1
|
Pal T, Schon KR, Astiazaran-Symonds E, Balmaña J, Foulkes WD, James P, Klugman S, Livinski AA, Mak JS, Ngeow J, Voian N, Wick MJ, Hanson H, Stewart DR, Tischkowitz M. Management of individuals with heterozygous germline pathogenic variants in ATM: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2025; 27:101243. [PMID: 39636577 DOI: 10.1016/j.gim.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE ATM germline pathogenic variants (GPVs) are associated with a moderately increased risk of female breast cancer, pancreatic cancer, and prostate cancer. Resources for managing ATM heterozygotes in clinical practice are limited. METHODS An international workgroup developed a clinical practice resource to guide management of ATM heterozygotes using peer-reviewed publications and expert opinion. RESULTS Although ATM is a moderate (intermediate) penetrance gene, cancer risks may be considered as a continuous variable, influenced by family history and other modifiers. ATM GPV heterozygotes should generally be offered enhanced breast surveillance according to their personalized risk estimate and country-specific guidelines and, generally, risk-reducing mastectomy is not recommended. Prostate cancer surveillance should be considered. Pancreatic cancer surveillance should be considered based on assessment of family history, ideally as part of a clinical trial, with existence of country-specific guidelines. For ATM GPV heterozygotes who develop cancer, radiation therapy decisions should not be influenced by the genetic result. Although poly-adenosine diphosphate ribose polymerase inhibitors are licensed for use in metastatic castration-resistant prostate cancer and ATM GPVs, the evidence-base is currently weak. CONCLUSION Systematic prospective data collection is needed to establish the spectrum of ATM-associated cancer and determine the outlines of surveillance, response to cancer treatment, and survival.
Collapse
Affiliation(s)
- Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Katherine R Schon
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, Québec, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Susan Klugman
- Division of Reproductive & Medical Genetics, Department of Obstetrics and Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Alicia A Livinski
- National Institutes of Health Library, Office of Research Services, OD, NIH, Bethesda, MD
| | - Julie S Mak
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Nicoleta Voian
- Providence Genetic Risk Clinic, Providence Cancer Institute, Portland, OR
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Helen Hanson
- Peninsula Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Marshall CH, Teply BA, Lu J, Oliveira L, Wang H, Mao SS, Kelly WK, Paller CJ, Markowski MC, Denmeade SR, King S, Sullivan R, Davicioni E, Proudfoot JA, Eisenberger MA, Carducci MA, Lotan TL, Antonarakis ES. Olaparib Without Androgen Deprivation for High-Risk Biochemically Recurrent Prostate Cancer Following Prostatectomy: A Nonrandomized Controlled Trial. JAMA Oncol 2024; 10:1400-1408. [PMID: 39172479 PMCID: PMC11342218 DOI: 10.1001/jamaoncol.2024.3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 08/23/2024]
Abstract
Importance Olaparib is a poly(adenosine diphosphate-ribose) polymerase inhibitor that provides benefit in combination with hormonal therapies in patients with metastatic prostate cancer who harbor homologous recombination repair (HRR) alterations. Its efficacy in the absence of androgen deprivation therapy has not been tested. Objective To determine the activity of olaparib monotherapy among patients with high-risk biochemically recurrent (BCR) prostate cancer after radical prostatectomy. Design, Setting, and Participants This phase 2, single-arm nonrandomized controlled trial enrolled genetically unselected patients across 4 sites in the US from May 2017 to November 2022. Eligible patients had BCR disease following radical prostatectomy, a prostate-specific antigen (PSA) doubling time of 6 months or shorter, an absolute PSA value of 1.0 ng/mL or higher, and a testosterone level of 150 ng/dL or higher. Intervention Treatment was with olaparib, 300 mg, by mouth twice daily until doubling of the baseline PSA, clinical or radiographic progression, or unacceptable toxic effects. Main Outcome and Measure The primary end point was a confirmed 50% or higher decline in PSA from baseline (PSA50). Key secondary end points were outcomes by HRR alteration status, as well as safety and tolerability. Results Of the 51 male patients enrolled (mean [SD] age, 63.8 [6.8] years), 13 participants (26%) had a PSA50 response, all within the HRR-positive group (13 of 27 participants [48%]). All 11 participants with BRCA2 alterations experienced a PSA50 response. Common adverse events were fatigue in 32 participants (63%), nausea in 28 (55%), and leukopenia in 22 (43%), and were consistent with known adverse effects of olaparib. Conclusions and Relevance In this nonrandomized controlled trial, olaparib monotherapy led to high and durable PSA50 response rates in patients with BRCA2 alterations. Olaparib warrants further study as a treatment strategy for some patients with BCR prostate cancer but does not have sufficient activity in those without HRR alterations and should not be considered for those patients. Trial Registration ClinicalTrials.gov Identifier: NCT03047135.
