. Sorafenib combined with RP-6306 and adavosertib further inhibited the proliferation of HCC cells and caused complete dephosphorylation of CDK1. CONCLUSION Taken together, our findings provide experimental evidence for the future use of sorafenib in combination with RP-6306 or adavosertib for the treatment of HCC.
Collapse
Affiliation(s)
- Anling Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230031, China
| | - Ke Yin
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yu Liu
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Lei Hu
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241002, China
| | - Qianwen Cui
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230031, China
| | - Xiaofeng Wan
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
6
|
Kumari S, Gupta S, Jamil A, Tabatabaei D, Karakashev S. Exploring Metabolic Approaches for Epithelial Ovarian Cancer Therapy. J Cell Physiol 2025; 240:e31495. [PMID: 39676338 DOI: 10.1002/jcp.31495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Epithelial ovarian cancer (EOC) has the highest mortality rate among malignant tumors of the female reproductive system and the lowest survival rate. This poor prognosis is due to the aggressive nature of EOC, its late-stage diagnosis, and the tumor's ability to adapt to stressors through metabolic reprogramming. EOC cells sustain their rapid proliferation by altering the uptake, utilization, and regulation of carbohydrates, lipids, and amino acids. These metabolic changes support tumor growth and contribute to metastasis, chemotherapy resistance, and immune evasion. Targeting these metabolic vulnerabilities has shown promise in preclinical studies, with some therapies advancing to clinical trials. However, challenges remain due to tumor heterogeneity, adaptive resistance mechanisms, and the influence of the tumor microenvironment. This review provides a comprehensive summary of metabolic targets for EOC treatment and offers an overview of the current landscape of clinical trials focusing on ovarian cancer metabolism. Future efforts should prioritize combination therapies that integrate metabolic inhibitors with immunotherapies or chemotherapy. Advances in precision medicine and multi-omics approaches will be crucial for identifying patient-specific metabolic dependencies and improving outcomes. By addressing these challenges, metabolism-based therapies can significantly transform the treatment of this devastating disease.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Shraddha Gupta
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Aisha Jamil
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Deyana Tabatabaei
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Sergey Karakashev
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Laury AR, Zheng S, Aho N, Fallegger R, Hänninen S, Saez-Rodriguez J, Tanevski J, Youssef O, Tang J, Carpén OM. Opening the Black Box: Spatial Transcriptomics and the Relevance of Artificial Intelligence-Detected Prognostic Regions in High-Grade Serous Carcinoma. Mod Pathol 2024; 37:100508. [PMID: 38704029 DOI: 10.1016/j.modpat.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Image-based deep learning models are used to extract new information from standard hematoxylin and eosin pathology slides; however, biological interpretation of the features detected by artificial intelligence (AI) remains a challenge. High-grade serous carcinoma of the ovary (HGSC) is characterized by aggressive behavior and chemotherapy resistance, but also exhibits striking variability in outcome. Our understanding of this disease is limited, partly due to considerable tumor heterogeneity. We previously trained an AI model to identify HGSC tumor regions that are highly associated with outcome status but are indistinguishable by conventional morphologic methods. Here, we applied spatially resolved transcriptomics to further profile the AI-identified tumor regions in 16 patients (8 per outcome group) and identify molecular features related to disease outcome in patients who underwent primary debulking surgery and platinum-based chemotherapy. We examined formalin-fixed paraffin-embedded tissue from (1) regions identified by the AI model as highly associated with short or extended chemotherapy response, and (2) background tumor regions (not identified by the AI model as highly associated with outcome status) from the same tumors. We show that the transcriptomic profiles of AI-identified regions are more distinct than background regions from the same tumors, are superior in predicting outcome, and differ in several pathways including those associated with chemoresistance in HGSC. Further, we find that poor outcome and good outcome regions are enriched by different tumor subpopulations, suggesting distinctive interaction patterns. In summary, our work presents proof of concept that AI-guided spatial transcriptomic analysis improves recognition of biologic features relevant to patient outcomes.
Collapse
Affiliation(s)
- Anna Ray Laury
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| | - Shuyu Zheng
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niina Aho
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Fallegger
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Satu Hänninen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Jovan Tanevski
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany; Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Omar Youssef
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Jing Tang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Olli Mikael Carpén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Pan Z, Xu G, Zhang Y, Wu M, Yu J, He X, Zhang W, Hu J. Galectin-1 Promotes Gastric Carcinoma Progression and Cisplatin Resistance Through the NRP-1/c-JUN/Wee1 Pathway. J Gastric Cancer 2024; 24:300-315. [PMID: 38960889 PMCID: PMC11224716 DOI: 10.5230/jgc.2024.24.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Gastric cancer (GC) is among the deadliest malignancies and the third leading cause of cancer-related deaths worldwide. Galectin-1 (Gal-1) is a primary protein secreted by cancer-associated fibroblasts (CAFs); however, its role and mechanisms of action of Gal-1 in GC remain unclear. In this study, we stimulated GC cells with exogenous human recombinant galectin-1 protein (rhGal-1) to investigate its effects on the proliferation, migration, and resistance to cisplatin. MATERIALS AND METHODS We used simulated rhGal-1 protein as a paracrine factor produced by CAFs to induce GC cells and investigated its promotional effects and mechanisms in GC progression and cisplatin resistance. Immunohistochemical (IHC) assay confirmed that Gal-1 expression was associated with clinicopathological parameters and correlated with the expression of neuropilin-1 (NRP-1), c-JUN, and Wee1. RESULTS Our study reveals Gal-1 expression was significantly associated with poor outcomes. Gal-1 boosts the proliferation and metastasis of GC cells by activating the NRP-1/C-JUN/Wee1 pathway. Gal-1 notably increases GC cell resistance to cisplatin The NRP-1 inhibitor, EG00229, effectively counteracts these effects. CONCLUSIONS These findings revealed a potential mechanism by which Gal-1 promotes GC growth and contributes to chemoresistance, offering new therapeutic targets for the treatment of GC.
Collapse
Affiliation(s)
- Zhengyang Pan
- Department of Gastrointestinal Surgery, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoxi Xu
- Department of Gastrointestinal Surgery, Jinjiang Hospital, Quanzhou, China
| | - Yan Zhang
- Cancer Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Meiling Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiahui Yu
- Cancer Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xujun He
- Cancer Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Wei Zhang
- Department of Gastrointestinal Surgery, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Junfeng Hu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
9
|
Chen M, Zhang C, Li H, Zheng S, Li Y, Yuan M, Chen Y, Wu J, Sun Q. PLA2G4A and ACHE modulate lipid profiles via glycerophospholipid metabolism in platinum-resistant gastric cancer. J Transl Med 2024; 22:249. [PMID: 38454407 PMCID: PMC10921739 DOI: 10.1186/s12967-024-05055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Bioactive lipids involved in the progression of various diseases. Nevertheless, there is still a lack of biomarkers and relative regulatory targets. The lipidomic analysis of the samples from platinum-resistant in gastric cancer patients is expected to help us further improve our understanding of it. METHODS We employed LC-MS based untargeted lipidomic analysis to search for potential candidate biomarkers for platinum resistance in GC patients. Partial least squares discriminant analysis (PLS-DA) and variable importance in projection (VIP) analysis were used to identify differential lipids. The possible molecular mechanisms and targets were obtained by metabolite set enrichment analysis and potential gene network screened. Finally, verified them by immunohistochemical of a tissue microarray. RESULTS There were 71 differential lipid metabolites identified in GC samples between the chemotherapy-sensitivity group and the chemotherapy resistance group. According to Foldchange (FC) value, VIP value, P values (FC > 2, VIP > 1.5, p < 0.05), a total of 15 potential biomarkers were obtained, including MGDG(43:11)-H, Cer(d18:1/24:0) + HCOO, PI(18:0/18:1)-H, PE(16:1/18:1)-H, PE(36:2) + H, PE(34:2p)-H, Cer(d18:1 + hO/24:0) + HCOO, Cer(d18:1/23:0) + HCOO, PC(34:2e) + H, SM(d34:0) + H, LPC(18:2) + HCOO, PI(18:1/22:5)-H, PG(18:1/18:1)-H, Cer(d18:1/24:0) + H and PC(35:2) + H. Furthermore, we obtained five potential key targets (PLA2G4A, PLA2G3, DGKA, ACHE, and CHKA), and a metabolite-reaction-enzyme-gene interaction network was built to reveal the biological process of how they could disorder the endogenous lipid profile of platinum resistance in GC patients through the glycerophospholipid metabolism pathway. Finally, we further identified PLA2G4A and ACHE as core targets of the process by correlation analysis and tissue microarray immunohistochemical verification. CONCLUSION PLA2G4A and ACHE regulated endogenous lipid profile in the platinum resistance in GC patients through the glycerophospholipid metabolism pathway. The screening of lipid biomarkers will facilitate earlier precision medicine interventions for chemotherapy-resistant gastric cancer. The development of therapies targeting PLA2G4A and ACHE could enhance platinum chemotherapy effectiveness.
