1
|
Green AL, Minard CG, Liu X, Safgren SL, Pinkney K, Harris L, Link G, DeSisto J, Voss S, Nelson MD, Reid JM, Fox E, Weigel BJ, Glade Bender J. Phase I Trial of Selinexor in Pediatric Recurrent/Refractory Solid and CNS Tumors (ADVL1414): A Children's Oncology Group Phase I Consortium Trial. Clin Cancer Res 2025; 31:1587-1595. [PMID: 39998852 PMCID: PMC12045713 DOI: 10.1158/1078-0432.ccr-24-2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/26/2024] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Selinexor is a first-in-class, central nervous system (CNS)-penetrant, oral inhibitor of exportin 1 (XPO1), the main nuclear exporter of many key tumor suppressors. We report a phase I trial of selinexor in children and adolescents with recurrent CNS and solid tumors (NCT02323880). PATIENTS AND METHODS A rolling six design was used to evaluate the maximum tolerated dose (MTD) and first dose pharmacokinetics of selinexor administered once (35-45 mg/m2) or twice (20-35 mg/m2) weekly during a 28-day cycle (part A). Ten additional patients with high-grade glioma (HGG) were treated at the MTD administered once weekly (part B). RESULTS In part A, 49 patients were enrolled. Continuous twice weekly dosing was limited by extended hematologic toxicity. The MTD on a twice weekly schedule for 3 weeks on/1 week off (twice weekly 3/1) was 20 mg/m2/dose. Dose-limiting toxicities (DLTs) on this schedule included fatigue, acute reversible neurologic changes, neutropenia, thrombocytopenia, and aspartate aminotransferase/alanine aminotransferase increase. On a continuous once weekly schedule, the MTD was 35 mg/m2/dose; DLTs included seizure and thrombocytopenia. In part B (HGG expansion), there were no additional DLTs observed. Non-DLTs included lymphopenia, leukopenia, neutropenia, thrombocytopenia, anorexia, fatigue, hypophosphatemia, nausea, and vomiting. There were no objective responses. The median number of cycles received was 1 (range, 1-9); eight of 59 patients (13.5%) received 5 to 9 cycles, five of whom had HGG. CONCLUSIONS Selinexor-related toxicities were primarily hematologic and neurologic, requiring dose or dose-frequency reduction. The MTD and recommended initial phase II dose of selinexor in children and adolescents with recurrent solid and CNS tumors is 35 mg/m2/dose once weekly.
Collapse
Affiliation(s)
- Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| | | | - Xiaowei Liu
- Children's Oncology Group, Monrovia, California
| | | | | | - Lauren Harris
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gabrielle Link
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephan Voss
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Elizabeth Fox
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | |
Collapse
|
2
|
Sundheimer JK, Benzel J, Longuespée R, Burhenne J, Pfister SM, Maaß KK, Sauter M, Pajtler KW. Experimental Insights and Recommendations for Successfully Performing Cerebral Microdialysis With Hydrophobic Drug Candidates. Clin Transl Sci 2025; 18:e70226. [PMID: 40286321 PMCID: PMC12033007 DOI: 10.1111/cts.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Cerebral microdialysis in rodents represents a robust and versatile technique for quantifying the pharmacologically relevant unbound fraction of drugs in the brain. When this unbound fraction is simultaneously determined in plasma, it facilitates the calculation of the corresponding unbound plasma-to-brain partition coefficient (Kp,uu) for a given compound in vivo. This coefficient is critical for understanding the penetration and distribution of drugs across the blood-brain barrier (BBB). However, obtaining valid and accurate microdialysis data can be particularly challenging for hydrophobic drugs due to their pronounced non-specific interactions with the components of the microdialysis system. The present study reports the outcomes of comprehensive microdialysis investigations in rodents, focusing on three hydrophobic compounds: actinomycin D, selinexor, and ulixertinib. These compounds exhibited varying degrees of non-specific binding to the surfaces of the microdialysis apparatus, leading to low recovery rates and substantial carry-over effects. To diminish these limitations, strategies such as surface coating and the use of optimized materials were employed to enhance the reliability of the microdialysis system. To ensure the robustness and reproducibility of microdialysis-related research outcomes, our experimental findings were supplemented with a narrative literature review. This review encompassed keyword-driven PubMed-indexed publications on microdialysis from 1970 to 2024, providing a broader context for the challenges and solutions associated with the technique. By integrating empirical results with practical recommendations, this study offers a comprehensive resource aimed at advancing the application of cerebral microdialysis in preclinical drug development, particularly for compounds with challenging physicochemical properties.
Collapse
Affiliation(s)
- Julia K. Sundheimer
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Julia Benzel
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Pediatric Hematology, Oncology and ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Rémi Longuespée
- Medical Faculty Heidelberg/Heidelberg University Hospital, Internal Medicine IX—Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg UniversityHeidelbergGermany
- Metabolic Crosstalk in CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jürgen Burhenne
- Medical Faculty Heidelberg/Heidelberg University Hospital, Internal Medicine IX—Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg UniversityHeidelbergGermany
| | - Stefan M. Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Pediatric Hematology, Oncology and ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Kendra K. Maaß
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Pediatric Hematology, Oncology and ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Max Sauter
- Medical Faculty Heidelberg/Heidelberg University Hospital, Internal Medicine IX—Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg UniversityHeidelbergGermany
| | - Kristian W. Pajtler
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Pediatric Hematology, Oncology and ImmunologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
3
|
McVeigh L, Patel T, Miclea M, Schwark K, Ajaero D, Momen F, Clausen M, Adam T, Aittaleb R, Wadden J, Lau B, Franson AT, Koschmann C, Marupudi NI. Updates in Diagnostic Techniques and Experimental Therapies for Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2025; 17:931. [PMID: 40149267 PMCID: PMC11940218 DOI: 10.3390/cancers17060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but extremely malignant central nervous system tumor primarily affecting children that is almost universally fatal with a devastating prognosis of 8-to-12-month median survival time following diagnosis. Traditionally, DIPG has been diagnosed via MR imaging alone and treated with palliative radiation therapy. While performing surgical biopsies for these patients has been controversial, in recent years, advancements have been made in the safety and efficacy of surgical biopsy techniques, utilizing stereotactic, robotics, and intraoperative cranial nerve monitoring as well as the development of liquid biopsies that identify tumor markers in either cerebrospinal fluid or serum. With more molecular data being collected from these tumors due to more frequent biopsies being performed, multiple treatment modalities including chemotherapy, radiation therapy, immunotherapy, and epigenetic modifying agents continue to be developed. Numerous recent clinical trials have been completed or are currently ongoing that have shown promise in extending survival for patients with DIPG. Focused ultrasound (FUS) has also emerged as an additional promising adjunct invention used to increase the effectiveness of therapeutic agents. In this review, we discuss the current evidence to date for these advancements in the diagnosis and treatment of DIPG.
