1
|
Li G, Wang J, Fang Q, Dai L, Du W. Oncologic outcomes following neoadjuvant immunochemotherapy in locally advanced oral squamous cell carcinoma. Front Immunol 2025; 16:1571285. [PMID: 40406105 PMCID: PMC12095181 DOI: 10.3389/fimmu.2025.1571285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/07/2025] [Indexed: 05/26/2025] Open
Abstract
Background To assess the oncologic outcomes in patients with oral squamous cell carcinoma (SCC) who underwent treatment with radiotherapy (RT) or chemoradiation therapy (CRT) following neoadjuvant immunochemotherapy and surgery. Methods Data from patients who underwent neoadjuvant immunochemotherapy, surgery, and adjuvant therapy were collected prospectively and analyzed retrospectively. The primary outcomes assessed were 3-year overall survival and locoregional control. Secondary endpoints included the objective response rate (ORR), rates of pathologic complete response (pCR) and major pathologic response (MPR), as well as safety. Results A total of 137 patients were included in the analysis. Neoadjuvant therapy yielded an ORR of 81.7%, with pCR and MPR achieved in 47 and 73 patients, respectively. Grade III and IV adverse events were rare, comprising only 1.6% of all events. The addition of adjuvant chemotherapy to RT did not show a significant reduction in the risk of locoregional recurrence. However, with regards to overall survival, the hazard ratios were 0.85 (95% CI: 0.73-0.96) for the MPR group and 0.66 (95% CI: 0.37-0.89) for the pCR group, both significantly higher than that in patients with incomplete pathologic response. The addition of adjuvant chemotherapy to RT was associated with a 5% reduction in the risk of mortality (95% CI: 1%-14%), the protective effect of CRT was the most obvious in patients with MPR. Conclusion Neoadjuvant immunochemotherapy demonstrated high safety and efficacy in oral SCC. CRT was superior to RT in terms of overall survival especially in patients with MPR when administered following neoadjuvant immunochemotherapy and surgery.
Collapse
Affiliation(s)
| | | | | | | | - Wei Du
- Department of Head Neck and Thyroid, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Mastrolonardo EV, Nunes KL, Llerena P, Nikitina A, Sobol A, Scott ER, Tuluc M, Davitt CJH, Scher J, Tekumalla S, Mann D, Henao C, Jegede V, Gargano S, Harshyne LA, Alnemri A, Tyshevich A, Kushnarev V, Chasse M, Sookiasian D, Axelrod R, Zhan T, Leiby BE, Old M, Seim N, Mahoney MG, Martinez-Outschoorn U, Cognetti DM, Curry JM, Prendergast G, Argiris A, South AP, Linnenbach AJ, Johnson JM, Luginbuhl AJ. Response-Adaptive Surgical Timing in Neoadjuvant Immunotherapy Demonstrates Enhanced Pathologic Treatment Response in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2025; 31:515-528. [PMID: 39585339 PMCID: PMC11973698 DOI: 10.1158/1078-0432.ccr-24-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE We evaluated whether indoleamine 2,3-dioxygenase (IDO1) inhibitor (IDOi) BMS986205 + PD-1 inhibitor nivolumab enhanced T-cell activity and augmented immune-mediated antitumor responses in untreated, resectable head and neck squamous cell carcinoma (HNSCC). We employed response-adaptive surgical timing to identify responders to immunotherapy and enhance their response. PATIENTS AND METHODS Patients with HNSCC were 3:1 randomized to receive nivolumab with or without BMS986205 orally daily (NCT03854032). In the combination arm, BMS986205 was initiated 7 days prior to nivolumab. Patients were stratified by human papillomavirus (HPV) status. Response-adaptive surgical timing involved response assessment by radiographic criteria 4 weeks after treatment with nivolumab in both arms. Nonresponders underwent surgical resection, whereas responders received 4 more weeks of randomized therapy before surgery. Biomarker analysis utilized pathologic treatment response (pTR) and RNA sequencing. RESULTS Forty-two patients were enrolled, and the addition of IDOi to nivolumab did not result in greater rate of radiographic response (P = 0.909). Treatment was well tolerated, with only 2 (5%) patients experiencing grade 3 immune-related adverse events. The addition of IDOi augmented rates of pTR in patients with high baseline IDO1 RNA expression (P < 0.05). Response-adaptive surgical timing demonstrated reliability in differentiating pathologic responders versus nonresponders (P = 0.009). A pretreatment NK cell signature, PD-L1 status, and IFN-γ expression in the HPV- cohort correlated with response. The HPV+ cohort found B-cell and cancer-associated fibroblast signatures predictive of response/nonresponse. CONCLUSIONS Response-adaptive surgical timing enhanced treatment response. IDOi BMS986205 augmented pTR in patients with high IDO1 expression in baseline samples, indicating a need for identifying and targeting resistant nodes to immunotherapy. HPV status-dependent signatures predicting response to immunotherapy in HNSCC warrant further study.
Collapse
Affiliation(s)
- Eric V Mastrolonardo
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kathryn L Nunes
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pablo Llerena
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - E Reilly Scott
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - Sruti Tekumalla
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Derek Mann
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Camilo Henao
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Victor Jegede
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stacey Gargano
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Larry A Harshyne
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Angela Alnemri
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | | | - Rita Axelrod
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tingting Zhan
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin E Leiby
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew Old
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio
| | - Nolan Seim
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio
| | - My G Mahoney
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ubaldo Martinez-Outschoorn
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David M Cognetti
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph M Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Athanassios Argiris
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew P South
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alban J Linnenbach
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jennifer M Johnson
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam J Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
An Z, Zhang X, Wang Z, Wusiman D, Zhao X, Li L, Guo L, Wei M, Li W, An C. The characterization of tumor immune microenvironment after neoadjuvant immunotherapy in head and neck squamous cell cancer using multiplex immunohistochemistry. Oral Oncol 2025; 161:107151. [PMID: 39746266 DOI: 10.1016/j.oraloncology.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/01/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Optimizing clinical decision-making in head and neck squamous cell carcinoma (HNSCC) is challenging due to the ambiguous understanding of the immune cell dynamics and immune checkpoints regulation in the disease after the administration of neoadjuvant immunotherapy (NIT). METHODS HNSCC biopsy samples collected before and after the neoadjuvant treatment are classified into the pathologic response (PR) and the non-pathologic response (NPR) groups according to treatment responses and the expression of immune cells and checkpoints was labeled using multiplex immunohistochemistry (m-IHC). RESULTS The populations of CD4+ T cells, CD8+ T cells, regulatory T cells (Treg), PD-1, and PD-L1 were particularly higher in the PR group than the NPR group in pre-treatment tissues, with the p-values of log-transformed positive cell density <0.05. Almost all markers showed a lower expression in the PR patients after treatment, resulting lower post/pre-treatment ratios of positive cell densities in the PR patients relative to the NPR patients. Following treatment, TIM3+ T cells and LAG3+ T cells exhibited significantly diminished levels in the PR cohort relative to the NPR cohort, with post/pre-treatment expression ratios showing significant differences (P < 0.05). Tumor infiltration lymphocyte analysis revealed that the PR group exhibited a considerably higher average density of CD8+ T cells infiltrating in the tumor marginal zone. CONCLUSION The presence of T cells demonstrated significant predictive capability for responses to neoadjuvant immunotherapy in HNSCC patients. Furthermore, TIM3+ T cells and LAG3+ T cells were found to be remarkably lower in the partial response (PR) cohort than in the non-partial response (NPR) cohort post-treatment. This research contributes critical understanding of the physiological changes occurring in immune cell responses.
Collapse
Affiliation(s)
- Zhaohong An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiwei Zhang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhaoyang Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dilinaer Wusiman
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Xiaohui Zhao
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Minghui Wei
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen Center, Shenzhen 518000, Guangdong, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
Zhao M, Schoenfeld JD, Egloff AM, Hanna GJ, Haddad RI, Adkins DR, Uppaluri R. T cell dynamics with neoadjuvant immunotherapy in head and neck cancer. Nat Rev Clin Oncol 2025; 22:83-94. [PMID: 39658611 DOI: 10.1038/s41571-024-00969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Immune-checkpoint inhibitors (ICIs) are being tested as neoadjuvant therapies in various solid tumours, including in patients with head and neck squamous cell carcinoma (HNSCC), with promising results. Key findings thus far include that this approach is well-tolerated with favourable clinical outcomes including promising pathological response rates in initial studies. Pathological responses are likely to be increased by combining other agents with anti-PD-(L)1 antibodies. Comparisons of baseline biopsy samples with post-treatment surgical specimens have enabled correlative studies utilizing multiomic and immunogenomic methods. Data from these studies suggest that pretreatment intratumoural tissue-resident memory CD8+ T cells are key drivers of tumour regression and give rise to both local and systemic antitumour immune responses. Analyses of systemic responses have defined a PD-1+KLRG1- circulating CD8+ T cell subpopulation that is highly predictive of response, and revealed the interrelationships between intratumoural clones and circulating CD8+ T cells. Lastly, interrogation of T cell populations within lymph nodes is beginning to delineate the immune crosstalk between the primary tumour and tumour-draining lymph nodes and how this relationship might be disrupted with tumour infiltration of the latter. In this Review, we examine data from trials testing neoadjuvant ICIs in patients with HNSCC, focusing on human papillomavirus-unrelated disease, and highlight correlative immunogenomic findings from these trials.