Collapse
Affiliation(s)
- Menglin Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Cancan Zhang
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Huaizhi Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shanshan Zheng
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yaqi Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Mengyun Yuan
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yuxuan Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jian Wu
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| | - Qingmin Sun
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
10
|
Yan Y, Zhou S, Chen X, Yi Q, Feng S, Zhao Z, Liu Y, Liang Q, Xu Z, Li Z, Sun L. Suppression of ITPKB degradation by Trim25 confers TMZ resistance in glioblastoma through ROS homeostasis. Signal Transduct Target Ther 2024; 9:58. [PMID: 38438346 PMCID: PMC10912509 DOI: 10.1038/s41392-024-01763-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Temozolomide (TMZ) represents a standard-of-care chemotherapeutic agent in glioblastoma (GBM). However, the development of drug resistance constitutes a significant hurdle in the treatment of malignant glioma. Although specific innovative approaches, such as immunotherapy, have shown favorable clinical outcomes, the inherent invasiveness of most gliomas continues to make them challenging to treat. Consequently, there is an urgent need to identify effective therapeutic targets for gliomas to overcome chemoresistance and facilitate drug development. This investigation used mass spectrometry to examine the proteomic profiles of six pairs of GBM patients who underwent standard-of-care treatment and surgery for both primary and recurrent tumors. A total of 648 proteins exhibiting significant differential expression were identified. Gene Set Enrichment Analysis (GSEA) unveiled notable alterations in pathways related to METABOLISM_OF_LIPIDS and BIOLOGICAL_OXIDATIONS between the primary and recurrent groups. Validation through glioma tissue arrays and the Xiangya cohort confirmed substantial upregulation of inositol 1,4,5-triphosphate (IP3) kinase B (ITPKB) in the recurrence group, correlating with poor survival in glioma patients. In TMZ-resistant cells, the depletion of ITPKB led to an increase in reactive oxygen species (ROS) related to NADPH oxidase (NOX) activity and restored cell sensitivity to TMZ. Mechanistically, the decreased phosphorylation of the E3 ligase Trim25 at the S100 position in recurrent GBM samples accounted for the weakened ITPKB ubiquitination. This, in turn, elevated ITPKB stability and impaired ROS production. Furthermore, ITPKB depletion or the ITPKB inhibitor GNF362 effectively overcome TMZ chemoresistance in a glioma xenograft mouse model. These findings reveal a novel mechanism underlying TMZ resistance and propose ITPKB as a promising therapeutic target for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shangjun Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Pan ZY, Wu ML, Zhang W. Expression of Galectin-1 protein in gastric cancer: Correlation with disease progression and prognosis. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:134-140. [DOI: 10.11569/wcjd.v32.i2.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
|
12
|
Wang Z, Li W, Li F, Xiao R. An update of predictive biomarkers related to WEE1 inhibition in cancer therapy. J Cancer Res Clin Oncol 2024; 150:13. [PMID: 38231277 PMCID: PMC10794259 DOI: 10.1007/s00432-023-05527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE WEE1 is a crucial kinase involved in the regulation of G2/M checkpoint within the cell cycle. This article aims to comprehensively review the existing knowledge on the implication of WEE1 as a therapeutic target in tumor progression and drug resistance. Furthermore, we summarize the current predictive biomarkers employed to treat cancer with WEE1 inhibitors. METHODS A systematic review of the literature was conducted to analyze the association between WEE1 inhibition and cancer progression, including tumor advancement and drug resistance. Special attention was paid to the identification and utilization of predictive biomarkers related to therapeutic response to WEE1 inhibitors. RESULTS The review highlights the intricate involvement of WEE1 in tumor progression and drug resistance. It synthesizes the current knowledge on predictive biomarkers employed in WEE1 inhibitor treatments, offering insights into their prognostic significance. Notably, the article elucidates the potential for precision medicine by understanding these biomarkers in the context of tumor treatment outcomes. CONCLUSION WEE1 plays a pivotal role in tumor progression and is a promising therapeutic target. Distinguishing patients that would benefit from WEE1 inhibition will be a major direction of future research.
Collapse
Affiliation(s)
- Zizhuo Wang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wenting Li
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Fuxia Li
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
14
|
Li J, Zheng C, Mai Q, Huang X, Pan W, Lu J, Chen Z, Zhang S, Zhang C, Huang H, Chen Y, Guo H, Wu Z, Deng C, Jiang Y, Li B, Liu J, Yao S, Pan C. Tyrosine catabolism enhances genotoxic chemotherapy by suppressing translesion DNA synthesis in epithelial ovarian cancer. Cell Metab 2023; 35:2044-2059.e8. [PMID: 37890478 DOI: 10.1016/j.cmet.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Amino acid metabolism has been actively investigated as a potential target for antitumor therapy, but how it may alter the response to genotoxic chemotherapy remains largely unknown. Here, we report that the depletion of fumarylacetoacetate hydrolase (FAH), an enzyme that catalyzes the final step of tyrosine catabolism, reduced chemosensitivity in epithelial ovarian cancer (EOC). The expression level of FAH correlated significantly with chemotherapy efficacy in patients with EOC. Mechanistically, under genotoxic chemotherapy, FAH is oxidized at Met308 and translocates to the nucleus, where FAH-mediated tyrosine catabolism predominantly supplies fumarate. FAH-produced fumarate binds directly to REV1, resulting in the suppression of translesion DNA synthesis (TLS) and improved chemosensitivity. Furthermore, in vivo tyrosine supplementation improves sensitivity to genotoxic chemotherapeutics and reduces the occurrence of therapy resistance. Our findings reveal a unique role for tyrosine-derived fumarate in the regulation of TLS and may be exploited to improve genotoxic chemotherapy through dietary tyrosine supplementation.
Collapse
Affiliation(s)
- Jie Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Cuimiao Zheng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiuwen Mai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xi Huang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenfeng Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingyi Lu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengfan Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Suman Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangyang Chen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongbo Guo
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenyin Wu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunnuan Deng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yiting Jiang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
15
|
Yan J, Xu F, Zhou D, Zhang S, Zhang B, Meng Q, Lv Q. Metabolic reprogramming of three major nutrients in platinum-resistant ovarian cancer. Front Oncol 2023; 13:1231460. [PMID: 37681030 PMCID: PMC10482409 DOI: 10.3389/fonc.2023.1231460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Metabolic reprogramming is a phenomenon in which cancer cells alter their metabolic pathways to support their uncontrolled growth and survival. Platinum-based chemotherapy resistance is associated with changes in glucose metabolism, amino acid metabolism, fatty acid metabolism, and tricarboxylic acid cycle. These changes lead to the creation of metabolic intermediates that can provide precursors for the biosynthesis of cellular components and help maintain cellular energy homeostasis. This article reviews the research progress of the metabolic reprogramming mechanism of platinumbased chemotherapy resistance caused by three major nutrients in ovarian cancer.