Collapse
Affiliation(s)
| | | | - Jiayun Lu
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lia Oliveira
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shifeng S. Mao
- Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - W. Kevin Kelly
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | | | | | | | - Serina King
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rana Sullivan
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | - Tamara L. Lotan
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
3
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
Varadhan V, Manikandan MS, Nagarajan A, Palaniyandi T, Ravi M, Sankareswaran SK, Baskar G, Wahab MRA, Surendran H. Ataxia-Telangiectasia Mutated (ATM) gene signaling pathways in human cancers and their therapeutic implications. Pathol Res Pract 2024; 260:155447. [PMID: 38981349 DOI: 10.1016/j.prp.2024.155447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Cancer is a multifaceted disease driven by abnormal cell growth and poses a significant global health threat. The multifactorial causes, differences in individual susceptibility to therapeutic drugs, and induced drug resistance pose major challenges in addressing cancers effectively. One of the most important aspects in making cancers highly heterogeneous in their physiology lies in the genes involved and the changes occurring to some of these genes in malignant conditions. The Genetic factors have been implicated in the oncogenesis, progression, responses to treatment, and metastasis. One such gene that plays a key role in human cancers is the mutated form of the Ataxia-telangiectasia gene (ATM). ATM gene located on chromosome 11q23, plays a vital role in maintaining genomic stability. Understanding the genetic basis of A-T is crucial for diagnosis, management, and treatment. Breast cancer, lung cancer, prostate cancer, and gastric cancer exhibit varying relationships with the ATM gene and influence their pathways. Targeting the ATM pathway proves promising for enhancing treatment effectiveness, especially in conjunction with DNA damage response pathways. Analyzing the therapeutic consequences of ATM mutations, especially in these cancer types facilitates the approaches for early detection, intervention, development of personalized treatment approaches, and improved patient outcomes. This review emphasizes the role of the ATM gene in various cancers, highlighting its impact on DNA repair pathways and therapeutic responses.
Collapse
Affiliation(s)
- Varsha Varadhan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Monica Shri Manikandan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Akshaya Nagarajan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, Tamil Nadu, India
| | - Senthil Kumar Sankareswaran
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| |
Collapse
|
5
|
Akhoundova D, Francica P, Rottenberg S, Rubin MA. DNA Damage Response and Mismatch Repair Gene Defects in Advanced and Metastatic Prostate Cancer. Adv Anat Pathol 2024; 31:61-69. [PMID: 38008971 PMCID: PMC10846598 DOI: 10.1097/pap.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alterations in DNA damage response (DDR) and related genes are present in up to 25% of advanced prostate cancers (PCa). Most frequently altered genes are involved in the homologous recombination repair, the Fanconi anemia, and the mismatch repair pathways, and their deficiencies lead to a highly heterogeneous spectrum of DDR-deficient phenotypes. More than half of these alterations concern non- BRCA DDR genes. From a therapeutic perspective, poly-ADP-ribose polymerase inhibitors have demonstrated robust clinical efficacy in tumors with BRCA2 and BRCA1 alterations. Mismatch repair-deficient PCa, and a subset of CDK12-deficient PCa, are vulnerable to immune checkpoint inhibitors. Emerging data point to the efficacy of ATR inhibitors in PCa with ATM deficiencies. Still, therapeutic implications are insufficiently clarified for most of the non- BRCA DDR alterations, and no successful targeted treatment options have been established.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research
- Department of Medical Oncology
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Paola Francica
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Mark A. Rubin
- Department for BioMedical Research
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Porras LM, Padilla N, Moles-Fernández A, Feliubadaló L, Santamariña-Pena M, Sánchez AT, López-Novo A, Blanco A, de la Hoya M, Molina IJ, Osorio A, Pineda M, Rueda D, Ruiz-Ponte C, Vega A, Lázaro C, Díez O, Gutiérrez-Enríquez S, de la Cruz X. A New Set of in Silico Tools to Support the Interpretation of ATM Missense Variants Using Graphical Analysis. J Mol Diagn 2024; 26:17-28. [PMID: 37865290 DOI: 10.1016/j.jmoldx.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/23/2023] Open
Abstract
Establishing the pathogenic nature of variants in ATM, a gene associated with breast cancer and other hereditary cancers, is crucial for providing patients with adequate care. Unfortunately, achieving good variant classification is still difficult. To address this challenge, we extended the range of in silico tools with a series of graphical tools devised for the analysis of computational evidence by health care professionals. We propose a family of fast and easy-to-use graphical representations in which the impact of a variant is considered relative to other pathogenic and benign variants. To illustrate their value, the representations are applied to three problems in variant interpretation. The assessment of computational pathogenicity predictions showed that the graphics provide an intuitive view of prediction reliability, complementing and extending conventional numerical reliability indexes. When applied to variant of unknown significance populations, the representations shed light on the nature of these variants and can be used to prioritize variants of unknown significance for further studies. In a third application, the graphics were used to compare the two versions of the ATM-adapted American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines, obtaining valuable information on their relative virtues and weaknesses. Finally, a server [ATMision (ATM missense in silico interpretation online)] was generated for users to apply these representations in their variant interpretation problems, to check the ATM-adapted guidelines' criteria for computational evidence on their variant(s) and access different sources of information.