Collapse
Affiliation(s)
- Maryann Zhao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan D Schoenfeld
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Glenn J Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert I Haddad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Douglas R Adkins
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine/Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Yan M, Wang Z, Qiu Z, Cui Y, Xiang Q. Platelet signaling in immune landscape: comprehensive mechanism and clinical therapy. Biomark Res 2024; 12:164. [PMID: 39736771 DOI: 10.1186/s40364-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Platelets are essential for blood clotting and maintaining normal hemostasis. In pathological conditions, platelets are increasingly recognized as crucial regulatory factors in various immune-mediated inflammatory diseases. Resting platelets are induced by various factors such as immune complexes through Fc receptors, platelet-targeting autoantibodies and other platelet-activating stimuli. Platelet activation in immunological processes involves the release of immune activation stimuli, antigen presentation and interaction with immune cells. Platelets participate in both the innate immune system (neutrophils, monocytes/macrophages, dendritic cells (DCs) and Natural Killer (NK) cells and the adaptive immune system (T and B cells). Clinical therapeutic strategies include targeting platelet activation, platelet-immune cell interaction and platelet-endothelial cell interaction, which display positive development prospects. Understanding the mechanisms of platelets in immunity is important, and developing targeted modulations of these mechanisms will pave the way for promising therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhiwei Qiu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
6
|
Abdalsalam NMF, Ibrahim A, Saliu MA, Liu TM, Wan X, Yan D. MDSC: a new potential breakthrough in CAR-T therapy for solid tumors. Cell Commun Signal 2024; 22:612. [PMID: 39702149 DOI: 10.1186/s12964-024-01995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has shown remarkable success in hematologic malignancies but has encountered challenges in effectively treating solid tumors. One major obstacle is the presence of the immunosuppressive tumor microenvironment (TME), which is mainly built by myeloid-derived suppressor cells (MDSCs). Recent studies have shown that MDSCs have a detrimental effect on CAR-T cells due to their potent immunosuppressive capabilities. Targeting MDSCs has shown promising results to enhance CAR-T immunotherapy in preclinical solid tumor models. In this review, we first highlight that MDSCs increase tumor proliferation, transition, angiogenesis and encourage circulating tumor cells (CTCs) extravasation leading to tumor progression and metastasis. Moreover, we describe the main characteristics of the immunosuppressive activities of MDSCs on T cells in TME. Most importantly, we summarize targeting therapeutic strategies of MDSCs in CAR-T therapies against solid tumors. These strategies include (1) therapeutic targeting of MDSCs through small molecule inhibitors and large molecule antibodies; (2) CAR-T targeting cancer cell antigen combination with MDSC modulatory agents; (3) cytokine receptor antigen-targeted CAR-T indirectly or directly targeting MDSCs reshapes TME; (4) modified natural killer (NK) cells expressing activating receptor directly targeting MDSCs; and (5) CAR-T directly targeting MDSC selective antigens. In the near future, we are expected to witness the improvement of CAR-T cell therapies for solid tumors by targeting MDSCs in clinical practice.
Collapse
Affiliation(s)
- Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Muhammad Auwal Saliu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, Taipa, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
7
|
Yu Y, Chen H, Huang Z, Yuan Z, Liu L, Zhao J, Wei Q. Anti-PD-(L)1-Based Neoadjuvant Therapy in Head and Neck Carcinoma: a Meta-analysis of Prospective Clinical Trials. Otolaryngol Head Neck Surg 2024; 171:1321-1340. [PMID: 38943451 DOI: 10.1002/ohn.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE This meta-analysis aims to evaluate the efficacy and safety of antiprogressive disease (PD)-(L)1-based neoadjuvant therapy in head and neck squamous cell carcinoma (HNSCC) patients and identify potential prognostic biomarkers. DATA SOURCES Databases were systematically searched for prospective clinical trials evaluating the efficacy and safety of anti-PD-(L)1-based neoadjuvant therapy for HNSCC before January 12, 2024. REVIEW METHODS We estimated the efficacy and safety of neoadjuvant immune checkpoint inhibitors. Subgroup and sensitivity analyses were further performed. RESULTS A total of 570 patients from 20 studies were included. The pooled major pathological response (MPR), pathological complete response (pCR), and partial pathological response (PPR) rates were 30.7%, 15.3%, and 68.2%, respectively. Surgical complications, surgical delayed rate, all grade treatment-related adverse effects (TRAEs) and ≥Grade 3 TRAEs were 0.6%, 0.3%, 82.6%, and 9.7%, respectively. Best MPR or pCR rate was detected in patients receiving neoadjuvant anti-PD-(L)1 therapy + radiotherapy (with MPR rate of 75.5% and pCR rate of 51.1%) and neoadjuvant anti-PD-(L)1 therapy + chemotherapy groups (with MPR rate of 57.5% and pCR rate of 26.7%). No differences were detected in subgroups stratified by neoadjuvant treatment cycles, human papillomavirus (HPV) status, and tumor location. Patients with baseline Combined Positive Score (CPS) ≥ 20 have higher MPR and pCR rates compared to patients with CPS < 20. High Tumor Cell Proportion Score was also associated with MPR and pCR. Objective response rate is a strong predictor of MPR (odds ratio [OR] = 7.78, 95% confidence interval [CI] = 3.20%-18.91%) and pCR (OR = 3.24, 95% CI = 1.40%-7.48%). CONCLUSION Anti-PD-(L)1-based neoadjuvant therapy was effective and safe for HNSCC patients.
Collapse
Affiliation(s)
- Yaner Yu
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| | - Haiyan Chen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhifei Huang
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhijun Yuan
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jian Zhao
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Qichun Wei
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Zhang D, Wang M, Liu G, Li X, Yu W, Hui Z, Ren X, Sun Q. Novel FABP4 +C1q + macrophages enhance antitumor immunity and associated with response to neoadjuvant pembrolizumab and chemotherapy in NSCLC via AMPK/JAK/STAT axis. Cell Death Dis 2024; 15:717. [PMID: 39353883 PMCID: PMC11445384 DOI: 10.1038/s41419-024-07074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Immune checkpoint inhibitors (ICIs) immunotherapy facilitates new approaches to achieve precision cancer treatment. A growing number of patients with non-small cell lung cancer (NSCLC) have benefited from treatment with neoadjuvant ICIs combined with chemotherapy. However, the mechanisms and associations between the therapeutic efficacy of neoadjuvant pembrolizumab and chemotherapy (NAPC) and macrophage subsets are still unclear. We performed single-cell RNA sequencing (scRNA-seq) and identified a novel FABP4+C1q+ macrophage subtype, which exhibited stronger proinflammatory cytokine production and phagocytic ability. This subtype was found to be more abundant in tumor tissues and lymph nodes of major pathological response (MPR) patients compared to non-MPR patients, and was associated with a good efficacy of NAPC. Multiplex fluorescent immunohistochemical (mIHC) staining was subsequently used to verify our findings. Further mechanistic studies indicated that FABP4 and C1q regulate the expression of proinflammatory cytokines synergistically. In addition, FABP4 and C1q promote fatty acid synthesis, enhance anti-apoptosis ability and phagocytic ability of macrophage via the interaction of AMPK/JAK/STAT axis. This study provides novel insights into the underlying mechanisms and predictive biomarkers of NAPC. Our findings contribute to improving the prognosis of patients with NSCLC by potentially guiding more precise patient selection and treatment strategies. NOVELTY & IMPACT STATEMENTS: We identified a group of macrophages (FABP4+C1q+ macrophages) related to the therapeutic efficacy of neoadjuvant chemoimmunotherapy. FABP4+C1q+ macrophages highly expressed proinflammatory cytokines-related genes and had a strong cytokine production and phagocytic ability. We believe that our study provides a novel insight into the synergistic mechanism of neoadjuvant ICI combined with chemotherapy and may lead to improved clinical outcomes in patients with NSCLC in the future.