Collapse
Affiliation(s)
- Luke McVeigh
- Department of Neurosurgery, Michigan Medicine, Ann Arbor, MI 48109, USA;
| | - Tirth Patel
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Madeline Miclea
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Kallen Schwark
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Diala Ajaero
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Fareen Momen
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Madison Clausen
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Tiffany Adam
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Rayan Aittaleb
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Jack Wadden
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Benison Lau
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Andrea T. Franson
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA; (T.P.); (M.M.); (K.S.); (D.A.); (F.M.); (M.C.); (T.A.); (R.A.); (J.W.); (B.L.); (C.K.)
| | - Neena I. Marupudi
- Department of Neurosurgery, Michigan Medicine, Ann Arbor, MI 48109, USA;
| |
Collapse
|
4
|
Rahman MM, Estifanos B, Glenn HL, Gutierrez-Jensen AD, Kibler K, Li Y, Jacobs B, McFadden G, Hogue BG. Effect of Exportin 1/XPO1 Nuclear Export Pathway Inhibition on Coronavirus Replication. Viruses 2025; 17:284. [PMID: 40007039 PMCID: PMC11860411 DOI: 10.3390/v17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The nucleocytoplasmic transport of proteins using XPO1 (exportin 1) plays a vital role in cell proliferation and survival. Many viruses also exploit this pathway to promote infection and replication. Thus, inhibiting the XPO1-mediated nuclear export pathway with selective inhibitors has a diverse effect on virus replication by regulating antiviral, proviral, and anti-inflammatory pathways. The XPO1 inhibitor Selinexor is an FDA-approved anticancer drug predicted to have antiviral or proviral functions against viruses. Here, we observed that the pretreatment of cultured cell lines from human or mouse origin with the nuclear export inhibitor Selinexor significantly enhanced the protein expression and replication of mouse hepatitis virus (MHV), a mouse coronavirus. The knockdown of cellular XPO1 protein expression also significantly enhanced the replication of MHV in human cells. However, for SARS-CoV-2, Selinexor treatment had diverse effects on virus replication in different cell lines. These results indicate that XPO1-mediated nuclear export pathway inhibition might affect coronavirus replication depending on cell types and virus origin.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA;
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (H.L.G.); (Y.L.); (B.J.); (G.M.)
| | - Bereket Estifanos
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA;
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Honor L. Glenn
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (H.L.G.); (Y.L.); (B.J.); (G.M.)
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ami D. Gutierrez-Jensen
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | - Karen Kibler
- Center for ASU-Banner Neurodegenerative Disease Research, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | - Yize Li
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (H.L.G.); (Y.L.); (B.J.); (G.M.)
- Center for ASU-Banner Neurodegenerative Disease Research, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | - Bertram Jacobs
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (H.L.G.); (Y.L.); (B.J.); (G.M.)
- Center for ASU-Banner Neurodegenerative Disease Research, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | - Grant McFadden
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (H.L.G.); (Y.L.); (B.J.); (G.M.)
| | - Brenda G. Hogue
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA;
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (H.L.G.); (Y.L.); (B.J.); (G.M.)
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Worley J, Noh H, You D, Turunen MM, Ding H, Paull E, Griffin AT, Grunn A, Zhang M, Guillan K, Bush EC, Brosius SJ, Hibshoosh H, Mundi PS, Sims P, Dalerba P, Dela Cruz FS, Kung AL, Califano A. Identification and Pharmacological Targeting of Treatment-Resistant, Stem-like Breast Cancer Cells for Combination Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.08.562798. [PMID: 38798673 PMCID: PMC11118419 DOI: 10.1101/2023.11.08.562798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations. Statement of significance Network-based approaches, as shown in a study on metastatic breast cancer, can develop effective combinatorial therapies targeting complementary subpopulations. By analyzing scRNA-seq data and using clinically relevant drugs, researchers identified and depleted chemoresistant Cancer Stem-Like Cells, enhancing the efficacy of standard chemotherapies.
Collapse
Affiliation(s)
- Jeremy Worley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Heeju Noh
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mikko M Turunen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Hongxu Ding
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA 85721
| | - Evan Paull
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Aaron T Griffin
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Adina Grunn
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Mingxuan Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Kristina Guillan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin C Bush
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Samantha J Brosius
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
| | - Prabhjot S Mundi
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
| | - Peter Sims
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Piero Dalerba
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
6
|
McParland K, Koh ES, Kong B, Sim HW, Thavaneswaran S, Yip S, Barnes EH, Ballinger ML, Thomas DM, De Abreu Lourenco R, Simes J, Sebastian L, Wheeler PJ, Spyridopoulos D, Hawkins C, Pitz M, O'Callaghan C, Gan HK. Low & Anaplastic Grade Glioma Umbrella Study of MOlecular Guided TherapieS (LUMOS-2): study protocol for a phase 2, prospective, multicentre, open-label, multiarm, biomarker-directed, signal-seeking, umbrella, clinical trial for recurrent IDH mutant, grade 2/3 glioma. BMJ Open 2025; 15:e087922. [PMID: 39929517 DOI: 10.1136/bmjopen-2024-087922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
INTRODUCTION All grade 2/3 gliomas are incurable and at the time of inevitable relapse, patients have significant unmet needs with few effective treatments. This study aims to improve outcomes by molecular profiling of patients at relapse, then matching them with the best available drug based on their molecular profile, maximising the chances of patient benefit while simultaneously testing multiple novel drugs. METHODS AND ANALYSIS Low & Anaplastic Grade Glioma Umbrella Study of MOlecular Guided TherapieS (LUMOS-2) will be an international, phase 2, multicentre, open-label, biomarker-directed, umbrella clinical trial for recurrent isocitrate dehydrogenase mutant, histologically grade 2/3 gliomas. Investigational treatment will be assigned based on molecular profiling of contemporaneous tissue obtained at disease relapse using next-generation sequencing. LUMOS-2 will begin with three therapeutic treatment arms: paxalisib, cadonilimab and selinexor. Patient molecular profiles will be assessed by an expert, multidisciplinary Molecular Tumour Advisory Panel. Patients whose molecular profile is considered suitable for a targeted agent like paxalisib will be allocated to that arm, others will be randomised to the available arms of the trial. The primary endpoint is progression-free survival at 6 months. Secondary objectives include assessment of overall survival, response rate, safety and quality of life measures. Two additional therapeutic arms are currently in development. ETHICS AND DISSEMINATION Central ethics approval was obtained from the Sydney Local Health District Ethics Review Committee, Royal Prince Alfred Hospital Zone, Sydney, Australia (Approval: 2022/ETH02230). Other clinical sites will provide oversight through local governance processes, including obtaining informed consent from suitable participants. A report describing the results of the study will be submitted to international meetings and peer-reviewed journals. TRIAL REGISTRATION NUMBER ACTRN12623000096651.