Collapse
Affiliation(s)
- Jinbowen Yan
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Dan Zhou
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingwei Meng
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiubo Lv
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Jian D, Lianghao Z, Yunge G, Ligang C, Biliang C, Xiaohui L. A Prognostic Model Based on Metabolism-Related Genes for Patients with Ovarian Cancer. DOKL BIOCHEM BIOPHYS 2023; 510:110-122. [PMID: 37582873 DOI: 10.1134/s1607672923600082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 08/17/2023]
Abstract
Metabolism-associated genes (MAGs) are important regulators of tumor progression and can affect a variety of physiological processes. In this study, we focused on the relationship between MAGs and Ovarian cancer (OC) prognosis. METHOD Metabolism-related genes were extracted from the Cancer Genome Atlas (TCGA) database. Through univariate COX and lasso regression models, a dynamic risk model based on MAGs was established. Compared with other clinical factors, demonstrated the ability of the model to predict the prognosis of patients with OC. The clinical samples were used to verify the expression of these MAGs. RESULTS A metabolism-associated gene signature was constructed by LASSO Cox regression analysis in OC, which was composed of 3-MAGs (PTGIS, AOC3, and IDO1). The signature was used to classify the OC patients into high-risk and low-risk groups. The overall survival of the low-risk group was significantly better than that of the high-risk group. The analysis of the therapeutic effect of bevacizumab showed that bevacizumab was not conducive to improving the prognosis of the low-risk group. CONCLUSIONS We constructed a prognostic model of MAGs in OC, which can be used to predict the prognosis of OC patients and may have a good guiding significance in the individualized treatment of patients.
Collapse
Affiliation(s)
- Dong Jian
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Zhai Lianghao
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Gao Yunge
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Chen Ligang
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Chen Biliang
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Lv Xiaohui
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China.
| |
Collapse
|
17
|
Su YL, Xiao LY, Huang SY, Wu CC, Chang LC, Chen YH, Luo HL, Huang CC, Liu TT, Peng JM. Inhibiting WEE1 Augments the Antitumor Efficacy of Cisplatin in Urothelial Carcinoma by Enhancing the DNA Damage Process. Cells 2023; 12:1471. [PMID: 37296592 PMCID: PMC10252844 DOI: 10.3390/cells12111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Urothelial carcinoma (UC) is characterized by a high incidence of TP53 mutation, and overcoming resistance to cisplatin-based chemotherapy in UC is a major concern. Wee1 is a G2/M phase regulator that controls the DNA damage response to chemotherapy in TP53-mutant cancers. The combination of Wee1 blockade with cisplatin has shown synergistic efficacy in several types of cancers, but little is known regarding UC. The antitumor efficacy of the Wee1 inhibitor (AZD-1775) alone or in combination with cisplatin was evaluated in UC cell lines and a xenograft mouse model. AZD-1775 enhanced the anticancer activity of cisplatin by increasing cellular apoptosis. AZD-1775 inhibited the G2/M checkpoint, improving the sensitivity of mutant TP53 UC cells to cisplatin by enhancing the DNA damage process. We confirmed that AZD-1775 combined with cisplatin reduced tumor volume and proliferation activity and increased the markers of cell apoptosis and DNA damage in the mouse xenograft model. In summary, the Wee1 inhibitor AZD-1775 combined with cisplatin elicited a promising anticancer efficacy in UC, and constitutes an innovative and promising therapeutic strategy.
Collapse
Affiliation(s)
- Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
- Genomic & Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ling-Yi Xiao
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Shih-Yu Huang
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Che Wu
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Li-Chung Chang
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Hua Chen
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
18
|
Yang F, Li M, Xu D, Jiang Z, Jiang H, Xiao Y, Mei C, Yang M, Chen C, Zhou B, He B, Shan H, Pang P, Li D. Inhibition of JNK/c-Jun-ATF2 Overcomes Cisplatin Resistance in Liver Cancer through down-Regulating Galectin-1. Int J Biol Sci 2023; 19:2366-2381. [PMID: 37215991 PMCID: PMC10197891 DOI: 10.7150/ijbs.79163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/20/2023] [Indexed: 05/24/2023] Open
Abstract
Due to drug resistance, the clinical response to cisplatin (CDDP) from patients with liver cancer is unsatisfactory. The alleviation or overcoming of CDDP resistance is an urgent problem to be solved in clinics. Tumor cells rapidly change signal pathways to mediate drug resistance under drug exposure. Here, multiple phosphor-kinase assays were performed and c-Jun N-terminal kinase (JNK) was activated in liver cancer cells treated with CDDP. The high activity of the JNK promotes poor progression and mediates cisplatin resistance in liver cancer, leading to a poor prognosis of liver cancer. Mechanistically, the highly activated JNK phosphorylated c-Jun and ATF2 formed a heterodimer to upregulate the expression of Galectin-1, leading to promoting cisplatin resistance in liver cancer. Importantly, we simulated the clinical evolution of drug resistance in liver cancer by continuous CDDP administration in vivo. In vivo bioluminescence imaging showed the activity of JNK gradually increased during this process. Moreover, the inhibition of JNK activity by small molecular or genetic inhibitors enhanced DNA damage and overcame CDDP resistance in vitro and in vivo. Collectively, our results underline that the high activity of JNK/c-Jun-ATF2/Galectin-1 mediates cisplatin resistance in liver cancer and provides an optional scheme for dynamic monitoring of molecular activity in vivo.
Collapse
Affiliation(s)
- Fan Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Mengzhu Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Duo Xu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zebo Jiang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hailong Jiang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Congmin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Bin Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Bailiang He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Pengfei Pang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| |
Collapse
|
19
|
Zhou D, Liu T, Rao X, Jie X, Chen Y, Wu Z, Deng H, Zhang D, Wang J, Wu G. Targeting diacylglycerol kinase α impairs lung tumorigenesis by inhibiting cyclin D3. Thorac Cancer 2023; 14:1179-1191. [PMID: 36965165 PMCID: PMC10151139 DOI: 10.1111/1759-7714.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Diacylglycerol kinase α (DGKA) is the first member discovered from the diacylglycerol kinase family, and it has been linked to the progression of various types of tumors. However, it is unclear whether DGKA is linked to the development of lung cancer. METHODS We investigated the levels of DGKA in the lung cancer tissues. Cell growth assay, colony formation assay and EdU assay were used to examine the effects of DGKA-targeted siRNAs/shRNAs/drugs on the proliferation of lung cancer cells in vitro. Xenograft mouse model was used to investigate the role of DGKA inhibitor ritanserin on the proliferation of lung cancer cells in vivo. The downstream target of DGKA in lung tumorigenesis was identified by RNA sequencing. RESULTS DGKA is upregulated in the lung cancer cells. Functional assays and xenograft mouse model indicated that the proliferation ability of lung cancer cells was impaired after inhibiting DGKA. And cyclin D3(CCND3) is the downstream target of DGKA promoting lung cancer. CONCLUSIONS Our study demonstrated that DGKA promotes lung tumorigenesis by regulating the CCND3 expression and hence it can be considered as a potential molecular biomarker to evaluate the prognosis of lung cancer patients. What's more, we also demonstrated the efficacy of ritanserin as a promising new medication for treating lung cancer.