Collapse
Affiliation(s)
- Dong Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Min Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Gen Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xin Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenzhen Hui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Qian Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
9
|
Bhattacharya P, Linnenbach A, South AP, Martinez-Outschoorn U, Curry JM, Johnson JM, Harshyne LA, Mahoney MG, Luginbuhl AJ, Vadigepalli R. Tumor microenvironment governs the prognostic landscape of immunotherapy for head and neck squamous cell carcinoma: A computational model-guided analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615149. [PMID: 39386511 PMCID: PMC11463398 DOI: 10.1101/2024.09.26.615149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. An exhaustive simulation of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8+ killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Alban Linnenbach
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Andrew P. South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Joseph M. Curry
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Jennifer M. Johnson
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Larry A. Harshyne
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Adam J. Luginbuhl
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107, USA
| |
Collapse
|
10
|
Cao LM, Zhong NN, Chen Y, Li ZZ, Wang GR, Xiao Y, Liu XH, Jia J, Liu B, Bu LL. Less is more: Exploring neoadjuvant immunotherapy as a de-escalation strategy in head and neck squamous cell carcinoma treatment. Cancer Lett 2024; 598:217095. [PMID: 38964728 DOI: 10.1016/j.canlet.2024.217095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) constitutes a significant global cancer burden, given its high prevalence and associated mortality. Despite substantial progress in survival rates due to the enhanced multidisciplinary approach to treatment, these methods often lead to severe tissue damage, compromised function, and potential toxicity. Thus, there is an imperative need for novel, effective, and minimally damaging treatment modalities. Neoadjuvant treatment, an emerging therapeutic strategy, is designed to reduce tumor size and curtail distant metastasis prior to definitive intervention. Currently, neoadjuvant chemotherapy (NACT) has optimized the treatment approach for a subset of HNSCC patients, yet it has not produced a noticeable enhancement in overall survival (OS). In the contemporary cancer therapeutics landscape, immunotherapy is gaining traction at an accelerated pace. Notably, neoadjuvant immunotherapy (NAIT) has shown promising radiological and pathological responses, coupled with encouraging efficacy in several clinical trials. This potentially paves the way for a myriad of possibilities in treatment de-escalation of HNSCC, which warrants further exploration. This paper reviews the existing strategies and efficacies of neoadjuvant immune checkpoint inhibitors (ICIs), along with potential de-escalation strategies. Furthermore, the challenges encountered in the context of the de-escalation strategies of NAIT are explored. The aim is to inform future research directions that strive to improve the quality of life (QoL) for patients battling HNSCC.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xuan-Hao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jun Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Somatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
11
|
Dong L, Xue L, Cheng W, Tang J, Ran J, Li Y. Comprehensive survival analysis of oral squamous cell carcinoma patients undergoing initial radical surgery. BMC Oral Health 2024; 24:919. [PMID: 39123139 PMCID: PMC11313127 DOI: 10.1186/s12903-024-04690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE This study was designed to evaluate the five-year overall survival (OS) rate and postoperative survival time of patients diagnosed with oral squamous cell carcinoma (OSCC), as well as examine the clinical and pathological factors influencing survival outcomes in OSCC patients. METHODS Data were collected from OSCC patients who underwent their first radical surgical intervention in the Department of Maxillofacial Surgery at the First Affiliated Hospital of Chongqing Medical University between April 2014 and December 2016. Follow-up was conducted until March 2022. RESULTS The study included a total of 162 patients. The observed 5-year OS rate was 59.3%. Approximately 45.7% of OSCC patients experienced postoperative recurrence or metastasis, with a 5-year overall disease-free survival rate of 49.4%. There was no significant difference in the impact of sex, age, smoking, alcohol consumption, primary tumour location, depth of invasion or primary tumour size on the 5-year survival rate (p > 0.05). Univariate analysis revealed that clinical stage (Hazard Ratio = 2.239, p = 0.004), perineural invasion (PNI) (Hazard Ratio = 1.712, p = 0.03), lymph node metastasis (pN) (Hazard Ratio = 2.119, p = 0.002), pathological differentiation (Hazard Ratio = 2.715, p < 0.001), and recurrence or metastasis (Hazard Ratio = 10.02, p < 0.001) were significant factors influencing survival. Multivariate analysis further indicated that pathological differentiation (Hazard Ratio = 2.291, p = 0.001), PNI (Hazard Ratio = 1.765, p = 0.031) and recurrence or metastasis (Hazard Ratio = 9.256, p < 0.001) were independent risk factors of survival. Intriguingly, 11 OSCC patients were diagnosed with oesophageal squamous cell carcinoma (ESCC) within 1-4 years following surgery. CONCLUSION The survival prognosis of OSCC patients is significantly associated with clinical stage, PNI, lymph node metastasis, pathological differentiation, and recurrence or metastasis. Pathological differentiation, PNI and recurrence or metastasis are independent risk factors affecting survival. Routine clinical screening for ESCC may be recommended for OSCC patients with a history of alcohol consumption and tobacco use.
Collapse
Affiliation(s)
- Linsheng Dong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, P. R. China
- Chongqing Dental Hospital, Chongqing, 400010, P. R. China
| | - Lingli Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, P. R. China
| | - Wei Cheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, P. R. China
| | - Jin Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, P. R. China
| | - Jingxuan Ran
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, P. R. China
| | - Yadong Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, P. R. China.
| |
Collapse
|
12
|
Li J, Luo Z, Jiang S, Li J. Advancements in neoadjuvant immune checkpoint inhibitor therapy for locally advanced head and neck squamous Carcinoma: A narrative review. Int Immunopharmacol 2024; 134:112200. [PMID: 38744175 DOI: 10.1016/j.intimp.2024.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The prevalent treatment paradigm for locally advanced head and neck squamous carcinoma (HNSCC) typically entails surgery followed by adjuvant radiotherapy and chemotherapy. Despite this, a significant proportion of patients experience recurrence and metastasis. Immune checkpoint inhibitors (ICIs), notably pembrolizumab and nivolumab, have been established as the first and second lines of treatment for recurrent and metastatic HNSCC (R/M HNSCC). The application of ICIs as neoadjuvant immunotherapy in this context is currently under rigorous investigation. This review synthesizes data from clinical trials focusing on neoadjuvant ICIs, highlighting that the pathological responses elicited by these treatments are promising. Furthermore, it is noted that the safety profiles of both monotherapy and combination therapies with ICIs are manageable, with no new safety signals identified. The review concludes by contemplating the future direction and challenges associated with neoadjuvant ICI therapy, encompassing aspects such as the refinement of imaging and pathological response criteria, selection criteria for adjuvant therapies, evaluation of the efficacy and safety of various combination treatment modalities, and the identification of responsive patient cohorts.
Collapse
Affiliation(s)
- Jin Li
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Zhenqin Luo
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Siqing Jiang
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| |
Collapse
|
13
|
Morel D, Robert C, Paragios N, Grégoire V, Deutsch E. Translational Frontiers and Clinical Opportunities of Immunologically Fitted Radiotherapy. Clin Cancer Res 2024; 30:2317-2332. [PMID: 38477824 PMCID: PMC11145173 DOI: 10.1158/1078-0432.ccr-23-3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Ionizing radiation can have a wide range of impacts on tumor-immune interactions, which are being studied with the greatest interest and at an accelerating pace by the medical community. Despite its undeniable immunostimulatory potential, it clearly appears that radiotherapy as it is prescribed and delivered nowadays often alters the host's immunity toward a suboptimal state. This may impair the full recovery of a sustained and efficient antitumor immunosurveillance posttreatment. An emerging concept is arising from this awareness and consists of reconsidering the way of designing radiation treatment planning, notably by taking into account the individualized risks of deleterious radio-induced immune alteration that can be deciphered from the planned beam trajectory through lymphocyte-rich organs. In this review, we critically appraise key aspects to consider while planning immunologically fitted radiotherapy, including the challenges linked to the identification of new dose constraints to immune-rich structures. We also discuss how pharmacologic immunomodulation could be advantageously used in combination with radiotherapy to compensate for the radio-induced loss, for example, with (i) agonists of interleukin (IL)2, IL4, IL7, IL9, IL15, or IL21, similarly to G-CSF being used for the prophylaxis of severe chemo-induced neutropenia, or with (ii) myeloid-derived suppressive cell blockers.
Collapse
Affiliation(s)
- Daphné Morel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| | - Nikos Paragios
- Therapanacea, Paris, France
- CentraleSupélec, Gif-sur-Yvette, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| |
Collapse
|
14
|
Alnemri AE, Tekumalla S, Moroco AE, Vathiotis I, Tuluc M, Gargano S, Zhan T, Cognetti DM, Curry JM, Argiris A, Linnenbach A, South AP, Harshyne LA, Johnson JM, Luginbuhl AJ. Predictive capacity of immune-related adverse events and cytokine profiling in neoadjuvant immune checkpoint inhibitor trials for head and neck squamous cell carcinoma. Cancer Med 2024; 13:e7370. [PMID: 38847087 PMCID: PMC11157197 DOI: 10.1002/cam4.7370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVES Certain low-level immune-related adverse events (irAEs) have been associated with survival benefits in patients with various solid tumors on immune checkpoint inhibitors (ICIs). We aimed to investigate the association between irAEs and response to neoadjuvant ICIs in patients with head and neck squamous cell carcinoma (HNSCC) and to identify differences in circulating cytokine levels based on irAE status. METHODS This was a retrospective cohort study including three neoadjuvant clinical trials from July 2017 to January 2022: NCT03238365 (nivolumab ± tadalafil), NCT03854032 (nivolumab ± BMS986205), NCT03618654 (durvalumab ± metformin). The presence and type of irAEs, pathologic treatment response, and survival were compared. Canonical linear discriminant analysis (LDA) was performed to identify combinations of circulating cytokines predictive of irAEs using plasma sample multiplex assay. RESULTS Of 113 participants meeting inclusion criteria, 32 (28.3%) developed irAEs during treatment or follow-up. Positive p16 status was associated with irAEs (odds ratio [OR] 2.489; 95% CI 1.069-6.119; p = 0.043). irAEs were associated with pathologic treatment response (OR 3.73; 95% CI 1.34-10.35; p = 0.011) and with higher OS in the combined cohort (HR 0.319; 95% CI 0.113-0.906; p = 0.032). Patients with irAEs within the nivolumab cohort had significant elevations of select cytokines pre-treatment. Canonical LDA identified key drivers of irAEs among all trials, which were highly predictive of future irAE status. CONCLUSIONS irAEs are associated with response to neoadjuvant ICI therapy in HNSCC and can serve as clinical indicators for improved clinical outcomes. irAEs can be predicted by concentrations of several circulating cytokines prior to treatment.