Collapse
Affiliation(s)
- Kristen McParland
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Eng-Siew Koh
- Radiation Oncology, Liverpool Cancer Therapy Centre, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Benjamin Kong
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
- Medical Oncology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Hao-Wen Sim
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Subotheni Thavaneswaran
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Sonia Yip
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth H Barnes
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Mandy L Ballinger
- Omico, Australian Genomic Cancer Medicine Centre, Sydney, New South Wales, Australia
| | - David M Thomas
- Omico, Australian Genomic Cancer Medicine Centre, Sydney, New South Wales, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, New South Wales, Australia
| | - John Simes
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Chris O'Brien Lifehoue, Camperdown, New South Wales, Australia
| | - Lucille Sebastian
- Omico, Australian Genomic Cancer Medicine Centre, Sydney, New South Wales, Australia
| | - Patrick J Wheeler
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Desma Spyridopoulos
- The NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Cynthia Hawkins
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada
| | | | | | - Hui K Gan
- Medical Oncology, Olivia Newton-John Cancer Centre, Heidelberg, Victoria, Australia
| |
Collapse
|
7
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. XPO1/Exportin-1 in Acute Myelogenous Leukemia; Biology and Therapeutic Targeting. Biomolecules 2025; 15:175. [PMID: 40001478 PMCID: PMC11852384 DOI: 10.3390/biom15020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Exportin 1 is responsible for the export of hundreds of proteins, several RNA species and ribosomal components from the nucleus to the cytoplasm. Several transported proteins are important for regulation of cell proliferation and survival both in normal and malignant cells. We review the biological importance and the possibility of therapeutic targeting of Exportin 1 in acute myeloid leukemia (AML). Exportin 1 levels can be increased in human primary AML cells, and even exportin inhibition as monotherapy seems to have an antileukemic effect. The results from Phase I/II studies also suggest that exportin inhibition can be combined with conventional chemotherapy, including intensive induction and consolidation therapy possibly followed by allogeneic stem cell transplantation as well as AML-stabilizing therapy in elderly/unfit patients with hypomethylating agents. However, the risk of severe toxicity needs to be further evaluated; hematological toxicity is common together with constitutional side effects, electrolyte disturbances, and gastrointestinal toxicity. A recent randomized study of intensive chemotherapy with and without the Exportin inhibitor selinexor in elderly patients showed reduced survival in the selinexor arm; this was due to a high frequency of relapse and severe infections during neutropenia. Experimental studies suggest that Exportin 1 inhibition can be combined with other forms of targeted therapy. Thus, Exportin 1 inhibition should still be regarded as a promising strategy for AML treatment, but future studies should focus on the risk of toxicity when combined with conventional chemotherapy, especially in elderly/unfit patients, combinations with targeted therapies, identification of patient subsets (AML is a heterogeneous disease) with high susceptibility, and the possible use of less toxic next-generation Exportin 1 inhibitors.
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5007 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5007 Bergen, Norway
| |
Collapse
|
8
|
Rahman MM, Estifanos B, Glenn HL, Gutierrez-Jensen AD, Kibler K, Li Y, Jacobs B, McFadden G, Hogue BG. Effect of exportin 1/XPO1 nuclear export pathway inhibition on coronavirus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.09.527884. [PMID: 36824761 PMCID: PMC9948980 DOI: 10.1101/2023.02.09.527884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nucleocytoplasmic transport of proteins using XPO1 (exportin 1) plays a vital role in cell proliferation and survival. Many viruses also exploit this pathway to promote infection and replication. Thus, inhibiting the XPO1-mediated nuclear export pathway with selective inhibitors has a diverse effect on virus replication by regulating antiviral, proviral, and anti-inflammatory pathways. The XPO1 inhibitor, Selinexor, is an FDA-approved anticancer drug predicted to have antiviral or proviral functions against viruses. Here, we observed that pretreatment of cultured cell lines from human or mouse origin with nuclear export inhibitor Selinexor significantly enhanced protein expression and replication of Mouse Hepatitis Virus (MHV), a mouse coronavirus. Knockdown of cellular XPO1 protein expression also significantly enhanced the replication of MHV in human cells. However, for SARS-CoV-2, selinexor treatment had diverse effects on virus replication in different cell lines. These results indicate that XPO1-mediated nuclear export pathway inhibition might affect coronavirus replication depending on cell types and virus origin.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Bereket Estifanos
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Honor L. Glenn
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ami D. Gutierrez-Jensen
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Karen Kibler
- Center for ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yize Li
- Center for ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Bertram Jacobs
- Center for ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Grant McFadden
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Brenda G. Hogue
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
9
|
Roy M, Elimam R, Zgheib A, Annabi B. A Role for the Hippo/YAP1 Pathway in the Regulation of In Vitro Vasculogenic Mimicry in Glioblastoma Cells. J Cell Mol Med 2024; 28:e70304. [PMID: 39718433 PMCID: PMC11667753 DOI: 10.1111/jcmm.70304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
The Hippo pathway plays a tumorigenic role in highly angiogenic glioblastoma (GBM), whereas little is known about clinically relevant Hippo pathway inhibitors' ability to target adaptive mechanisms involved in GBM chemoresistance. Their molecular impact was investigated here in vitro against an alternative process to tumour angiogenesis termed vasculogenic mimicry (VM) in GBM-derived cell models. In silico analysis of the downstream Hippo signalling members YAP1, TAZ and TEAD1 transcript levels in low-grade glioblastoma (LGG) and GBM tumour tissues was performed using GEPIA. TAZ transcript levels did not differ between the healthy and tumour tissues data analysed. In contrast, YAP1 transcript levels were elevated in GBM tissues, whereas TEAD1 levels were high in both LGG and GBM. All three Hippo pathway inhibitors tested, GNE7883, VT107 and IAG933 effectively inhibited U87 and U251 cell migration and in vitro VM as assessed on Cultrex matrix. YAP1 gene and protein expression were induced upon VM, and its translocation to the nucleus was inhibited by the Hippo pathway inhibitors tested. SiRNA-mediated transient silencing of YAP1 repressed cell migration, VM formation and CTGF and Cyr61 transcription. In conclusion, targeting of VM using Hippo pathway inhibitors could help circumvent GBM chemoresistance and effectively complement other brain cancer treatments.