Collapse
Affiliation(s)
- Dong Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunshang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Chen S, Lin J, Zhao J, Lin Q, Liu J, Wang Q, Mui R, Ma L. FBXW7 attenuates tumor drug resistance and enhances the efficacy of immunotherapy. Front Oncol 2023; 13:1147239. [PMID: 36998461 PMCID: PMC10043335 DOI: 10.3389/fonc.2023.1147239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
FBXW7 (F-box and WD repeat domain containing 7) is a critical subunit of the Skp1-Cullin1-F-box protein (SCF), acting as an E3 ubiquitin ligase by ubiquitinating targeted protein. Through degradation of its substrates, FBXW7 plays a pivotal role in drug resistance in tumor cells and shows the potential to rescue the sensitivity of cancer cells to drug treatment. This explains why patients with higher FBXW7 levels exhibit higher survival times and more favorable prognosis. Furthermore, FBXW7 has been demonstrated to enhance the efficacy of immunotherapy by targeting the degradation of specific proteins, as compared to the inactivated form of FBXW7. Additionally, other F-box proteins have also shown the ability to conquer drug resistance in certain cancers. Overall, this review aims to explore the function of FBXW7 and its specific effects on drug resistance in cancer cells.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jichun Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaojiao Zhao
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Ryan Mui
- Department of Gastroenterology, Sparrow Hospital, Lansing, MI, United States
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Leina Ma,
| |
Collapse
|
21
|
Yue P, Han B, Zhao Y. Focus on the molecular mechanisms of cisplatin resistance based on multi-omics approaches. Mol Omics 2023; 19:297-307. [PMID: 36723121 DOI: 10.1039/d2mo00220e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cisplatin is commonly used in combination with other cytotoxic agents as a standard treatment regimen for a variety of solid tumors, such as lung, ovarian, testicular, and head and neck cancers. However, the effectiveness of cisplatin is accompanied by toxic side effects, for instance, nephrotoxicity and neurotoxicity. The response of tumors to cisplatin treatment involves multiple physiological processes, and the efficacy of chemotherapy is limited by the intrinsic and acquired resistance of tumor cells. Although enormous efforts have been made toward molecular mechanisms of cisplatin resistance, the development of omics provides new insights into the understanding of cisplatin resistance at genome, transcriptome, proteome, metabolome and epigenome levels. Mechanism studies using different omics approaches revealed the necessity of multi-omics applications, which provide information at different cellular function levels and expand our recognition of the peculiar genetic and phenotypic heterogeneity of cancer. The present work systematically describes the underlying mechanisms of cisplatin resistance in different tumor types using multi-omics approaches. In addition to the classical mechanisms such as enhanced drug efflux, increased DNA damage repair and changes in the cell cycle and apoptotic pathways, other changes like increased protein damage clearance, increased protein glycosylation, enhanced glycolytic process, dysregulation of the oxidative phosphorylation pathway, ferroptosis suppression and mRNA m6A methylation modification can also induce cisplatin resistance. Therefore, utilizing the integrated omics to identify key signaling pathways, target genes and biomarkers that regulate chemoresistance are essential for the development of new drugs or strategies to restore tumor sensitivity to cisplatin.
Collapse
Affiliation(s)
- Ping Yue
- Department of Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China. .,Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bingjie Han
- Department of Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yi Zhao
- Department of Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
22
|
Li J, Lu J, Xu M, Yang S, Yu T, Zheng C, Huang X, Pan Y, Chen Y, Long J, Zhang C, Huang H, Dai Q, Li B, Wang W, Yao S, Pan C. ODF2L acts as a synthetic lethal partner with WEE1 inhibition in epithelial ovarian cancer models. J Clin Invest 2023; 133:161544. [PMID: 36378528 PMCID: PMC9843051 DOI: 10.1172/jci161544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
WEE1 has emerged as an attractive target in epithelial ovarian cancer (EOC), but how EOC cells may alter their sensitivity to WEE1 inhibition remains unclear. Here, through a cell cycle machinery-related gene RNAi screen, we found that targeting outer dense fiber of sperm tails 2-like (ODF2L) was a synthetic lethal partner with WEE1 kinase inhibition in EOC cells. Knockdown of ODF2L robustly sensitized cells to treatment with the WEE1 inhibitor AZD1775 in EOC cell lines in vitro as well as in xenografts in vivo. Mechanistically, the increased sensitivity to WEE1 inhibition upon ODF2L loss was accompanied by accumulated DNA damage. ODF2L licensed the recruitment of PKMYT1, a functionally redundant kinase of WEE1, to the CDK1-cyclin B complex and thus restricted the activity of CDK1 when WEE1 was inhibited. Clinically, upregulation of ODF2L correlated with CDK1 activity, DNA damage levels, and sensitivity to WEE1 inhibition in patient-derived EOC cells. Moreover, ODF2L levels predicted the response to WEE1 inhibition in an EOC patient-derived xenograft model. Combination treatment with tumor-targeted lipid nanoparticles that packaged ODF2L siRNA and AZD1775 led to the synergistic attenuation of tumor growth in the ID8 ovarian cancer syngeneic mouse model. These data suggest that WEE1 inhibition is a promising precision therapeutic strategy for EOC cells expressing low levels of ODF2L.
Collapse
Affiliation(s)
- Jie Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Jingyi Lu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Manman Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Shiyu Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Tiantian Yu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Cuimiao Zheng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Huang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Yangyang Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junming Long
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Qingyuan Dai
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Platinum-Resistant Ovarian Cancer Is Vulnerable to the cJUN-XRCC4 Pathway Inhibition. Cancers (Basel) 2022; 14:cancers14246068. [PMID: 36551554 PMCID: PMC9776316 DOI: 10.3390/cancers14246068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) caused by platinum drugs are dangerous lesions that kill cancer cells in chemotherapy. Repair of DSB by homologous recombination (HR) and nonhomologous end joining (NHEJ) is frequently associated with platinum resistance in ovarian cancer. While the role of the HR pathway and HR-targeting strategy in platinum resistance is well studied, dissecting and targeting NHEJ machinery to overcome platinum resistance in ovarian cancer remain largely unexplored. Here, through an NHEJ pathway-focused gene RNAi screen, we found that the knockdown of XRCC4 significantly sensitized cisplatin treatment in the platinum-resistant ovarian cancer cell lines. Moreover, upregulation of XRCC4 is observed in a panel of platinum-resistant cell lines relative to the parental cell lines, as well as in ovarian cancer patients with poor progression-free survival. Mechanistically, the increased sensitivity to cisplatin upon XRCC4 knockdown was caused by accumulated DNA damage. In cisplatin-resistant ovarian cancer, the JNK-cJUN complex, activated by cisplatin, translocated into the nucleus and promoted the transcription of XRCC4 to confer cisplatin resistance. Knockdown of XRCC4 or treatment of the JNK inhibitor led to the attenuation of cisplatin-resistant tumor growth in the xenograft mouse models. These data suggest targeting XRCC4 is a potential strategy for ovarian cisplatin resistance in ovarian cancer.
Collapse
|
24
|
Cui S. METTL3
‐mediated
m6A
modification of lnc
RNA RHPN1‐AS1
enhances cisplatin resistance in ovarian cancer by activating
PI3K
/
AKT
pathway. J Clin Lab Anal 2022; 36:e24761. [DOI: 10.1002/jcla.24761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shoubin Cui
- Department of Gynaecology and Obstetrics Yantai Affiliated Hospital of Binzhou Medical University Yantai Shandong China
| |
Collapse
|
25
|
Khalaji A, Haddad S, Yazdani Y, Moslemi M, Alizadeh L, Baradaran B. A bioinformatics-based study on the Cisplatin-resistant lung cancer cells; what are the orchestrators of this phenom? Gene X 2022; 834:146668. [PMID: 35690284 DOI: 10.1016/j.gene.2022.146668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/04/2022] Open
Abstract
Lung cancer represents a significant global health issue and is among the central causes of mortality and morbidity around the world. Unfortunately, the majority of lung cancer patients acquire drug resistant to chemotherapy either intrinsically or acquired after Cisplatin treatment. It is indicated that increasing or decreasing the expression of particular genes can affect chemotherapeutic sensitivity or resistance. As a result, gaining a deeper knowledge of the changed expression of genes implicated in lung cancer drug resistance, as well as developing novel therapeutic techniques, are critical targets for continued advancement in lung cancer treatment. In the present study, we aimed to find key regulatory genes in the progression of Cisplatin resistance in A-549 lung cancer cells. In this regard, microarray dataset of Cisplatin-resistant and Cisplatin-sensitive was retrieved from the Gene Expression Omnibus (GEO) with accession number of GSE108214. Then, differentially expressed genes (DEGs) between sensitive and resistant lung cancer cells were obtained by using R software v4.0.2 and related packages. We recognized CEACAM1, DGKA, ARHGEF4, and THSD4 are involved in the drug resistance. Experimentally, Cisplatin-resistant A-549 cells were developed and analyzed by MTT assay. Besides, the expression of candidate genes were analyzed in these cells compared to Cisplatin-sensitive A-549 cells by qRT-PCR. The findings presented that the expression of CEACAM1, DGKA, ARHGEF4, and THSD4 was altered following the induction of Cisplatin resistance in A549 cells.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Haddad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Emam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Moslemi
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Li D, Liang J, Yang W, Guo W, Song W, Zhang W, Wu X, He B. A distinct lipid metabolism signature of acute myeloid leukemia with prognostic value. Front Oncol 2022; 12:876981. [PMID: 35957912 PMCID: PMC9359125 DOI: 10.3389/fonc.2022.876981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy characterized by extensive genetic abnormalities that might affect the prognosis and provide potential drug targets for treatment. Reprogramming of lipid metabolism plays important roles in tumorigenesis and progression and has been newly recognized a new hallmark of malignancy, and some related molecules in the signal pathways could be prognostic biomarkers and potential therapeutic targets for cancer treatment. However, the clinical value of lipid metabolism reprogramming in AML has not been systematically explored. In this study, we aim to explore the clinical value of lipid metabolism reprogramming and develop a prognostic risk signature for AML. Methods We implemented univariate Cox regression analysis to identify the prognosis-related lipid metabolism genes, and then performed LASSO analysis to develop the risk signature with six lipid metabolism-related genes (LDLRAP1, PNPLA6, DGKA, PLA2G4A, CBR1, and EBP). The risk scores of samples were calculated and divided into low- and high-risk groups by the median risk score. Results Survival analysis showed the high-risk group hold the significantly poorer outcomes than the low-risk group. The signature was validated in the GEO datasets and displayed a robust prognostic value in the stratification analysis. Multivariate analysis revealed the signature was an independent prognostic factor for AML patients and could serve as a potential prognostic biomarker in clinical evaluation. Furthermore, the risk signature was also found to be closely related to immune landscape and immunotherapy response in AML. Conclusions Overall, we conducted a comprehensive analysis of lipid metabolism in AML and constructed a risk signature with six genes related to lipid metabolism for the malignancy, prognosis, and immune landscape of AML, and our study might contribute to better understanding in the use of metabolites and metabolic pathways as the potential prognostic biomarkers and therapeutic targets for AML.