Collapse
Affiliation(s)
- Luz-Marina Porras
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Marta Santamariña-Pena
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain
| | - Alysson T Sánchez
- Hereditary Cancer Program, Oncobell Program, Catalan Institute of Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anael López-Novo
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Blanco
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Ignacio J Molina
- Instituto de Biopatología y Medicina Regenerativa, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ana Osorio
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain; Spanish Network on Rare Diseases, Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Daniel Rueda
- Hereditary Cancer Laboratory, 12 de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
| | - Clara Ruiz-Ponte
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Orland Díez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
7
|
Zhou Y, Börcsök J, Adib E, Kamran SC, Neil AJ, Stawiski K, Freeman D, Stormoen DR, Sztupinszki Z, Samant A, Nassar A, Bekele RT, Hanlon T, Valentine H, Epstein I, Sharma B, Felt K, Abbosh P, Wu CL, Efstathiou JA, Miyamoto DT, Anderson W, Szallasi Z, Mouw KW. ATM deficiency confers specific therapeutic vulnerabilities in bladder cancer. SCIENCE ADVANCES 2023; 9:eadg2263. [PMID: 37992168 PMCID: PMC10664985 DOI: 10.1126/sciadv.adg2263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Ataxia-telangiectasia mutated (ATM) plays a central role in the cellular response to DNA damage and ATM alterations are common in several tumor types including bladder cancer. However, the specific impact of ATM alterations on therapy response in bladder cancer is uncertain. Here, we combine preclinical modeling and clinical analyses to comprehensively define the impact of ATM alterations on bladder cancer. We show that ATM loss is sufficient to increase sensitivity to DNA-damaging agents including cisplatin and radiation. Furthermore, ATM loss drives sensitivity to DNA repair-targeted agents including poly(ADP-ribose) polymerase (PARP) and Ataxia telangiectasia and Rad3 related (ATR) inhibitors. ATM loss alters the immune microenvironment and improves anti-PD1 response in preclinical bladder models but is not associated with improved anti-PD1/PD-L1 response in clinical cohorts. Last, we show that ATM expression by immunohistochemistry is strongly correlated with response to chemoradiotherapy. Together, these data define a potential role for ATM as a predictive biomarker in bladder cancer.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judit Börcsök
- Danish Cancer Institute, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Elio Adib
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sophia C. Kamran
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander J. Neil
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Konrad Stawiski
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dory Freeman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dag Rune Stormoen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Amruta Samant
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amin Nassar
- Department of Hematology/Oncology, Yale New Haven Hospital, New Haven, CT, USA
| | - Raie T. Bekele
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timothy Hanlon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Henkel Valentine
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ilana Epstein
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bijaya Sharma
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kristen Felt
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip Abbosh
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Albert Einstein Medical Center, Philadelphia, PA, USA
| | - Chin-Lee Wu
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Jason A. Efstathiou
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - David T. Miyamoto
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William Anderson
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group and Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Kent W. Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Elias R, Antonarakis ES. Rucaparib for metastatic castration-resistant prostate cancer: did TRITON3 deliver a trifecta? Transl Cancer Res 2023; 12:2448-2453. [PMID: 37969378 PMCID: PMC10643943 DOI: 10.21037/tcr-23-1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Roy Elias
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
9
|
Paranal RM, Jiang Z, Hutchings D, Kryklyva V, Gauthier C, Fujikura K, Nanda N, Huang B, Skaro M, Wolfgang CL, He J, Klimstra DS, Brand RE, Singhi AD, DeMarzo A, Zheng L, Goggins M, Brosens LAA, Hruban RH, Klein AP, Lotan T, Wood LD, Roberts NJ. Somatic loss of ATM is a late event in pancreatic tumorigenesis. J Pathol 2023; 260:455-464. [PMID: 37345735 PMCID: PMC10524278 DOI: 10.1002/path.6136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
