1
|
Lee S, Lee B, Kwon SH, Park J, Kim SH. MCC in the spotlight: Its dual role in signal regulation and oncogenesis. Cell Signal 2025; 131:111756. [PMID: 40118128 DOI: 10.1016/j.cellsig.2025.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The mutated in colorectal cancer (MCC) gene is closely associated with the onset and progression of colorectal cancer. MCC plays a critical role in regulating the cell cycle and various signaling pathways and is recognized to inhibit cancer cell proliferation via the β-catenin signaling pathway. β-catenin is a key component of the WNT signaling pathway that influences cell growth, differentiation, survival, and migration, thereby positioning MCC as an important tumor suppressor. Notably, MCC has also been implicated in other cancer types, including lung, liver, and brain cancers. However, the precise mechanisms by which MCC functions in these malignancies remain inadequately understood. Comprehensive investigations into the interactions among MCC, various signaling pathways, and metabolic processes are essential for uncovering the molecular mechanisms of cancer and the pathological features characteristic of different cancer stages. This review presents the structural characteristics of MCC and its cell growth regulation mechanisms and functional roles within tissues, with the aims of enhancing our understanding of the role of MCC in cancer biology and highlighting potential therapeutic strategies targeting this gene.
Collapse
Affiliation(s)
- Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, South Korea.
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea.
| | - Seon-Hwan Kim
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| |
Collapse
|
2
|
Boxer E, Feigin N, Tschernichovsky R, Darnell NG, Greenwald AR, Hoefflin R, Kovarsky D, Simkin D, Turgeman S, Zhang L, Tirosh I. Emerging clinical applications of single-cell RNA sequencing in oncology. Nat Rev Clin Oncol 2025; 22:315-326. [PMID: 40021788 DOI: 10.1038/s41571-025-01003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of complex tissues both in health and in disease. Over the past decade, scRNA-seq has been applied to tumour samples obtained from patients with cancer in hundreds of studies, thereby advancing the view that each tumour is a complex ecosystem and uncovering the diverse states of both cancer cells and the tumour microenvironment. Such studies have primarily investigated and provided insights into the basic biology of cancer, although considerable research interest exists in leveraging these findings towards clinical applications. In this Review, we summarize the available data from scRNA-seq studies investigating samples from patients with cancer with a particular focus on findings that are of potential clinical relevance. We highlight four main research objectives of scRNA-seq studies and describe some of the most relevant findings towards such goals. We also describe the limitations of scRNA-seq, as well as future approaches in this field that are anticipated to further advance clinical applicability.
Collapse
Affiliation(s)
- Emily Boxer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nisan Feigin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Roi Tschernichovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Noam Galili Darnell
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alissa R Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rouven Hoefflin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Kovarsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Simkin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Turgeman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lingling Zhang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Zhang S, Pan J, Guo H, Guan X, Yan C, Ji L, Wu X, Huangfu H. Prognostic value and immunotherapy analysis of immune cell-related genes in laryngeal cancer. PeerJ 2025; 13:e19239. [PMID: 40247837 PMCID: PMC12005187 DOI: 10.7717/peerj.19239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/11/2025] [Indexed: 04/19/2025] Open
Abstract
Background Laryngeal cancer (LC) is a prevalent head and neck carcinoma. Extensive research has established a link between immune cells in the tumor microenvironment (TME) and cancer progression, as well as responses to immunotherapy. This study aims to develop a prognostic model based on immune cell-related genes and examine the TME in LC. Methods RNA-seq data for LC were sourced from The Cancer Genome Atlas (TCGA), and GSE27020 and GSE51985 datasets were retrieved from the Gene Expression Omnibus (GEO) database. Key genes were identified through the intersection of differentially expressed genes (DEGs) between normal and LC samples and module genes derived from weighted gene co-expression network analysis (WGCNA), followed by functional enrichment analysis. The prognostic risk model was constructed using univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. Gene Set Variation Analysis (GSVA) was subsequently performed for hallmark and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses in high- and low-risk groups. Immune infiltration analysis between risk groups was conducted via Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and single sample gene set enrichment analysis (ssGSEA). Finally, the relationship between the risk model and immunotherapy response was explored. Results A total of 124 key genes were identified through the overlap analysis, predominantly enriched in GO terms such as defense response to viruses and regulation of response to biotic stimuli, as well as KEGG pathways related to phagosome and Epstein-Barr virus infection. Machine learning indicated that the optimal prognostic model was constructed from two biomarkers, RENBP and OLR1. GSVA revealed that in the high-risk group, epithelial-mesenchymal transition and ECM-receptor interaction were the most significantly enriched pathways, while autoimmune thyroid disease, ribosome, and oxidative phosphorylation predominated in the low-risk group. Additionally, the stromal score was significantly higher in the high-risk group, while CD8+ T cells, cytolytic activity, inflammation promotion, and T cell co-stimulation were elevated in the low-risk group. Tumor Immune Dysfunction and Exclusion (TIDE) analysis showed higher TIDE and exclusion scores in the high-risk group, whereas the CD8 score was higher in the low-risk group. Finally, CD274 (PD-L1) expression was significantly elevated in the low-risk group. Conclusions This study identified two key prognostic biomarkers, RENBP and OLR1, and characterized TME differences across risk groups, offering novel insights into the diagnosis and treatment of LC.
Collapse
Affiliation(s)
- Sen Zhang
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Jianrui Pan
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Huina Guo
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Xiaoya Guan
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Chenxu Yan
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Lingling Ji
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Xiansha Wu
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| | - Hui Huangfu
- The First Hospital of Shanxi Medical University, Department of Otolaryngology Head and Neck Surgery, Taiyuan, Shanxi, China
- Shanxi Medical University, First Clinical Medical College, Taiyuan, Shanxi, China
- Shanxi Medical University, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Gostomczyk K, Drozd M, Marsool Marsool MD, Pandey A, Tugas K, Chacon J, Tayyab H, Ullah A, Borowczak J, Szylberg Ł. Biomarkers for the detection of circulating tumor cells. Exp Cell Res 2025; 448:114555. [PMID: 40228709 DOI: 10.1016/j.yexcr.2025.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Circulating tumor cells (CTCs) have emerged as a key biomarker in cancer detection and prognosis, and their molecular profiling is gaining importance in precision oncology. Liquid biopsies, which allow the extraction of CTCs, circulating tumor DNA (ctDNA) or cell-free DNA (cfDNA), have measurable advantages over traditional tissue biopsies, especially when molecular material is difficult to obtain. However, this method is not without limitations. Difficulties in differentiating between primary and metastatic lesions, uncertain predictive values and the complexity of the biomarkers used can prove challenging. Recently, high cell heterogeneity has been identified as the main obstacle to achieving high diagnostic accuracy. Because not all cells undergo epithelial-mesenchymal transition (EMT) at the same time, there is a large population of hybrid CTCs that express both epithelial and mesenchymal markers. Since traditional diagnostic tools primarily detect epithelial markers, they are often unable to detect cells with a hybrid phenotype; therefore, additional markers may be required to avoid false negatives. In this review, we summarize recent reports on emerging CTCs markers, with particular emphasis on their use in cancer diagnosis. Most of them, including vimentin, TWIST1, SNAI1, ZEB1, cadherins, CD44, TGM2, PD-L1 and GATA, hold promise for the detection of CTCs, but are also implicated in cancer progression, metastasis, and therapeutic resistance. Therefore, understanding the nature and drivers of epithelial-mesenchymal plasticity (EMP) is critical to advancing our knowledge in this field.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland.
| | - Magdalena Drozd
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| | | | - Anju Pandey
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Jose Chacon
- American University of Integrative Sciences, Saint Martin, Cole Bay, Barbados
| | | | - Ashraf Ullah
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| |
Collapse
|
5
|
Guo J, Chen J, Wang Y, Bai X, Feng H, Sheng S, Wang H, Xu K, Huang M, Lei Z, Chu X. Putative function and prognostic molecular marker of mast cells in colorectal cancer. BMC Med Genomics 2025; 18:65. [PMID: 40205370 PMCID: PMC11983841 DOI: 10.1186/s12920-025-02117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND The increased demand for markers for colorectal cancer (CRC) highlights the importance of investigating immune cells involved in CRC progression. This study aims to dissect the mast cells in CRC, characterize the role of mast cells in CRC development, coordinate molecular communication between mast cells and malignant cells, and construct and validate a prognostic classification model based on mast cell markers. METHODS Single-cell transcriptome data of CRC patients were extracted from GSE146771 for cell classification and annotation. The malignant cells were identified by copykat and the communication between mast cells and malignant cells was analyzed by CellChat. Least absolute shrinkage and selection operator (LASSO) regression analysis and Cox regression analysis of mast cell markers were performed in the TCGA-COAD cohort to construct a prognostic classification model. qRT-PCR was performed to detect the mRNA expression of the molecules in the classification model in P815 and MC-9 cells. The co-culture experiment of MC38 and P815 cells were performed in 12-well transwell dish. Wound healing assay and Transwell assay were performed to detect cell migration and invasion. RESULTS 10,186 high-quality cells in GSE146771 were annotated to 9 cell types. Six markers in mast cells (HDC, GATA2, ASAH1, BTBD19, TIMP1, FAM110A) were selected to construct a classification model. The high-risk score defined showed high infiltration of immunosuppressive cells, including endothelial cells, CAFs, Tregs and high angiogenesis and epithelial-mesenchymal transition (EMT) activities. In the model, HDC were abnormally low expressed in P815 cells, while BTBD19, FAM110A, GATA2, ASAH1 and TIMP1 showed excessive expression in P815 cells. Knockdown of GATA2 in the co-culture system of P815 and MC38 cells blocked cell migration and invasion. CONCLUSION This study identified the cell types within CRC, elaborated the cellular functions of mast cells in CRC development and their molecular communication to coordinate malignant cells, and highlighted the molecular components and biological features that constitute promising prognostic classification model.
Collapse
Affiliation(s)
- Jiani Guo
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Chen
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hongyu Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ke Xu
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, the First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, the First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
6
|
Su L, Xu R, Ren Y, Zhao S, Song L, Meng C, Liu W, Zhou X, Du Z. 5-Methylcytosine methylation predicts cervical cancer prognosis, shaping immune cell infiltration. J Int Med Res 2025; 53:3000605251328301. [PMID: 40219803 DOI: 10.1177/03000605251328301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025] Open
Abstract
BackgroundEpigenetics, encompassing DNA and RNA modifications, has emerged as a prominent area of research in the post-genomic era. Numerous studies have elucidated the impact of epigenetics on tumor regulation. However, the methylation patterns of 5-methylcytosine in cervical cancer as well as its role in the tumor microenvironment and immunotherapy remain poorly understood.MethodsUtilizing a comprehensive dataset encompassing samples from 306 patients with cervical cancer from The Cancer Genome Atlas and Gene Expression Omnibus repositories, we conducted an in-depth analysis to evaluate the potential association between the modification patterns of 5-methylcytosine and the infiltration of cells within the tumor microenvironment, taking into account 11 regulators of 5-methylcytosine modification. Subsequently, we employed stepwise regression and Least Absolute Shrinkage and Selection Operator Cox regression to quantify 5-methylcytosine modification patterns in patients with cervical squamous cell carcinoma and endocervical adenocarcinoma, yielding the 5-methylcytosine score. Our study explored the link between the 5-methylcytosine score and clinical characteristics as well as prognostic outcomes in patients with cervical squamous cell carcinoma and endocervical adenocarcinoma.ResultsA comprehensive analysis of 306 patients with cervical cancer revealed two distinct 5-methylcytosine modification patterns, henceforth labeled as 5-methylcytosine clusters A and B. These clusters exhibited distinct immunological profiles and biological attributes, with 5-methylcytosine cluster A exhibiting a higher degree of immune cell infiltration. Utilizing univariate Cox regression analysis, we identified 367 genes regulated by 5-methylcytosine that were significantly correlated with patient prognosis. This analysis further stratified the samples into three distinct genomic subtypes. Survival analyses indicated that patients belonging to gene cluster C exhibited more favorable survival outcomes than those belonging to gene clusters A and B. Intriguingly, most 5-methylcytosine regulatory factors had higher expression levels in gene cluster B than in gene cluster A. Gene set enrichment analysis of a single sample revealed elevated immune cell infiltration within gene cluster B, indicating a stronger immune response in this cluster. The 5-methylcytosine score feature was utilized to determine the 5-methylcytosine modification pattern in cervical cancer, revealing that patients with low 5-methylcytosine scores exhibited better survival rates, whereas those with high scores had increased mutation frequencies and better treatment responses.ConclusionsThis research underscores the key role of 5-methylcytosine modification patterns in cervical cancer. Analysis of these patterns will deepen our understanding of the cervical cancer tumor microenvironment, paving the way for the development of more refined and effective immunotherapy strategies.
