1
|
Li X, Sharen G, Zhang M, Zhang L, Liu K, Wang Y, Cheng H, Hou M. High expression of PDCD11 in colorectal cancer and its correlation with the prognosis and immune cell infiltration. Heliyon 2024; 10:e35002. [PMID: 39170455 PMCID: PMC11336332 DOI: 10.1016/j.heliyon.2024.e35002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To undertake a comprehensive assay of PDCD11 expression in colorectal cancer (CRC) and its association with prognosis and immune cell infiltration (ICIN) utilizing bioinformatics tools. Methods The PDCD11 expression in CRC and pan-cancer was quantified through datasets from TCGA and GEO databases, and the assay was conducted through R software and the GEPIA database. Moreover, mRNA and protein expression data of PDCD11 were attained from the HPA database. It was attempted to establish protein-protein interaction networks of PDCD11 via the STRING and GeneMANIA databases. The association of PDCD11 expression with CRC staging was evaluated through R software, while its association with CRC and pan-cancer prognosis was figured out via the GEPIA database. Furthermore, the relationship of PDCD11 expression with ICIN was assayed using R software and the TIMER database. Additionally, the influences of PDCD11 knockdown on the proliferation, apoptosis, and migration of colon cancer RKO cell lines was evaluated. Results PDCD11 exhibited elevated expression in CRC and various other malignancies, potentially indicating a promotive role in cancer progression. Overexpression of PDCD11 was found to correlate with attenuated overall survival in CRC and other malignancies. Moreover, PDCD11 demonstrated promising predictive capabilities for distinguishing between tumor and non-tumor tissues. The positive association of high PDCD11 expression with the infiltration of neutrophils, dendritic cells, CD8+ T cells, CD4+ T cells, and macrophages, as well as with the expression of immune checkpoint molecules CTLA4 and PD-1 was noteworthy. Lentivirus-mediated PDCD11 knockdown suppressed RKO cell proliferation, colony formation, and migration, while triggered apoptosis in these cells. Conclusion The outcomes unveiled the noticeable function of PDCD11 in CRC and various other malignancies, emphasizing its potential as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiongfeng Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Gaowa Sharen
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University & Department of Pathological Anatomy, College of Basic Medicine of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Minjie Zhang
- Department of Ultrasound, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Lei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Kejian Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Haidong Cheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Mingxing Hou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| |
Collapse
|
2
|
Ito T, Yamaguchi T, Kumamoto K, Suzuki O, Chika N, Kawakami S, Nagai T, Igawa T, Fujiyoshi K, Akagi Y, Arai T, Akagi K, Eguchi H, Okazaki Y, Ishida H. Incidence and molecular characteristics of deficient mismatch repair conditions across nine different tumors and identification of germline variants involved in Lynch-like syndrome. Int J Clin Oncol 2024; 29:953-963. [PMID: 38615286 PMCID: PMC11196295 DOI: 10.1007/s10147-024-02518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Based on molecular characteristics, deficient DNA mismatch repair (dMMR) solid tumors are largely divided into three categories: somatically MLH1-hypermethylated tumors, Lynch syndrome (LS)-associated tumors, and Lynch-like syndrome (LLS)-associated tumors. The incidence of each of these conditions and the corresponding pathogenic genes related to LLS remain elusive. METHODS We identified dMMR tumors in 3609 tumors from 9 different solid organs, including colorectal cancer, gastric cancer, small-bowel cancer, endometrial cancer, ovarian cancer, upper urinary tract cancer, urinary bladder cancer, prostate cancer, and sebaceous tumor, and comprehensively summarized the characterization of dMMR tumors. Characterization of dMMR tumors were performed as loss of at least one of MMR proteins (MLH1, MSH2, MSH6, and PMS2), by immunohistochemistry, followed by MLH1 promotor methylation analysis and genetic testing for MMR genes where appropriate. Somatic variant analysis of MMR genes and whole exome sequencing (WES) were performed in patients with LLS. RESULTS In total, the incidence of dMMR tumors was 5.9% (24/3609). The incidence of dMMR tumors and the proportion of the three categorized dMMR tumors varied considerably with different tumor types. One to three likely pathogenic/pathogenic somatic MMR gene variants were detected in 15 out of the 16 available LLS tumors. One patient each from 12 patients who gave consent to WES demonstrated non-MMR germline variants affect function (POLQ or BRCA1). CONCLUSIONS Our data regarding the LS to LLS ratio would be useful for genetic counseling in patients who are suspected to have LS, though the genetic backgrounds for the pathogenesis of LLS need further investigation.
Collapse
Affiliation(s)
- Tetsuya Ito
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan.