Collapse
Affiliation(s)
- Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiaming Liang
- Department of Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Yang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenbin Guo
- Department of Pathology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- *Correspondence: Baoxia He, ; Xuan Wu,
| | - Baoxia He
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Baoxia He, ; Xuan Wu,
| |
Collapse
|
27
|
Molecular Targets and Mechanisms of Hedyotis diffusa- Scutellaria barbata Herb Pair for the Treatment of Colorectal Cancer Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6186662. [PMID: 35707465 PMCID: PMC9192289 DOI: 10.1155/2022/6186662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Objective: Hedyotis diffusa-Scutellaria barbata herb pair (HS) has therapeutic effects on a variety of cancers, and this study aims to systematically explore the multiple mechanisms of HS in the treatment of colorectal cancer (CRC). Methods. The active ingredients of HS were obtained from TCMSP, and the potential targets related to these ingredients were screened from the STITCH, SuperPred, and Swiss TargetPrediction databases. Targets associated with CRC were retrieved by Drugbank, TTD, DisGeNET, and GeneCards. We used a Venn diagram to screen the intersection targets and used Cytoscape to construct the herb-ingredient-target-disease network, and the core targets were selected. The Go analysis and KEGG pathway annotation were performed by R language software. We used PyMol and Autodock Vina to achieve molecular docking of core ingredients and targets. Results: A total of 33 active ingredients were obtained from the HS, and 762 CRC-related targets were reserved from the four databases. We got 170 intersection targets to construct the network and found that the four ingredients with the most targets were quercetin, luteolin, baicalein, and dinatin, which were the core ingredients. The PPI analysis showed that the core targets were STAT3, TP53, MAPK3, AKT1, JUN, EGFR, MYC, VEGFA, EGF, and CTNNB1. Molecular docking results showed that these core ingredients had good binding potential with core targets, especially the docking of each component with MAPK obtained the lowest binding energy. HS acts simultaneously on various signaling pathways related to CRC, including the PI3K-Akt signaling pathway, proteoglycans in cancer, and the MAPK signaling pathway. Conclusions: This study systematically analyzed the active ingredients, core targets, and central mechanisms of HS in the treatment of CRC. It reveals the role of HS targeting PI3K-Akt signaling and MAPK signaling pathways in the treatment of CRC. We hope that our research could bring a new perspective to the therapy of CRC and find new anticancer drugs.
Collapse
|
28
|
miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:366-386. [PMID: 35505963 PMCID: PMC9035384 DOI: 10.1016/j.omtn.2022.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/27/2022] [Indexed: 01/18/2023]
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignancies worldwide. Combination chemotherapy with cisplatin (CDDP) plus pemetrexed (PEM) remains the predominant therapeutic regimen; however, chemoresistance greatly limits its curative potential. Here, through CRISPR-Cas9 screening, we identified miR-6077 as a key driver of CDDP/PEM resistance in LUAD. Functional experiments verified that ectopic overexpression of miR-6077 desensitized LUAD cells to CDDP/PEM in both cell lines and patient-derived xenograft models. Through RNA sequencing in cells and single-cell sequencing of samples from patients with CDDP/PEM treatments, we observed CDDP/PEM-induced upregulation of CDKN1A and KEAP1, which in turn activated cell-cycle arrest and ferroptosis, respectively, thus leading to cell death. Through miRNA pull-down, we identified and validated that miR-6077 targets CDKN1A and KEAP1. Furthermore, we demonstrated that miR-6077 protects LUAD cells from cell death induced by CDDP/PEM via CDKN1A-CDK1-mediated cell-cycle arrest and KEAP1-NRF2-SLC7A11/NQO1-mediated ferroptosis, thus resulting in chemoresistance in multiple LUAD cells both in vitro and in vivo. Moreover, we found that GMDS-AS1 and LINC01128 sensitized LUAD cells to CDDP/PEM by sponging miR-6077. Collectively, these results imply the critical role of miR-6077 in LUAD’s sensitivity to CDDP/PEM, thus providing a novel therapeutic strategy for overcoming chemoresistance in clinical practice.
Collapse
|
29
|
NAP1L1 promotes tumor proliferation through HDGF/C-JUN signaling in ovarian cancer. BMC Cancer 2022; 22:339. [PMID: 35351053 PMCID: PMC8962469 DOI: 10.1186/s12885-022-09356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Nucleosome assembly protein 1-like 1 (NAP1L1) is highly expressed in various types of cancer and plays an important role in carcinogenesis, but its specific role in tumor development and progression remains largely unknown. In this study, we suggest the potential of NAP1L1 as a prognostic biomarker and therapeutic target for the treatment of ovarian cancer (OC). Methods In our study, a tissue microarray (TMA) slide containing specimens from 149 patients with OC and 11 normal ovarian tissues underwent immunohistochemistry (IHC) to analyze the correlation between NAP1L1 expression and clinicopathological features. Loss-of- function experiments were performed by transfecting siRNA and following lentiviral gene transduction into SKOV3 and OVCAR3 cells. Cell proliferation and the cell cycle were assessed by the Cell Counting Kit-8, EDU assay, flow cytometry, colony formation assay, and Western blot analysis. In addition, co-immunoprecipitation (Co-IP) and immunofluorescence assays were performed to confirm the relationship between NAP1L1 and its potential targets in SKOV3/OVCAR3 cells. Results High expression of NAP1L1 was closely related to poor clinical outcomes in OC patients. After knocking down NAP1L1 by siRNA or shRNA, both SKOV3 and OVCAR3 cells showed inhibition of cell proliferation, blocking of the G1/S phase, and increased apoptosis in vitro. Mechanism analysis indicated that NAP1L1 interacted with hepatoma-derived growth factor (HDGF) and they were co-localized in the cytoplasm. Furthermore, HDGF can interact with jun proto-oncogene (C-JUN), an oncogenic transformation factor that induces the expression of cyclin D1 (CCND1). Overexpressed HDGF in NAP1L1 knockdown OC cells not only increased the expression of C-JUN and CCND1, but it also reversed the suppressive effects of si-NAP1L1 on cell proliferation. Conclusions Our data demonstrated that NAP1L1 could act as a prognostic biomarker in OC and can interact with HDGF to mediate the proliferation of OC, and this process of triggered proliferation may contribute to the activation of HDGF/C-JUN signaling in OC cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09356-z.