Collapse
Affiliation(s)
- Marie‐Eve Roy
- Laboratoire d'Oncologie Moléculaire, Département de ChimieUniversité du Québec à MontréalMontrealQuebecCanada
| | - Rahil Elimam
- Laboratoire d'Oncologie Moléculaire, Département de ChimieUniversité du Québec à MontréalMontrealQuebecCanada
| | - Alain Zgheib
- Laboratoire d'Oncologie Moléculaire, Département de ChimieUniversité du Québec à MontréalMontrealQuebecCanada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de ChimieUniversité du Québec à MontréalMontrealQuebecCanada
| |
Collapse
|
10
|
Saqib M, Zahoor A, Rahib A, Shamim A, Mumtaz H. Clinical and translational advances in primary brain tumor therapy with a focus on glioblastoma-A comprehensive review of the literature. World Neurosurg X 2024; 24:100399. [PMID: 39386927 PMCID: PMC11462364 DOI: 10.1016/j.wnsx.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
This comprehensive review paper examines the most updated state of research on glioblastoma, an aggressive brain tumor with limited treatment options. By analyzing 76 recent studies, from translational and basic sciences, to clinical trials, we highlight various aspects of glioblastoma and shed light on potential therapeutic strategies. The interplay between tumor cells, neural progenitor cells, and the tumor microenvironment is explored. Targeting the PI3K-Akt-mTOR pathway through extracellular-vesicle (EV)-mediated signaling emerges as a potential therapeutic strategy. Personalized modeling approaches utilizing patient-specific MRI data offer promise for optimizing treatment strategies. The response of glioblastoma stem cells (GSCs) to different treatment modalities is examined, emphasizing the need to inhibit the transformation of proneural (PN) GSCs into resistant mesenchymal (MES) GSCs. Metabolic therapy and combination therapies show potential in reversing treatment resistance and inhibiting both PN and MES GSCs. Immunotherapy, targeted approaches, and molecular dynamics in gliomas are discussed, providing insights into early-stage diagnosis and treatment. Additionally, the potential use of Zika virus as an oncolytic agent is explored. Analysis of phase 0 to 3 clinical trials reveal promising outcomes for various experimental treatments, highlighting the importance of combination therapies, predictive signatures, and patient selection strategies. Specific compounds demonstrate potential therapeutic benefits and tolerability. Phase 3 trials indicate the efficacy of DCVax-L in improving survival rates and depatux-m in prolonging progression-free survival. These findings emphasize the importance of personalized treatment approaches and continued exploration of targeted therapies, immunotherapies, and tumor biology understanding in shaping the future of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Ahmed Rahib
- Nowshera Medical College, Nowshera, Pakistan
| | - Amna Shamim
- King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
11
|
Wang Y, Chen J, Gao Y, Chai KXY, Hong JH, Wang P, Chen J, Yu Z, Liu L, Huang C, Taib NAM, Lim KMH, Guan P, Chan JY, Huang D, Teh BT, Li W, Lim ST, Yu Q, Ong CK, Huang H, Tan J. CDK4/6 inhibition augments anti-tumor efficacy of XPO1 inhibitor selinexor in natural killer/T-cell lymphoma. Cancer Lett 2024; 597:217080. [PMID: 38908542 DOI: 10.1016/j.canlet.2024.217080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
XPO1 is an attractive and promising therapeutic target frequently overexpressed in multiple hematological malignancies. The clinical use of XPO1 inhibitors in natural killer/T-cell lymphoma (NKTL) is not well documented. Here, we demonstrated that XPO1 overexpression is an indicator of poor prognosis in patients with NKTL. The compassionate use of the XPO1 inhibitor selinexor in combination with chemotherapy showed favorable clinical outcomes in three refractory/relapsed (R/R) NKTL patients. Selinexor induced complete tumor regression and prolonged survival in sensitive xenografts but not in resistant xenografts. Transcriptomic profiling analysis indicated that sensitivity to selinexor was correlated with deregulation of the cell cycle machinery, as selinexor significantly suppressed the expression of cell cycle-related genes. CDK4/6 inhibitors were identified as sensitizers that reversed selinexor resistance. Mechanistically, targeting CDK4/6 could enhance the anti-tumor efficacy of selinexor via the suppression of CDK4/6-pRb-E2F-c-Myc pathway in resistant cells, while selinexor alone could dramatically block this pathway in sensitive cells. Overall, our study provids a preclinical proof-of-concept for the use of selinexor alone or in combination with CDK4/6 inhibitors as a novel therapeutic strategy for patients with R/R NKTL.