Understanding the timing and spectrum of genetic alterations that contribute to the development of pancreatic cancer is essential for effective interventions and treatments. The aim of this study was to characterize somatic ATM alterations in noninvasive pancreatic precursor lesions and invasive pancreatic adenocarcinomas from patients with and without pathogenic germline ATM variants. DNA was isolated and sequenced from the invasive pancreatic ductal adenocarcinomas and precursor lesions of patients with a pathogenic germline ATM variant. Tumor and precursor lesions from these patients as well as colloid carcinoma from patients without a germline ATM variant were immunolabeled to assess ATM expression. Among patients with a pathogenic germline ATM variant, somatic ATM alterations, either mutations and/or loss of protein expression, were identified in 75.0% of invasive pancreatic adenocarcinomas but only 7.1% of pancreatic precursor lesions. Loss of ATM expression was also detected in 31.0% of colloid carcinomas from patients unselected for germline ATM status, significantly higher than in pancreatic precursor lesions [pancreatic intraepithelial neoplasms (p = 0.0013); intraductal papillary mucinous neoplasms, p = 0.0040] and pancreatic ductal adenocarcinoma (p = 0.0076) unselected for germline ATM status. These data are consistent with the second hit to ATM being a late event in pancreatic tumorigenesis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Raymond M. Paranal
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Human Genetics Predoctoral Training Program, the McKusick-Nathans Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhengdong Jiang
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of General surgery, the First Affiliated Hospital of Xi’an Jiaotong University Shaanxi, Xi’an, China
| | - Danielle Hutchings
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Valentyna Kryklyva
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gauthier
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kohei Fujikura
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neha Nanda
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bo Huang
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Skaro
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jin He
- Department of Surgery, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David S. Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Current Affiliation: Paige AI, New York, NY, USA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Angelo DeMarzo
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lodewijk A. A. Brosens
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Ralph H. Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P. Klein
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara Lotan
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D. Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J. Roberts
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Grochot R, Carreira S, Miranda S, Figueiredo I, Bertan C, Rekowski J, Yuan W, Ferreira A, Riisnaes R, Neeb A, Gurel B, de Los Dolores Fenor de la Maza M, Guo C, Carmichael J, Westaby D, Mateo J, Sharp A, McVeigh TP, De Bono J. Germline ATM Mutations Detected by Somatic DNA Sequencing in Lethal Prostate Cancer. EUR UROL SUPPL 2023; 52:72-78. [PMID: 37284046 PMCID: PMC10240520 DOI: 10.1016/j.euros.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Background Germline mutations in the ataxia telangiectasia mutated (ATM) gene occur in 0.5-1% of the overall population and are associated with tumour predisposition. The clinical and pathological features of ATM-mutated prostate cancer (PC) are poorly defined but have been associated with lethal PC. Objective To report on the clinical characteristics including family history and clinical outcomes of a cohort of patients with advanced metastatic castration-resistant PC (CRPC) who were found to have germline ATM mutations after mutation detection by initial tumour DNA sequencing. Design setting and participants We acquired germline ATM mutation data by saliva next-generation sequencing from patients with ATM mutations in PC biopsies sequenced between January 2014 and January 2022. Demographics, family history, and clinical data were collected retrospectively. Outcome measurements and statistical analysis Outcome endpoints were based on overall survival (OS) and time from diagnosis to CRPC. Data were analysed using R version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria). Results and limitations Overall, seven patients (n = 7/1217; 0.6%) had germline ATM mutations detected, with five of them having a family history of malignancies, including breast, prostate, pancreas, and gastric cancer; leukaemia; and lymphoma. Two patients had concomitant somatic mutations in tumour biopsies in genes other than ATM, while two patients were found to carry more than one ATM pathogenic mutation. Five tumours in germline ATM variant carriers had loss of ATM by immunohistochemistry. The median OS from diagnosis was 7.1 yr (range 2.9-14 yr) and the median OS from CRPC was 5.3 yr (range 2.2-7.3 yr). When comparing these data with PC patients sequenced by The Cancer Genome Atlas, we found that the spatial localisation of mutations was similar, with distribution of alterations occurring on similar positions in the ATM gene. Interestingly, these include a mutation within the FRAP-ATM-TRRAP (FAT) domain, suggesting that this represents a mutational hotspot for ATM. Conclusions Germline ATM mutations are rare in patients with lethal PC but occur at mutational hotspots; further research is warranted to better characterise the family histories of these men and PC clinical course. Patient summary In this report, we studied the clinical and pathological features of advanced prostate cancers associated with germline mutations in the ATM gene. We found that most patients had a strong family history of cancer and that this mutation might predict the course of these prostate cancers, as well as response to specific treatments.