Collapse
Affiliation(s)
- Luyang Su
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Ren Xu
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Yanan Ren
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Shixia Zhao
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Liyun Song
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Cuiqiao Meng
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Weilan Liu
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei-China
| | - Zeqing Du
- Department of Obstetrics and Gynecology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei-China
| |
Collapse
|
7
|
Huimin W, Xin W, Shan Y, Junwang Z, Jing W, Yuan W, Qingtong L, Xiaohui L, Jia Y, Lili Y. Lactate promotes the epithelial-mesenchymal transition of liver cancer cells via TWIST1 lactylation. Exp Cell Res 2025; 447:114474. [PMID: 39993459 DOI: 10.1016/j.yexcr.2025.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Elevated lactate levels increase the risk of liver cancer progression. However, the mechanisms by which lactate promotes liver cancer progression remain poorly understood. Epithelial-mesenchymal transition (EMT), characterized by the loss of epithelial cells polarity and cell-cell adhesion, leading to the acquisition of mesenchymal-like phenotypes, is widely recognized as a key contributor to liver cancer progression. TWIST1 (Twist Family BHLH Transcription Factor 1) plays a central role in inducing EMT. Here, we investigated the role of lactate in promoting EMT in liver cancer and the underlying regulatory mechanisms. High levels of lactate significantly promoted EMT progression in liver cancer cells. Mechanistically, lactate-induced lactylation of TWIST1 in vivo and in vitro. Mutation assay confirmed that Lysine 33 (K33) is the major site of TWIST1 lactylation. Moreover, cell fractionation & luciferase reporter assay results identified that TWIST1-K33R mutant impaired the EMT process via inhibiting nuclear import and the transcriptional activity. Thus, our findings provide novel insights into the regulatory role of lactate in EMT in liver cancer pathogenesis. Additionally, targeting of lactate-driven lactylation of TWIST1 may boost the therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Wang Huimin
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Wu Xin
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Yu Shan
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Zhang Junwang
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Wen Jing
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Wang Yuan
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Liu Qingtong
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Li Xiaohui
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China
| | - Yao Jia
- Department of Gastroenterology, Shanxi Bethune Hospital, No.99 Longcheng Road, Taiyuan, 030032, China
| | - Yuan Lili
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, China.
| |
Collapse
|
8
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
9
|
Lim CY, Cha DI, Jeong WK, Cho YY, Hong S, Hong S, Kim K, Kim JH. Prediction of microsatellite-stable/epithelial-to-mesenchymal transition molecular subtype gastric cancer using CT radiomics and clinicopathologic factors. Eur J Radiol 2025; 185:111990. [PMID: 39956084 DOI: 10.1016/j.ejrad.2025.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
OBJECTIVES This study aimed to develop a predictive model for the microsatellite-stable (MSS)/epithelial-to-mesenchymal transition (EMT) subtype of gastric cancer (GC) using computed tomography (CT) radiomics and clinicopathological factors. MATERIALS AND METHODS This retrospective study included 418 patients with GC who underwent primary resection and transcriptome analysis with microarray between October 1995 and May 2008. Using preoperative CT images, radiomic features from the volume of interest in the portal venous phase images were extracted. The patient data were randomly divided into training (70%) and testing (30%) datasets. Optimal radiomics features were selected through a thorough feature-selection process. The final radiomic and clinicopathological factors were selected using a stepwise variable selection method. The area under the curve (AUC) was calculated to evaluate performance. RESULTS Seventy patients had EMT subtype GC, and 348 patients had non-EMT subtype based on transcriptome analysis. There were 276 men (66.0 %), with a median age of 59 years (interquartile range: 50-67). Eleven radiomic features were selected for the prediction model using the combined variance inflation factor (VIF) and least absolute shrinkage and selection operator (LASSO) method. A CT radiomics-based prediction model was constructed using logistic regression with AUCs of 0.824 and 0.736 for training and testing, respectively. When clinicopathological factors such as age, tumor size, signet ring cell histology, and Lauren classification were combined, the AUCs of the models increased to 0.849 and 0.840 for training and testing, respectively (p < 0.001 for testing). CONCLUSION A prediction model using CT radiomics and clinicopathological factors showed good performance in predicting the EMT subtype of GC.
Collapse
Affiliation(s)
- Chae Young Lim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Ik Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon Young Cho
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sungjun Hong
- Department of Digital Health, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea; Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Sungsoo Hong
- Department of Digital Health, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Kyunga Kim
- Department of Digital Health, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea; Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea; Department of Data Convergence & Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Hun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Huang J, Luo S, Shen J, Lee M, Chen R, Ma S, Sun LQ, Li JJ. Cellular polarity pilots breast cancer progression and immunosuppression. Oncogene 2025; 44:783-793. [PMID: 40057606 PMCID: PMC11913746 DOI: 10.1038/s41388-025-03324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Disrupted cellular polarity (DCP) is a hallmark of solid cancer, the malignant disease of epithelial tissues, which occupies ~90% of all human cancers. DCP has been identified to affect not only the cancer cell's aggressive behavior but also the migration and infiltration of immune cells, although the precise mechanism of DCP-affected tumor-immune cell interaction remains unclear. This review discusses immunosuppressive tumor microenvironments (TME) caused by DCP-driven tumor cell proliferation with DCP-impaired immune cell functions. We will revisit the fundamental roles of cell polarity (CP) proteins in sustaining mammary luminal homeostasis, epithelial transformation, and breast cancer progression. Then, the current data on CP involvement in immune cell activation, maturation, migration, and tumor infiltration are evaluated. The CP status on the immune effector cells and their targeted tumor cells are highlighted in tumor immune regulation, including the antigen presentation and the formation of immune synapses (IS). CP-regulated antigen presentation and delivery and the formation of IS between the immune cells, especially between the immune effectors and tumor cells, will be addressed. Alterations of CP on the tumor cells, infiltrated immune effector cells, or both are discussed with these aspects. We conclude that CP-mediated tumor aggressiveness coupled with DCP-impaired immune cell disability may decide the degree of immunosuppressive status and responsiveness to immune checkpoint blockade (ICB). Further elucidating the dynamics of CP- or DCP-mediated immune regulation in TME will provide more critical insights into tumor-immune cell dynamics, which is required to invent more effective approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Shufeng Luo
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Cancer Center, Central South University, China, Hunan, Changsha
| | - Juan Shen
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Maya Lee
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Rachel Chen
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lun-Quan Sun
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Cancer Center, Central South University, China, Hunan, Changsha.
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA.
- NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
11
|
Parfenyev SE, Daks AA, Shuvalov OY, Fedorova OA, Pestov NB, Korneenko TV, Barlev NA. Dualistic role of ZEB1 and ZEB2 in tumor progression. Biol Direct 2025; 20:32. [PMID: 40114235 PMCID: PMC11927373 DOI: 10.1186/s13062-025-00604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/10/2025] [Indexed: 03/22/2025] Open
Abstract
It is generally accepted that ZEB1 and ZEB2 act as master regulators of the epithelial-mesenchymal transition, which arguably is the key mechanism of metastasis. Accordingly, they are deemed as negative predictors of the survival of cancer patients by promoting the emergence of secondary foci of the disease. Paradoxically, in some types of cancer types the opposite effect is observed, i.e. ZEB1 and ZEB2 are associated with better prognosis for cancer patients. In this review, we discuss the hypothesis that the tumorigenic effects of ZEB1/ZEB2 can be different in various tissues depending on the initial status of these proteins in the corresponding healthy tissues. Emerging evidence suggests that ZEB1 and ZEB2 are constitutively expressed in several healthy tissues, performing vital functions. Consequently, reducing the expression of ZEB1 and ZEB2 could negatively affect these tissues causing various diseases, including cancer. Finally, the dualistic role of ZEB1 and ZEB2 as immune modulators and their effect on tumor microenvironment is also discussed.
Collapse
Affiliation(s)
- Sergey E Parfenyev
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia
| | - Alexandra A Daks
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia
| | - Oleg Y Shuvalov
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia
| | - Olga A Fedorova
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia
| | - Nikolay B Pestov
- Vavilov Institute of General Genetics, Moscow, 119991, Russia.
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow, 108819, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Tatyana V Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nickolai A Barlev
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia.
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow, 108819, Russia.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan.
| |
Collapse
|
12
|
Cai J, Wang J, Wang Z, Wang J, Jia Y, Ma X. Perspectives on the α5 nicotinic acetylcholine receptor in lung cancer progression. Front Cell Dev Biol 2025; 13:1489958. [PMID: 40143965 PMCID: PMC11937065 DOI: 10.3389/fcell.2025.1489958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in a variety of cell types and are involved in multiple physiological regulatory mechanisms in cells, tissues and systems. Increasing evidence suggests that the α5 nicotinic acetylcholine receptor (α5-nAChR), encoded by the CHRNA5 gene, is one of a key mediator involved in lung cancer development and immune responses. Several studies have shown that it is a regulator that stimulates processes via various signaling pathways, including STAT3 in lung cancer. In addition, α5-nAChR has a profound effect on lung immune response through multiple immune-related factor pathways. In this review, we focus on the perspectives on α5-nAChR in lung cancer progression, which indicates that targeting α5-nAChR could provide novel anticancer and immune therapy strategies for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
13
|
Zhao Y, Song Y, Li W, Wu J, Zhao Z, Qu T, Xiao H, Wang M, Zhu M, Zheng P, Wan H, Song Q, Zheng H, Wang S. Clofazimine enhances anti-PD-1 immunotherapy in glioblastoma by inhibiting Wnt6 signaling and modulating the tumor immune microenvironment. Cancer Immunol Immunother 2025; 74:137. [PMID: 40053076 PMCID: PMC11889303 DOI: 10.1007/s00262-025-03994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and lethal primary brain tumor with limitedtreatment options due to its resistance to conventional therapies and an immunosuppressive tumor microenvironment. In this study, we investigated whether clofazimine, an inhibitor of the Wnt/β-catenin signaling pathway, could enhance the efficacy of anti-PD-1 immunotherapy in GBM. Our in vitro and in vivo experiments demonstrated that clofazimine suppressed GBM cell proliferation, induced apoptosis, and inhibited invasion by downregulating Wnt6-mediated activation of the Wnt/β-catenin pathway and the downstream MEK/ERK signaling cascade, leading to decreased PD-L1 expression. Notably, the combination of clofazimine and anti-PD-1 therapy significantly reduced tumor growth and intracranial invasion in orthotopic GBM mouse models, resulting in extended survival. This combination therapy also reshaped the tumor immune microenvironment by increasing cytotoxic CD8+ T cell infiltration, reducing regulatory T cells, and promoting T cell receptor clonality and diversity, indicative of a robust anti-tumor immune response. Our findings suggest that clofazimine enhances the therapeutic effects of anti-PD-1 immunotherapy in GBM through modulation of the Wnt6/β-catenin/PD-L1 axis and reshaping the immune microenvironment. While these results are promising, further clinical studies are needed to evaluate the efficacy and safety of this combinatory approach in GBM patients.