Collapse
Affiliation(s)
- Angela E. Alnemri
- Department of Otolaryngology – Head & Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sruti Tekumalla
- Department of Otolaryngology – Head & Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Annie E. Moroco
- Department of Otolaryngology – Head & Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Ioannis Vathiotis
- Department of Medical OncologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Madalina Tuluc
- Department of PathologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Stacey Gargano
- Department of PathologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Tingting Zhan
- Department of BiostatisticsThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - David M. Cognetti
- Department of Otolaryngology – Head & Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Joseph M. Curry
- Department of Otolaryngology – Head & Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Athanassios Argiris
- Department of Medical OncologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Alban Linnenbach
- Department of Dermatology and Cutaneous BiologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Andrew P. South
- Department of Otolaryngology – Head & Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Pharmacology, Physiology and Cancer BiologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Larry A. Harshyne
- Department of Microbiology & ImmunologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Jennifer M. Johnson
- Department of Otolaryngology – Head & Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Medical OncologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Adam J. Luginbuhl
- Department of Otolaryngology – Head & Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
15
|
Dyikanov D, Zaitsev A, Vasileva T, Wang I, Sokolov AA, Bolshakov ES, Frank A, Turova P, Golubeva O, Gantseva A, Kamysheva A, Shpudeiko P, Krauz I, Abdou M, Chasse M, Conroy T, Merriam NR, Alesse JE, English N, Shpak B, Shchetsova A, Tikhonov E, Filatov I, Radko A, Bolshakova A, Kachalova A, Lugovykh N, Bulahov A, Kilina A, Asanbekov S, Zheleznyak I, Skoptsov P, Alekseeva E, Johnson JM, Curry JM, Linnenbach AJ, South AP, Yang E, Morozov K, Terenteva A, Nigmatullina L, Fastovetz D, Bobe A, Balabanian L, Nomie K, Yong ST, Davitt CJH, Ryabykh A, Kudryashova O, Tazearslan C, Bagaev A, Fowler N, Luginbuhl AJ, Ataullakhanov RI, Goldberg MF. Comprehensive peripheral blood immunoprofiling reveals five immunotypes with immunotherapy response characteristics in patients with cancer. Cancer Cell 2024; 42:759-779.e12. [PMID: 38744245 DOI: 10.1016/j.ccell.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles. An independent analysis of 17,800 open-source transcriptomes with the same approach corroborated these findings. Continuous immunotype-based signature scores were developed to correlate systemic immunity with patient responses to different cancer treatments, including immunotherapy, prognostically and predictively. Our approach and findings illustrate the potential utility of a simple blood test as a flexible tool for stratifying cancer patients into therapy response groups based on systemic immunoprofiling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph M Curry
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alban J Linnenbach
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - EnJun Yang
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Adam J Luginbuhl
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
16
|
Chen X, Liu Y, Du B, Shi M, Lin Z, Li H, Chen J, Wu M, Shi M. Enhancement of antitumor response of staphylococcal enterotoxin C2 mutant 2M-118 by promoting cell-mediated antitumor immunity. Int Immunopharmacol 2024; 132:111943. [PMID: 38581989 DOI: 10.1016/j.intimp.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Staphylococcal enterotoxin C2 (SEC2) is used as an immunotherapeutic drug in China. However, SEC2 are limited due to its immunosuppressive and toxic effects. A SEC2 2M-118 (H118A/T20L/G22E) mutant generated by site-directed mutagenesis was studied to elucidate the underlying antitumor mechanism. METHODS The effects of 2M-118 on mouse fibrosarcoma (Meth-A) cells and cytokine responses were tested in vitro using a transwell assay and ELISA, respectively. 2M-118 effect on immune function in tumor-bearing mice was tested. Cytokine levels and antitumor responses were measured using ELISA and flow cytometry, respectively. TUNEL staining and immunohistochemistry were employed to detect the tumor apoptosis and CD4+ and CD8+ tumor infiltrating lymphocytes (TILs) in tumor tissue. RESULTS 2M-118 demonstrated the growth inhibition on tumor cells, increase of cytokines production (IL-2, IFN-γ, and TNF-α) and splenocyte proliferation in vitro. 2M-118 effectively inhibited tumor development and increased lymphocytes and cytokines in a tumor-bearing mouse model. Additionally, 2M-118 regulated the tumormicroenvironment by reducing the number of myeloid-derived suppressor cells (MDSCs), increasing the number of TILs, and inducing tumorcell apoptosis. CONCLUSION 2M-118 promotes immune function and enhances antitumor response. This indicates that 2M-118 could potentially be developed as a novel anti-tumor drug with-highefficiencyandlowtoxicity.
Collapse
Affiliation(s)
- Xinlin Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuguo Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mingjie Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zeheng Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hongyi Li
- Shenyang Xiehe Biopharmaceutical Stock Co., Ltd., Shenyang, China
| | - Juyu Chen
- Shenyang Xiehe Biopharmaceutical Stock Co., Ltd., Shenyang, China
| | - Meifen Wu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ming Shi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
17
|
Kürten CHL, Ferris RL. Neoadjuvant immunotherapy for head and neck squamous cell carcinoma. Laryngorhinootologie 2024; 103:S167-S187. [PMID: 38697147 DOI: 10.1055/a-2183-5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The neoadjuvant immunotherapy approach marks a significant shift in the treatment paradigm of potentially curable HNSCC. Here, current therapies, despite being highly individualized and advanced, often fall short in achieving satisfactory long-term survival rates and are frequently associated with substantial morbidity.The primary advantage of this approach lies in its potential to intensify and enhance treatment regimens, offering a distinct modality that complements the existing triad of surgery, radiotherapy, and chemotherapy. Checkpoint inhibitors have been at the forefront of this evolution. Demonstrating moderate yet significant survival benefits in the recurrent-metastatic setting with a relatively better safety profile compared to conventional treatments, these agents hold promise when considered for earlier stages of HNSCC.On the other hand, a significant potential benefit of introducing immunotherapy in the neoadjuvant phase is the possibility of treatment de-escalation. By reducing the tumor burden before surgery, this strategy could lead to less invasive surgical interventions. The prospect of organ-sparing protocols becomes a realistic and highly valued goal in this context. Further, the early application of immunotherapy might catalyze a more effective and durable immune response. The induction of an immune memory may potentially lead to a more effective surveillance of residual disease, decreasing the rates of local, regional, and distant recurrences, thereby enhancing overall and recurrence-free survival.However, neoadjuvant immunotherapy is not without its challenges. One of the primary concerns is the safety and adverse events profile. While data suggest that adverse events are relatively rare and manageable, the long-term safety profile in the neoadjuvant setting, especially in the context of curative intent, remains a subject for ongoing research. Another unsolved issue lies in the accurate assessment of treatment response. The discrepancy between radiographic assessment using RECIST criteria and histological findings has been noted, indicating a gap in current imaging techniques' ability to accurately reflect the true efficacy of immunotherapy. This gap underscores the necessity for improved imaging methodologies and the development of new radiologic and pathologic criteria tailored to evaluate the response to immunotherapy accurately.Treatment combinations and timing represent another layer of complexity. There is a vast array of possibilities in combining immunotherapy agents with conventional chemotherapy, targeted therapy, radiation, and other experimental treatments. Determining the optimal treatment regimen for individual patients becomes an intricate task, especially when comparing small, single-arm, non-randomized trials with varying regimens and outcome measures.Moreover, one needs to consider the importance of pre- and intraoperative decision-making in the context of neoadjuvant immunotherapy. As experience with this treatment paradigm grows, there is potential for more tailored surgical approaches based on the patient's remaining disease post-neoadjuvant treatment. This consideration is particularly relevant in extensive surgeries, where organ-sparing protocols could be evaluated.In practical terms, the multi-modal nature of this treatment strategy introduces complexities, especially outside clinical trial settings. Patients face challenges in navigating the treatment landscape, which involves coordination across multiple medical disciplines, highlighting the necessity for streamlined care pathways at specialized centers to facilitate effective treatment management if the neoadjuvant approach is introduced to the real-world.These potential harms and open questions underscore the critical need for meticulously designed clinical trials and correlational studies to ensure patient safety and efficacy. Only these can ensure that this new treatment approach is introduced in a safe way and fulfils the promise it theoretically holds.
Collapse
Affiliation(s)
- Cornelius H L Kürten
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
George B, Kudryashova O, Kravets A, Thalji S, Malarkannan S, Kurzrock R, Chernyavskaya E, Gusakova M, Kravchenko D, Tychinin D, Savin E, Alekseeva L, Butusova A, Bagaev A, Shin N, Brown JH, Sethi I, Wang D, Taylor B, McFall T, Kamgar M, Hall WA, Erickson B, Christians KK, Evans DB, Tsai S. Transcriptomic-Based Microenvironment Classification Reveals Precision Medicine Strategies for Pancreatic Ductal Adenocarcinoma. Gastroenterology 2024; 166:859-871.e3. [PMID: 38280684 DOI: 10.1053/j.gastro.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/11/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND & AIMS The complex tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) has hindered the development of reliable predictive biomarkers for targeted therapy and immunomodulatory strategies. A comprehensive characterization of the TME is necessary to advance precision therapeutics in PDAC. METHODS A transcriptomic profiling platform for TME classification based on functional gene signatures was applied to 14 publicly available PDAC datasets (n = 1657) and validated in a clinically annotated independent cohort of patients with PDAC (n = 79). Four distinct subtypes were identified using unsupervised clustering and assessed to evaluate predictive and prognostic utility. RESULTS TME classification using transcriptomic profiling identified 4 biologically distinct subtypes based on their TME immune composition: immune enriched (IE); immune enriched, fibrotic (IE/F); fibrotic (F); and immune depleted (D). The IE and IE/F subtypes demonstrated a more favorable prognosis and potential for response to immunotherapy compared with the F and D subtypes. Most lung metastases and liver metastases were subtypes IE and D, respectively, indicating the role of clonal phenotype and immune milieu in developing personalized therapeutic strategies. In addition, distinct TMEs with potential therapeutic implications were identified in treatment-naive primary tumors compared with tumors that underwent neoadjuvant therapy. CONCLUSIONS This novel approach defines a distinct subgroup of PADC patients that may benefit from immunotherapeutic strategies based on their TME subtype and provides a framework to select patients for prospective clinical trials investigating precision immunotherapy in PDAC. Further, the predictive utility and real-world clinical applicability espoused by this transcriptomic-based TME classification approach will accelerate the advancement of precision medicine in PDAC.