Collapse
Affiliation(s)
- Rafael Grochot
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | | | | | | | - Jan Rekowski
- The Institute of Cancer Research (ICR), London, UK
| | - Wei Yuan
- The Institute of Cancer Research (ICR), London, UK
| | - Ana Ferreira
- The Institute of Cancer Research (ICR), London, UK
| | | | - Antje Neeb
- The Institute of Cancer Research (ICR), London, UK
| | - Bora Gurel
- The Institute of Cancer Research (ICR), London, UK
| | | | - Christina Guo
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | - Juliet Carmichael
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | - Daniel Westaby
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | - Adam Sharp
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | - Johann De Bono
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| |
Collapse
|
11
|
Lieb V, Abdulrahman A, Weigelt K, Hauch S, Gombert M, Guzman J, Bellut L, Goebell PJ, Stöhr R, Hartmann A, Wullich B, Taubert H, Wach S. Cell-Free DNA Sequencing Reveals Gene Variants in DNA Damage Repair Genes Associated with Prognosis of Prostate Cancer Patients. Cells 2022; 11:cells11223618. [PMID: 36429046 PMCID: PMC9688453 DOI: 10.3390/cells11223618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
In the present study, we further analyzed the data obtained in our previous study, where we investigated the cell-free DNA (cfDNA) of 34 progressive prostate cancer patients via targeted sequencing. Here, we studied the occurrence and prognostic impact of sequence variants according to their clinical pathological significance (CPS) or their functional impact (FI) in 23 DNA damage repair (DDR) genes with a focus on the ATM serine/threonine kinase gene (ATM). All patients had at least one DDR gene with a CPS or FI variant. Kaplan-Meier analysis indicated that the group with a higher number of CPS variants in DDR genes had a shorter time to treatment change (TTC) compared to the group with a lower number of CPS variants (p = 0.038). Analysis of each DDR gene revealed that CPS variants in the ATM gene and FI variants in the nibrin (NBN) gene showed a shorter TTC (p = 0.034 and p = 0.042). In addition, patients with CPS variants in the ATM gene had shorter overall survival (OS; p = 0.022) and disease-specific survival (DSS; p = 0.010) than patients without these variants. Interestingly, patients with CPS variants in seven DDR genes possessed a better OS (p = 0.008) and DSS (p = 0.009), and patients with FI variants in four DDR genes showed a better OS (p = 0.007) and DSS (p = 0.008). Together, these findings demonstrated that the analysis of cfDNA for gene variants in DDR genes provides prognostic information that may be helpful for future temporal and targeted treatment decisions for advanced PCa patients.
Collapse
Affiliation(s)
- Verena Lieb
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Amer Abdulrahman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | | | | | - Juan Guzman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura Bellut
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Peter J. Goebell
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Robert Stöhr
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-93138523373
| | - Sven Wach
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
12
|
Thomas A, Fontaine SD, Diolaiti ME, Desai P, Kumar R, Takahashi N, Sciuto L, Nichols S, Ashworth A, Feng FY, Ashley GW, Nguyen M, Pommier Y, Santi DV. PLX038: A Long-Acting Topoisomerase I Inhibitor With Robust Antitumor Activity in ATM-Deficient Tumors and Potent Synergy With PARP Inhibitors. Mol Cancer Ther 2022; 21:1722-1728. [PMID: 35999657 PMCID: PMC10673686 DOI: 10.1158/1535-7163.mct-22-0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/02/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Alterations in the ATM gene are among the most common somatic and hereditary cancer mutations, and ATM-deficient tumors are hypersensitive to DNA-damaging agents. A synthetic lethal combination of DNA-damaging agents and DNA repair inhibitors could have widespread utility in ATM-deficient cancers. However, overlapping normal tissue toxicities from these drug classes have precluded their clinical translation. We investigated PLX038, a releasable polyethylene glycol-conjugate of the topoisomerase I inhibitor SN-38, in ATM wild-type and null isogenic xenografts and in a BRCA1-deficient xenograft. PLX038 monotherapy and combination with PARP inhibition potently inhibited the growth of both BRCA1- and ATM-deficient tumors. A patient with an ATM-mutated breast cancer treated with PLX038 and the PARP inhibitor rucaparib achieved rapid, symptomatic, and radiographic complete response lasting 12 months. Single-agent PLX038 or PLX038 in combination with DNA damage response inhibitors are novel therapeutic paradigms for patients with ATM-loss cancers.
Collapse
Affiliation(s)
| | | | - Morgan E. Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | | | | | | | | | | | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Felix Y. Feng
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | | | | | | | | |
Collapse
|
13
|
Characteristics of BRCA2 Mutated Prostate Cancer at Presentation. Int J Mol Sci 2022; 23:ijms232113426. [PMID: 36362213 PMCID: PMC9659116 DOI: 10.3390/ijms232113426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Genetic alterations of DNA repair genes, particularly BRCA2 in patients with prostate cancer, are associated with aggressive behavior of the disease. It has reached consensus that somatic and germline tests are necessary when treating advanced prostate cancer patients. Yet, it is unclear whether the mutations are associated with any presenting clinical features. We assessed the incidences and characteristics of BRCA2 mutated cancers by targeted sequencing in 126 sets of advanced prostate cancer tissue sequencing data. At the time of diagnosis, cT3/4, N1 and M1 stages were 107 (85%), 54 (43%) and 35 (28%) samples, respectively. BRCA2 alterations of clinical significance by AMP/ASCO/CAP criteria were found in 19 of 126 samples (15.1%). The BRCA2 mutated cancer did not differ in the distributions of TNM stage, Gleason grade group or histological subtype compared to BRCA2 wild-type cancers. Yet, they had higher tumor mutation burden, and higher frequency of ATM and BRCA1 mutations (44% vs. 10%, p = 0.002 and 21% vs. 4%, p = 0.018, respectively). Of the metastatic subgroup (M1, n = 34), mean PSA was significantly lower in BRCA2 mutated cancers than wild-type (p = 0.018). In the non-metastatic subgroup (M0, n = 64), PSA was not significantly different (p = 0.425). A similar trend was noted in multiple metastatic prostate cancer public datasets. We conclude that BRCA2 mutated metastatic prostate cancers may present in an advanced stage with relatively low PSA.