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kensuke Kumamoto
- Department of Gastroenterological Surgery, Kagawa University, Kagawa, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Noriyasu Chika
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomonori Nagai
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | | | - Yoshito Akagi
- Department of Surgery, Kurume University, Kurume, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
3
|
Yang Y, Qi J, Hu J, Zhou Y, Zheng J, Deng W, Inam M, Guo J, Xie Y, Li Y, Xu C, Deng W, Chen W. Lovastatin/SN38 co-loaded liposomes amplified ICB therapeutic effect via remodeling the immunologically-cold colon tumor and synergized stimulation of cGAS-STING pathway. Cancer Lett 2024; 588:216765. [PMID: 38408604 DOI: 10.1016/j.canlet.2024.216765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Current immune checkpoint blockade (ICB) immunotherapeutics have revolutionized cancer treatment. However, many cancers especially the "immunologically cold" tumors, do not respond to ICB, prompting the search for additional strategies to achieve durable responses. The cGAS-STING pathway, as an essential immune response pathway, has been demonstrated for a potent target to sensitize ICB immunotherapy. However, the low efficiency of conventional STING agonists limits their clinical application. Recent studies have shown that DNA topoisomerase I (TOPI) inhibitor chemodrug SN38 can activate the cGAS-STING pathway and induce an immune response through DNA damage, while the traditional statins medication lovastatin was found to inhibit DNA damage repair, which may in turn upregulate the damaged DNA level. Herein, we have developed a liposomal carrier co-loaded with SN38 and lovastatin (SL@Lip), which can be accumulated in tumors and efficiently released SN38 and lovastatin, addressing the problem of weak solubility of these two drugs. Importantly, lovastatin can increase DNA damage and enhance the activation of cGAS-STING pathway, coordinating with SN38 chemotherapy and exhibiting the enhanced combinational immunotherapy of PD-1 antibody by remodeling the tumor microenvironment in mouse colorectal cancer of both subcutaneous and orthotopic xenograft models. Overall, this study demonstrates that lovastatin-assisted cGAS-STING stimulation mediated by liposomal delivery system significantly strengthened both chemotherapy and immunotherapy of colorectal cancer, providing a clinically translational strategy for combinational ICB therapy in the "immunologically cold" tumors.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, 650032, PR China
| | - Jialin Hu
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - You Zhou
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiena Zheng
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenxia Deng
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Muhammad Inam
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiaxin Guo
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongyi Xie
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuan Li
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chuanshan Xu
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Wenjie Chen
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
4
|
Dal Buono A, Puccini A, Franchellucci G, Airoldi M, Bartolini M, Bianchi P, Santoro A, Repici A, Hassan C. Lynch Syndrome: From Multidisciplinary Management to Precision Prevention. Cancers (Basel) 2024; 16:849. [PMID: 38473212 DOI: 10.3390/cancers16050849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND AIMS Lynch syndrome (LS) is currently one of the most prevalent hereditary cancer conditions, accounting for 3% of all colorectal cancers and for up to 15% of those with DNA mismatch repair (MMR) deficiency, and it was one of the first historically identified. The understanding of the molecular carcinogenesis of LS tumors has progressed significantly in recent years. We aim to review the most recent advances in LS research and explore genotype-based approaches in surveillance, personalized cancer prevention, and treatment strategies. METHODS PubMed was searched to identify relevant studies, conducted up to December 2023, investigating molecular carcinogenesis in LS, surveillance strategies, cancer prevention, and treatment in LS tumors. RESULTS Multigene panel sequencing is becoming the benchmark in the diagnosis of LS, allowing for the detection of a pathogenic constitutional variant in one of the MMR genes. Emerging data from randomized controlled trials suggest possible preventive roles of resistant starch and/or aspirin in LS. Vaccination with immunogenic frameshift peptides appears to be a promising approach for both the treatment and prevention of LS-associated cancers, as evidenced by pre-clinical and preliminary phase 1/2a studies. CONCLUSIONS Although robust diagnostic algorithms, including prompt testing of tumor tissue for MMR defects and referral for genetic counselling, currently exist for suspected LS in CRC patients, the indications for LS screening in cancer-free individuals still need to be refined and standardized. Investigation into additional genetic and non-genetic factors that may explain residual rates of interval cancers, even in properly screened populations, would allow for more tailored preventive strategies.
Collapse
Affiliation(s)
- Arianna Dal Buono
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alberto Puccini
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Gianluca Franchellucci
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Marco Airoldi
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Michela Bartolini
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Paolo Bianchi
- Clinical Analysis Laboratory, Oncological Molecular Genetics Section, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Alessandro Repici
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Cesare Hassan
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| |
Collapse
|
5
|
Dong Y, Ye S, Li H, Li J, Liu R, Zhu Y. The Role of SPEN Mutations as Predictive Biomarkers for Immunotherapy Response in Colorectal Cancer: Insights from a Retrospective Cohort Analysis. J Pers Med 2024; 14:131. [PMID: 38392565 PMCID: PMC10890329 DOI: 10.3390/jpm14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the leading cause of cancer deaths, and treatment, especially in the metastatic stage, is challenging. Immune checkpoint inhibitors (ICIs) have revolutionized CRC treatment, but response varies, emphasizing the need for effective biomarkers. This study explores SPEN mutations as potential biomarkers. METHODS Using data from the Memorial Sloan Kettering Cancer Center (MSKCC) and The Cancer Genome Atlas (TCGA)-Colorectal Cancer, this research applied bioinformatics tools and statistical analysis to SPEN (Split Ends) mutant and wild-type CRC patients treated with ICIs. Focus areas included mutation rates, immune cell infiltration, and DNA damage response pathways. RESULTS The SPEN mutation rate was found to be 13.8% (15/109 patients) in the MSKCC cohort and 6.65% (35/526 patients) in the TCGA cohort. Our findings indicate that CRC patients with SPEN mutations had a longer median overall survival (OS) than the wild-type group. These patients also had higher tumor mutational burden (TMB), microsatellite instability (MSI) scores, and programmed death-ligand 1 (PD-L1) expression. SPEN mutants also exhibited increased DNA damage response (DDR) pathway mutations and a greater presence of activated immune cells, like M1 macrophages and CD8+ T cells, while wild-type patients had more resting/suppressive immune cells. Furthermore, distinct mutation patterns, notably with TP53, indicated a unique molecular subtype in SPEN-mutated CRC. CONCLUSIONS We conclude that SPEN mutations might improve ICI efficacy in CRC due to increased immunogenicity and an inflammatory tumor microenvironment. SPEN mutations could be predictive biomarkers for ICI responsiveness, underscoring their value in personalized therapy and highlighting the importance of genomic data in clinical decisions. This research lays the groundwork for future precision oncology studies.