Collapse
Affiliation(s)
- Yuze Zhao
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yuguang Song
- Department of Radiotherapy, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Weiping Li
- Department of Pharmacology, Shanxi Medical University Fenyang College, Fenyang, 032200, China
| | - Jiangping Wu
- Department of Center of Biobank, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhengbao Zhao
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingli Qu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Xiao
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Manyuan Wang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Min Zhu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiming Zheng
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Huili Wan
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qingkun Song
- Department of Center of Biobank, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Huixia Zheng
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Shuo Wang
- Department of Medical Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
14
|
Guo W, Duan Z, Wu J, Zhou BP. Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis. Semin Cancer Biol 2025; 112:20-35. [PMID: 40058616 DOI: 10.1016/j.semcancer.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/05/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular de-differentiation process that provides cells with the increased plasticity and stem cell-like traits required during embryonic development, tissue remodeling, wound healing and metastasis. Morphologically, EMT confers tumor cells with fibroblast-like properties that lead to the rearrangement of cytoskeleton (loss of stiffness) and decrease of membrane rigidity by incorporating high level of poly-unsaturated fatty acids (PUFA) in their phospholipid membrane. Although large amounts of PUFA in membrane reduces rigidity and offers capabilities for tumor cells with the unbridled ability to stretch, bend and twist in metastasis, these PUFA are highly susceptible to lipid peroxidation, which leads to the breakdown of membrane integrity and, ultimately results in ferroptosis. To escape the ferroptotic risk, EMT also triggers the rewiring of metabolic program, particularly in lipid metabolism, to enforce the epigenetic regulation of EMT and mitigate the potential damages from ferroptosis. Thus, the interplay among EMT, lipid metabolism, and ferroptosis highlights a new layer of intricated regulation in cancer biology and metastasis. Here we summarize the latest findings and discuss these mutual interactions. Finally, we provide perspectives of how these interplays contribute to cellular plasticity and ferroptosis resistance in metastatic tumor cells that can be explored for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Wenzheng Guo
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Zhibing Duan
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Jingjing Wu
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Binhua P Zhou
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
15
|
Liu Q, Yang C, Qi J, Shen Q, Ye M, Li H, Zhang L. Bioactivities and Structure-Activity Relationships of Harmine and Its Derivatives: A Review. Chem Biodivers 2025:e202402953. [PMID: 40024888 DOI: 10.1002/cbdv.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Natural products and their derivatives play a crucial role in treating various diseases. Harmine, a tricyclic β-carboline alkaloid isolated from the seeds of Peganum harmala L., has emerged as a promising therapeutic candidate owing to its multifaceted biological activities. Recent studies have further highlighted the enhanced therapeutic potential of harmine derivatives. To assess the current research landscape on harmine and its derivatives, we conducted a comprehensive analysis of studies published between 2019 and 2024 in scientific databases, such as PubMed, Web of Science, and Google Scholar. In this review, the possible applications of harmine and its derivatives were systematically illustrated, including biological activities, structure-activity relationships, and nanotechnology applications. Notably, the biological activities of harmine and its derivatives mainly contained antitumor, neuroprotective, antiparasitic, anti-inflammatory, and antidiabetic properties. In addition, structural modifications and the application of nanocarriers make harmine and its derivatives more druggable. The aim of this review is to summarize the recent advancements in harmine and its derivatives research, analyze emerging trends, and explore their clinical value.
Collapse
Affiliation(s)
- Qian Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Cheng Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jiamin Qi
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiying Shen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Mingxing Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hangying Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Liming Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
16
|
Zhang Z, Wang J, Wuethrich A, Trau M. Conventional techniques and emerging nanotechnologies for early detection of cancer metastasis via epithelial-mesenchymal transition monitoring. Natl Sci Rev 2025; 12:nwae452. [PMID: 39926198 PMCID: PMC11804803 DOI: 10.1093/nsr/nwae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 02/11/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical process for cancer to metastasize by promoting invasiveness and dissemination of cancer cells in the body. Understanding and tracking EMT could improve cancer therapy by intervening in metastasis. Current approaches for investigating and detecting the EMT process often utilize traditional molecular biology techniques like immunohistochemistry, mass spectrometry and sequencing. These approaches have provided valuable insights into understanding signaling pathways and identifying biomarkers. Liquid biopsy analysis using advanced nanotechnologies allows the longitudinal tracking of EMT in patients to become feasible. This review article offers a molecular overview of EMT, summarizes current EMT models used in cancer research, and reviews both traditional techniques and emerging nanotechnologies employed in recent EMT studies. Additionally, we discuss the limitations and prospects of applying nanotechnologies in EMT research. By evaluating this rapidly emerging field, we propose strategies to facilitate the clinical translation of nanotechnologies for early detection and monitoring of EMT.
Collapse
Affiliation(s)
- Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Huang T, Ren K, Ling X, Li Z, Chen L. Transcription factor Yin Yang 1 enhances epithelial-mesenchymal transition, migration, and stemness of non-small cell lung cancer cells by targeting sonic hedgehog. Mol Cell Biochem 2025; 480:1831-1843. [PMID: 39261409 DOI: 10.1007/s11010-024-05104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a frequent type of lung cancer. Transcription factor Yin Yang 1 (YY1), an endogenous transcription factor containing zinc finger structure, can accelerate NSCLC progression. However, the impact of YY1 on the stemness of NSCLC cells and the mechanism of promoting NSCLC cell progression is unclear. YY1 and Sonic hedgehog (Shh) expressions were monitored by RT-qPCR, western blot, and immunohistochemistry. Overall survival was tested through Kaplan-Meier analysis. The interaction between YY1 and Shh was confirmed. Then, cell migration, stemness, and epithelial-mesenchymal transition (EMT) were assessed with functional experiments in vitro and in vivo. YY1 and Shh were highly expressed in NSCLC tissues and positively correlated with the poor OS of NSCLC patients. Functional experiments denoted that YY1 or Shh overexpression could accelerate EMT, migration, and stemness of NSCLC cells, and YY1 or Shh knockdown played the opposite role to its overexpression. Mechanism analysis disclosed that Shh, as a target gene of YY1, was positively related to YY1. The rescued experiment manifested that Shh silencing could reverse the induction effect of YY1 overexpression on EMT, migration, and stemness of NSCLC cells. In vivo experiments also confirmed that YY1 could accelerate tumor growth and EMT and weaken apoptosis. YY1 promotes NSCLC EMT, migration, and stemness by Shh, which might be novel diagnostic markers and therapeutic targets for NSCLC therapy.
Collapse
Affiliation(s)
- Tonghai Huang
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China.
| | - Kangqi Ren
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Xiean Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Zeyao Li
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Lin Chen
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
18
|
Xie Z, Yang T, Zhou C, Xue Z, Wang J, Lu F. Integrative Bioinformatics Analysis and Experimental Study of NLRP12 Reveal Its Prognostic Value and Potential Functions in Ovarian Cancer. Mol Carcinog 2025; 64:383-398. [PMID: 39601513 DOI: 10.1002/mc.23854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
NLRP12 plays a significant role in cellular functional behavior and immune homeostasis, influencing inflammation, tumorigenesis, and prognosis. This study aimed to explore its specific effects on the tumor microenvironment (TME) and its contribution to heterogeneity in ovarian cancer (OV) through bioinformatics analysis and experimental verification. Utilizing various bioinformatics databases and clinical specimens, we investigated NLRP12 expression and its relationship with OV prognosis and immune infiltration. In vitro assays were conducted to assess the impact of NLRP12 on the proliferation and invasion of OV cells. Our findings indicate that NLRP12 is upregulated in OV, with high expression correlating with a negative prognosis. Furthermore, NLRP12 expression demonstrated a positive correlation with the infiltration of various immune cells and the expression of immune checkpoint molecules in OV. Analysis of The Cancer Immunome Atlas (TCIA) database revealed that OV patients with lower NLRP12 expression may exhibit an enhanced response to immunotherapy, particularly CTLA4 blockers, a finding validated in animal experiments. Additionally, the study emphasized the role of NLRP12 in influencing the prognosis of OV patients by promoting epithelial-mesenchymal transition (EMT) in ovarian cancer cells. Finally, we identified a potential therapeutic compound, Schisandrin B (Schi B), which decreases NLRP12 expression in ovarian cancer cells by binding to the transcription factor SPI1 associated with NLRP12. Our findings suggest that NLRP12 serves as a crucial immune-related biomarker predicting poor outcomes in OV, and targeting NLRP12 may represent a promising therapeutic approach for OV patients in the future.
Collapse
Affiliation(s)
- Zhihui Xie
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tiantian Yang
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Medical School, Henan University, Kaifeng, China
| | - Chuchu Zhou
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Medical School, Henan University, Kaifeng, China
| | - Zixin Xue
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Medical School, Henan University, Kaifeng, China
| | - Jianjun Wang
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Feng Lu
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Medical School, Henan University, Kaifeng, China
| |
Collapse
|
19
|
Guan C, Gao J, Zou X, Shi W, Hao Y, Ge Y, Xu Z, Yang C, Bi S, Jiang X, Kang P, Xu X, Zhong X. A Novel 167-Amino Acid Protein Encoded by CircPCSK6 Inhibits Intrahepatic Cholangiocarcinoma Progression via IKBα Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409173. [PMID: 39836545 PMCID: PMC11904980 DOI: 10.1002/advs.202409173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC), a formidable challenge in oncology, demands innovative biomarkers and therapeutic targets. This research highlights the importance of the circular RNA (circRNA) circPCSK6 and its peptide derivative circPCSK6-167aa in ICC. CircPCSK6 is significantly downregulated in both ICC patients and mouse primary ICC models, and its lower expression is linked to adverse prognosis, highlighting its pivotal role in ICC pathogenesis. Functionally, this study elucidates the regulatory effect of circPCSK6-167aa on IκBα ubiquitination within the NF-κB pathway, which is mediated by its competitive binding to the E3 ligase RBBP6. This complex interaction leads to reduced activation of the NF-κB pathway, thereby curbing tumor cell proliferation, migration, invasion, stemness, and hepatic-lung metastasis in vivo. This groundbreaking discovery expands the understanding of circRNA-driven tumorigenesis through atypical signaling pathways. Additionally, this investigation identified EIF4A3 as a detrimental regulator of circPCSK6, exacerbating ICC malignancy. Importantly, by leveraging patient-derived xenograft (PDX), organoids, and organoid-derived PDX models, higher levels of circPCSK6-167aa enhance sensitivity to gemcitabine, indicating its potential to improve the effectiveness of chemotherapy. These insights emphasize the therapeutic promise of targeting circPCSK6-167aa, offering vital biological insights and clinical directions for developing cutting-edge therapeutic approaches, thus revealing innovative strategies and targets for future treatments.