Collapse
|
14
|
Mao Y, Hu M, Yang G, Gao E, Xu W. Cytoreductive prostatectomy improves survival outcomes in patients with oligometastases: a systematic meta-analysis. World J Surg Oncol 2022; 20:255. [PMID: 35945562 PMCID: PMC9361652 DOI: 10.1186/s12957-022-02715-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether cytoreductive prostatectomy (CRP) should be performed in patients with oligometastatic prostate cancer (OPC) remains controversial. The goal of this systematic meta-analysis was to assess the efficacy of CRP as a treatment for OPC. METHODS This systematic review and meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Data sources included publications in the PubMed, Embase, the Cochrane Library, EBSCO, and Web of Science (SCI) databases as of May 2022. Eligible articles included prospective studies comparing the efficacy of CRP to a lack of CRP in patients with OPC. RESULTS In total, 10 publications incorporating 888 patients were analyzed. Tumor-reducing prostatectomy was found to have no significant effect on long-term or short-term OS [OR = 2.26, 95% CI (0.97, 5.28), P = 0.06] and [OR = 1.73, 95% CI (0.83, 3.58), P = 0.14], but it significantly improved patient long-term or short-term CSS [OR = 1.77, 95% CI (1.01, 310), P = 0.04] and [OR = 2.71, 95% CI (1.72, 4.29), P < 0.0001] and PFS [OR = 1.93, 95% CI (1.25, 2.97), P = 0.003]. CONCLUSION These results suggest that cytoreductive prostatectomy can confer survival benefits to OPC patients. TRIAL REGISTRATION INPLASY protocol 202260017 https://doi.org/10.37766/inplasy2022.6.0017 .
Collapse
Affiliation(s)
- Yifeng Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Mingqiu Hu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China. .,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, 233030, Anhui, China. .,Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China.
| | - Gaowei Yang
- Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China
| | - Erke Gao
- Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China
| | - Wangwang Xu
- Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China
| |
Collapse
|
15
|
Gulliver C, Hoffmann R, Baillie GS. Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer. Int J Biochem Cell Biol 2022; 147:106230. [PMID: 35609768 DOI: 10.1016/j.biocel.2022.106230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022]
Abstract
The DNA damage response is an integral part of a cells' ability to maintain genomic integrity by responding to and ameliorating DNA damage, or initiating cell death for irrepairably damaged cells. This response is often hijacked by cancer cells to evade cell death allowing mutant cells to persist, as well as in the development of treatment resistance to DNA damaging agents such as chemotherapy and radiation. Prostate cancer (PCa) cells often exhibit alterations in DNA damage response genes including ataxia telangiectasia mutated (ATM), correlating with aggressive disease phenotype. The recent success of Poly (ADP-ribose) polymerase (PARP) inhibition has led to several clinically approved PARP inhibitors for the treatment of men with metastatic PCa, however a key limitation is the development of drug resistance and relapse. An alternative approach is selectively targeting ATM and ataxia telangiectasia and Rad3-related (ATR) which, due to their position at the forefront of the DDR, represent attractive pharmacological targets. ATR inhibition has been shown to act synergistically with PARP inhibition and other cancer treatments to enhance anti-tumour activity. ATM-deficiency is a common characteristic of PCa and a synthetic lethal relationship exists between ATM and ATR, with ATR inhibition inducing selective cell death in ATM-deficient PCa cells. The current research highlights the feasibility of therapeutically targeting ATR in ATM-deficient prostate tumours and in combination with other treatments to enhance overall efficacy and reduce therapeutic resistance. ATM also represents an important molecular biomarker to stratify patients into targeted treatment groups and aid prognosis for personalised medicine.
Collapse
Affiliation(s)
- Chloe Gulliver
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| | - Ralf Hoffmann
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK; Philips Research Europe, High Tech Campus, Eindhoven, the Netherlands.