Collapse
|
30
|
Ling Z, Zhang J, Liu Q. Oncogenic Forkhead box D3 antisense RNA 1 promotes cell survival and confers temozolomide resistance in glioblastoma cells through the miR-128-3p/WEE1 G2 checkpoint kinase axis. Bioengineered 2022; 13:6012-6023. [PMID: 35191808 PMCID: PMC8974031 DOI: 10.1080/21655979.2022.2042133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Although temozolomide (TMZ) is recommended for glioblastoma (GBM) treatment, patients treated with TMZ usually develop TMZ resistance. Thus, there is an urgent need to elucidate the mechanism through which GBM cells acquire TMZ resistance. FOXD3-AS1, a recently discovered lncRNA, shows high expression in diverse cancer types. Nonetheless, its role in GBM remains unclear. This study found that FOXD3-AS1 was overexpressed in GBM cells and associated with dismal prognostic outcome in GBM patients. Functional studies revealed that depletion of FOXD3-AS1 inhibited cell growth and induced apoptosis of GBM cells. Results also showed that FOXD3-AS1 participates in the tolerance of GBM cells to TMZ. Specifically, TMZ-resistant cells exhibited higher FOXD3-AS1 expression compared to parental cells. Overexpression of FOXD3-AS1 increased TMZ tolerance in TMZ sensitive cells, whereas depletion of FOXD3-AS1 sensitized TMZ-resistant cells to TMZ treatment. Mechanistically, WEE1 was positively expressed with FOXD3-AS1. Given that both FOXD3-AS1 and WEE1 contain a binding site for miR-128-3p, FOXD3-AS1 could act as a competing endogenous RNA (ceRNA) to promote WEE1 expression by sponging miR-128-3p. Furthermore, we demonstrated that WEE1 was upregulated in TMZ-resistant GBM cells. Overexpression of WEE1 increased TMZ tolerance in TMZ sensitive cells, whereas deletion of FOXD3-AS1 promoted TMZ-resistant cells to be more sensitive to TMZ. Importantly, depletion of WEE1 could reverse TMZ resistant phenotype in FOXD3-AS1-overexpressed GBM cells. Collectively, our findings reveal a critical role of FOXD3-AS1 in the survival of GBM cells and TMZ resistance, which suggests that FOXD3-AS1 is a potential biomarker for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Zaisheng Ling
- Department of Ct Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Jinpeng Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Qingqing Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
31
|
Fu L, Deng R, Huang Y, Yang X, Jiang N, Zhou J, Lin C, Chen S, Wu L, Cui Q, Yun J. DGKA interacts with SRC/FAK to promote the metastasis of non-small cell lung cancer. Cancer Lett 2022; 532:215585. [PMID: 35131384 DOI: 10.1016/j.canlet.2022.215585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/25/2022]
Abstract
Metastasis is responsible for the high mortality rate of lung cancer, but its underlying molecular mechanisms are poorly understood. Here, we demonstrated that the expression of diacylglycerol kinase alpha (DGKA) was elevated in the metastatic lesions of non-small cell lung cancer (NSCLC) and correlated with poor survival. Mechanistic studies revealed a direct physical interaction as well as a mutual regulation among DGKA, proto-oncogene tyrosine-protein kinase Src (SRC), and focal adhesion kinase 1 (FAK) proteins. The C-terminal domain of DGKA was responsible for the SRC SH3 domain binding, while the catalytic domain of DGKA interacted with the FREM domain of FAK. DGKA phosphorylated the SRC protein at Tyr416 and the FAK protein at Tyr397 to form and activate the DGKA/SRC/FAK complex, thus initiating the downstream WNT/β-catenin and VEGF signaling pathways, promoting epithelial-mesenchymal transition (EMT) and angiogenesis, and resulting in the metastasis of NSCLC. DGKA knockdown inhibited the invasive phenotype of NSCLC cells in vitro. Pharmacologic ablation of DGKA inhibited the metastasis of NSCLC cells in vivo, and this was reversed by the overexpression of DGKA. These results suggested that DGKA was a potential prognostic biomarker as well as a promising therapeutic target for NSCLC, especially when there was lymphatic or distant metastasis.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ru Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Neng Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jing Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Censhan Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Shilu Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Liyan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Qian Cui
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
32
|
DGKZ promotes TGFβ signaling pathway and metastasis in triple-negative breast cancer by suppressing lipid raft-dependent endocytosis of TGFβR2. Cell Death Dis 2022; 13:105. [PMID: 35115500 PMCID: PMC8814002 DOI: 10.1038/s41419-022-04537-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Diacylglycerol kinase ζ (DGKZ) is a diacylglycerol kinase that metabolizes diacylglycerol to yield phosphatidic acid, and its function in breast cancer progression remains unclear. In this study, via screening of a CRISPR-Cas9 knockout library containing lipid metabolic genes, DGKZ was identified as a potential prometastatic gene. We first confirmed that high DGKZ expression correlated with tumor progression and poor prognosis in patients. Next, knockout of DGKZ in triple-negative breast cancer cell lines were found to significantly inhibit metastatic behaviors in vitro and in vivo, whereas its overexpression increased the metastatic potential of cell lines. Mechanistic studies based on RNA sequencing and bioinformatic analysis indicated that DGKZ might regulate cell metastasis by promoting epithelial–mesenchymal transition via the transforming growth factor β (TGFβ) signaling pathway. Furthermore, we found that overexpression of DGKZ activated the TGFβ/TGFβR2/Smad3 signaling pathway by inhibiting the degradation of TGFβR2 through suppression of caveolin/lipid raft-dependent endocytosis. Moreover, the caveolin/lipid raft-dependent endocytosis of TGFβR2 was regulated by the metabolite phosphatidic acid, which might alter TGFβR2 partitioning in lipid rafts and nonlipid rafts by affecting the fluidity of the plasma membrane. These findings suggested that DGKZ is a novel promoter of metastasis and that it could be a potential prognostic indicator in patients with triple-negative breast cancer.
Collapse
|
33
|
Li J, Zheng C, Wang M, Umano AD, Dai Q, Zhang C, Huang H, Yang Q, Yang X, Lu J, Pan W, Li B, Yao S, Pan C. ROS-regulated phosphorylation of ITPKB by CAMK2G drives cisplatin resistance in ovarian cancer. Oncogene 2022; 41:1114-1128. [PMID: 35039634 DOI: 10.1038/s41388-021-02149-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
Platinum resistance accounts for much of the high mortality and morbidity associated with ovarian cancer. Identification of targets with significant clinical translational potential remains an unmet challenge. Through a high-throughput synthetical lethal screening for clinically relevant targets using 290 kinase inhibitors, we identify calcium/calmodulin-dependent protein kinase II gamma (CAMK2G) as a critical vulnerability in cisplatin-resistant ovarian cancer cells. Pharmacologic inhibition of CAMK2G significantly sensitizes ovarian cancer cells to cisplatin treatment in vitro and in vivo. Mechanistically, CAMK2G directly senses ROS, both basal and cisplatin-induced, to control the phosphorylation of ITPKB at serine 174, which directly regulates ITPKB activity to modulate cisplatin-induced ROS stress. Thereby, CAMK2G facilitates the adaptive redox homeostasis upon cisplatin treatment and drives cisplatin resistance. Clinically, upregulation of CAMK2G activity and ITPKB pS174 correlates with cisplatin resistance in human ovarian cancers. This study reveals a key kinase network consisting of CAMK2G and ITPKB for ROS sense and scavenging in ovarian cancer cells to maintain redox homeostasis, offering a potential strategy for cisplatin resistance treatment.