Collapse
Affiliation(s)
- Yali Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Kelila Xin Ye Chai
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinghong Chen
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhaoliang Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lizhen Liu
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Nur Ayuni Muhammad Taib
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Kerry May Huifen Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jason Yongsheng Chan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Wenyu Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Soon Thye Lim
- Director's Office, National Cancer Centre Singapore, Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Hainan Academy of Medical Science, Hainan Medical University, Haikou, China.
| |
Collapse
|
12
|
Aumann WK, Kazi R, Harrington AM, Wechsler DS. Novel-and Not So Novel-Inhibitors of the Multifunctional CRM1 Protein. Oncol Rev 2024; 18:1427497. [PMID: 39161560 PMCID: PMC11330842 DOI: 10.3389/or.2024.1427497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Chromosome Region Maintenance 1 (CRM1), also known as Exportin 1 (XPO1), is a protein that is critical for transport of proteins and RNA to the cytoplasm through the nuclear pore complex. CRM1 inhibition with small molecule inhibitors is currently being studied in many cancers, including leukemias, solid organ malignancies and brain tumors. We review the structure of CRM1, its role in nuclear export, the current availability of CRM1 inhibitors, and the role of CRM1 in a number of distinct cellular processes. A deeper understanding of how CRM1 functions in nuclear export as well as other cellular processes may allow for the development of additional novel CRM1 inhibitors.
Collapse
Affiliation(s)
- Waitman K. Aumann
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Rafi Kazi
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, United States
| | - Amanda M. Harrington
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Daniel S. Wechsler
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Ahluwalia MS, Ozair A, Drappatz J, Ye X, Peng S, Lee M, Rath S, Dhruv H, Hao Y, Berens ME, Walbert T, Holdhoff M, Lesser GJ, Cloughesy TF, Sloan AE, Takebe N, Couce M, Peereboom DM, Nabors B, Wen PY, Grossman SA, Rogers LR. Evaluating the Base Excision Repair Inhibitor TRC102 and Temozolomide for Patients with Recurrent Glioblastoma in the Phase 2 Adult Brain Tumor Consortium Trial BERT. Clin Cancer Res 2024; 30:3167-3178. [PMID: 38836759 PMCID: PMC11293959 DOI: 10.1158/1078-0432.ccr-23-4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Patients with glioblastoma (GBM) have a dismal prognosis. Although the DNA alkylating agent temozolomide (TMZ) is the mainstay of chemotherapy, therapeutic resistance rapidly develops in patients. Base excision repair inhibitor TRC102 (methoxyamine) reverses TMZ resistance in preclinical glioma models. We aimed to investigate the efficacy and safety of oral TRC102+TMZ in recurrent GBM (rGBM). PATIENTS AND METHODS A preregistered (NCT02395692), nonrandomized, multicenter, phase 2 clinical trial (BERT) was planned and conducted through the Adult Brain Tumor Consortium (ABTC-1402). Arm 1 included patients with bevacizumab-naïve GBM at the first recurrence, with the primary endpoint of response rates. If sufficient activity was identified, a second arm was planned for the bevacizumab-refractory patients. The secondary endpoints were overall survival (OS), progression-free survival (PFS), PFS at 6 months (PFS6), and toxicity. RESULTS Arm 1 enrolled 19 patients with a median of two treatment cycles. Objective responses were not observed; hence, arm 2 did not open. The median OS was 11.1 months [95% confidence interval (CI), 8.2-17.9]. The median PFS was 1.9 months (95% CI, 1.8-3.7). The PFS6 was 10.5% (95% CI, 1.3%-33.1%). Most toxicities were grades 1 and 2, with two grade 3 lymphopenias and one grade 4 thrombocytopenia. Two patients with PFS ≥ 17 months and OS > 32 months were deemed "extended survivors." RNA sequencing of tumor tissue, obtained at diagnosis, demonstrated significantly enriched signatures of DNA damage response (DDR), chromosomal instability (CIN70, CIN25), and cellular proliferation (PCNA25) in "extended survivors." CONCLUSIONS These findings confirm the safety and feasibility of TRC102+TMZ in patients with rGBM. They also warrant further evaluation of combination therapy in biomarker-enriched trials enrolling GBM patients with baseline hyperactivated DDR pathways.
Collapse
Affiliation(s)
- Manmeet S. Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sen Peng
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Matthew Lee
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sanhita Rath
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Harshil Dhruv
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Yue Hao
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Michael E. Berens
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Tobias Walbert
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, USA
| | - Matthias Holdhoff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Glenn J. Lesser
- Department of Hematology and Oncology, Wake Forest Medical Center, Winston, NC, USA
| | | | - Andrew E. Sloan
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurosurgery, Piedmont Healthcare, Atlanta, GA, USA
| | - Naoko Takebe
- Developmental Therapeutics Clinic, National Cancer Institute, Bethesda, MD, USA
| | - Marta Couce
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David M. Peereboom
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Burt Nabors
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Stuart A. Grossman
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Lisa R. Rogers
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, USA
| |
Collapse
|
14
|
Liu Y, Yang R, Feng H, Du Y, Yang B, Zhang M, He P, Ma B, Niu F. Adverse events reporting of XPO1 inhibitor - selinexor: a real-word analysis from FAERS database. Sci Rep 2024; 14:12231. [PMID: 38806549 PMCID: PMC11133441 DOI: 10.1038/s41598-024-62852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
As the world's first oral nuclear export inhibitor, selinexor is increasingly being used in clinical applications for malignant tumors. However, there is no extensive exploration on selinexor's adverse events (ADEs), necessitating a real-word assessment of its clinical medication safety. FAERS data (July 2019-June 2023) were searched for selinexor ADE reports across all indications. Use the system organ class (SOC) and preferred terms (PT) from the medical dictionary for regulatory activities (MedDRA) to describe, categorize, and statistic ADEs. Disproportionality analysis was employed through calculation of reporting odds ratio (ROR) and proportional reporting ratio (PRR). Based on total of 4392 selinexor related ADE reports as the primary suspect (PS), of which 2595 instances were severe outcomes. The predominant ADEs included gastrointestinal disorders, myelosuppression symptoms, and various nonspecific manifestations. 124 signals associated with selinexor ADE were detected, and 10 of these top 15 signals were not included into the instructions. Our study provides real-world evidence regarding the drug safety of selinexor, which is crucial for clinicians to safeguard patients' health.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Runyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yue Du
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Bingyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mengyao Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Bohan Ma
- Institute of Medical Research, Northwestern Polytechnical University, No.127 Friendship West Road, Beilin District, Xi'an, 710072, Shaanxi, China.