Collapse
Affiliation(s)
- Yuanmei Dong
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| | - Sisi Ye
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| | - Huizi Li
- Department of Nutrition, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Juan Li
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| | - Rongrui Liu
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| | - Yanyun Zhu
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
6
|
Jin B, Wang Y, Zhang B, Xu H, Lu X, Sang X, Wang W, Mao Y, Chen P, Wang S, Qian Z, Wang Y, Du S. Immune checkpoint inhibitor-related molecular markers predict prognosis in extrahepatic cholangiocarcinoma. Cancer Med 2023; 12:20470-20481. [PMID: 37814942 PMCID: PMC10652350 DOI: 10.1002/cam4.6441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Therapeutic approaches for extrahepatic cholangiocarcinoma (EHCC) are limited, due to insufficient understanding to biomarkers related to prognosis and drug response. Here, we comprehensively assess the molecular characterization of EHCC with clinical implications. METHODS Whole-exome sequencing (WES) on 37 tissue samples of EHCC were performed to evaluate genomic alterations, tumor mutational burden (TMB) and microsatellite instability (MSI). RESULTS Mutation of KRAS (16%) was significantly correlated to poor OS. ERBB2 mutation was associated with improved OS. ERBB2, KRAS, and ARID1A were three potentially actionable targets. TMB ≥10 mutations per megabase was detected in 13 (35.1%) cases. Six patients (16.2%) with MSIsensor scores ≥10 were found. In multivariate Cox analysis, patients with MSIsensor sore exceed a certain threshold (MSIsensor score ≥0.36, value approximately above the 20th percentile as thresholds) showed a significant association with the improved OS (HR = 0.16; 95% CI: 0.056-0.46, p < 0.001), as well as patients with both TMB ≥3.47 mutations per megabase (value approximately above the 20th percentile) and MSIsensor score ≥0.36. CONCLUSIONS TMB and MSI are potential biomarkers associated with better prognosis for EHCC patients. Furthermore, our study highlights important genetic alteration and potential therapeutic targets in EHCC.
Collapse
Affiliation(s)
- Bao Jin
- Department of Liver Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences& Peking Union Medical CollegeBeijingChina
| | - Yuxin Wang
- Department of Liver Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences& Peking Union Medical CollegeBeijingChina
| | - Baoluhe Zhang
- Department of Liver Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences& Peking Union Medical CollegeBeijingChina
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences& Peking Union Medical CollegeBeijingChina
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences& Peking Union Medical CollegeBeijingChina
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences& Peking Union Medical CollegeBeijingChina
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences& Peking Union Medical CollegeBeijingChina
| | | | - Shun Wang
- Beidou Precision Medicine InstituteGuangzhouChina
| | - Zhirong Qian
- Beidou Precision Medicine InstituteGuangzhouChina
| | - Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences& Peking Union Medical CollegeBeijingChina
| |
Collapse
|
7
|
Cornista AM, Giolito MV, Baker K, Hazime H, Dufait I, Datta J, Khumukcham SS, De Ridder M, Roper J, Abreu MT, Breckpot K, Van der Jeught K. Colorectal Cancer Immunotherapy: State of the Art and Future Directions. GASTRO HEP ADVANCES 2023; 2:1103-1119. [PMID: 38098742 PMCID: PMC10721132 DOI: 10.1016/j.gastha.2023.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.
Collapse
Affiliation(s)
- Alyssa Mauri Cornista
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Maria Virginia Giolito
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Hajar Hazime
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Saratchandra Singh Khumukcham
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karine Breckpot
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kevin Van der Jeught
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
8
|
Zhou B, Yang Y, Pang X, Shi J, Jiang T, Zheng X. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomed Pharmacother 2023; 165:115071. [PMID: 37390710 DOI: 10.1016/j.biopha.2023.115071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
SIRT5 is a mitochondrial NAD+ -dependent lysine deacylase. Downregulation of SIRT5 has been linked to several primary cancers and DNA damage. In clinical therapy for non-small cell lung cancer (NSCLC), the Feiyiliu Mixture (FYLM) is an experience and effective Chinese herb prescription. And we found that quercetin is an important ingredient in the FYLM. However, whether quercetin regulates DNA damage repair (DDR) and induces apoptosis through SIRT5 in NSCLC remains unknown. The present study revealed that quercetin directly binds to SIRT5 and inhibits the phosphorylation of PI3K/AKT through the interaction between SIRT5 and PI3K, thus inhibiting the repair process of homologous recombination (HR) and non-homologous end-joining (NHEJ) in NSCLC, which raise mitotic catastrophe and apoptosis. Our study provided a novel mechanism of action of quercetin in the treatment of NSCLC.