Collapse
Affiliation(s)
- Canghai Guan
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 148 Baojian Street, Harbin, Heilongjiang, 150086, China
| | - Jianjun Gao
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Xinlei Zou
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Wujiang Shi
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Yunhe Hao
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Yifei Ge
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Zhaoqiang Xu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Chengru Yang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Shaowu Bi
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Pengcheng Kang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Xiaoxue Xu
- School of Health Administration Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| | - Xiangyu Zhong
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China
| |
Collapse
|
20
|
Neumeyer V, Chavan P, Steiger K, Ebert O, Altomonte J. Cross-Talk Between Tumor Cells and Stellate Cells Promotes Oncolytic VSV Activity in Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2025; 17:514. [PMID: 39941881 PMCID: PMC11816849 DOI: 10.3390/cancers17030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
As the mechanisms underlying tumorigenesis become better understood, the dynamic roles of cellular components of the tumor microenvironment, and their cross-talk with tumor cells, have come to light as key drivers of disease progression and have emerged as important targets of new cancer therapies. In the field of oncolytic virus (OV) therapy, stromal cells have been considered as potential barriers to viral spread, thus limiting virus replication and therapeutic outcome. However, new evidence indicates that intratumoral fibroblasts could support virus replication. We have demonstrated in a rat model of stromal-rich intrahepatic cholangiocarcinoma (CCA) that vesicular stomatitis virus (VSV) can be localized within intratumoral hepatic stellate cells (HSCs), in addition to tumor cells, when the virus was applied via hepatic arterial infusion. Furthermore, VSV was shown to efficiently kill CCA cells and activated HSCs, and co-culture of CCA and HSCs increased viral titers. Interestingly, this effect is also observed when each cell type is cultured alone in a conditioned medium of the other cell type, indicating that secreted cell factors are at least partially responsible for this phenomenon. Partial reduction in sensitivity to type I interferons was observed in co-culture systems, providing a possible mechanism for the increased viral titers. Together, the results indicate that targeting activated HSCs with VSV could provide an additional mechanism of OV therapy, which, until now has not been considered. Furthermore, these findings suggest that VSV is a potentially powerful therapeutic agent for stromal-rich tumors, such as CCA and pancreatic cancer, both of which are very difficult to treat with conventional therapy and have a very poor prognosis.
Collapse
Affiliation(s)
- Victoria Neumeyer
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Purva Chavan
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Oliver Ebert
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
21
|
Zhang Y, Liu YJ, Mei J, Yang ZX, Qian XP, Huang W. An Analysis Regarding the Association Between DAZ Interacting Zinc Finger Protein 1 (DZIP1) and Colorectal Cancer (CRC). Mol Biotechnol 2025; 67:527-547. [PMID: 38334905 DOI: 10.1007/s12033-024-01065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Colorectal cancer (CRC) is the third most common malignant disease worldwide, and its incidence is increasing, but the molecular mechanisms of this disease are highly heterogeneous and still far from being fully understood. Increasing evidence suggests that fibrosis mediated by abnormal activation of fibroblasts based in the microenvironment is associated with a poor prognosis. However, the function and pathogenic mechanisms of fibroblasts in CRC remain unclear. Here, combining scrna-seq and clinical specimen data, DAZ Interacting Protein 1 (DZIP1) was found to be expressed on fibroblasts and cancer cells and positively correlated with stromal deposition. Importantly, pseudotime-series analysis showed that DZIP1 levels were up-regulated in malignant transformation of fibroblasts and experimentally confirmed that DZIP1 modulates activation of fibroblasts and promotes epithelial-mesenchymal transition (EMT) in tumor cells. Further studies showed that DZIP1 expressed by tumor cells also has a driving effect on EMT and contributes to the recruitment of more fibroblasts. A similar phenomenon was observed in xenografted nude mice. And it was confirmed in xenograft mice that downregulation of DZIP1 expression significantly delayed tumor formation and reduced tumor size in CRC cells. Taken together, our findings suggested that DZIP1 was a regulator of the CRC mesenchymal phenotype. The revelation of targeting DZIP1 provides a new avenue for CRC therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
- Department of Oncology, Nanjing Tianyinshan Hospital, Nanjing, 211199, Jiangsu, China
| | - Yuan-Jie Liu
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jia Mei
- Department of Pathology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
| | - Zhao-Xu Yang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
| | - Xiao-Ping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Wei Huang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
22
|
Upadhyay S, Lee M, Zhang L, Oany AR, Mikheeva SA, Mikheev AM, Rostomily RC, Safe S. Dual nuclear receptor 4A1 (NR4A1/NR4A2) ligands inhibit glioblastoma growth and target TWIST1. Mol Pharmacol 2025; 107:100009. [PMID: 40023516 PMCID: PMC11881746 DOI: 10.1016/j.molpha.2024.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/18/2024] [Indexed: 03/04/2025] Open
Abstract
1,1-Bis(3'-indolyl)-1-(3,5-disubstitutedphenyl)methane (DIM-3,5) compounds are dual receptor ligands that bind both orphan nuclear receptor 4A1 (NR4A1) and NR4A2. Knockdown of NR4A1 or NR4A2 by RNA interference in glioblastoma (GBM) cells decreased growth and induced apoptosis and comparable effects were observed for DIM-3,5 analogs, which exhibit inverse agonist activity and inhibit NR4A1- and NR4A2-mediated pro-oncogenic activity. Knockdown of NR4A1 or NR4A2 or treatment with DIM-3,5 analogs also decreased expression of TWIST1 mRNA and protein in GBM cells by 40%-90%.The proximal region of the TWIST1 gene promoter contains functional GC-rich binding sites that bind Sp1 and Sp4, and knockdown of these transcription factors also decreased TWIST1 expression in GBM cells. Further analysis by chromatin immunoprecipitation, protein-protein coimmunoprecipitation, and binding assays demonstrated that NR4A1/NR4A2 coregulate TWIST1 gene expression as ligand-dependent cofactors of Sp1 and Sp4, which interact with cis proximal GC-rich sites in the TWIST1 gene promoter. In vivo studies show that DIM-3,5 dual NR4A1/2 inverse agonists also reduced intratumoral TWIST1 expression while significantly prolonging survival of mice in a syngeneic mouse model of GBM, demonstrating that these ligands are promising new agents for targeting TWIST1 and treating GBM. SIGNIFICANCE STATEMENT: The TWIST1 gene is a pro-oncogenic factor that regulates epithelial-to-mesenchymal transition in glioblastoma cells. This paper shows that the orphan nuclear receptor 4A1 (NR4A1) and NR4A2 regulate TWIST1 expression, which can be targeted by bis-indole-derived dual NR4A1/2 inverse agonists.
Collapse
MESH Headings
- Glioblastoma/metabolism
- Glioblastoma/drug therapy
- Glioblastoma/pathology
- Glioblastoma/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Humans
- Twist-Related Protein 1/metabolism
- Twist-Related Protein 1/genetics
- Animals
- Nuclear Proteins/metabolism
- Nuclear Proteins/genetics
- Mice
- Cell Line, Tumor
- Ligands
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Cell Proliferation/drug effects
- Indoles/pharmacology
- Apoptosis/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Xenograft Model Antitumor Assays
- Mice, Nude
Collapse
Affiliation(s)
- Srijana Upadhyay
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Miok Lee
- Department of Biochemistry and Biophysics, College of Agricultural and Life Sciences, Texas A&M University, College Station, Texas
| | - Lei Zhang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Arafat Rahman Oany
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Svetlana A Mikheeva
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, Texas
| | - Andrei M Mikheev
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, Texas
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas.
| |
Collapse
|
23
|
An Y, Zhao F, Jia H, Meng S, Zhang Z, Li S, Zhao J. Inhibition of programmed cell death by melanoma cell subpopulations reveals mechanisms of melanoma metastasis and potential therapeutic targets. Discov Oncol 2025; 16:62. [PMID: 39832036 PMCID: PMC11747064 DOI: 10.1007/s12672-025-01789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Melanoma is an aggressive type of skin cancer that arises from melanocytes, the cells responsible for producing skin pigment. In contrast to non-melanoma skin cancers like basal cell carcinoma and squamous cell carcinoma, melanoma is more invasive. Melanoma was distinguished by its rapid progression, high metastatic potential, and significant resistance to conventional therapies. Although it accounted for a small proportion of skin cancer cases, melanoma accounts for the majority of deaths caused by skin cancer due to its ability to invade deep tissues, adapt to diverse microenvironments, and evade immune responses. These unique features highlighted the challenges of treating melanoma and underscored the importance of advanced tools, such as single-cell sequencing, to unravel its biology and develop personalized therapeutic strategies. Thus, we conducted a single-cell analysis of the cellular composition within melanoma tumor tissues and further subdivided melanoma cells into subpopulations. Through analyzing metabolic pathways, stemness genes, and transcription factors (TFs) among cells in different phases (G1, G2/M, and S) as well as between primary and metastatic foci cells, we investigated the specific mechanisms underlying melanoma metastasis. We also revisited the cellular stemness and temporal trajectories of melanoma cell subpopulations, identifying the core subpopulation as C0 SOD3 + Melanoma cells. Our findings revealed a close relationship between the pivotal C0 SOD3 + Melanoma cells subpopulation and oxidative pathways in metastatic tumor tissues. Additionally, we analyzed prognostically relevant differentially expressed genes (DEGs) within the C0 SOD3 + Melanoma cells subpopulation and built a predictive model associated with melanoma outcomes. We selected the gene IGF1 with the highest coefficient (coef) value for further analysis, and experimentally validated its essential function in the proliferation and invasive metastasis of melanoma. In immune infiltration analysis, we discovered the critical roles played by M1/M2 macrophages in melanoma progression and immune evasion. Furthermore, the development and progression of malignant melanoma were closely associated with various forms of programmed cell death (PCD), including apoptosis, autophagic cell death, ferroptosis, and pyroptosis. Melanoma cells often resisted cell death mechanisms, maintaining their growth by inhibiting apoptosis and evading autophagic cell death. Meanwhile, the induction of ferroptosis and pyroptosis was thought to trigger immune responses that helped suppress melanoma dissemination. A deeper understanding of the relationship between melanoma and PCD pathways provided a critical foundation for developing novel targeted therapies, with the potential to enhance melanoma treatment efficacy. These findings contributed to the development of novel prognostic models for melanoma and shed light on research directions concerning melanoma metastasis mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Yuepeng An
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hongling Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Siyu Meng
- Northeast International Hospital, Shenyang, 110180, China
| | - Ziwei Zhang
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Shuxiao Li
- Department of Burns and Plastic Reconstructive Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China.
- Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China.
| | - Jiusi Zhao
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
24
|
Zou YP, Shan XF, Qiu JX, Geng Y, Xie S, Xiang RL, Cai ZG. Systematic identification of pathological mechanisms, prognostic biomarkers and therapeutic targets by integrating lncRNA expression variation in salivary gland mucoepidermoid carcinoma. Sci Rep 2025; 15:1573. [PMID: 39794354 PMCID: PMC11724123 DOI: 10.1038/s41598-025-85535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Biological processes intricately intertwine with tumorigenesis, significantly influencing treatment outcomes and prognosis. However, the mechanisms fostering mucoepidermoid carcinoma (MEC) remain inadequately elucidated. This research utilizes expression profiles of lncRNAs from clinical MEC tissues and matched normal glandular tissues, integrating public data to explore the biological mechanisms and immune microenvironment characteristics of tumorigenesis. Gene set enrichment analysis identified key pathways, and a customized epithelial-mesenchymal transition (EMT) score elucidated the relationship between pathological processes and prognosis, while an immune signature revealed tumor microenvironment characteristics. MECs exhibited significant enrichment in EMT pathway, with key genes such as Secretogranin II, tissue factor pathway inhibitor 2, and periostin identified as contributors to the EMT process. High EMT scores correlated with upregulated EMT and immune response activity, indicating poor prognosis. Single-sample gene set enrichment analysis unveiled the tumors' immune infiltration signature, suggesting active antigen presentation and a positive immune response for immunotherapy. Additionally, SLC2A1-AS1 and CERS6-AS1 were identified as potential mediators of EMT and the immune environment. This study provides insights into the biological processes of MEC tumorigenesis and identifies potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Yan-Ping Zou
- Department of Oral and Maxillofacial Surgery, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiao-Feng Shan
- Department of Oral and Maxillofacial Surgery, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Geng
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Peking University School of Basic Medical Sciences, Ministry of Education, Beijing, China.
- Peking University School of Basic Medical Sciences, No. 38 Xue Yuan Road, Haidian District, Beijing, 100191, P.R. China.
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China.
- Peking University School and Hospital of Stomatology, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P.R. China.
| |
Collapse
|
25
|
Akli A, Takam Kamga P, Julie C, Capron C, Costantini A, Dumenil C, Dumoulin J, Giraud V, Parent F, Seferian A, Guettier C, Glorion M, Longchampt E, Emile JF, Giroux-Leprieur É. Role of the HGF/c-MET pathway in resistance to immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer Immunol Immunother 2025; 74:58. [PMID: 39751636 PMCID: PMC11698708 DOI: 10.1007/s00262-024-03882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/03/2024] [Indexed: 01/04/2025]
Abstract
Most of advanced non-small cell lung cancer (NSCLC) patients will experience tumor progression with immunotherapy (IO). Preliminary data suggested an association between high plasma HGF levels and poor response to IO in advanced NSCLC. Our study aimed to evaluate further the role of the HGF/MET pathway in resistance to IO in advanced NSCLC. We included retrospectively 82 consecutive NSCLC patients from two academic hospitals. Among them, 49 patients received ICIs alone or in combination with chemotherapy (CT), while 33 patients received chemotherapy alone as the control group. We analyzed plasma HGF levels by ELISA and expression of PD-L1, MET/phospho-MET, and CD8+ T-Cell infiltration on lung tumor tissue by immunohistochemistry. We investigated the contribution of HGF/MET to IO response by culturing peripheral blood mononuclear cells (PBMC) with or without pembrolizumab, with recombinant HGF, or cocultured with NSCLC patients-derived explants. Additionally, c-MET inhibitors were used to evaluate the contribution of MET activation in NSCLC-mediated immunosuppression. High HGF levels were associated with high progression rate with IO (p = 0.0092), but not with CT. ELISA analysis of supernatants collected from cultured NSCLC cells showed that HGF was produced by tumor cells. Furthermore, when activated PBMCs were cultured in the presence of recombinant HGF or on NSCLC monolayer, the proliferation of CD3+CD8+ lymphocytes was inhibited, even in the presence of pembrolizumab. The addition of HGF/MET inhibitors restored lymphocyte activation and induced IFNγ production. In conclusion, inhibiting the HGF/MET signaling pathway could be a promising approach to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Assya Akli
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France
| | - Paul Takam Kamga
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France
| | - Catherine Julie
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France
- Department of Pathology, APHP-Ambroise Paré Hospital, Boulogne-Billancourt, France
| | - Claude Capron
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France
- Department of Hematology and Immunology, APHP-Ambroise Paré Hospital, Boulogne-Billancourt, France
| | - Adrien Costantini
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Hopital Ambroise Pare, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Hopital Ambroise Pare, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Hopital Ambroise Pare, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Hopital Ambroise Pare, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France
| | - Florence Parent
- Department of Pathology, APHP-Kremlin Bicetre Hospital, Kremlin Bicetre, France
| | - Andrei Seferian
- Department of Pathology, APHP-Kremlin Bicetre Hospital, Kremlin Bicetre, France
| | - Catherine Guettier
- Department of Pathology, APHP-Kremlin Bicetre Hospital, Kremlin Bicetre, France
| | - Mathieu Glorion
- Department of Thoracic Surgery, Foch Hospital, Suresnes, France
| | | | - Jean-François Emile
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France
- Department of Pathology, APHP-Ambroise Paré Hospital, Boulogne-Billancourt, France
| | - Étienne Giroux-Leprieur
- Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Hopital Ambroise Pare, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France.
| |
Collapse
|
26
|
Huang S, Qin X, Fu S, Hu J, Jiang Z, Hu M, Zhang B, Liu J, Chen Y, Wang M, Liu X, Chen Z, Wang L. STAMBPL1/TRIM21 Balances AXL Stability Impacting Mesenchymal Phenotype and Immune Response in KIRC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405083. [PMID: 39527690 PMCID: PMC11714167 DOI: 10.1002/advs.202405083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Kidney renal clear cell carcinoma (KIRC) is recognized as an immunogenic tumor, and immunotherapy is incorporated into its treatment landscape for decades. The acquisition of a tumor mesenchymal phenotype through epithelial-to-mesenchymal transition (EMT) is associated with immune evasion and can contribute to immunotherapy resistance. Here, the involvement of STAM Binding Protein Like 1 (STAMBPL1) is reported in the development of mesenchymal and immune evasion phenotypes in KIRC cells. Mechanistically, STAMBPL1 elevated protein abundance and surface accumulation of TAM Receptor AXL through diminishing the TRIM21-mediated K63-linked ubiquitination and subsequent lysosomal degradation of AXL, thereby enhancing the expression of mesenchymal genes while suppressing chemokines CXCL9/10 and HLA/B/C. In addition, STAMBPL1 enhanced PD-L1 transcription via facilitating nuclear translocation of p65, and knockdown (KD) of STAMBPL1 augmented antitumor effects of PD-1 blockade. Furthermore, STAMBPL1 silencing and the tyrosine kinase inhibitor (TKI) sunitinib also exhibited a synergistic effect on the suppression of KIRC. Collectively, targeting the STAMBPL1/TRIM21/AXL axis can decrease mesenchymal phenotype and potentiate anti-tumor efficacy of cancer therapy.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xuke Qin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Shujie Fu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Juncheng Hu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhengyu Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Min Hu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Banghua Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Hubei Key Laboratory of Digestive System DiseaseWuhan430060China
| | - Jiachen Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Yujie Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Minghui Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xiuheng Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhiyuan Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Lei Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| |
Collapse
|
27
|
Du W, Tang Z, Du A, Yang Q, Xu R. Bidirectional crosstalk between the epithelial-mesenchymal transition and immunotherapy: A bibliometric study. Hum Vaccin Immunother 2024; 20:2328403. [PMID: 38502119 PMCID: PMC10956627 DOI: 10.1080/21645515.2024.2328403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapy has recently attracted considerable attention. However, currently, a thorough analysis of the trends associated with the epithelial-mesenchymal transition (EMT) and immunotherapy is lacking. In this study, we used bibliometric tools to provide a comprehensive overview of the progress in EMT-immunotherapy research. A total of 1,302 articles related to EMT and immunotherapy were retrieved from the Web of Science Core Collection (WOSCC). The analysis indicated that in terms of the volume of research, China was the most productive country (49.07%, 639), followed by the United States (16.89%, 220) and Italy (3.6%, 47). The United States was the most influential country according to the frequency of citations and citation burstiness. The results also suggested that Frontiers in Immunotherapy can be considered as the most influential journal with respect to the number of articles and impact factors. "Immune infiltration," "bioinformatics analysis," "traditional Chinese medicine," "gene signature," and "ferroptosis" were found to be emerging keywords in EMT-immunotherapy research. These findings point to potential new directions that can deepen our understanding of the mechanisms underlying the combined effects of immunotherapy and EMT and help develop strategies for improving immunotherapy.
Collapse
Affiliation(s)
- Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Zemin Tang
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Ashuai Du
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qinglong Yang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of General Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| |
Collapse
|
28
|
Dai Q, Yao X, Zhang Y, Chai Q, Feng X, Zhu H, Zhao L. CTSG is a prognostic marker involved in immune infiltration and inhibits tumor progression though the MAPK signaling pathway in non-small cell lung cancer. J Cancer Res Clin Oncol 2024; 151:21. [PMID: 39724501 PMCID: PMC11671429 DOI: 10.1007/s00432-024-06051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE This study aims to investigate the biological roles and molecular mechanisms of Cathepsin G (CTSG) in the progression of non-small cell lung cancer (NSCLC). METHODS Western blotting and immunohistochemistry analyses of clinical samples were performed to determine the expression levels of CTSG in patients with NSCLC. Bioinformatic analysis of clinical datasets was conducted to evaluate the correlation between CTSG and lymph node metastasis, tumor stage, and immune cell infiltration. Gain-of-function assays and tumor implantation experiments were employed to determine the effects of CTSG on malignant behaviors of NSCLC cells. Transcriptome sequencing and subsequent bioinformatic analysis were performed to explore the signaling pathways regulated by CTSG. Western blotting and qPCR were utilized to assess the influence of CTSG on the MAPK and EMT signaling pathways. RESULTS CTSG is expressed at low levels and serves as a prognostic marker in NSCLC. The downregulation of CTSG expression was associated with lymph node metastasis, tumor stage, and immune cell infiltration. CTSG inhibits NSCLC cell proliferation, migration, and invasion as well as tumor growth in nude mice. There exists a significant correlation between CTSG expression and endoplasmic reticulum function, cell cycling, and the IL-17 signaling pathway. CTSG suppresses the MAPK and EMT signaling pathways in NSCLC cells. Moreover, DNA methylation and histone deacetylation have been identified as crucial mechanisms contributing to the decreased expression of CTSG. CONCLUSION CTSG inhibits NSCLC development by suppressing the MAPK signaling pathway and is also associated with tumor immunity.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Animals
- Prognosis
- Mice
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- MAP Kinase Signaling System/physiology
- Disease Progression
- Female
- Male
- Mice, Nude
- Cell Proliferation
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
- Cell Line, Tumor
Collapse
Affiliation(s)
- Qian Dai
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xufeng Yao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanke Zhang
- Department of Respiratory Medicine, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Qian Chai
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, Anhui, China
- Department of Respiratory Medicine, Anhui Public Health Clinical Center, Hefei, 230012, Anhui, China
| | - Xueyi Feng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongbin Zhu
- Department of Respiratory Medicine, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China.
| | - Lei Zhao
- Department of Respiratory Medicine, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, Anhui, China.