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| |
Collapse
|
16
|
Brady L, Newcomb LF, Zhu K, Zheng Y, Boyer H, Sarkar ND, McKenney JK, Brooks JD, Carroll PR, Dash A, Ellis WJ, Filson CP, Gleave ME, Liss MA, Martin F, Morgan TM, Thompson IM, Wagner AA, Pritchard CC, Lin DW, Nelson PS. Germline mutations in penetrant cancer predisposition genes are rare in men with prostate cancer selecting active surveillance. Cancer Med 2022; 11:4332-4340. [PMID: 35467778 DOI: 10.1002/cam4.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathogenic germline mutations in several rare penetrant cancer predisposition genes are associated with an increased risk of aggressive prostate cancer (PC). Our objectives were to determine the prevalence of pathogenic germline mutations in men with low-risk PC on active surveillance, and assess whether pathogenic germline mutations associate with grade reclassification or adverse pathology, recurrence, or metastases, in men treated after initial surveillance. METHODS Men prospectively enrolled in the Canary Prostate Active Surveillance Study (PASS) were retrospectively sampled for the study. Germline DNA was sequenced utilizing a hereditary cancer gene panel. Mutations were classified according to the American College of Clinical Genetics and Genomics' guidelines. The association of pathogenic germline mutations with grade reclassification and adverse characteristics was evaluated by weighted Cox proportional hazards modeling and conditional logistic regression, respectively. RESULTS Overall, 29 of 437 (6.6%) study participants harbored a pathogenic germline mutation of which 19 occurred in a gene involved in DNA repair (4.3%). Eight participants (1.8%) had pathogenic germline mutations in three genes associated with aggressive PC: ATM, BRCA1, and BRCA2. The presence of pathogenic germline mutations in DNA repair genes did not associate with adverse characteristics (univariate analysis HR = 0.87, 95% CI: 0.36-2.06, p = 0.7). The carrier rates of pathogenic germline mutations in ATM, BRCA1, and BRCA2did not differ in men with or without grade reclassification (1.9% vs. 1.8%). CONCLUSION The frequency of pathogenic germline mutations in penetrant cancer predisposition genes is extremely low in men with PC undergoing active surveillance and pathogenic germline mutations had no apparent association with grade reclassification or adverse characteristics.
Collapse
Affiliation(s)
- Lauren Brady
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa F Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| | - Kehao Zhu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yingye Zheng
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hilary Boyer
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| | - Navonil De Sarkar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, California, USA
| | - Peter R Carroll
- Department of Urology, University of California, San Francisco, California, USA
| | - Atreya Dash
- VA Puget Sound Health Care Systems, Seattle, WA, USA
| | - William J Ellis
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Christopher P Filson
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory Healthcare, Atlanta, Georgia, USA
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A Liss
- Department of Urology, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Frances Martin
- Department of Urology, Eastern Virginia Medical School, Virginia Beach, Virginia, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian M Thompson
- CHRISTUS Medical Center Hospital, San Antonio, Texas, USA
| | - Andrew A Wagner
- Division of Urology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Daniel W Lin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Kaur HB, Vidotto T, Mendes AA, Salles DC, Isaacs WB, Antonarakis ES, Lotan TL. Association between pathogenic germline mutations in BRCA2 and ATM and tumor-infiltrating lymphocytes in primary prostate cancer. Cancer Immunol Immunother 2022; 71:943-951. [PMID: 34533610 PMCID: PMC9254167 DOI: 10.1007/s00262-021-03050-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/05/2021] [Indexed: 01/15/2023]
Abstract
Pathogenic mutations in homologous recombination (HR) DNA repair genes may be associated with increased tumor mutational burden and numbers of tumor-infiltrating lymphocytes (TIL). Though HR-deficient prostate tumors have been anecdotally associated with improved responses to immunotherapy, it is unclear whether HR mutations or HR deficiency (HRD) scores predict for increased T-cell densities in this cancer. We evaluated 17 primary prostate tumors from patients with pathogenic germline BRCA2 mutations (gBRCA2) and 21 primary prostate tumors from patients with pathogenic germline ATM (gATM) mutations, which were compared to 19 control tumors lacking HR gene mutations, as well as the TCGA prostate cancer cohort. HRD score was estimated by targeted sequencing (gBRCA2 and gATM) or by SNP microarray (TCGA). Tumor-associated T-cell densities were assessed using validated automated digital image analysis of CD8 and FOXP3 immunostaining (gBRCA2 or gATM) or by methylCIBERSORT (TCGA). CD8 + and FOXP3 + T-cell densities were significantly correlated with each other in gBRCA2 and gATM cases. There was no significant difference between CD8 + or FOXP3 + TIL densities in gBRCA2 or gATM cases compared to controls. In the TCGA cohort, HRD score was associated with predicted CD8 + and FOXP3 + TILs. Associations were also seen for HRD score and TIL density among the germline-mutated cases. In contrast to mismatch repair-deficient primary prostate tumors, cancers from germline BRCA2 or ATM mutation carriers do not appear to be associated with elevated TIL density. However, measures of genomic scarring, such as HRD score, may be associated with increased tumor-infiltrating T-cells.