Collapse
Affiliation(s)
- Jie Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cuimiao Zheng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingshuo Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anna D Umano
- Department of Microbiology and Molecular Genetics, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Qingyuan Dai
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianzhi Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyi Lu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenfeng Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Pan C, Li B, Simon MC. Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol Cell 2021; 81:3760-3774. [PMID: 34547237 DOI: 10.1016/j.molcel.2021.08.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
The growing field of tumor metabolism has greatly expanded our knowledge of metabolic reprogramming in cancer. Apart from their established roles, various metabolic enzymes and metabolites harbor non-canonical ("moonlighting") functions to support malignant transformation. In this article, we intend to review the current understanding of moonlighting functions of metabolic enzymes and related metabolites broadly existing in cancer cells by dissecting each major metabolic pathway and its regulation of cellular behaviors. Understanding these non-canonical functions may broaden the horizon of the cancer metabolism field and uncover novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, Ricci C, Scambia G, Fagotti A. Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin Cancer Biol 2021; 77:144-166. [PMID: 34464704 DOI: 10.1016/j.semcancer.2021.08.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OC) remains a fatal malignancy because most patients experience recurrent disease, which is resistant to chemotherapy. The outcomes for patients with platinum-resistant OC are poor, response rates to further chemotherapy are low and median survival is lower than 12 months. The complexity of platinum-resistant OC, which comprises a heterogeneous spectrum of diseases, is indeed far from being completely understood. Therefore, comprehending tumors' biological behaviour to identify reliable biomarkers, which may predict responses to therapies, is a demanding challenge to improve OC management. In the age of precision medicine, efforts to overcome platinum resistance in OC represent a dynamic and vast field in which innovative drugs and clinical trials rapidly develop. This review will present the exceptional biochemical environment implicated in OC and highlights mechanisms of chemoresistance. Furthermore, innovative molecules and new therapeutic opportunities are presented, along with currently available therapies and ongoing clinical trials.
Collapse
Affiliation(s)
- Claudia Marchetti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Francesca De Felice
- Division of Radiotherapy and Oncology, Policlinico Umberto I, Roma, Italy; Università La Sapienza, Roma, Italy
| | - Alessia Romito
- Gynecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy
| | - Valentina Iacobelli
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Carolina Maria Sassu
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Polyclinic Umberto I, Rome, Italy
| | - Giacomo Corrado
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Caterina Ricci
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Fagotti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
36
|
Murakami K, Kita Y, Sakatani T, Hamada A, Mizuno K, Nakamura K, Takada H, Matsumoto K, Sano T, Goto T, Akamatsu S, Saito R, Tsuruyama T, Ogawa O, Kobayashi T. Antitumor effect of WEE1 blockade as monotherapy or in combination with cisplatin in urothelial cancer. Cancer Sci 2021; 112:3669-3681. [PMID: 34212455 PMCID: PMC8409401 DOI: 10.1111/cas.15051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Overcoming cisplatin (CDDP) resistance is a major issue in urothelial cancer (UC), in which CDDP‐based chemotherapy is the first‐line treatment. WEE1, a G2/M checkpoint kinase, confers chemoresistance in response to genotoxic agents. However, the efficacy of WEE1 blockade in UC has not been reported. MK‐1775, a WEE1 inhibitor also known as AZD‐1775, blocked proliferation of UC cell lines in a dose‐dependent manner irrespective of TP53 status. MK‐1775 synergized with CDDP to block proliferation, inducing apoptosis and mitotic catastrophe in TP53‐mutant UC cells but not in TP53‐WT cells. Knocking down TP53 in TP53‐WT cells induced synergism of MK‐1775 and CDDP. In UMUC3 cell xenografts and two patient‐derived xenograft lines with MDM2 overexpression, in which the p53/cell cycle pathway was inactivated, AZD‐1775 combined with CDDP suppressed tumor growth inducing both M‐phase entry and apoptosis, whereas AZD‐1775 alone was as effective as the combination in RT4 cell xenografts. Drug susceptibility assay using an ex vivo cancer tissue‐originated spheroid system showed correlations with the in vivo efficacy of AZD‐1775 alone or combined with CDDP. We determined the feasibility of the drug susceptibility assay using spheroids established from UC surgical specimens obtained by transurethral resection. In conclusion, WEE1 is a promising therapeutic target in the treatment of UC, and a highly specific small molecule inhibitor is currently in early phase clinical trials for cancer. Differential antitumor efficacy of WEE1 blockade alone or combined with CDDP could exist according to p53/cell cycle pathway activity, which might be predictable using an ex vivo 3D primary culture system.
Collapse
Affiliation(s)
- Kaoru Murakami
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Sakatani
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Hamada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kei Mizuno
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Nakamura
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Takada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiyu Matsumoto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Sano
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
37
|
Chen S, Li Y, Qian L, Deng S, Liu L, Xiao W, Zhou Y. A Review of the Clinical Characteristics and Novel Molecular Subtypes of Endometrioid Ovarian Cancer. Front Oncol 2021; 11:668151. [PMID: 34150634 PMCID: PMC8210668 DOI: 10.3389/fonc.2021.668151] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the most common gynecologic cancers that has the highest mortality rate. Endometrioid ovarian cancer, a distinct subtype of epithelial ovarian cancer, is associated with endometriosis and Lynch syndrome, and is often accompanied by synchronous endometrial carcinoma. In recent years, dysbiosis of the microbiota within the female reproductive tract has been suggested to be involved in the pathogenesis of endometrial cancer and ovarian cancer, with some specific pathogens exhibiting oncogenic having been found to contribute to cancer development. It has been shown that dysregulation of the microenvironment and accumulation of mutations are stimulatory factors in the progression of endometrioid ovarian carcinoma. This would be a potential therapeutic target in the future. Simultaneously, multiple studies have demonstrated the role of four molecular subtypes of endometrioid ovarian cancer, which are of particular importance in the prediction of prognosis. This literature review aims to compile the potential mechanisms of endometrioid ovarian cancer, molecular characteristics, and molecular pathological types that could potentially play a role in the prediction of prognosis, and the novel therapeutic strategies, providing some guidance for the stratified management of ovarian cancer.
Collapse
Affiliation(s)
- Shuangfeng Chen
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yuebo Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sisi Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Luwen Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
Jiang X, Cheng Y, He Y, Cong S, Sun L, Wu D, Wu H, Zhang G. LNC00115 Mediates Cisplatin Resistance by Regulating the miR-7/ERK Signalling Pathway in Ovarian Cancer. Cancer Manag Res 2021; 13:3817-3826. [PMID: 34007214 PMCID: PMC8123956 DOI: 10.2147/cmar.s295097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Ovarian cancer has one of the highest mortality rates among all gynaecological malignancies, and increasing evidence suggests that lncRNAs are widely involved in the development of ovarian tumours. This study aimed to investigate the mechanism of the LNC00115/miR-7/ERK axis in the cisplatin resistance of ovarian cancer cells. Methods The expression of miR-7 and LNC00115 in ovarian cancer cell lines and tissues was detected by qRT-PCR. The ovarian cancer cell lines were constructed by overexpressing or knocking down the expression of LNC00115 or miR-7. CCK-8, transwell invasion, Western blot, immunohistochemistry, and luciferase reporter assays were carried out to identify the targets of LNC00115 and explore its roles and mechanisms in ovarian cancer. A nude mouse model was established, and the expression of LNC00115, miR-7 and ERK was detected. The changes in the tumours and body weights of the nude mice were measured. Results LNC00115 was upregulated in ovarian cancer tissues and cisplatin-resistant ovarian cancer cells. Moreover, LNC00115 promoted the cisplatin resistance, invasion and migration of ovarian cancer cells. LNC00115 was shown to directly target miR-7, and miR-7 was downregulated in ovarian cancer tissues and cisplatin-resistant ovarian cancer cells. miR-7 inhibited the cisplatin resistance, invasion and migration of ovarian cancer cells and directly targeted ERK. ERK was overexpressed in cisplatin-resistant ovarian cancer cells and ovarian cancer tissues. In animal experiments, overexpression of LNC00115 enhanced the cisplatin resistance of ovarian cancer cells, while miR-7 had the opposite effect. Mechanistically, LNC00115 sponged miR-7 to increase the expression of ERK, which in turn enhanced the cisplatin resistance of ovarian cancer. Conclusion Our data clarify the mechanism by which the LNC00115/miR-7/ERK axis promotes cisplatin resistance and provide a new clinical strategy for combating cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Xinyan Jiang
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yan Cheng
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yanan He
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Shanshan Cong
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Liyuan Sun
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Di Wu
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Han Wu
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Guangmei Zhang
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
39
|
Nagumo Y, Kandori S, Tanuma K, Nitta S, Chihara I, Shiga M, Hoshi A, Negoro H, Kojima T, Mathis BJ, Funakoshi Y, Nishiyama H. PLD1 promotes tumor invasion by regulation of MMP-13 expression via NF-κB signaling in bladder cancer. Cancer Lett 2021; 511:15-25. [PMID: 33945837 DOI: 10.1016/j.canlet.2021.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Invasion of bladder cancer (BC) cells from the mucosa into the muscle layer is canonical for BC progression while phospholipase D isoform 1 (PLD1) is known to mediate development of cancer through phosphatidic acid (PA) production. We therefore used in silico, in vitro and in vivo approaches to detail the effect of PLD1 on BC invasion. In BC patients, higher levels of PLD1 expression were associated with poor prognoses. PLD1 knockdown significantly suppressed cellular invasion by human BC cells and matrix metalloproteinase-13 (MMP-13) was observed to mediate this effect. In our mouse bladder carcinogenesis model, the development of invasive BCs was suppressed by PLD1 knockout and a global transcriptomic analysis in this model indicated MMP-13 as a potential tumor invasion gene with NF-κB (nuclear factor-kB) as its transcriptional regulator. Furthermore, PA administration increased MMP-13 expression in line with NF-κB p65 phosphorylation levels. Collectively, we demonstrate that PLD1 promotes tumor invasion of BC by regulation of MMP-13 expression through the NF-κB signaling pathway and that PLD1 might be a potential therapeutic target to prevent clinical progression in BC patients.