- Department of Respiratory Medicine, Anhui Public Health Clinical Center, Hefei, 230012, Anhui, China.
| |
Collapse
|
29
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
30
|
Yuan J, Yang L, Zhang H, Beeraka NM, Zhang D, Wang Q, Wang M, Pr HV, Sethi G, Wang G. Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers. Biomed Pharmacother 2024; 181:117714. [PMID: 39615165 DOI: 10.1016/j.biopha.2024.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) play crucial roles in the initiation and progression of tumors. TME is composed of various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as non-cellular components like extracellular matrix (ECM) proteins and soluble factors. These elements interact with tumor cells through a complex network of signaling pathways involving cytokines, growth factors, metabolites, and non-coding RNA-carrying exosomes. Hypoxic conditions within the TME further modulate these interactions, collectively influencing tumor growth, metastatic potential, and response to therapy. EMT represents a dynamic and reversible process where epithelial cells undergo phenotypic changes to adopt mesenchymal characteristics in several cancers, including breast cancers. This transformation enhances cell motility and imparts stem cell-like properties, which are closely associated with increased metastatic capability and resistance to conventional cancer treatments. Thus, understanding the crosstalk between the TME and EMT is essential for unraveling the underlying mechanisms of breast cancer metastasis and therapeutic resistance. This review uniquely examines the intricate interplay between the tumor TME and epithelial-mesenchymal transition EMT in driving breast cancer metastasis and treatment resistance. It explores the therapeutic potential of targeting the TME-EMT axis, specifically through CD73-TGF-β dual-blockade, to improve outcomes in triple-negative breast cancer. Additionally, it underscores new strategies to enhance immune checkpoint blockade (ICB) responses by modulating EMT, thereby offering innovative insights for more effective cancer treatment.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India; Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Danfeng Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
31
|
Ye Y, Yu S, Guo T, Zhang S, Shen X, Han G. Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer Management: Opportunities and Challenges. Biomolecules 2024; 14:1523. [PMID: 39766230 PMCID: PMC11673737 DOI: 10.3390/biom14121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Lung cancer, the leading cause of death worldwide, is associated with the highest morbidity. Non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancer cases. Advances in the domain of cancer treatment have improved the prognosis and quality of life of patients with metastatic NSCLC. Nevertheless, tumor progression or metastasis owing to treatment failure caused by primary or secondary drug resistance remains the cause of death in the majority of cases. Epithelial-mesenchymal transition (EMT), a vital biological process wherein epithelial cancer cells lose their inherent adhesion and transform into more invasive mesenchymal-like cells, acts as a powerful engine driving tumor metastasis. EMT can also induce immunosuppression in the tumor environment, thereby promoting cancer development and poor prognosis among patients with NSCLC. This review aims to elucidate the effect of EMT on metastasis and the tumor immune microenvironment. Furthermore, it explores the possible roles of EMT inhibition in improving the treatment efficacy of NSCLC. Targeting EMT may be an ideal mechanism to inhibit tumor growth and progression at multiple steps.
Collapse
Affiliation(s)
- Yunyao Ye
- Department of Oncology, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China; (Y.Y.); (S.Y.); (S.Z.); (X.S.)
| | - Shanxun Yu
- Department of Oncology, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China; (Y.Y.); (S.Y.); (S.Z.); (X.S.)
| | - Ting Guo
- Central Lab, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China;
| | - Sihui Zhang
- Department of Oncology, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China; (Y.Y.); (S.Y.); (S.Z.); (X.S.)
| | - Xiaozhou Shen
- Department of Oncology, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China; (Y.Y.); (S.Y.); (S.Z.); (X.S.)
| | - Gaohua Han
- Department of Oncology, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China; (Y.Y.); (S.Y.); (S.Z.); (X.S.)
| |
Collapse
|
32
|
Pan Y, Zhang Y, Mao D, Fang Z, Ma Y, Jin D, Li S. Multi-omics Insights into PDHA1 as a Predictive Biomarker for Prognosis, Immunotherapy Efficacy, and Drug Sensitivity in Hepatocellular Carcinoma. ACS OMEGA 2024; 9:46492-46504. [PMID: 39583658 PMCID: PMC11579764 DOI: 10.1021/acsomega.4c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
PDHA1 was associated with metabolic reprogramming in tumor progression. However, the clinical value of PDHA1, especially for prediction of drug sensitivity in hepatocellular carcinoma (HCC), has not been fully investigated. In this study, we found that PDHA1 expression was higher in HCC tissues compared to normal tissues and was correlated with poor prognosis in HCC patients. PDHA1 expression was mainly positively associated with immune cell infiltration using the TIMER, XCell, MCPCOUNTER, CIBERSORT, EPIC, and QUANTISEQ algorithms, which was validated by single-cell RNA-sequencing analysis. We also discovered that PDHA1 expression was correlated with six immune checkpoint-related genes. Univariate and multivariate Cox regression analyses revealed that PDHA1 expression was an independent prognostic indicator for HCC patients, and the nomogram incorporating PDHA1 expression exhibited excellent predictive capacity. Furthermore, PDHA1 expression was positively linked to the sensitivity of 5-fluorouracil, gemcitabine, paclitaxel, and sorafenib, and the molecular docking analysis demonstrated their excellent binding affinity.
Collapse
Affiliation(s)
- Yong Pan
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
- State
Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Yiru Zhang
- State
Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Daiwen Mao
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Zhou Fang
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Yingqiu Ma
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Danwen Jin
- Pathological
Diagnosis Center, Zhoushan Hospital, Wenzhou
Medical University, Zhoushan 316021, China
| | - Shibo Li
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| |
Collapse
|
33
|
Gao X, Li J, Feng X, Xie Y, Zhang J, Liu J, Wang B, Liu P. EHD1 promotes breast cancer metastasis through upregulating HIF2a expression via activating mTOR pathway. FASEB J 2024; 38:e70168. [PMID: 39530565 DOI: 10.1096/fj.202401919r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The multistep dynamic process of metastasis is the primary cause of breast cancer deaths. C-terminal Eps15-homology domain-containing protein 1 (EHD1), a translocator associated with endocytic recycling, has been implicated in various oncogenic processes. However, the precise molecular mechanisms of EHD1-induced breast cancer metastases remain largely unexplored. Here we found that the upregulation of EHD1 in breast cancer was positively associated with distant lymph node metastasis in patients. Meanwhile, EHD1 promoted epithelial-mesenchymal transition (EMT), invasion, and metastasis of breast cancer cells in both two-dimensional (2D) and three-dimensional (3D) culture models in vitro, as well as in vivo. Remarkably, EHD1 can activate the AKT-mTOR pathway to upregulate the protein expression of hypoxia-inducible factor 2α (HIF2α) under normoxic conditions and subsequently enhance the invasive and metastatic breast cancer. Our findings indicated EHD1 as a new regulator of HIF2α and a potential therapeutic target for inhibiting breast cancer metastasis.
Collapse
Affiliation(s)
- Xiaoqian Gao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuefei Feng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuchen Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Zhang
- Phase I Clinical Trial Ward, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
35
|
Xia Y, Wang H, Shao M, Liu X, Sun F. MAP3K19 Promotes the Progression of Tuberculosis-Induced Pulmonary Fibrosis Through Activation of the TGF-β/Smad2 Signaling Pathway. Mol Biotechnol 2024; 66:3300-3310. [PMID: 37906388 DOI: 10.1007/s12033-023-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Tuberculosis-induced pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease, which severely affects lung ventilation and air exchange, leading to respiratory distress, impaired lung function, and ultimately death. As previously reported, epithelial-mesenchymal transition (EMT) and fibrosis in type II alveolar epithelial cells (AEC II) are two critical processes that contributes to the initiation and progression of tuberculosis-related PF, but the underlying pathological mechanisms remain unclear. In this study, through performing Real-Time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, and immunofluorescence staining assay, we confirmed that the expression levels of EMT and fibrosis-related biomarkers were significantly increased in lung tissues with tuberculosis-associated PF in vivo and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) strain-infected AEC II cells in vitro. Besides, we noticed that the mitogen-activated protein kinase 19 (MAP3K19) was aberrantly overexpressed in PF models, and silencing of MAP3K19 significantly reduced the expression levels of fibronectin, collagen type I, and alpha-smooth muscle actin to decrease fibrosis, and upregulated E-cadherin and downregulated vimentin to suppress EMT in BCG-treated AEC II cells. Then, we uncovered the underlying mechanisms and found that BCG synergized with MAP3K19 to activate the pro-inflammatory transforming growth factor-beta (TGF-β)/Smad2 signal pathway in AEC II cells, and BCG-induced EMT process and fibrosis in AEC II cells were all abrogated by co-treating cells with TGF-β/Smad2 signal pathway inhibitor LY2109761. In summary, our results uncovered the underlying mechanisms by which the MAP3K19/TGF-β/Smad2 signaling pathway regulated EMT and fibrotic phenotypes of AEC II cells to facilitate the development of tuberculosis-associated PF, and these findings will provide new ideas and biomarkers to ameliorate tuberculosis-induced PF in clinic.
Collapse
Affiliation(s)
- Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China.
| | - Haiyue Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Meihua Shao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Feng Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| |
Collapse
|
36
|
Khaliq AM, Rajamohan M, Saeed O, Mansouri K, Adil A, Zhang C, Turk A, Carstens JL, House M, Hayat S, Nagaraju GP, Pappas SG, Wang YA, Zyromski NJ, Opyrchal M, Lee KP, O'Hagan H, El Rayes B, Masood A. Spatial transcriptomic analysis of primary and metastatic pancreatic cancers highlights tumor microenvironmental heterogeneity. Nat Genet 2024; 56:2455-2465. [PMID: 39294496 DOI: 10.1038/s41588-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Although the spatial, cellular and molecular landscapes of resected pancreatic ductal adenocarcinoma (PDAC) are well documented, the characteristics of its metastatic ecology remain elusive. By applying spatially resolved transcriptomics to matched primary and metastatic PDAC samples, we discovered a conserved continuum of fibrotic, metabolic and immunosuppressive spatial ecotypes across anatomical regions. We observed spatial tumor microenvironment heterogeneity spanning beyond that previously appreciated in PDAC. Through comparative analysis, we show that the spatial ecotypes exhibit distinct enrichment between primary and metastatic sites, implying adaptability to the local environment for survival and progression. The invasive border ecotype exhibits both pro-tumorigenic and anti-tumorigenic cell-type enrichment, suggesting a potential immunotherapy target. The ecotype heterogeneity across patients emphasizes the need to map individual patient landscapes to develop personalized treatment strategies. Collectively, our findings provide critical insights into metastatic PDAC biology and serve as a valuable resource for future therapeutic exploration and molecular investigations.
Collapse
Affiliation(s)
- Ateeq M Khaliq
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meenakshi Rajamohan
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Omer Saeed
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimia Mansouri
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Asif Adil
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anita Turk
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julienne L Carstens
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael House
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Ganji P Nagaraju
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sam G Pappas
- Division of Surgical Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Y Alan Wang
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas J Zyromski
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelvin P Lee
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather O'Hagan
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bassel El Rayes
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashiq Masood
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
37
|
Guan C, Zou X, Gao X, Liu S, Gao J, Shi W, Dong Q, Jiang X, Zhong X. Feedback loop LINC00511-YTHDF2-SOX2 regulatory network drives cholangiocarcinoma progression and stemness. MedComm (Beijing) 2024; 5:e743. [PMID: 39445001 PMCID: PMC11496568 DOI: 10.1002/mco2.743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 10/25/2024] Open
Abstract
Cholangiocarcinoma (CCA) was identified as a malignant tumor with rising incidence and mortality rates, and the roles of long noncoding RNA (lncRNA) in CCA remained not entirely clear. In this study, LINC00511 had high expression in CCA, which was closely related to poor prognosis. Knockdown of LINC00511 significantly inhibited cell malignant biological behaviors. It also affected the stemness of CCA, evidenced by decreased SOX2 protein expression. Moreover, the study revealed the interaction of LINC00511, YTHDF2, and SOX2 in CCA. Specifically, LINC00511 facilitated the formation of a complex with YTHDF2 on SOX2 mRNA, which uniquely enhances the mRNA's stability through m6A methylation sites. This stabilization appears crucial for maintaining malignant behaviors in CCA cells. Additionally, LINC00511 modulated SOX2 expression via the PI3K/AKT signaling pathway. Meanwhile, SOX2 can also promote LINC00511 expression as an upstream transcription factor, thereby confirming a positive feedback loop formed by LINC00511, YTHDF2, and SOX2, which plays a significant role in the occurrence and development of CCA. Finally, the study successfully constructed two patient-derived xenograft models, revealing the vital role of LINC00511 in CCA development. In summary, this research provides a comprehensive understanding of the role of LINC00511 in the pathogenesis of CCA.