Collapse
Affiliation(s)
- Baochen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Ye Yang
- Qingdao Central Hospital, Qingdao 266042, China
| | - Xuemeng Pang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingjing Shi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Jiang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Xin Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China.
| |
Collapse
|
9
|
Bonilla CE, Montenegro P, O’Connor JM, Hernando-Requejo O, Aranda E, Pinto Llerena J, Llontop A, Gallardo Escobar J, Díaz Romero MDC, Bautista Hernández Y, Graña Suárez B, Batagelj EJ, Wali Mushtaq A, García-Foncillas J. Ibero-American Consensus Review and Incorporation of New Biomarkers for Clinical Practice in Colorectal Cancer. Cancers (Basel) 2023; 15:4373. [PMID: 37686649 PMCID: PMC10487247 DOI: 10.3390/cancers15174373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in genomic technologies have significantly improved the management of colorectal cancer (CRC). Several biomarkers have been identified in CRC that enable personalization in the use of biologic agents that have shown to enhance the clinical outcomes of patients. However, technologies used for their determination generate massive amounts of information that can be difficult for the clinician to interpret and use adequately. Through several discussion meetings, a group of oncology experts from Spain and several Latin American countries reviewed the latest literature to provide practical recommendations on the determination of biomarkers in CRC based on their clinical experience. The article also describes the importance of looking for additional prognostic biomarkers and the use of histopathology to establish an adequate molecular classification. Present and future of immunotherapy biomarkers in CRC patients are also discussed, together with several techniques for marker determination, including liquid biopsy, next-generation sequencing (NGS), polymerase chain reaction (PCR), and fecal immunohistochemical tests. Finally, the role of Molecular Tumor Boards in the diagnosis and treatment of CRC is described. All of this information will allow us to highlight the importance of biomarker determination in CRC.
Collapse
Affiliation(s)
- Carlos Eduardo Bonilla
- Fundación CTIC—Centro de Tratamiento e Investigación sobre Cáncer, Bogotá 1681442, Colombia
| | - Paola Montenegro
- Institución AUNA OncoSalud e Instituto Nacional de Enfermedades Neoplásicas, Lima 15023, Peru
| | | | | | - Enrique Aranda
- Departamento de Oncología Médica, Hospital Reina Sofía, IMIBIC, UCO, CIBERONC, 14004 Cordoba, Spain;
| | | | - Alejandra Llontop
- Instituto de Oncología Ángel H. Roffo, Ciudad Autónoma de Buenos Aires C1437FBG, Argentina
| | | | | | | | - Begoña Graña Suárez
- Servicio de Oncología Médica, Hospital Universitario de A Coruña, Servicio Galego de Saúde (SERGAS), 15006 A Coruña, Spain;
| | | | | | - Jesús García-Foncillas
- Hospital Universitario Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Azambuja DDB, E Gloria HDC, Montenegro GES, Kalil AN, Hoffmann JS, Leguisamo NM, Saffi J. High Expression of MRE11A Is Associated with Shorter Survival and a Higher Risk of Death in CRC Patients. Genes (Basel) 2023; 14:1270. [PMID: 37372450 DOI: 10.3390/genes14061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Homologous recombination repair (HR) is the most accurate repair pathway for double-strand breaks and replication fork disruption that is capable of faithfully restoring the original nucleotide sequence of the broken DNA. The deficiency of this mechanism is a frequent event in tumorigenesis. Therapies that exploit defects in HR have been explored essentially in breast, ovarian, pancreatic, and prostate cancers, but poorly in colorectal cancers (CRC), although CRC ranks second in mortality worldwide. METHODS Tumor specimens and matched healthy tissues from 63 patients with CRC were assessed for gene expression of key HR components and mismatch repair (MMR) status, which correlated with clinicopathological features, progression-free survival, and overall survival (OS). RESULTS Enhanced expression of MRE11 homolog (MRE11A), the gene encoding a key molecular actor for resection, is significantly overexpressed in CRC, is associated with the occurrence of primary tumors, particularly T3-T4, and is found in more than 90% of the right-side of CRC, the location with the worst prognosis. Importantly, we also found that high MRE11A transcript abundance is associated with 16.7 months shorter OS and a 3.5 higher risk of death. CONCLUSION Monitoring of MRE11 expression could be used both as a predictor of outcome and as a marker to select CRC patients for treatments thus far adapted for HR-deficient cancers.
Collapse
Affiliation(s)
- Daniel de Barcellos Azambuja
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Hospital Santa Rita, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90020-090, RS, Brazil
| | - Helena de Castro E Gloria
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Gabriel E Silva Montenegro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Antonio Nocchi Kalil
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Hospital Santa Rita, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90020-090, RS, Brazil
| | - Jean-Sébastien Hoffmann
- Laboratoire d'Excellence Toulouse Cancer, Laboratoire de Pathologie, CHU Toulouse, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, CEDEX, 31059 Toulouse, France
| | - Natalia Motta Leguisamo
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Hospital Santa Rita, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90020-090, RS, Brazil
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
11
|