Collapse
Affiliation(s)
- Harsimar B Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrianna A Mendes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Isaacs
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, CRB2, Room 316, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, CRB2, Room 316, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
18
|
ATM immunohistochemistry as a potential marker for the differential diagnosis of no specific molecular profile subtype and POLE-mutation subtype endometrioid carcinoma. Pathol Res Pract 2022; 230:153743. [DOI: 10.1016/j.prp.2021.153743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022]
|
19
|
Schiewer MJ, Knudsen KE. Basic Science and Molecular Genetics of Prostate Cancer Aggressiveness. Urol Clin North Am 2021; 48:339-347. [PMID: 34210489 DOI: 10.1016/j.ucl.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Androgen receptor function, tumor cell plasticity, loss of tumor suppressors, and defects in DNA repair genes affect aggressive features of prostate cancer. Prostate cancer development, progression, and aggressive behavior are often attributable to function of the androgen receptor. Tumor cell plasticity, neuroendocrine features, and loss of tumor suppressors lend aggressive behavior to prostate cancer cells. DNA repair defects have ramifications for prostate cancer cell behavior.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Department of Urology, Urology Research Laboratory, Thomas Jefferson University, Sidney Kimmel Cancer Center, 233 South 10th Street BLSB 804, Philadelphia, PA 19107, USA; Department of Cancer Biology, Urology Research Laboratory, Thomas Jefferson University, Sidney Kimmel Cancer Center, 233 South 10th Street BLSB 804, Philadelphia, PA 19107, USA.
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Medical Oncology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA. https://twitter.com/SKCCDirector
| |
Collapse
|
20
|
Homologous recombination deficiency (HRD) score in germline BRCA2- versus ATM-altered prostate cancer. Mod Pathol 2021; 34:1185-1193. [PMID: 33462368 PMCID: PMC8154637 DOI: 10.1038/s41379-020-00731-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 01/28/2023]
Abstract
The homologous recombination deficiency (HRD) score integrates three DNA-based measures of genomic instability, and has been understudied in prostate cancer. Given the recent FDA approval of two PARP inhibitors for prostate cancer, HRD score analysis could help to refine treatment selection. We assessed HRD score (defined as the sum of loss-of-heterozygosity, telomeric allelic imbalance, and large-scale state transitions) in three cohorts of primary prostate cancer, including a Johns Hopkins University (JHU) cohort with germline mutations in BRCA2, ATM, or CHEK2 (n = 64), the TCGA cohort (n = 391), and the PROGENE cohort (n = 102). In the JHU cohort, tumors with germline BRCA2 mutations had higher HRD scores (median = 27) than those with germline ATM or CHEK2 mutations (median = 16.5 [p = 0.029] and 9 [p < 0.001], respectively). For TCGA tumors without underlying HR pathway mutations, the median HRD score was 11, significantly lower than ovarian carcinoma lacking BRCA1/2 mutations (median = 28). In the absence of HR gene mutations, the median HRD score was unexpectedly higher among prostate cancers with TP53 mutations versus those without (17 vs. 11; p = 0.015); this finding was confirmed in the PROGENE cohort (24 vs. 16; p = 0.001). Finally, among eight BRCA2-altered patients who received olaparib, progression-free survival trended longer in those with HRD scores above versus below the median (14.9 vs. 9.9 months). We conclude that HRD scores are low in primary prostate cancer and higher in cases with germline BRCA2 or somatic TP53 mutations. Germline BRCA2-altered cases have significantly higher HRD scores than germline ATM-altered or CHEK2-altered cases, consistent with the lower efficacy of PARP inhibitors among the latter.
Collapse
|
21
|
Conteduca V, Mosca A, Brighi N, de Giorgi U, Rescigno P. New Prognostic Biomarkers in Metastatic Castration-Resistant Prostate Cancer. Cells 2021; 10:193. [PMID: 33478015 PMCID: PMC7835961 DOI: 10.3390/cells10010193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is one of the most frequent cancers in men and is a common cause of cancer-related death. Despite significant progress in the diagnosis and treatment of this tumor, patients who relapse after radical treatments inevitably develop metastatic disease. Patient stratification is therefore key in this type of cancer, and there is an urgent need for prognostic biomarkers that can define patients' risk of cancer-related death. In the last 10 years, multiple prognostic factors have been identified and studied. Here, we review the literature available and discuss the most common aberrant genomic pathways in metastatic castration-resistant prostate cancer shown to have a prognostic relevance in this setting.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Alessandra Mosca
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy;
| | - Nicole Brighi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Ugo de Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| |
Collapse
|