Collapse
Affiliation(s)
- Canghai Guan
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xinlei Zou
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xin Gao
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Sidi Liu
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Jianjun Gao
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Wujiang Shi
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Qingfu Dong
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xingming Jiang
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xiangyu Zhong
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| |
Collapse
|
38
|
Li Q, Liu Y, Zhi R, Wang Y. The prognostic significance of twist in pancreatic cancer and its role in cancer promotion through the regulation of the immune microenvironment and EMT mechanisms. Discov Oncol 2024; 15:593. [PMID: 39460846 PMCID: PMC11512955 DOI: 10.1007/s12672-024-01478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE Pancreatic cancer has a poor prognosis due to its high malignancy and rapid progression. The limited immunogenicity of pancreatic cancer (PAAD) contributes to its low responsiveness to immunotherapy, yet its underlying mechanism remains poorly understood. As a cancer promoting gene, Twist participates in EMT in various tumors and promotes tumor progression. The interplay between EMT and the tumor microenvironment (TME) emerges as a pivotal factor influencing tumor immunity and response to immunotherapy. Twist therefore has potential as a biomarker for gauging the outcome of tumour immunotherapy.This research aimed to assess the Twist's prognostic significance in PAAD and its relationship to immunotherapy response. METHODS In this research, transcriptional data and epigenetic alterations of Twist in pancreatic cancer, along with their impact on the prognosis of PAAD patients, were analyzed using databases. Functional enrichment analysis elucidated the biological role of Twist in PAAD. Subsequently, databases including CIBERSORT and TIDE were employed to investigate the association between Twist expression and immune cell infiltration, immune checkpoint genes, and immunotherapy sensitivity within the pancreatic cancer immune microenvironment.Paraffinized specimens from patients with pancreatic ductal adenocarcinoma confirmed by postoperative pathology were selected for Twist expression verification, and the difference was analyzed by Chi-square test; uncontaminated pancreatic cancer cell lines were used for Twist expression verification, and the differences were analyzed by Student t-test. RESULTS Twist mRNA expression was notably upregulated in PAAD, positively correlating with gene methylation levels. Analyses of Kaplan-Meier and Cox regression showed a correlation between better overall survival and lower Twist expression. Functional annotation indicated that Twist-associated differentially expressed genes (DEGs) were involved in EMT regulation and acute inflammation. High expression of Twist leads to a significant reduction in the infiltration of anti-tumor immune cells such as Monocytes, NKcellsactivated, and TcellsCD8, further supporting its creation of a typical immunosuppressive microenvironment in pancreatic cancer. Twist expression is positively correlated with the expression of HARVCR2, LAIR1, LGALS3 and other genes, which may be related to the treatment response to immune checkpoint inhibitors (ICIs). TIDE analysis predicts that patients with high expression of Twist will be insensitive to immunotherapy. Twist is significantly over-expressed in pancreatic cancer cell lines and tissues, and is negatively correlated with E-cadhrin expression, but positively correlated with N-cadherin,Snail, and ZEB1. CONCLUSION High Twist expression in PAAD signifies a grim prognosis. Its elevated levels not only contribute to tumor progression through EMT induction but also exert regulatory control over the immune microenvironment, leading to immunosuppression and diminished effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Qing Li
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yu Liu
- Department of Biliary and Pancreatic Surgery, The First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Renhou Zhi
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yinquan Wang
- Department of Hernia and Abdominal Wall Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
39
|
Zhang Y, Zhang C, Wu N, Feng Y, Wang J, Ma L, Chen Y. The role of exosomes in liver cancer: comprehensive insights from biological function to therapeutic applications. Front Immunol 2024; 15:1473030. [PMID: 39497820 PMCID: PMC11532175 DOI: 10.3389/fimmu.2024.1473030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, cancer, especially primary liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma), has posed a serious threat to human health. In the field of liver cancer, exosomes play an important role in liver cancer initiation, metastasis and interaction with the tumor microenvironment. Exosomes are a class of nanoscale extracellular vesicles (EVs)secreted by most cells and rich in bioactive molecules, including RNA, proteins and lipids, that mediate intercellular communication during physiological and pathological processes. This review reviews the multiple roles of exosomes in liver cancer, including the initiation, progression, and metastasis of liver cancer, as well as their effects on angiogenesis, epithelial-mesenchymal transformation (EMT), immune evasion, and drug resistance. Exosomes have great potential as biomarkers for liver cancer diagnosis and prognosis because they carry specific molecular markers that facilitate early detection and evaluation of treatment outcomes. In addition, exosomes, as a new type of drug delivery vector, have unique advantages in the targeted therapy of liver cancer and provide a new strategy for the treatment of liver cancer. The challenges and prospects of exosome-based immunotherapy in the treatment of liver cancer were also discussed. However, challenges such as the standardization of isolation techniques and the scalability of therapeutic applications remain significant hurdles.
Collapse
Affiliation(s)
- Yinghui Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Feng
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayi Wang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yulong Chen
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Fischer A, Albert TK, Moreno N, Interlandi M, Mormann J, Glaser S, Patil P, de Faria FW, Richter M, Verma A, Balbach ST, Wagener R, Bens S, Dahlum S, Göbel C, Münter D, Inserte C, Graf M, Kremer E, Melcher V, Di Stefano G, Santi R, Chan A, Dogan A, Bush J, Hasselblatt M, Cheng S, Spetalen S, Fosså A, Hartmann W, Herbrüggen H, Robert S, Oyen F, Dugas M, Walter C, Sandmann S, Varghese J, Rossig C, Schüller U, Tzankov A, Pedersen MB, d'Amore FA, Mellgren K, Kontny U, Kancherla V, Veloza L, Missiaglia E, Fataccioli V, Gaulard P, Burkhardt B, Soehnlein O, Klapper W, de Leval L, Siebert R, Kerl K. Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas. Nat Commun 2024; 15:8571. [PMID: 39362842 PMCID: PMC11452211 DOI: 10.1038/s41467-024-52826-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) is a heterogeneous group of malignancies with poor outcome. Here, we identify a subgroup, PTCL-NOSSMARCB1-, which is characterized by the lack of the SMARCB1 protein and occurs more frequently in young patients. Human and murine PTCL-NOSSMARCB1- show similar DNA methylation profiles, with hypermethylation of T-cell-related genes and hypomethylation of genes involved in myeloid development. Single-cell analyses of human and murine tumors revealed a rich and complex network of interactions between tumor cells and an immunosuppressive and exhausted tumor microenvironment (TME). In a drug screen, we identified histone deacetylase inhibitors (HDACi) as a class of drugs effective against PTCL-NOSSmarcb1-. In vivo treatment of mouse tumors with SAHA, a pan-HDACi, triggered remodeling of the TME, promoting replenishment of lymphoid compartments and reversal of the exhaustion phenotype. These results provide a rationale for further exploration of HDACi combination therapies targeting PTCL-NOSSMARCB1- within the TME.
Collapse
MESH Headings
- Animals
- SMARCB1 Protein/genetics
- SMARCB1 Protein/metabolism
- Humans
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Mice
- Histone Deacetylase Inhibitors/pharmacology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/drug effects
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Female
- Cell Line, Tumor
- Male
- Vorinostat/pharmacology
- Single-Cell Analysis
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Marta Interlandi
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Jana Mormann
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Paurnima Patil
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Archana Verma
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Sebastian T Balbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Clara Inserte
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Monika Graf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Eva Kremer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Gioia Di Stefano
- Pathological Anatomy Section, Careggi University Hospital, Florence, Italy
| | - Raffaella Santi
- Pathological Anatomy Section, Careggi University Hospital, Florence, Italy
| | - Alexander Chan
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jonathan Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, BC, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Sylvia Cheng
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexander Fosså
- Department of Oncology, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude D17, 48149, Münster, Germany
| | - Heidi Herbrüggen
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Stella Robert
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Florian Oyen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin B Pedersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Francesco A d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Mellgren
- Department of Pediatric Oncology and Hematology, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Venkatesh Kancherla
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Luis Veloza
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Edoardo Missiaglia
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Birgit Burkhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany.
| |
Collapse
|
41
|
Ueda A, Nakai H, Miyagawa C, Otani T, Yoshida M, Murakami R, Komiyama S, Tanigawa T, Yokoi T, Takano H, Baba T, Miura K, Shimada M, Kigawa J, Enomoto T, Hamanishi J, Okamoto A, Okuno Y, Mandai M, Matsumura N. Artificial Intelligence-Based Histopathological Subtyping of High-Grade Serous Ovarian Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1913-1923. [PMID: 39032605 DOI: 10.1016/j.ajpath.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Four subtypes of ovarian high-grade serous carcinoma (HGSC) have previously been identified, each with different prognoses and drug sensitivities. However, the accuracy of classification depended on the assessor's experience. This study aimed to develop a universal algorithm for HGSC-subtype classification using deep learning techniques. An artificial intelligence (AI)-based classification algorithm, which replicates the consensus diagnosis of pathologists, was formulated to analyze the morphological patterns and tumor-infiltrating lymphocyte counts for each tile extracted from whole slide images of ovarian HGSC available in The Cancer Genome Atlas (TCGA) data set. The accuracy of the algorithm was determined using the validation set from the Japanese Gynecologic Oncology Group 3022A1 (JGOG3022A1) and Kindai and Kyoto University (Kindai/Kyoto) cohorts. The algorithm classified the four HGSC-subtypes with mean accuracies of 0.933, 0.910, and 0.862 for the TCGA, JGOG3022A1, and Kindai/Kyoto cohorts, respectively. To compare mesenchymal transition (MT) with non-MT groups, overall survival analysis was performed in the TCGA data set. The AI-based prediction of HGSC-subtype classification in TCGA cases showed that the MT group had a worse prognosis than the non-MT group (P = 0.017). Furthermore, Cox proportional hazard regression analysis identified AI-based MT subtype classification prediction as a contributing factor along with residual disease after surgery, stage, and age. In conclusion, a robust AI-based HGSC-subtype classification algorithm was established using virtual slides of ovarian HGSC.