Collapse
Affiliation(s)
- Ben George
- LaBahn Pancreatic Cancer Program, Division of Hematology and Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin.
| | | | | | - Samih Thalji
- LaBahn Pancreatic Cancer Program, Department of Surgery, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Subramaniam Malarkannan
- Versiti Blood Research Institute, Department of Medicine, Microbiology & Molecular Genetics, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Razelle Kurzrock
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Division of Hematology and Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | | | | | | | | | - Egor Savin
- BostonGene Corporation, Waltham, Massachusetts
| | | | | | | | - Nara Shin
- BostonGene Corporation, Waltham, Massachusetts
| | | | - Isha Sethi
- BostonGene Corporation, Waltham, Massachusetts
| | - Dandan Wang
- Versiti Blood Research Institute, Department of Medicine, Microbiology & Molecular Genetics, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Bradley Taylor
- Clinical and Translational Science Institute, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Thomas McFall
- LaBahn Pancreatic Cancer Program, Department of Biochemistry, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Mandana Kamgar
- LaBahn Pancreatic Cancer Program, Division of Hematology and Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - William A Hall
- LaBahn Pancreatic Cancer Program, Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Beth Erickson
- LaBahn Pancreatic Cancer Program, Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Kathleen K Christians
- LaBahn Pancreatic Cancer Program, Department of Surgery, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Douglas B Evans
- LaBahn Pancreatic Cancer Program, Department of Surgery, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Susan Tsai
- LaBahn Pancreatic Cancer Program, Department of Surgery, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| |
Collapse
|
19
|
Bouassaly J, Karimi N, Kowalski LP, Sultanem K, Alaoui-Jamali M, Mlynarek A, Mascarella M, Hier M, Sadeghi N, da Silva SD. Rethinking treatment paradigms: Neoadjuvant therapy and de-escalation strategies in HPV-positive head and neck cancer. Crit Rev Oncol Hematol 2024; 196:104326. [PMID: 38479584 DOI: 10.1016/j.critrevonc.2024.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
Head and neck cancer (HNC) is the 6th most common cancer across the world, with a particular increase in HNC associated with human papilloma virus (HPV) among younger populations. Historically, the standard treatment for this disease consisted of combined surgery and radiotherapy or curative platinum-based concurrent chemoradiotherapy, with associated long term and late toxicities. However, HPV-positive HNC is recognized as a unique cancer subtype, typically with improved clinical outcomes. As such, treatment de-escalation strategies have been widely researched to mitigate the adverse effects associated with the current standard of care without compromising efficacy. These strategies include treatment de-escalation, such as novel surgical techniques, alternative radiation technologies, radiation dose and volume reduction, as well as neoadjuvant chemotherapies, immunotherapies, and combined therapies. Although these therapies show great promise, many of them are still under investigation due to hesitation surrounding their widespread implementation. The objective of this review is to summarize the most recent progress in de-escalation strategies and neoadjuvant therapies designed for HPV-positive HNC. While specific treatments may require additional research before being widely adopted, encouraging results from recent studies have highlighted the advantages of neoadjuvant chemotherapy and immunotherapy, as well as radiation and surgical de-escalation approaches in managing HPV-positive HNC.
Collapse
Affiliation(s)
- Jenna Bouassaly
- Division of Experimental Medicine, McGill University, Montreal QC H4A 3J1, Canada; Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal QC H3T 1E2, Canada
| | - Naser Karimi
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada
| | - Luiz Paulo Kowalski
- AC Camargo Cancer Center, Faculty of Medicine - University of Sao Paulo, Sao Paulo, Brazil
| | - Khalil Sultanem
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada
| | - Moulay Alaoui-Jamali
- Division of Experimental Medicine, McGill University, Montreal QC H4A 3J1, Canada; Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal QC H3T 1E2, Canada
| | - Alex Mlynarek
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada
| | - Marco Mascarella
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada
| | - Michael Hier
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada
| | - Nader Sadeghi
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada
| | - Sabrina Daniela da Silva
- Division of Experimental Medicine, McGill University, Montreal QC H4A 3J1, Canada; Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada; Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal QC H3T 1E2, Canada; AC Camargo Cancer Center, Faculty of Medicine - University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
20
|
Okwuone DDD, Morgan D, Gan GN. Exploring the function of myeloid cells in promoting metastasis in head and neck cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:108-119. [PMID: 38468824 PMCID: PMC10925485 DOI: 10.37349/etat.2024.00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024] Open
Abstract
Head and neck cancer (HNC) is a challenging disease that lacks effective treatment, particularly in the cases that spread locoregionally and metastasize distantly, dramatically reducing patient survival rates. Expanding the understanding of the mechanisms of the metastatic cascade is critical for creating more effective therapeutics that improve outcomes for HNC patients. A true grasp of cancer metastasis requires the consideration of all cell types that contribute to the inflammatory HNC microenvironment as drivers of this process. More emphasis now is being placed on exploring the roles of the different immune cells in cancer control, tumorigenesis and metastasis. Myeloid cells are the most numerous immune cell types in the body, and they are actively recruited and reprogrammed by tumor cells to behave in a variety of ways. These cells are remarkably diverse in phenotype and function, and the part they play in tumor spread greatly differs based on the cell type. This review will focus on summarizing the roles of macrophages, neutrophils, myeloid derived suppressor cells (MDSCs), and dendritic cells (DCs) in driving HNC metastasis by examining the current knowledge base and offering potential new routes through which to target and treat this deadly process.
Collapse
Affiliation(s)
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gregory N. Gan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
21
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Smussi D, Mattavelli D, Paderno A, Gurizzan C, Lorini L, Romani C, Bignotti E, Grammatica A, Ravanelli M, Bossi P. Revisiting the concept of neoadjuvant and induction therapy in head and neck cancer with the advent of immunotherapy. Cancer Treat Rev 2023; 121:102644. [PMID: 37862833 DOI: 10.1016/j.ctrv.2023.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The treatment of locally advanced (LA) Head and Neck Squamous Cell Carcinoma (HNSCC) is based on surgery followed by (chemo)radiation or on curative (chemo)radiation, depending on site and stage. Despite optimal locoregional treatment, about 50% of patients recur, with a huge impact on prognosis and substantial morbidity. The advent of immunotherapy (IT) with immune checkpoint inhibitors (ICIs) changed the paradigm of systemic treatment for recurrent/metastatic (RM) disease, showing activity, efficacy, and safety in both platinum-resistant and platinum-naïve patients. Such data led clinicians to design clinical trials to investigate early administration of IT even in the neoadjuvant or window of opportunity setting. In this review, we examine the published and ongoing trials investigating IT in the neoadjuvant setting for LA HNSCC. We address the current challenges of this treatment modality: optimal patient selection for neoadjuvant IT; choosing the appropriate systemic approach to enhance response without compromising tolerability; determining the ideal study endpoint, with a focus on major pathological response as a potential surrogate for overall survival; evaluating treatment response through imaging, considering the discordance between radiological and pathological assessments; and the influence of neoadjuvant IT response on locoregional treatment de-escalation strategies.
Collapse
Affiliation(s)
- Davide Smussi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Davide Mattavelli
- Otorhinolaryngology - Head and Neck Surgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Alberto Paderno
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Cristina Gurizzan
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Luigi Lorini
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Chiara Romani
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Eliana Bignotti
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alberto Grammatica
- Otorhinolaryngology - Head and Neck Surgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
23
|
Singh N, Khan FM, Bala L, Vera J, Wolkenhauer O, Pützer B, Logotheti S, Gupta SK. Logic-based modeling and drug repurposing for the prediction of novel therapeutic targets and combination regimens against E2F1-driven melanoma progression. BMC Chem 2023; 17:161. [PMID: 37993971 PMCID: PMC10666365 DOI: 10.1186/s13065-023-01082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Melanoma presents increasing prevalence and poor outcomes. Progression to aggressive stages is characterized by overexpression of the transcription factor E2F1 and activation of downstream prometastatic gene regulatory networks (GRNs). Appropriate therapeutic manipulation of the E2F1-governed GRNs holds the potential to prevent metastasis however, these networks entail complex feedback and feedforward regulatory motifs among various regulatory layers, which make it difficult to identify druggable components. To this end, computational approaches such as mathematical modeling and virtual screening are important tools to unveil the dynamics of these signaling networks and identify critical components that could be further explored as therapeutic targets. Herein, we integrated a well-established E2F1-mediated epithelial-mesenchymal transition (EMT) map with transcriptomics data from E2F1-expressing melanoma cells to reconstruct a core regulatory network underlying aggressive melanoma. Using logic-based in silico perturbation experiments of a core regulatory network, we identified that simultaneous perturbation of Protein kinase B (AKT1) and oncoprotein murine double minute 2 (MDM2) drastically reduces EMT in melanoma. Using the structures of the two protein signatures, virtual screening strategies were performed with the FDA-approved drug library. Furthermore, by combining drug repurposing and computer-aided drug design techniques, followed by molecular dynamics simulation analysis, we identified two potent drugs (Tadalafil and Finasteride) that can efficiently inhibit AKT1 and MDM2 proteins. We propose that these two drugs could be considered for the development of therapeutic strategies for the management of aggressive melanoma.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Biochemistry, BBDCODS, BBD University, Lucknow, Uttar Pradesh, India
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Faiz M Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Lakshmi Bala
- Department of Biochemistry, BBDCODS, BBD University, Lucknow, Uttar Pradesh, India
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Munich, Germany
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India
- Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch, South Africa
| | - Brigitte Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India.