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
15
|
Li D, Fang H, Zhang R, Xie Q, Yang Y, Chen L. Beyond oncology: Selinexor's journey into anti-inflammatory treatment and long-term management. Front Immunol 2024; 15:1398927. [PMID: 38799428 PMCID: PMC11116598 DOI: 10.3389/fimmu.2024.1398927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Selinexor, a selective inhibitor of nuclear export (SINE), is gaining recognition beyond oncology for its potential in anti-inflammatory therapy. This review elucidates Selinexor's dual action, highlighting its anti-tumor efficacy in various cancers including hematologic malignancies and solid tumors, and its promising anti-inflammatory effects. In cancer treatment, Selinexor has demonstrated benefits as monotherapy and in combination with other therapeutics, particularly in drug-resistant cases. Its role in enhancing the effectiveness of bone marrow transplants has also been noted. Importantly, the drug's impact on key inflammatory pathways provides a new avenue for the management of conditions like sepsis, viral infections including COVID-19, and chronic inflammatory diseases such as Duchenne Muscular Dystrophy and Parkinson's Disease. The review emphasizes the criticality of managing Selinexor's side effects through diligent dose optimization and patient monitoring. Given the complexities of its broader applications, extensive research is called upon to validate Selinexor's long-term safety and effectiveness, with a keen focus on its integration into clinical practice for a diverse spectrum of disorders.
Collapse
Affiliation(s)
- Dan Li
- Respiratory Medicine Department, Wuhou District People's Hospital, Chengdu, China
| | - Hong Fang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Zhang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Xie
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, MN, United States
| |
Collapse
|
16
|
van den Bent M, Saratsis AM, Geurts M, Franceschi E. H3 K27M-altered glioma and diffuse intrinsic pontine glioma: Semi-systematic review of treatment landscape and future directions. Neuro Oncol 2024; 26:S110-S124. [PMID: 38102230 PMCID: PMC11066941 DOI: 10.1093/neuonc/noad220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 12/17/2023] Open
Abstract
H3 K27M-mutant diffuse glioma is a recently identified brain tumor associated with poor prognosis. As of 2016, it is classified by the World Health Organization as a distinct form of grade IV glioma. Despite recognition as an important prognostic and diagnostic feature in diffuse glioma, radiation remains the sole standard of care and no effective systemic therapies are available for H3K27M mutant tumors. This review will detail treatment interventions applied to diffuse midline glioma and diffuse intrinsic pontine glioma (DIPG) prior to the identification of the H3 K27M mutation, the current standard-of-care for H3 K27M-mutant diffuse glioma treatment, and ongoing clinical trials listed on www.clinicaltrials.gov evaluating novel therapeutics in this population. Current clinical trials were identified using clinicaltrials.gov, and studies qualifying for this analysis were active or ongoing interventional trials that evaluated a therapy in at least 1 treatment arm or cohort comprised exclusively of patients with DIPG and H3 K27M-mutant glioma. Forty-one studies met these criteria, including trials evaluating H3 K27M vaccination, chimeric antigen receptor T-cell therapy, and small molecule inhibitors. Ongoing evaluation of novel therapeutics is necessary to identify safe and effective interventions in this underserved patient population.
Collapse
Affiliation(s)
- Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Amanda M Saratsis
- Department of Neurosurgery, Advocate Children’s Hospital, Park Ridge, Illinois, USA
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Enrico Franceschi
- Department of Nervous System Medical Oncology, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
17
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
18
|
Jabbour SK, Kumar R, Anderson B, Chino JP, Jethwa KR, McDowell L, Lo AC, Owen D, Pollom EL, Tree AC, Tsang DS, Yom SS. Combinatorial Approaches for Chemotherapies and Targeted Therapies With Radiation: United Efforts to Innovate in Patient Care. Int J Radiat Oncol Biol Phys 2024; 118:1240-1261. [PMID: 38216094 DOI: 10.1016/j.ijrobp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Combinatorial therapies consisting of radiation therapy (RT) with systemic therapies, particularly chemotherapy and targeted therapies, have moved the needle to augment disease control across nearly all disease sites for locally advanced disease. Evaluating these important combinations to incorporate more potent therapies with RT will aid our understanding of toxicity and efficacy for patients. This article discusses multiple disease sites and includes a compilation of contributions from expert Red Journal editors from each disease site. Leveraging improved systemic control with novel agents, we must continue efforts to study novel treatment combinations with RT.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey.
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey
| | - Bethany Anderson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Junzo P Chino
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lachlan McDowell
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrea C Lo
- Department of Radiation Oncology, BC Cancer Vancouver Centre, Vancouver, British Columbia, Canada
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Alison C Tree
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, California
| |
Collapse
|
19
|
Martino EA, Vigna E, Bruzzese A, Labanca C, Mendicino F, Lucia E, Olivito V, Zimbo A, Torricelli F, Neri A, Morabito F, Gentile M. Selinexor in multiple myeloma. Expert Opin Pharmacother 2024; 25:421-434. [PMID: 38503547 DOI: 10.1080/14656566.2024.2333376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Selinexor, an XPO1 inhibitor, has emerged as a promising therapeutic option in the challenging landscape of relapsed/refractory multiple myeloma (RRMM). AREAS COVERED This article provides a review of selinexor, with a focus on available clinical studies involving MM patients and its safety profile. Clinical trials, such as STORM and BOSTON, have demonstrated its efficacy, particularly in combination regimens, showcasing notable overall response rates (ORR) and prolonged median progressionfree survival (mPFS). Selinexor's versatility is evident across various combinations, including carfilzomibdexamethasone (XKd), lenalidomidedexamethasone (XRd), and pomalidomidedexamethasone (XPd), with efficacy observed even in tripleclass refractory and highrisk patient populations. However, challenges, including resistance mechanisms and adverse events, necessitate careful management. Realworld evidence also underscores selinexor's effectiveness in RRMM, though dose adjustments and supportive measures remain crucial. Ongoing trials are exploring selinexor in diverse combinations and settings, including pomalidomidenaïve patients and postautologous stem cell transplant (ASCT) maintenance. EXPERT OPINION The evolving landscape of selinexor's role in the sequencing of treatment for RRMM, its potential in highrisk patients, including those with extramedullary disease, as revealed in the most recent international meetings, and ongoing investigations signal a dynamic era in myeloma therapeutics. Selinexor emerges as a pivotal component in multidrug strategies and innovative combinations.