Collapse
Affiliation(s)
- Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan.
| | - Kozaburo Tanuma
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Nitta
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Ichiro Chihara
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Akio Hoshi
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Ibaraki, Japan
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
40
|
Gao Y, Xu Y, Zhao S, Qian L, Song T, Zheng J, Zhang J, Chen B. Growth differentiation factor-15 promotes immune escape of ovarian cancer via targeting CD44 in dendritic cells. Exp Cell Res 2021; 402:112522. [PMID: 33771482 DOI: 10.1016/j.yexcr.2021.112522] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Immune escape is the main cause of the low response rate to immunotherapy for cancer, including ovarian cancer. Growth differentiation factor-15 (GDF-15) inhibits immune cell function. However, only few reports described the mechanism. Therefore, the aim of this study was to investigate the mechanism of immune escape regulated by GDF-15 in ovarian cancer. Ovarian cancer patients and healthy women were enrolled in this study. Immunohistochemistry and ELISA were performed to measure GDF-15 expression. Immunoprecipitation combined with mass spectrometry, surface plasmon resonance, and co-immunoprecipitation assay were used to evaluate the interaction between GDF-15 and the surface molecules of DCs. Immunofluorescence analysis, flow cytometry and transwell assay were used to evaluate additional effects of GDF-15 on DCs. The results showed that GDF-15 expression was higher in the ovarian cancer patients compared to that in the healthy women. The TIMER algorithm revealed that highly GDF-15 expression is associated with immune DC infiltration in immunoreactive high-grade serous carcinoma. A further study showed that GDF-15 suppressed DCs maturation, as well as IL-12p40 and TNF-α secretion, the length and number of protrusions and the migration. More importantly, CD44 in the surface of DCs interacted with GDF-15. The overexpression of CD44 in DCs resulted in the suppression of the inhibitory effect of GDF-15 on the length and number of DC synapses. In DCs overexpressing CD44 the inhibition of GDF-15 on the expression of CD11c, CD83 and CD86 was decreased, while in DCs with a knockdown of CD44 the inhibition was further enhanced. Knockdown of CD44 in DCs enhanced the inhibitory effect of GDF-15 on DC migration, while the overexpression of CD44 inhibited the inhibitory effect of GDF-15 on DC migration. In conclusion, the present study suggested that GDF-15 might facilitate ovarian cancer immune escape by interacting with CD44 in DCs to inhibit their function.
Collapse
Affiliation(s)
- Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Shuhui Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Luomeng Qian
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Tingting Song
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China.
| |
Collapse
|
41
|
Chen J, Jia X, Li Z, Song W, Jin C, Zhou M, Xie H, Zheng S, Song P. Targeting WEE1 by adavosertib inhibits the malignant phenotypes of hepatocellular carcinoma. Biochem Pharmacol 2021; 188:114494. [PMID: 33684390 DOI: 10.1016/j.bcp.2021.114494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Targeting the cell cycle checkpoints and DNA damage response are promising therapeutic strategies for cancer. Adavosertib is a potent inhibitor of WEE1 kinase, which plays a critical role in regulating cell cycle checkpoints. However, the effect of adavosertib on hepatocellular carcinoma (HCC) treatment, including sorafenib-resistant HCC, has not been thoroughly studied. In this study, we comprehensively investigated the efficacy and pharmacology of adavosertib in HCC therapy. Adavosertib effectively inhibited the proliferation of HCC cells in vitro and suppressed tumor growth in HCC xenografts and patient-derived xenograft (PDX) models in vivo. Additionally, adavosertib treatment effectively inhibited the motility of HCC cells by impairing pseudopodia formation. Further, we revealed that adavosertib induced DNA damage and premature mitosis entrance by disturbing the cell cycle. Thus, HCC cells accumulating DNA damage underwent mitosis without G2/M checkpoint arrest, thereby leading to mitotic catastrophe and apoptosis under adavosertib administration. Given that sorafenib resistance is common in HCC in clinical practice, we also explored the efficacy of adavosertib in sorafenib-resistant HCC. Notably, adavosertib still showed a desirable inhibitory effect on the growth of sorafenib-resistant HCC cells. Adavosertib markedly induced G2/M checkpoint arrest and cell apoptosis in a dose-dependent manner, confirming the similar efficacy of adavosertib in sorafenib-resistant HCC. Collectively, our results highlight the treatment efficacy of adavosertib in HCC regardless of sorafenib resistance, providing insights into exploring novel strategies for HCC therapy.
Collapse
Affiliation(s)
- Jian Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Xing Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Wenfeng Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Cheng Jin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Mengqiao Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China.
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
42
|
Fu L, Li S, Xiao W, Yu K, Li S, Yuan S, Shen J, Dong X, Fang Z, Zhang J, Chen S, Li W, You H, Xia X, Kang T, Tan J, Chen G, Yang AK, Gao Y, Zhou P. DGKA Mediates Resistance to PD-1 Blockade. Cancer Immunol Res 2021; 9:371-385. [PMID: 33608256 DOI: 10.1158/2326-6066.cir-20-0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Immunologic checkpoint blockade has been proven effective in a variety of malignancies. However, high rates of resistance have substantially hindered its clinical use. Understanding the underlying mechanisms may lead to new strategies for improving therapeutic efficacy. Although a number of signaling pathways have been shown to be associated with tumor cell-mediated resistance to immunotherapy, T cell-intrinsic resistant mechanisms remain elusive. Here, we demonstrated that diacylglycerol kinase alpha (Dgka) mediated T-cell dysfunction during anti-PD-1 therapy by exacerbating the exhaustion of reinvigorated tumor-specific T cells. Pharmacologic ablation of Dgka postponed T-cell exhaustion and delayed development of resistance to PD-1 blockade. Dgka inhibition also enhanced the efficacy of anti-PD-1 therapy. We further found that the expression of DGKA in cancer cells promoted tumor growth via the AKT signaling pathway, suggesting that DGKA might be a target in tumor cells as well. Together, these findings unveiled a molecular pathway mediating resistance to PD-1 blockade and provide a potential therapeutic strategy with combination immunotherapy.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sen Li
- Hospital (TCM) Affiliated to Southwest Medical University, Luzhou, China
| | - WeiWei Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kuai Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sujing Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Xingjun Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ziqian Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Hua You
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - An-Kui Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - YuanHong Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|