Liu Y, Chen H, Bao H, Zhang J, Wu R, Zhu L. Comprehensive characterization of FBXW7 mutational and clinicopathological profiles in human colorectal cancers. Front Oncol 2023; 13:1154432. [PMID: 37064111 PMCID: PMC10091464 DOI: 10.3389/fonc.2023.1154432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundFBXW7 is recognized as a critical tumor suppressor gene and a component of the ubiquitin-proteasome system, mediating the degradation of multiple oncogenic proteins, including c-MYC, Cyclin E, c-Jun, Notch, p53. Around 16% of colorectal cancer (CRC) patients carried FBXW7 somatic mutations, while a comprehensive characterization of FBXW7 somatic mutations in CRC is still lacking.MethodsColorectal cancer patients with tumor samples and matching white blood cell samples in the past five years were screened and DNA sequenced. DNA sequencing data of MSK MetTropism cohort and RNA sequencing data of TCGA COAD cohort were analyzed.ResultsWe discovered that the FBXW7 mutations were associated with higher tumor mutation burden (TMB), higher microsatellite instability (MSI) score, and lower chromosomal instability (CIN) score. Patients with FBXW7 mutations showed better overall survival (HR: 0.67; 95%CI: 0.55-0.80, P < 0.001). However, patients with FBXW7 R465C mutation displayed worse overall survival in multi-variate cox analysis when compared with patients carrying other FBXW7 mutations (HR: 1.6; 95%CI: 1.13-3.1, P = 0.015), and with all other patients (HR: 1.87; 95%CI: 0.99-2.5, P = 0.053). Moreover, in MSI patients, the FBXW7 mutated group showed higher M1 macrophage, CD8+ T cell, and regulatory T cell (Tregs) infiltration rates, and significant enrichment of multiple immune-related gene sets, including interferon-gamma response, interferon-alpha response, IL6 JAK STAT3 signaling, p53 pathway.ConclusionThis analysis comprehensively identified FBXW7 alterations in colorectal cancer patients and uncovered the molecular, clinicopathological, and immune-related patterns of FBXW7-altered CRC patients.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanlin Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jinfeng Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Runda Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Runda Wu, ; Lingjun Zhu,
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Runda Wu, ; Lingjun Zhu,
| |
Collapse
|
12
|
Wei M, Su J, Zhang J, Liu S, Ma J, Meng XP. Construction of a DDR-related signature for predicting of prognosis in metastatic colorectal carcinoma. Front Oncol 2023; 13:1043160. [PMID: 36816926 PMCID: PMC9931195 DOI: 10.3389/fonc.2023.1043160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent malignancy and the one of most lethal cancer. Metastatic CRC (mCRC) is the third most common cause of cancer deaths worldwide. DNA damage response (DDR) genes are closely associated with the tumorigenesis and development of CRC. In this study, we aimed to construct a DDR-related gene signature for predicting the prognosis of mCRC patients. Methods The gene expression and corresponding clinical information data of CRC/mCRC patients were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. A prognostic model was obtained and termed DDRScore by the multivariate Cox proportional hazards regression in the patients with mCRC. The Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) curves were employed to validate the predictive ability of the prognostic model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed for patients between the high-DDRscore and low-DDRscore groups. Results We constructed a prognostic model consisting of four DDR-related genes (EME2, MSH4, MLH3, and SPO11). Survival analysis showed that patients in the high-DDRscore group had a significantly worse OS than those in the low-DDRscore group. The area under the curve (AUC) value of the ROC curve of the predictive model is 0.763 in the training cohort GSE72970, 0.659 in the stage III/IV colorectal cancer (CRC) patients from The Cancer Genome Atlas (TCGA) data portal, and 0.639 in another validation cohort GSE39582, respectively. GSEA functional analysis revealed that the most significantly enriched pathways focused on nucleotide excision repair, base excision repair, homologous recombination, cytokine receptor interaction, chemokine signal pathway, cell adhesion molecules cams, ECM-receptor interaction, and focal adhesion. Conclusion The DDRscore was identified as an independent prognostic and therapy response predictor, and the DDR-related genes may be potential diagnosis or prognosis biomarkers for mCRC patients.
Collapse
Affiliation(s)
- Maohua Wei
- Department of General Surgery, Dalian Medical University, Dalian, China
| | - Junyan Su
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Jiali Zhang
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Siyao Liu
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China,*Correspondence: Xiang peng Meng, ; Jia Ma,
| | - Xiang peng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Xiang peng Meng, ; Jia Ma,
| |
Collapse
|
13
|
Liu C, Xiao H, Cui L, Fang L, Han S, Ruan Y, Zhao W, Zhang Y. Epigenetic-related gene mutations serve as potential biomarkers for immune checkpoint inhibitors in microsatellite-stable colorectal cancer. Front Immunol 2022; 13:1039631. [PMID: 36479108 PMCID: PMC9720302 DOI: 10.3389/fimmu.2022.1039631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Combination therapy with immune checkpoint inhibitors (ICIs) may benefit approximately 10-20% of microsatellite-stable colorectal cancer (MSS-CRC) patients. However, there is a lack of optimal biomarkers. This study aims to understand the predictive value of epigenetic-related gene mutations in ICIs therapy in MSS-CRC patients. Methods We analyzed DNA sequences and gene expression profiles from The Cancer Genome Atlas (TCGA) to examine their immunological features. The Harbin Medical University Cancer Hospital (HMUCH) clinical cohort of MSS-CRC patients was used to validate the efficacy of ICIs in patients with epigenetic-related gene mutations (Epigenetic_Mut). Results In TCGA, 18.35% of MSS-CRC patients (78/425) had epigenetic-related gene mutations. The Epigenetic_Mut group had a higher tumor mutation burden (TMB) and frameshift mutation (FS_mut) rates. In all MSS-CRC samples, Epigenetic_Mut was elevated in the immune subtype (CMS1) and had a strong correlation with immunological features. Epigenetic_Mut was also associated with favorable clinical outcomes in MSS-CRC patients receiving anti-PD-1-based therapy from the HMUCH cohort. Using immunohistochemistry and flow cytometry, we demonstrated that Epigenetic_Mut samples were associated with increased anti-tumor immune cells both in tumor tissues and peripheral blood. Conclusion MSS-CRC patients with epigenetic regulation impairment exhibit an immunologically active environment and may be more susceptible to treatment strategies based on ICIs.