| |
Collapse
|
24
|
Oliveira G, Egloff AM, Afeyan AB, Wolff JO, Zeng Z, Chernock RD, Zhou L, Messier C, Lizotte P, Pfaff KL, Stromhaug K, Penter L, Haddad RI, Hanna GJ, Schoenfeld JD, Goguen LA, Annino DJ, Jo V, Oppelt P, Pipkorn P, Jackson R, Puram SV, Paniello RC, Rich JT, Webb J, Zevallos JP, Mansour M, Fu J, Dunn GP, Rodig SJ, Ley J, Morris LG, Dunn L, Paweletz CP, Kallogjeri D, Piccirillo JF, Adkins DR, Wu CJ, Uppaluri R. Preexisting tumor-resident T cells with cytotoxic potential associate with response to neoadjuvant anti-PD-1 in head and neck cancer. Sci Immunol 2023; 8:eadf4968. [PMID: 37683037 PMCID: PMC10794154 DOI: 10.1126/sciimmunol.adf4968] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
About 50% of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) experience recurrences after definitive therapy. The presurgical administration of anti-programmed cell death protein 1 (PD-1) immunotherapy results in substantial pathologic tumor responses (pTR) within the tumor microenvironment (TME). However, the mechanisms underlying the dynamics of antitumor T cells upon neoadjuvant PD-1 blockade remain unresolved, and approaches to increase pathologic responses are lacking. In a phase 2 trial (NCT02296684), we observed that 45% of patients treated with two doses of neoadjuvant pembrolizumab experienced marked pTRs (≥50%). Single-cell analysis of 17,158 CD8+ T cells from 14 tumor biopsies, including 6 matched pre-post neoadjuvant treatment, revealed that responding tumors had clonally expanded putative tumor-specific exhausted CD8+ tumor-infiltrating lymphocytes (TILs) with a tissue-resident memory program, characterized by high cytotoxic potential (CTX+) and ZNF683 expression, within the baseline TME. Pathologic responses after 5 weeks of PD-1 blockade were consistent with activation of preexisting CTX+ZNF683+CD8+ TILs, paralleling loss of viable tumor and associated tumor antigens. Response was associated with high numbers of CD103+PD-1+CD8+ T cells infiltrating pretreatment lesions, whereas revival of nonexhausted persisting clones and clonal replacement were modest. By contrast, nonresponder baseline TME exhibited a relative absence of ZNF683+CTX+ TILs and subsequent accumulation of highly exhausted clones. In HNSCC, revival of preexisting ZNF683+CTX+ TILs is a major mechanism of response in the immediate postneoadjuvant setting.
Collapse
Affiliation(s)
- Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alexander B. Afeyan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
| | - Jacquelyn O. Wolff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Zexiang Zeng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rebecca D. Chernock
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Liye Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cameron Messier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Patrick Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Kathleen L Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Kari Stromhaug
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Hematology, Oncology and Tumor immunology, Campus Virchow Klinikum, Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert I. Haddad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Glenn J. Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Laura A. Goguen
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Donald J. Annino
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Vickie Jo
- Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA
| | - Peter Oppelt
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine/Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrik Pipkorn
- Department of Otolaryngology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ryan Jackson
- Department of Otolaryngology, Washington University School of Medicine; St. Louis, MO, USA
| | - Sidharth V. Puram
- Department of Otolaryngology, Washington University School of Medicine; St. Louis, MO, USA
| | - Randal C. Paniello
- Department of Otolaryngology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jason T. Rich
- Department of Otolaryngology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jason Webb
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jose P. Zevallos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mena Mansour
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jingxin Fu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gavin P. Dunn
- Department of Neurological Surgery, Massachusetts General Hospital; Boston, MA, USA
| | - Scott J. Rodig
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA
| | - Jessica Ley
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine/Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luc G.T. Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lara Dunn
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cloud P. Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Dorina Kallogjeri
- Department of Otolaryngology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jay F. Piccirillo
- Department of Otolaryngology, Washington University School of Medicine; St. Louis, MO, USA
| | - Douglas R. Adkins
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine/Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
25
|
ElHady AK, El-Gamil DS, Abdel-Halim M, Abadi AH. Advancements in Phosphodiesterase 5 Inhibitors: Unveiling Present and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:1266. [PMID: 37765073 PMCID: PMC10536424 DOI: 10.3390/ph16091266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Phosphodiesterase 5 (PDE5) inhibitors presented themselves as important players in the nitric oxide/cGMP pathway, thus exerting a profound impact on various physiological and pathological processes. Beyond their well-known efficacy in treating male erectile dysfunction (ED) and pulmonary arterial hypertension (PAH), a plethora of studies have unveiled their significance in the treatment of a myriad of other diseases, including cognitive functions, heart failure, multiple drug resistance in cancer therapy, immune diseases, systemic sclerosis and others. This comprehensive review aims to provide an updated assessment of the crucial role played by PDE5 inhibitors (PDE5-Is) as disease-modifying agents taking their limiting side effects into consideration. From a medicinal chemistry and drug discovery perspective, the published PDE5-Is over the last 10 years and their binding characteristics are systemically discussed, and advancement in properties is exposed. A persistent challenge encountered with these agents lies in their limited isozyme selectivity; considering this obstacle, this review also highlights the breakthrough development of the recently reported PDE5 allosteric inhibitors, which exhibit an unparalleled level of selectivity that was rarely achievable by competitive inhibitors. The implications and potential impact of these novel allosteric inhibitors are meticulously explored. Additionally, the concept of multi-targeted ligands is critically evaluated in relation to PDE5-Is by inspecting the broader spectrum of their molecular interactions and effects. The objective of this review is to provide insight into the design of potent, selective PDE5-Is and an overview of their biological function, limitations, challenges, therapeutic potentials, undergoing clinical trials, future prospects and emerging uses, thus guiding upcoming endeavors in both academia and industry within this domain.
Collapse
Affiliation(s)
- Ahmed K. ElHady
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11865, Egypt;
| | - Dalia S. El-Gamil
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
26
|
Hill BL, Calder AN, Flemming JP, Guo Y, Gilmore SL, Trofa MA, Daniels SK, Nielsen TN, Gleason LK, Antysheva Z, Demina K, Kotlov N, Davitt CJ, Cognetti DM, Prendergast GC, Snook AE, Johnson JM, Kumar G, Linnenbach AJ, Martinez-Outschoorn U, South AP, Curry JM, Harshyne LA, Luginbuhl AJ, Mahoney MG. IL-8 correlates with nonresponse to neoadjuvant nivolumab in HPV positive HNSCC via a potential extracellular vesicle miR-146a mediated mechanism. Mol Carcinog 2023; 62:1428-1443. [PMID: 37401875 PMCID: PMC10524928 DOI: 10.1002/mc.23587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Therapy using anti-PD-1 immune checkpoint inhibitors (ICI) has revolutionized the treatment of many cancers including head and neck squamous cell carcinomas (HNSCC), but only a fraction of patients respond. To better understand the molecular mechanisms driving resistance, we performed extensive analysis of plasma and tumor tissues before and after a 4-week neoadjuvant trial in which HNSCC patients were treated with the anti-PD-1 inhibitor, nivolumab. Luminex cytokine analysis of patient plasma demonstrated that HPVpos nonresponders displayed high levels of the proinflammatory chemokine, interleukin-8 (IL-8), which decreased after ICI treatment, but remained higher than responders. miRNAseq analysis of tetraspanin-enriched small extracellular vesicles (sEV) purified from plasma of HPVpos nonresponders demonstrated significantly lower levels of seven miRNAs that target IL-8 including miR-146a. Levels of the pro-survival oncoprotein Dsg2, which has been to down-regulate miR-146a, are elevated with HPVpos tumors displaying higher levels than HPVneg tumors. Dsg2 levels decrease significantly following ICI in responders but not in nonresponders. In cultured HPVpos cells, restoration of miR-146a by forced expression or treatment with miR-146a-loaded sEV, reduced IL-8 level, blocked cell cycle progression, and promoted cell death. These findings identify Dsg2, miR-146a, and IL-8 as potential biomarkers for ICI response and suggest that the Dsg2/miR-146a/IL-8 signaling axis negatively impacts ICI treatment outcomes and could be targeted to improve ICI responsiveness in HPVpos HNSCC patients.