Collapse
Affiliation(s)
- Akihiko Ueda
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Departments of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chiho Miyagawa
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoyuki Otani
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Manabu Yoshida
- Department of Pathology, Matsue City Hospital, Matsue City, Japan
| | - Ryusuke Murakami
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Komiyama
- Department of Obstetrics and Gynecology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Terumi Tanigawa
- Department of Gynecologic Oncology, Cancer Institute Hospital, Tokyo, Japan
| | - Takeshi Yokoi
- Department of Obstetrics and Gynecology, Kaizuka City Hospital, Osaka, Japan
| | - Hirokuni Takano
- Department of Obstetrics and Gynecology, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kiyonori Miura
- Department of Gynecology and Obstetrics, Nagasaki University Graduate School of Biolomedical Sciences, Nagasaki, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junzo Kigawa
- Department of Gynecology and Obstetrics, Matsue City Hospital, Matsue City, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junzo Hamanishi
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Okuno
- Departments of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Masaki Mandai
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
42
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
43
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
44
|
Tirosh I, Suva ML. Cancer cell states: Lessons from ten years of single-cell RNA-sequencing of human tumors. Cancer Cell 2024; 42:1497-1506. [PMID: 39214095 DOI: 10.1016/j.ccell.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Human tumors are intricate ecosystems composed of diverse genetic clones and malignant cell states that evolve in a complex tumor micro-environment. Single-cell RNA-sequencing (scRNA-seq) provides a compelling strategy to dissect this intricate biology and has enabled a revolution in our ability to understand tumor biology over the last ten years. Here we reflect on this first decade of scRNA-seq in human tumors and highlight some of the powerful insights gleaned from these studies. We first focus on computational approaches for robustly defining cancer cell states and their diversity and highlight some of the most common patterns of gene expression intra-tumor heterogeneity (eITH) observed across cancer types. We then discuss ambiguities in the field in defining and naming such eITH programs. Finally, we highlight critical developments that will facilitate future research and the broader implementation of these technologies in clinical settings.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel.
| | - Mario L Suva
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
45
|
Hariri A, Mirian M, Khosravi A, Zarepour A, Iravani S, Zarrabi A. Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance. Drug Resist Updat 2024; 76:101119. [PMID: 39111134 DOI: 10.1016/j.drup.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Cancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
46
|
Ren L, Qiao GL, Zhang SX, Zhang ZM, Lv SX. Pharmacological Inhibition or Silencing of TREM1 Restrains HCC Cell Metastasis by Inactivating TLR/PI3K/AKT Signaling. Cell Biochem Biophys 2024; 82:2673-2685. [PMID: 38954352 DOI: 10.1007/s12013-024-01377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Hepatocellular carcinoma (HCC), a widely prevalent malignancy strongly linked to inflammation, remains a significant public health concern. Triggering receptor expressed on myeloid cells 1 (TREM1), a modulator of inflammatory responses identified in recent years, has emerged as a crucial facilitator in cancer progression. Despite its significance, the precise regulatory mechanism of TREM1 in HCC metastasis remains unanswered. In the present investigation, we observed aberrant upregulation of TREM1 in HCC tissues, which was significantly linked to poorer overall survival. Inhibition of TREM1 expression resulted in a significant reduction in HCC Huh-7 and MHCC-97H cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) process. Furthermore, inhibiting TREM1 decreased protein expressions of toll-like receptor 2/4 (TLR2/4) and major myeloid differentiation response gene 88 (MyD88), leading to the inactivation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in HCC cells. Notably, these effects were reversed by treatment with TLR2-specific agonist (CU-T12-9), indicating a potential crosstalk between TREM1 and TLR2/4. Mechanistic studies revealed a direct interaction between TREM1 and both TLR2 and TLR4. In vivo studies demonstrated that inhibition of TREM1 suppressed the growth of HCC cells in the orthotopic implant model and its metastatic potential in the experimental lung metastasis model. Overall, our findings underscore the role of TREM1 inhibition in regulating EMT and metastasis of HCC cells by inactivating the TLR/PI3K/AKT signaling pathway, thereby providing deeper mechanistic insights into how TREM1 regulates metastasis during HCC progression.
Collapse
Affiliation(s)
- Ling Ren
- Department of Gastroenterology, The Affifiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
- Department of Gastroenterology, The Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Guang-Lei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Xian Zhang
- Department of Gastroenterology, The Affifiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
- Department of Gastroenterology, The Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Zhi-Mei Zhang
- Department of Gastroenterology, The Affifiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
- Department of Gastroenterology, The Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Sheng-Xiang Lv
- Department of Gastroenterology, The Affifiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China.
- Department of Gastroenterology, The Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China.
| |
Collapse
|
47
|
Lou X, Wang Y, Deng Y, Yang J, Xu D, Wang M, Lin Y. Prognostic and immunological roles of RSPO1 in pan-cancer and its correlation with LUAD proliferation and metastasis. Am J Cancer Res 2024; 14:3800-3815. [PMID: 39267661 PMCID: PMC11387876 DOI: 10.62347/dlvs6991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aberrant RSPO1 expression is implicated in tumor progression across various cancers and correlates with anti-cancer immune cell characteristics. However, the specific role of R-spondin 1 (RSPO1) in lung adenocarcinoma (LUAD) remains unclear. In this study, we utilized data from The Cancer Genome Atlas (TCGA) to assess RSPO1 expression across 33 tumor types. Kaplan-Meier (K-M) analysis revealed the prognostic significance of RSPO1 in various cancers. Using statistical software R, we examined RSPO1's associations with immune cell infiltration, methylation, mutation, and competing endogenous RNA (ceRNA) networks. Exploration via the Tumor Immune Single Cell Hub (TISCH) database uncovered RSPO1's link to the tumor microenvironment (TME) and identified potential small molecule drug targets. We further investigated RSPO1's impact on LUAD cell proliferation, metastasis, and the Wnt pathway in vitro. Our findings highlight RSPO1's role in cancer progression and suggest its potential as both a prognostic marker and therapeutic target in LUAD, implicating the modulation of the Wnt pathway.
Collapse
Affiliation(s)
- Xinqi Lou
- Institute of Clinical Medicine Research, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Yuanyuan Wang
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Yanjun Deng
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Duo Xu
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Mingdeng Wang
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Yuansheng Lin
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| |
Collapse
|
48
|
Tang WB, Wang WH, Lee HJ, Zhou J, Yu XB, Zhou Q, Cho S, Kim K. δ-catenin promotes Twist1 stabilization in prostate cancer through ubiquitination modification. Am J Cancer Res 2024; 14:3773-3788. [PMID: 39267672 PMCID: PMC11387878 DOI: 10.62347/aljt8663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer generally has a high long-term survival rate; however, metastatic prostate cancer remains largely incurable despite intensive multimodal therapy. Recent research has identified δ-catenin, a member of the catenin family, as playing a crucial role in the progression of prostate cancer. Nonetheless, the extent to which δ-catenin influences transcription factors associated with epithelial-mesenchymal transition (EMT) has not been thoroughly explored. This study aims to investigate the hypothesis that δ-catenin enhances the stability of Twist1, thereby promoting the migratory and invasive capabilities of prostate cancer cells. Clinical data indicate a strong correlation between δ-catenin and Twist1 expression levels. Western blot analysis confirmed that δ-catenin stabilizes Twist1 and induces ectopic expression. Additionally, δ-catenin was found to reduce Twist1 phosphorylation by inhibiting GSK-3β activity. Immunoprecipitation analysis suggested that δ-catenin exerts its effect by competing with Twist1 for binding to ubiquitin (Ub). These results highlight the role of δ-catenin in the ubiquitination modification of Twist1, suggesting that the combined presence of δ-catenin and Twist1 could serve as a biomarker for tumor progression in prostate cancer.
Collapse
Affiliation(s)
- Wei-Bo Tang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University Gwangju 61186, Korea
- School of Pharmaceutical Science, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Wen-Hang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University Wenzhou 325035, Zhejiang, China
| | - Hyoung Jae Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University Gwangju 61186, Korea
| | - Jie Zhou
- School of Pharmaceutical Science, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Xu-Ben Yu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University Gwangju 61186, Korea
| | - Quan Zhou
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University Gwangju 61186, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University Seoul 06974, Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University Gwangju 61186, Korea
| |
Collapse
|
49
|
Lopez-Cerda M, Lorenzo-Sanz L, da Silva-Diz V, Llop S, Penin RM, Bermejo JO, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Martin-Liberal J, Muñoz P. IGF1R signaling induces epithelial-mesenchymal plasticity via ITGAV in cutaneous carcinoma. J Exp Clin Cancer Res 2024; 43:211. [PMID: 39075581 PMCID: PMC11285232 DOI: 10.1186/s13046-024-03119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Early cutaneous squamous cell carcinomas (cSCCs) generally show epithelial differentiation features and good prognosis, whereas advanced cSCCs present mesenchymal traits associated with tumor relapse, metastasis, and poor survival. Currently, the mechanisms involved in cSCC progression are unclear, and the established markers are suboptimal for accurately predicting the clinical course of the disease. METHODS Using a mouse model of cSCC progression, expression microarray analysis, immunofluorescence and flow cytometry assays, we have identified a prognostic biomarker of tumor relapse, which has been evaluated in a cohort of cSCC patient samples. Phosphoproteomic analysis have revealed signaling pathways induced in epithelial plastic cancer cells that promote epithelial-mesenchymal plasticity (EMP) and tumor progression. These pathways have been validated by genetic and pharmacological inhibition assays. RESULTS We show that the emergence of epithelial cancer cells expressing integrin αV (ITGAV) promotes cSCC progression to a mesenchymal state. Consistently, ITGAV expression allows the identification of patients at risk of cSCC relapse above the currently employed clinical histopathological parameters. We also demonstrate that activation of insulin-like growth factor-1 receptor (IGF1R) pathway in epithelial cancer cells is necessary to induce EMP and mesenchymal state acquisition in response to tumor microenvironment-derived factors, while promoting ITGAV expression. Likewise, ITGAV knockdown in epithelial plastic cancer cells also blocks EMP acquisition, generating epithelial tumors. CONCLUSIONS Our results demonstrate that ITGAV is a prognostic biomarker of relapse in cSCCs that would allow improved patient stratification. ITGAV also collaborates with IGF1R to induce EMP in epithelial cancer cells and promotes cSCC progression, revealing a potential therapeutic strategy to block the generation of advanced mesenchymal cSCCs.
Collapse
Affiliation(s)
- Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
50
|
Chen Y, Zhang M, He Y, Li S, Feng S, Liu Z, Zhang N, Liu M, Wang Q. Canadine Platinum(IV) Complexes Targeting Epithelial-Mesenchymal Transition as Antiproliferative and Antimetastatic Agents. J Med Chem 2024. [PMID: 39069665 DOI: 10.1021/acs.jmedchem.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process for cancer progression, which is crucial in inhibiting the immunity in tumors and further boosting tumor metastasis. The suppression of EMT represents a promising strategy for inhibiting metastatic tumors. Herein, a series of new canadine platinum(IV) conjugates with potent antiproliferative and antimetastatic activities were developed, which activated by suppressing EMT and provoking immune response in tumors besides causing DNA injury. The complexes could covalently conjugate to DNA and induce mitochondria-mediated apoptosis via Bcl-2/Bax/caspase3 signaling. The EMT process was remarkably inhibited by suppressing the Wnt/β-catenin pathway, reversing the inflammatory tumor microenvironment, and inhibiting the HIF-1α pathway, which further resulted in the inhibited angiogenesis in tumors. Moreover, the antitumor immunity was elevated by blocking immune checkpoints PD-L1 and CD47 accompanied by the improvement of CD3+ and CD8+ T lymphocytes and the macrophage polarization from M2- toward M1-type simultaneously in tumors.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Yanqin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| |
Collapse
|