Collapse
Affiliation(s)
| | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Federica Torricelli
- Laboratorio di Ricerca Traslazionale Azienda USL-IRCSS Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, I-42123 Reggio Emilia, EmiliaRomagna, Italy
| | | | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
20
|
Liu S, Chai T, Garcia-Marques F, Yin Q, Hsu EC, Shen M, Shaw Toland AM, Bermudez A, Hartono AB, Massey CF, Lee CS, Zheng L, Baron M, Denning CJ, Aslan M, Nguyen HM, Nolley R, Zoubeidi A, Das M, Kunder CA, Howitt BE, Soh HT, Weissman IL, Liss MA, Chin AI, Brooks JD, Corey E, Pitteri SJ, Huang J, Stoyanova T. UCHL1 is a potential molecular indicator and therapeutic target for neuroendocrine carcinomas. Cell Rep Med 2024; 5:101381. [PMID: 38244540 PMCID: PMC10897521 DOI: 10.1016/j.xcrm.2023.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Timothy Chai
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | | | - Qingqing Yin
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Abel Bermudez
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Alifiani B Hartono
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher F Massey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chung S Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Maya Baron
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Caden J Denning
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Millie Das
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | | | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, USA
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, TX, USA
| | - Arnold I Chin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Kim WK, Buckley AJ, Lee DH, Hiroto A, Nenninger CH, Olson AW, Wang J, Li Z, Vikram R, Adzavon YM, Yau TY, Bao Y, Kahn M, Geradts J, Xiao GQ, Sun Z. Androgen deprivation induces double-null prostate cancer via aberrant nuclear export and ribosomal biogenesis through HGF and Wnt activation. Nat Commun 2024; 15:1231. [PMID: 38336745 PMCID: PMC10858246 DOI: 10.1038/s41467-024-45489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Androgen deprivation therapy (ADT) targeting androgen/androgen receptor (AR)- signaling pathways is the main therapy for advanced prostate cancer (PCa). However, ADT eventually fails in most patients who consequently develop castration-resistant prostate cancer (CRPC). While more potent AR antagonists and blockers for androgen synthesis were developed to improve clinical outcomes, they also show to induce more diverse CRPC phenotypes. Specifically, the AR- and neuroendocrine-null PCa, DNPC, occurs in abiraterone and enzalutamide-treated patients. Here, we uncover that current ADT induces aberrant HGF/MET signaling activation that further elevates Wnt/β-catenin signaling in human DNPC samples. Co-activation of HGF/MET and Wnt/β-catenin axes in mouse prostates induces DNPC-like lesions. Single-cell RNA sequencing analyses identify increased expression and activity of XPO1 and ribosomal proteins in mouse DNPC-like cells. Elevated expression of XPO1 and ribosomal proteins is also identified in clinical DNPC specimens. Inhibition of XPO1 and ribosomal pathways represses DNPC growth in both in vivo and ex vivo conditions, evidencing future therapeutic targets.
Collapse
Affiliation(s)
- Won Kyung Kim
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alex Hiroto
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhuo Li
- Electronic Microscopy Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Rajeev Vikram
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yao Mawulikplimi Adzavon
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Tak-Yu Yau
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yigang Bao
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zijie Sun
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
22
|
Chen C, Miao X, Guo X, Xu J, Liang J, Zheng Y, Chi L, Chen X, Wei L, Zhang H, Ye X, He J. Safety of selinexor as the only exportin 1 (XPO1) inhibitor so far: a post-marketing study based on the world Health Organization pharmacovigilance database (Vigibase). Expert Opin Drug Saf 2024; 23:247-255. [PMID: 37608630 DOI: 10.1080/14740338.2023.2248888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Exportin 1 (XPO1) inhibitors are being developed as a new agent for anti-cancer therapies. This study aimed to broadly portray the adverse event (AE) profile of selinexor, an XPO1 inhibitor, in actual clinical practice. RESEARCH DESIGN AND METHODS Disproportionality analyses were conducted by calculating the information component and reporting odds ratio in VigiBase over different reporting periods. All selinexor-related AEs were classified by system organ class (SOC) and preferred term (PT) according to the Medical Dictionary for Regulatory Activities. RESULTS A total of 116,443 AEs were identified in 2,608 patients that received selinexor. Patients with cardiac disorders had a higher propensity for death. Thirteen SOCs and 125 PTs were identified as having a potential connection with selinexor. Notably, 29 suspected signals detected in our study were defined as significant AEs by the European Medicines Agency, including febrile neutropenia, pancytopenia, and acute kidney injury. Attention should be paid to these AEs, despite most toxicities being manageable and reversible. CONCLUSIONS This study highlights a number of AEs associated with selinexor. Most toxicities are reversible but require careful management. The benefit of selinexor still outweighs the potential risks, indicating XPO1 inhibitors as promising agents.