Collapse
Affiliation(s)
- Brianna L. Hill
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alyssa N. Calder
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joseph P. Flemming
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yiyang Guo
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sydney L. Gilmore
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Melissa A. Trofa
- Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sean K. Daniels
- Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA, USA
| | - Torbjoern N. Nielsen
- John A. Burns School of Medicine, University of Hawai’i at Mānoa Honolulu, HI, USA
| | - Laura K. Gleason
- Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - David M. Cognetti
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jennifer M. Johnson
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alban J. Linnenbach
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Andrew P. South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph M. Curry
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Larry A. Harshyne
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam J. Luginbuhl
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mỹ G. Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
27
|
Giannini L, Alliata A, Cristofaro V, Incandela F, Pompilio M, Ottini A, Cavalieri S, Nuzzolese I, Iacovelli NA, Franceschini M, Deganello A. Radiation-Induced Oropharyngeal Squamous Cell Carcinoma: Case Report and Review of the Literature. Curr Oncol 2023; 30:6708-6719. [PMID: 37504352 PMCID: PMC10378216 DOI: 10.3390/curroncol30070492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Radiation therapy (RT) is a mainstay for the treatment of head and neck (HN) cancers, with 80% of patients receiving such treatment. Radiation-induced malignancies represent a life-threatening long-term effect of RT, with an incidence of 0.5% to 15%. CASE DESCRIPTION After 13 years, a 33-year-old woman treated with chemo-radiotherapy for nasopharyngeal carcinoma developed a locally advanced, radiation-induced, p16-negative oropharyngeal squamous cell carcinoma (SCC) at the base of the tongue. Chemo/immunotherapy was administered as a first-line treatment. Given the optimal response and the feasibility of surgery, after three cycles, the patient underwent a total glossectomy, bilateral neck dissection, and reconstruction with a thoraco-dorsal free flap. A histological examination found SCC with a residual cancer burden of 70% and free margins. DISCUSSION The mechanisms responsible for carcinogenesis after RT are still not completely clear. Diagnosis may be challenging due to the previous treatment; growth patterns are unusual, and lymphotropism is lower. Prognosis is usually poor since surgical resectability is often not achievable. CONCLUSIONS Radiation-induced malignancies are difficult to treat. Patient management should always be discussed at a multidisciplinary level. Future research is needed to assess whether the promising results of clinical studies with pre-operative immunotherapy in locally advanced HN SCC patients may be translated into radiation-induced cancers.
Collapse
Affiliation(s)
- Lorenzo Giannini
- Department of Otorhinolaryngology, Maxillofacial, and Thyroid Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Andrea Alliata
- Department of Otorhinolaryngology, Maxillofacial, and Thyroid Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Valentina Cristofaro
- Department of Otorhinolaryngology, Maxillofacial, and Thyroid Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Fabiola Incandela
- Department of Otorhinolaryngology, Maxillofacial, and Thyroid Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Madia Pompilio
- Department of Otorhinolaryngology, Maxillofacial, and Thyroid Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Arianna Ottini
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Imperia Nuzzolese
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | | | - Marzia Franceschini
- Radiotherapy Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Alberto Deganello
- Department of Otorhinolaryngology, Maxillofacial, and Thyroid Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
28
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
29
|
Raju Paul S, Valiev I, Korek SE, Zyrin V, Shamsutdinova D, Gancharova O, Zaitsev A, Nuzhdina E, Davies DL, Dagogo‐Jack I, Frenkel F, Brown JH, Hess JM, Viet S, Petersen JL, Wright CD, Ott H, Auchincloss HG, Muniappan A, Shioda T, Lanuti M, Davis CM, Ehli EA, Hung YP, Mino‐Kenudson M, Tsiper M, Sluder AE, Reeves PM, Kotlov N, Bagaev A, Ataullakhanov R, Poznansky MC. B cell-dependent subtypes and treatment-based immune correlates to survival in stage 3 and 4 lung adenocarcinomas. FASEB Bioadv 2023; 5:156-170. [PMID: 37020749 PMCID: PMC10068771 DOI: 10.1096/fba.2023-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Surgery and chemoradiation are the standard of care in early stages of non-small cell lung cancer (NSCLC), while immunotherapy is the standard of care in late-stage NSCLC. The immune composition of the tumor microenvironment (TME) is recognized as an indicator for responsiveness to immunotherapy, although much remains unknown about its role in responsiveness to surgery or chemoradiation. In this pilot study, we characterized the NSCLC TME using mass cytometry (CyTOF) and bulk RNA sequencing (RNA-Seq) with deconvolution of RNA-Seq being performed by Kassandra, a recently published deconvolution tool. Stratification of patients based on the intratumoral abundance of B cells identified that the B-cell rich patient group had increased expression of CXCL13 and greater abundance of PD1+ CD8 T cells. The presence of B cells and PD1+ CD8 T cells correlated positively with the presence of intratumoral tertiary lymphoid structures (TLS). We then assessed the predictive and prognostic utility of these cell types and TLS within publicly available stage 3 and 4 lung adenocarcinoma (LUAD) RNA-Seq datasets. As previously described by others, pre-treatment expression of intratumoral 12-chemokine TLS gene signature is associated with progression free survival (PFS) in patients who receive treatment with immune checkpoint inhibitors (ICI). Notably and unexpectedly pre-treatment percentages of intratumoral B cells are associated with PFS in patients who receive surgery, chemotherapy, or radiation. Further studies to confirm these findings would allow for more effective patient selection for both ICI and non-ICI treatments.
Collapse
Affiliation(s)
- Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Skylar E. Korek
- Vaccine and Immunotherapy Center, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | | | | | | | | | | | - Diane L. Davies
- Department of Thoracic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Ibiayi Dagogo‐Jack
- Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Cancer Center, Massachusetts General HospitalBostonMassachusettsUSA
| | | | | | - Joshua M. Hess
- Vaccine and Immunotherapy Center, Massachusetts General HospitalCharlestownMassachusettsUSA
| | - Sarah Viet
- Avera Institute of Human GeneticsSioux FallsSouth DakotaUSA
| | | | - Cameron D. Wright
- Department of Thoracic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Harald C. Ott
- Department of Thoracic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Hugh G. Auchincloss
- Department of Thoracic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Ashok Muniappan
- Department of Thoracic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Toshihiro Shioda
- Harvard Medical SchoolBostonMassachusettsUSA
- Cancer Center, Massachusetts General HospitalBostonMassachusettsUSA
| | - Michael Lanuti
- Department of Thoracic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Erik A. Ehli
- Avera Institute of Human GeneticsSioux FallsSouth DakotaUSA
| | - Yin P. Hung
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of PathologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Mari Mino‐Kenudson
- Harvard Medical SchoolBostonMassachusettsUSA
- Cancer Center, Massachusetts General HospitalBostonMassachusettsUSA
- Department of PathologyMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Ann E. Sluder
- Vaccine and Immunotherapy Center, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Patrick M. Reeves
- Vaccine and Immunotherapy Center, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | | | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
30
|
Nindra U, Hurwitz J, Forstner D, Chin V, Gallagher R, Liu J. A systematic review of neoadjuvant and definitive immunotherapy in locally advanced head and neck squamous cell carcinoma. Cancer Med 2023. [PMID: 36934434 DOI: 10.1002/cam4.5815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) require multi-modality treatment. Immune checkpoint inhibitors (ICIs) are now standard of care in management of recurrent/metastatic HNSCC. However, its role in the definitive and neoadjuvant setting remains unclear. METHODS A literature search was conducted that included all articles investigating ICI in untreated locally advanced (LA) HNSCC. Data was extracted and summarised and rated for quality using the Cochrane risk of bias tool. RESULTS Of 1086 records, 29 met the final inclusion criteria. In both concurrent and neoadjuvant settings, the addition of ICI was safe and did not delay surgery or reduce chemoradiotherapy completion. In the concurrent setting, although ICI use demonstrates objective responses in all published trials, there has not yet been published data to with PFS or OS benefit. In the neoadjuvant setting, combination ICI resulted in superior major pathological response rates compared to ICI monotherapy without a significant increase adverse event profiles, but its value in improving survival is not clear. ICI efficacy appears to be affected by tumour characteristics, in particular PD-L1 combined positive score, HPV status and the tumour microenvironment. CONCLUSIONS There is significant heterogeneity of ICI use in untreated LA HNSCC with multiple definitive concurrent and neoadjuvant protocols used. Resultantly, conclusions regarding the survival benefits of adding ICI to standard-of-care regimens cannot be made. Further trials and translational studies are required to elucidate optimal ICI sequencing in the definitive setting as well as better define populations more suited for neoadjuvant protocols.