Collapse
Affiliation(s)
- Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huiting Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Fang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenyuan Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
14
|
Lei H, He A, Jiang Y, Ruan M, Han N. Targeting DNA damage response as a potential therapeutic strategy for head and neck squamous cell carcinoma. Front Oncol 2022; 12:1031944. [PMID: 36338767 PMCID: PMC9634729 DOI: 10.3389/fonc.2022.1031944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/20/2023] Open
Abstract
Cells experience both endogenous and exogenous DNA damage daily. To maintain genome integrity and suppress tumorigenesis, individuals have evolutionarily acquired a series of repair functions, termed DNA damage response (DDR), to repair DNA damage and ensure the accurate transmission of genetic information. Defects in DNA damage repair pathways may lead to various diseases, including tumors. Accumulating evidence suggests that alterations in DDR-related genes, such as somatic or germline mutations, single nucleotide polymorphisms (SNPs), and promoter methylation, are closely related to the occurrence, development, and treatment of head and neck squamous cell carcinoma (HNSCC). Despite recent advances in surgery combined with radiotherapy, chemotherapy, or immunotherapy, there has been no substantial improvement in the survival rate of patients with HNSCC. Therefore, targeting DNA repair pathways may be a promising treatment for HNSCC. In this review, we summarized the sources of DNA damage and DNA damage repair pathways. Further, the role of DNA damage repair pathways in the development of HNSCC and the application of small molecule inhibitors targeting these pathways in the treatment of HNSCC were focused.
Collapse
Affiliation(s)
- Huimin Lei
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Ading He
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yingying Jiang
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Min Ruan
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Nannan Han
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Ye LF, Huang ZY, Chen XX, Chen ZG, Wu SX, Ren C, Hu MT, Bao H, Jin Y, Wang F, Wang FH, Du ZM, Wu X, Ju HQ, Shao Y, Li YH, Xu RH, Wang DS. Monitoring tumour resistance to the BRAF inhibitor combination regimen in colorectal cancer patients via circulating tumour DNA. Drug Resist Updat 2022; 65:100883. [DOI: 10.1016/j.drup.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
|
16
|
Li H, Gong L, Cheng H, Wang H, Zhang X, Rao C, Song Z, Wang D, Lou H, Lou F, Cao S, Pan H, Fang Y. Comprehensive Molecular Profiling of Colorectal Cancer With Situs Inversus Totalis by Next-Generation Sequencing. Front Oncol 2022; 12:813253. [PMID: 35530355 PMCID: PMC9067615 DOI: 10.3389/fonc.2022.813253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent malignances worldwide. However, CRC with situs inversus totalis (SCRC) is extremely rare, and molecular characterization of this disease has never been investigated. Methods Tumor tissue samples from 8 patients with SCRC and 33 CRC patients without situs inversus totalis (NSCRC) were subjected to multigene next-generation sequencing. Results The most frequently mutated genes in SCRC were APC, TP53, CHEK2, MDC1, GNAQ, KRAS, and SMAD4. A high frequency of SCRC tumors had mutations in DNA damage repair genes. Single amino acid substitutions in the DNA damage repair genes caused by continuous double base substitution was identified in the majority of this population. Furthermore, mutational profiles showed notable differences between the SCRC and NSCRC groups. In particular, CHEK2, MDC1, GNAQ, SMAD4, BRCA1, HLA-B, LATS2, and NLRC5 mutations were more frequently observed in SCRC patients. The mutation loci distributions of KRAS in the SCRC cohort differed from that of the NSCRC cohort. Additionally, differences in the targeted genomic profiles and base substitution patterns were observed between the two groups. Conclusions These findings comprehensively revealed a molecular characterization of SCRC, which will contribute to the development of personalized therapy and improved clinical management of SCRC patients.
Collapse
Affiliation(s)
- Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liu Gong
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanqing Cheng
- Prenatal Diagnosis Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhangfa Song
- Department of Anorectal Surgical, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Da Wang
- Department of Anorectal Surgical, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haizhou Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Czajkowski D, Szmyd R, Gee HE. Impact of DNA damage response defects in cancer cells on response to immunotherapy and radiotherapy. J Med Imaging Radiat Oncol 2022; 66:546-559. [PMID: 35460184 PMCID: PMC9321602 DOI: 10.1111/1754-9485.13413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
The DNA damage response (DDR) is a complex set of downstream pathways triggered in response to DNA damage to maintain genomic stability. Many tumours exhibit mutations which inactivate components of the DDR, making them prone to the accumulation of DNA defects. These can both facilitate the development of tumours and provide potential targets for novel therapeutic interventions. The inhibition of the DDR has been shown to induce radiosensitivity in certain cancers, rendering them susceptible to treatment with radiotherapy and improving the therapeutic window. Moreover, DDR defects are a strong predictor of patient response to immune checkpoint inhibition (ICI). The ability to target the DDR selectively has the potential to expand the tumour neoantigen repertoire, thus increasing tumour immunogenicity and facilitating a CD8+ T and NK cell response against cancer cells. Combinatorial approaches, which seek to integrate DDR inhibition with radiotherapy and immunotherapy, have shown promise in early trials. Further studies are necessary to understand these synergies and establish reliable biomarkers.