Collapse
Affiliation(s)
- Udit Nindra
- Department of Medical Oncology, Liverpool Hospital, Sydney, New South Wales, Australia.,Department of Medical Oncology, Campbelltown Hospital, Sydney, New South Wales, Australia
| | - Joshua Hurwitz
- The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Dion Forstner
- The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,The University of New South Wales, Kensington, New South Wales, Australia.,GenesisCare, Darlinghurst, New South Wales, Australia
| | - Venessa Chin
- The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,The University of New South Wales, Kensington, New South Wales, Australia.,The Garvan Institute of Research, Camperdown, New South Wales, Australia
| | - Richard Gallagher
- The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,The University of New South Wales, Kensington, New South Wales, Australia.,The University of Sydney, Camperdown, New South Wales, Australia
| | - Jia Liu
- The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,The University of New South Wales, Kensington, New South Wales, Australia.,The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
31
|
Wang X, Zhang Q, Zhou J, Xiao Z, Liu J, Deng S, Hong X, Huang W, Cai M, Guo Y, Huang J, Wang Y, Lin L, Zhu K. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma. J Immunother Cancer 2023; 11:jitc-2022-006493. [PMID: 36813307 PMCID: PMC9950981 DOI: 10.1136/jitc-2022-006493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) monotherapy provides poor survival benefit in hepatocellular carcinoma (HCC) due to ICB resistance caused by immunosuppressive tumor microenvironment (TME) and drug discontinuation resulting from immune-related side effects. Thus, novel strategies that can simultaneously reshape immunosuppressive TME and ameliorate side effects are urgently needed. METHODS Both in vitro and orthotopic HCC models were used to explore and demonstrate the new role of a conventional, clinically used drug, tadalafil (TA), in conquering immunosuppressive TME. In detail, the effect of TA on M2 polarization and polyamine metabolism in tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) was identified. After making clear the aforementioned immune regulatory effect of TA, we introduced a nanomedicine-based strategy of tumor-targeted drug delivery to make better use of TA to reverse immunosuppressive TME and overcome ICB resistance for HCC immunotherapy. A dual pH-sensitive nanodrug simultaneously carrying both TA and programmed cell death receptor 1 antibody (aPD-1) was developed, and its ability for tumor-targeted drug delivery and TME-responsive drug release was evaluated in an orthotopic HCC model. Finally, the immune regulatory effect, antitumor therapeutic effect, as well as side effects of our nanodrug combining both TA and aPD-1 were analyzed. RESULTS TA exerted a new role in conquering immunosuppressive TME by inhibiting M2 polarization and polyamine metabolism in TAMs and MDSCs. A dual pH-sensitive nanodrug was successfully synthesized to simultaneously carry both TA and aPD-1. On one hand, the nanodrug realized tumor-targeted drug delivery by binding to circulating programmed cell death receptor 1-positive T cells and following their infiltration into tumor. On the other hand, the nanodrug facilitated efficient intratumoral drug release in acidic TME, releasing aPD-1 for ICB and leaving TA-encapsulated nanodrug to dually regulate TAMs and MDSCs. By virtue of the combined application of TA and aPD-1, as well as the efficient tumor-targeted drug delivery, our nanodrug effectively inhibited M2 polarization and polyamine metabolism in TAMs and MDSCs to conquer immunosuppressive TME, which contributed to remarkable ICB therapeutic efficacy with minimal side effects in HCC. CONCLUSIONS Our novel tumor-targeted nanodrug expands the application of TA in tumor therapy and holds great potential to break the logjam of ICB-based HCC immunotherapy.
Collapse
Affiliation(s)
- Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Jingwen Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianxin Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaohui Deng
- PCFM Lab of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyang Hong
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Ghosh S, Johanns TM, Chheda MG, Liu E, Butt O, Abraham C, Badiyan S, Huang Y, DeNardo D, Kim AH, Hallahan D, Thotala D, Huang J. A pilot phase Ib study to evaluate tadalafil to overcome immunosuppression during chemoradiotherapy for IDH-wild-type glioblastoma. Neurooncol Adv 2023; 5:vdad088. [PMID: 37554225 PMCID: PMC10406429 DOI: 10.1093/noajnl/vdad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) are critical regulators of immunosuppression and radioresistance in glioblastoma (GBM). The primary objective of this pilot phase Ib study was to validate the on-target effect of tadalafil on inhibiting MDSCs in peripheral blood and its safety when combined with chemoradiotherapy in GBM patients. Methods Patients with newly diagnosed IDH-wild-type GBM received radiation therapy (RT) and temozolomide (TMZ) combined with oral tadalafil for 2 months. A historical cohort of 12 GBM patients treated with RT and TMZ was used as the comparison group. The ratio of MDSCs, T cells, and cytokines at week 6 of RT compared to baseline were analyzed using flow cytometry. Progression-free survival (PFS) and overall survival (OS) were estimated by the Kaplan-Meier method. Results Tadalafil was well tolerated with no dose-limiting toxicity among 16 evaluable patients. The tadalafil cohort had a significantly lower ratio of circulating MDSCs than the control: granulocytic-MDSCs (mean 0.78 versus 3.21, respectively, P = 0.01) and monocytic-MDSCs (1.02 versus 1.96, respectively, P = 0.006). Tadalafil increased the CD8 ratio compared to the control (1.99 versus 0.70, respectively, P < 0.001), especially the PD-1-CD8 T cells expressing Ki-67, CD38, HLA-DR, CD28, and granzyme B. Proinflammatory cytokine IL-1β was also significantly increased after tadalafil compared to the control. The tadalafil cohort did not have significantly different PFS and OS than the historical control. Conclusions Concurrent tadalafil is well tolerated during chemoradiotherapy for GBM. Tadalafil is associated with a reduction of peripheral MDSCs after chemoradiotherapy and increased CD8 T-cell proliferation and activation.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tanner M Johanns
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Milan G Chheda
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric Liu
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Omar Butt
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher Abraham
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shahed Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - David DeNardo
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
34
|
Tang AL, O’Neil T, McDermott S, Tripathi S, Tikhtman R, Mark JR, Patil Y, Tabangin M, Altaye M, Wise-Draper TM, Zender CA. Association of Neoadjuvant Pembrolizumab for Oral Cavity Squamous Cell Carcinoma With Adverse Events After Surgery in Treatment-Naive Patients. JAMA Otolaryngol Head Neck Surg 2022; 148:935-939. [PMID: 36006622 PMCID: PMC9412829 DOI: 10.1001/jamaoto.2022.2291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/02/2022] [Indexed: 11/14/2022]
Abstract
Importance Pembrolizumab, a monoclonal antibody targeting programmed cell death 1, is currently approved by the US Food and Drug Administration for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). The potential neoadjuvant role of programmed cell death 1 inhibitors in primary surgical management of HNSCC and effects on surgical outcomes are poorly understood. Objective To evaluate the incidence of postoperative adverse events in treatment-naive patients with advanced oral cavity cancer receiving neoadjuvant pembrolizumab when compared with matched controls, as part of a window-of-opportunity multi-institutional clinical trial assessing neoadjuvant pembrolizumab for locally advanced HNSCC. Design, Setting, and Participants This retrospective cohort study at a single tertiary academic institution included treatment-naive patients with local regionally advanced oral cavity squamous cell carcinoma (OCSCC) who were undergoing surgical resection. Exposures Patients with local regionally advanced resectable OCSCC who received neoadjuvant pembrolizumab were retrospectively reviewed for postoperative adverse events. Controls were matched by age, race, smoking status, and overall cancer stage based on historical data at the same institution. Matched-cohort analysis was performed using a McNemar test to assess differences between the groups. Main Outcomes and Measures Incidence of adverse events following surgical resection of advanced OCSCC within 30 days of surgery and on continued follow-up. Results A total of 64 patients (32 as part of the prospective clinical trial and 32 as controls; mean [SD] age, 59.6 [10.3] years; 28 [44%] women) were included in the analysis. Postoperative adverse events in the 32 patients receiving pembrolizumab included lymphedema (n = 20 [63%]), trismus (n = 7 [22%]), return to operating room (n = 7 [22%]), wound infection (n = 7 [22%]), fistula (n = 6 [19%]), wound dehiscence (n = 4 [13%]), flap failure (n = 3 [9%]), and hematoma (n = 2 [6%]). The matched control group demonstrated similar complication rates without considerable differences, except for trismus (n = 16 [50%]), which was greater by a difference of 28.1% (95% CI, 5.6%-50.6%) in the control group. Conclusions and Relevance This cohort study examined surgical complications among patients with local regionally advanced OCSCC treated with neoadjuvant pembrolizumab and found that serious adverse events were similar to those in patients who underwent standard-of-care treatment. This suggests that there is no increased perioperative morbidity in the use of preoperative treatment with immunotherapy. Further prospective studies are needed to validate these findings for oral cavity cancer and other subsites of the head and neck.
Collapse
Affiliation(s)
- Alice L. Tang
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Thomas O’Neil
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sean McDermott
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Siddhant Tripathi
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Raisa Tikhtman
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jonathan R. Mark
- Department of Otolaryngology–Head and Neck Surgery, Eastern Virginia Medical School, Norfolk
| | - Yash Patil
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Meredith Tabangin
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | - Trisha M. Wise-Draper
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Chad A. Zender
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Programmed cell death 1 (PD-l)-targeting agents have been FDA-approved for treatment of recurrent/ metastatic head and neck squamous cell carcinoma (HNSCC). Clinical studies employing these agents preoperatively for HNSCC in the definitive setting are emerging and have important implications. RECENT FINDINGS Preclinical studies demonstrate enhanced effectiveness of preoperative PD-1 targeting compared with postoperative treatment. Nine HNSCC clinical studies evaluating preoperative treatment with PD-1-targeted pembrolizumab/nivolumab alone or in combination therapy were recently reported. These studies differed by preoperative treatment type and duration and reported no surgical delays, no unexpected surgical complications and grade 3-4 immune-related adverse events consistent with the employed immunotherapeutic agent(s). Rates of major pathologic response (MPR), reduced residual viable tumour to 10% or less, ranged from 2.9-31% across eight trials without neoadjuvant radiation therapy. Higher PD-1 ligand (PD-L1) expression, increased inflammatory gene expression and enhanced immune cell tumour infiltration in baseline biopsies were associated with pathologic tumour response (pTR) in some studies. Any degree of pTR was associated with improved survival/relapse outcomes in two studies. SUMMARY Emerging preoperative anti-PD-1 HNSCC clinical studies indicate that preoperative treatment does not impact surgical management. Defining predictive biomarkersand tumour pathologic response implications for patient survival are areas for further investigation.
Collapse
Affiliation(s)
- Ann Marie Egloff
- Department of Surgery, Brigham and Women's Hospital
- Department of Medical Oncology, Dana-Farber Cancer Institute
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ravindra Uppaluri
- Department of Surgery, Brigham and Women's Hospital
- Department of Medical Oncology, Dana-Farber Cancer Institute
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|