Collapse
Affiliation(s)
| | - Radosław Szmyd
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre Westmead, Sydney, New South Wales, Australia
| | - Harriet E Gee
- University of Sydney, Sydney, New South Wales, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Catalano F, Borea R, Puglisi S, Boutros A, Gandini A, Cremante M, Martelli V, Sciallero S, Puccini A. Targeting the DNA Damage Response Pathway as a Novel Therapeutic Strategy in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14061388. [PMID: 35326540 PMCID: PMC8946235 DOI: 10.3390/cancers14061388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Defective DNA damage response (DDR) is a hallmark of cancer leading to genomic instability. Up to 15–20% of colorectal cancers carry alterations in DDR. However, the role of DDR alterations as a prognostic factor and as a therapeutic target must be elucidated. To date, disappointing results have been obtained in different clinical trials mainly due to poor molecular selection of patients. Several challenges must be overcome before these compounds may have an impact on colorectal cancer. For instance, although some preclinical evidence showed the vulnerability of a subset of CRCs to PARP inhibitors, no specific clinical or molecular biomarkers have been validated to select patients. Moreover, different DDR alterations may not equally confer platinum sensitivity in CRC patients. Further efforts are needed in both preclinical and clinical settings to exploit DDR alterations as therapeutic targets and to eventually discover PARP or other DDR inhibitors (e.g., Wee1) with clinical benefit on colorectal cancer patients. Abstract Major advances have been made in CRC treatment in recent years, especially in molecularly driven therapies and immunotherapy. Despite this, a large number of advanced colorectal cancer patients do not benefit from these treatments and their prognosis remains poor. The landscape of DNA damage response (DDR) alterations is emerging as a novel target for treatment in different cancer types. PARP inhibitors have been approved for the treatment of ovarian, breast, pancreatic, and prostate cancers carrying deleterious BRCA1/2 pathogenic variants or homologous recombination repair (HRR) deficiency (HRD). Recent research reported on the emerging role of HRD in CRC and showed that alterations in these genes, either germline or somatic, are carried by up to 15–20% of CRCs. However, the role of HRD is still widely unknown, and few data about their clinical impact are available, especially in CRC patients. In this review, we report preclinical and clinical data currently available on DDR inhibitors in CRC. We also emphasize the predictive role of DDR mutations in response to platinum-based chemotherapy and the potential clinical role of DDR inhibitors. More preclinical and clinical trials are required to better understand the impact of DDR alterations in CRC patients and the therapeutic opportunities with novel DDR inhibitors.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Roberto Borea
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Andrea Boutros
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Annalice Gandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
| | - Alberto Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-0105553301 (ext.3302); Fax: +39-0105555141
| |
Collapse
|
19
|
Arai H, Elliott A, Millstein J, Xiu J, Ou FS, Innocenti F, Wang J, Battaglin F, Jayachandran P, Kawanishi N, Soni S, Zhang W, Sohal D, Goldberg RM, Hall MJ, Scott AJ, Khushman M, Hwang JJ, Lou E, Weinberg BA, Lockhart AC, Shields AF, Abraham JP, Magee D, Stafford P, Zhang J, Venook AP, Korn WM, Lenz HJ. Molecular characteristics and clinical outcomes of patients with Neurofibromin 1-altered metastatic colorectal cancer. Oncogene 2022; 41:260-267. [PMID: 34728807 PMCID: PMC8738154 DOI: 10.1038/s41388-021-02074-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
Loss-of-function alterations of Neurofibromin 1 (NF1) activate RAS, a driver of colorectal cancer. However, the clinical implications of NF1 alterations are largely unknown. We performed a comprehensive molecular profiling of NF1-mutant colorectal cancer using data from 8150 patients included in a dataset of commercial CLIA-certified laboratory (Caris Life Sciences). In addition, NF1 expression levels were tested for associations with clinical outcomes using data from 431 patients in the CALGB/SWOG 80405 trial. In the Caris dataset, 2.2% of patients had pathogenic or presumed pathogenic NF1 mutations. NF1-mutant tumors more frequently harbored PIK3CA (25.0% vs. 16.7%) and PTEN mutations (24.0% vs. 4.2%) than wild type tumors. Gene set enrichment analysis revealed that MAPK and PI3K pathway signatures were enriched in NF1-mutant tumors. In the CALGB/SWOG 80405 cohort, low NF1 expression was associated with poor prognosis, and high NF1 expression was associated with better efficacy of cetuximab than bevacizumab. Together, we revealed concurrent genetic alterations in the PI3K pathways in NF1-mutant tumors, suggesting the need to simultaneously block MAPK and PI3K pathways in treatment. The potential of NF1 alteration as a novel biomarker for targeted therapy was highlighted, warranting further investigations in clinical settings.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Andrew Elliott
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Joanne Xiu
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Fang-Shu Ou
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Federico Innocenti
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jingyuan Wang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Priya Jayachandran
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Davendra Sohal
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aaron J Scott
- Division of Hematology and Oncology, Department of Medicine, Banner-University of Arizona, Tucson, AZ, USA
| | - Mohd Khushman
- Medical Oncology, Mitchell Cancer Institute, The University of South Alabama, Mobile, AL, USA
| | - Jimmy J Hwang
- Department of Solid Tumor Oncology, GI Medical Oncology, Levine Cancer Institute, Charlotte, NC, USA
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin A Weinberg
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Albert Craig Lockhart
- Department of Medicine, Division of Oncology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Anthony Frank Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Jim P Abraham
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Daniel Magee
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Phillip Stafford
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Jian Zhang
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Alan P Venook
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - W Michael Korn
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Cerniglia M, Xiu J, Grothey A, Pishvaian MJ, Baca Y, Hwang JJ, Marshall JL, VanderWalde AM, Shields AF, Lenz HJ, Korn WM, Salem M, Philip PA, Goldberg RM, Zeng J, Kim SS. Association of Homologous Recombination-DNA Damage Response Gene Mutations with Immune Biomarkers in Gastroesophageal Cancers. Mol Cancer Ther 2021; 21:227-236. [PMID: 34725190 DOI: 10.1158/1535-7163.mct-20-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/29/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
The prevalence of homologous recombination-DNA damage response (HR-DDR) genetic alterations is of therapeutic interest in gastroesophageal cancers. This study is a comprehensive assessment of HR-DDR mutation prevalence across gastroesophageal adenocarcinomas and squamous cell carcinomas. Here we investigate the association of HR-DDR mutations with known predictors for immune-checkpoint inhibition [deficiency in mismatch-repair (dMMRP), tumor mutational burden (TMB), and programmed death ligand 1 (PD-L1)]. We confirmed HR-DDR mutations are present in a subset of gastroesophageal adenocarcinomas (23%) and gastroesophageal squamous cell carcinomas (20%). Biomarker expression of dMMRP (18% vs. 1%) and TMB-high with a cutoff of ≥10 mt/MB (27% vs. 9%) was significantly more prevalent in the DDR-mutated cohort compared with the non-DDR-mutated cohort. Mean combined positive score for PD-L1 in the total adenocarcinoma cohort was significantly higher in the DDR-mutated cohort compared with the non-DDR-mutated cohort (10.1 vs. 5.8). We demonstrated that alterations in ARID1A, BRCA2, PTEN, and ATM are correlated with dMMRP, TMB-high, and increased PD-L1 expression in gastroesophageal adenocarcinomas. Our findings show that a subset of gastroesophageal tumors harbor HR-DDR mutations correlated with established immune biomarkers. By better understanding the relationship between HR-DDR mutations and immune biomarkers, we may be able to develop better immunotherapy combination strategies to target these tumors.
Collapse
Affiliation(s)
| | | | | | - Michael J Pishvaian
- NCR Kimmel Cancer Center, Sibley Memorial Hospital and Johns Hopkins University School of Medicine, Washington, District of Columbia
| | | | - Jimmy J Hwang
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | - John L Marshall
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | | | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of, Medicine, University of Southern California, Los Angeles, California
| | | | - Mohamed Salem
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | - Jia Zeng
- Caris Life Sciences, Phoenix, Arizona
| | - Sunnie S Kim
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado.
| |
Collapse
|
21
|
Moretto R, Elliott A, Zhang J, Arai H, Germani MM, Conca V, Xiu J, Stafford P, Oberley M, Abraham J, Spetzler D, Rossini D, Antoniotti C, Marshall J, Shields A, Lopes G, Lonardi S, Pietrantonio F, Tomasello G, Passardi A, Tamburini E, Santini D, Aprile G, Masi G, Falcone A, Lenz HJ, Korn M, Cremolini C. Homologous Recombination Deficiency Alterations in Colorectal Cancer: Clinical, Molecular, and Prognostic Implications. J Natl Cancer Inst 2021; 114:271-279. [PMID: 34469533 DOI: 10.1093/jnci/djab169] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tumors with homologous recombination (HR) deficiency (HRD) show high sensitivity to platinum salts and PARP-inhibitors in several malignancies. In colorectal cancer (CRC), the role of HRD alterations is mostly unknown. METHODS Next generation sequencing, whole transcriptome sequencing and whole exome sequencing were conducted using CRC samples submitted to a commercial Clinical Laboratory Improvement Amendments (CLIA) certified laboratory. Tumors with pathogenic/presumed pathogenic mutations in 33 genes involved in the HR pathway were considered HRD, the others HR proficient (HRP). Furthermore, tumor samples from patients enrolled in the phase III TRIBE2 study comparing upfront FOLFOXIRI/bevacizumab versus FOLFOX/bevacizumab were analyzed with next generation sequencing. The analyses were separately conducted in microsatellite stable/proficient mismatch repair (MSS/pMMR) and microsatellite instable-high/deficient mismatch repair (MSI-H/dMMR) groups. All statistical tests were 2-sided. RESULTS Of 9321 CRC tumors, 1270 (13.6%) and 8051 (86.4%) were HRD and HRP, respectively. HRD tumors were more frequent among MSI-H/dMMR than MSS/pMMR tumors (73.4% vs 9.5%, p and q < 0.001). In MSS/pMMR group, HRD tumors were more frequently tumor mutational burden high (8.1% vs 2.2% P and q < 0.001) and PD-L1 positive (5.0% vs 2.4%, P and q = 0.001), enriched in all immune cell and fibroblast populations, and genomic loss of heterozygosity-high (16.2% vs 9.5%, P = .03). In the TRIBE2 study, patients with MSS/pMMR and HRD tumors (10.7%) showed longer overall survival compared to MSS/pMMR and HRP ones (40.2 vs 23.8 months; hazard ratio = 0.66; 95% confidence interval = 0.45-0.98, P = .04). Consistent results were reported in the multivariable model (hazard ratio = 0.67; 95% confidence ratio = 0.45-1.02, P = .07). No interaction effect was evident between HR groups and treatment arm. CONCLUSIONS HRD tumors are a distinctive subgroup of MSS/pMMR CRCs with specific molecular and prognostic characteristics. The potential efficacy of agents targeting the HR system and immune check-point inhibitors in this subgroup is worth of clinical investigation.
Collapse
Affiliation(s)
- Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Andrew Elliott
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Jian Zhang
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Joanne Xiu
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Phillip Stafford
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Matthew Oberley
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Jim Abraham
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - David Spetzler
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Daniele Rossini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - John Marshall
- Division of Hematology/Oncology, Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C, ., USA
| | - Anthony Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Gilberto Lopes
- Division of Medical Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Sara Lonardi
- Early Phase Clinical Trial Unit, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Gianluca Tomasello
- Oncology Unit, Oncology Department, ASST of Cremona, Cremona, Italy.,UOC Medical Oncology, IRCCS Foundation Ca' Granda Maggiore Hospital Policlinic, Milan, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emiliano Tamburini
- Department of Oncology and Palliative Care, Cardinale G Panico, Tricase City Hospital, Tricase, Italy
| | - Daniele Santini
- Department of Medical Oncology, University Campus Biomedico, Rome, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael Korn
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Lee MS, Kopetz S. Are Homologous Recombination Deficiency Mutations Relevant in Colorectal Cancer? J Natl Cancer Inst 2021; 114:176-178. [PMID: 34469539 DOI: 10.1093/jnci/djab170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael S Lee
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|