Collapse
Affiliation(s)
- Chenxin Chen
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xiaojing Guo
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Jinfang Xu
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Jizhou Liang
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Yi Zheng
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Lijie Chi
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Xiao Chen
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Lianhui Wei
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Hewei Zhang
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Jia He
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Wang LH, Wei S, Yuan Y, Zhong MJ, Wang J, Yan ZX, Zhou K, Luo T, Liang L, Bian XW. KPT330 promotes the sensitivity of glioblastoma to olaparib by retaining SQSTM1 in the nucleus and disrupting lysosomal function. Autophagy 2024; 20:295-310. [PMID: 37712615 PMCID: PMC10813631 DOI: 10.1080/15548627.2023.2252301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
ABBREVIATIONS AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ming-Jun Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu610000, China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Kai Zhou
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| |
Collapse
|
24
|
Thenuwara G, Curtin J, Tian F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9842. [PMID: 38139688 PMCID: PMC10747598 DOI: 10.3390/s23249842] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Gliomas, a prevalent category of primary malignant brain tumors, pose formidable clinical challenges due to their invasive nature and limited treatment options. The current therapeutic landscape for gliomas is constrained by a "one-size-fits-all" paradigm, significantly restricting treatment efficacy. Despite the implementation of multimodal therapeutic strategies, survival rates remain disheartening. The conventional treatment approach, involving surgical resection, radiation, and chemotherapy, grapples with substantial limitations, particularly in addressing the invasive nature of gliomas. Conventional diagnostic tools, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), play pivotal roles in outlining tumor characteristics. However, they face limitations, such as poor biological specificity and challenges in distinguishing active tumor regions. The ongoing development of diagnostic tools and therapeutic approaches represents a multifaceted and promising frontier in the battle against this challenging brain tumor. The aim of this comprehensive review is to address recent advances in diagnostic tools and therapeutic approaches for gliomas. These innovations aim to minimize invasiveness while enabling the precise, multimodal targeting of localized gliomas. Researchers are actively developing new diagnostic tools, such as colorimetric techniques, electrochemical biosensors, optical coherence tomography, reflectometric interference spectroscopy, surface-enhanced Raman spectroscopy, and optical biosensors. These tools aim to regulate tumor progression and develop precise treatment methods for gliomas. Recent technological advancements, coupled with bioelectronic sensors, open avenues for new therapeutic modalities, minimizing invasiveness and enabling multimodal targeting with unprecedented precision. The next generation of multimodal therapeutic strategies holds potential for precision medicine, aiding the early detection and effective management of solid brain tumors. These innovations offer promise in adopting precision medicine methodologies, enabling early disease detection, and improving solid brain tumor management. This review comprehensively recognizes the critical role of pioneering therapeutic interventions, holding significant potential to revolutionize brain tumor therapeutics.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
25
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
26
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
27
|
Deng M, Tan J, Fan Z, Pham LV, Zhu F, Fang X, Zhao H, Young K, Xu B. The synergy of the XPO1 inhibitors combined with the BET inhibitor INCB057643 in high-grade B-cell lymphoma via downregulation of MYC expression. Sci Rep 2023; 13:18554. [PMID: 37899423 PMCID: PMC10613613 DOI: 10.1038/s41598-023-45721-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
High grade B-cell lymphoma with MYC and BCL2 rearrangements (HGBCL-DH) represents an uncommon B-cell lymphoma (BCL) with aggressive clinical courses and poor prognosis. Despite revolutionary therapeutic advances in BCL, there has been limited treatment progress in HGBCL-DH, thus necessitating additional therapeutic strategies for HGBCL-DH. This study demonstrated that the BET antagonist INCB057643 synergized with the XPO1 inhibitors (selinexor and eltanexor) to decrease cell viability and increase cell apoptosis in HGBCL-DH cells with or without TP53 mutations. As anticipated, the combined treatment of INCB057643 with selinexor slowed tumor growth and reduced the tumor burden in TP53-mutated HGBCL-DH xenografts. Mechanistically, MYC functional inhibition was a potential molecular mechanism underlying the synergy of the combined INCB057643 and selinexor treatment in HGBCL-DH cells independent of TP53 mutation status. In TP53 mutated HGBCL-DH cells, inducing DNA damage and impairing the DNA damage response (DDR) were involved in the therapeutic interaction of the combined regimen. In TP53 wild-type cells, the molecular mechanism was linked with upregulation of p53 levels and activation of its targeted pathways, rather than dysregulation of the DDR. Collectively, we might provide a potential promising combination therapy regimen for the management of HGBCL-DH. Clinical evaluations are warranted to confirm this conclusion.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Ziying Fan
- Department of Hematology, Dongguan People's Hospital, Dongguan, 523000, China
| | - Lan V Pham
- Phamacyclics, an Abbvie Company, San Francisco, CA, USA
| | - Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China.
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| | - Kenh Young
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China.
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
28
|
Ellingson BM, Wen PY, Chang SM, van den Bent M, Vogelbaum MA, Li G, Li S, Kim J, Youssef G, Wick W, Lassman AB, Gilbert MR, de Groot JF, Weller M, Galanis E, Cloughesy TF. Objective response rate targets for recurrent glioblastoma clinical trials based on the historic association between objective response rate and median overall survival. Neuro Oncol 2023; 25:1017-1028. [PMID: 36617262 PMCID: PMC10237425 DOI: 10.1093/neuonc/noad002] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 01/09/2023] Open
Abstract
Durable objective response rate (ORR) remains a meaningful endpoint in recurrent cancer; however, the target ORR for single-arm recurrent glioblastoma trials has not been based on historic information or tied to patient outcomes. The current study reviewed 68 treatment arms comprising 4793 patients in past trials in recurrent glioblastoma in order to judiciously define target ORRs for use in recurrent glioblastoma trials. ORR was estimated at 6.1% [95% CI 4.23; 8.76%] for cytotoxic chemothera + pies (ORR = 7.59% for lomustine, 7.57% for temozolomide, 0.64% for irinotecan, and 5.32% for other agents), 3.37% for biologic agents, 7.97% for (select) immunotherapies, and 26.8% for anti-angiogenic agents. ORRs were significantly correlated with median overall survival (mOS) across chemotherapy (R2= 0.4078, P < .0001), biologics (R2= 0.4003, P = .0003), and immunotherapy trials (R2= 0.8994, P < .0001), but not anti-angiogenic agents (R2= 0, P = .8937). Pooling data from chemotherapy, biologics, and immunotherapy trials, a meta-analysis indicated a strong correlation between ORR and mOS (R2= 0.3900, P < .0001; mOS [weeks] = 1.4xORR + 24.8). Assuming an ineffective cytotoxic (control) therapy has ORR = 7.6%, the average ORR for lomustine and temozolomide trials, a sample size of ≥40 patients with target ORR>25% is needed to demonstrate statistical significance compared to control with a high level of confidence (P < .01) and adequate power (>80%). Given this historic data and potential biases in patient selection, we recommend that well-controlled, single-arm phase II studies in recurrent glioblastoma should have a target ORR >25% (which translates to a median OS of approximately 15 months) and a sample size of ≥40 patients, in order to convincingly demonstrate antitumor activity. Crucially, this response needs to have sufficient durability, which was not addressed in the current study.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Los Angeles, California, USA
- UCLA Neuro-Oncology Program, Los Angeles, California, USA
- Department of Radiological Sciences, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Gang Li
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Shanpeng Li
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jiyoon Kim
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg and Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, New York-Presbyterian Hospital, New York, New York, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - John F de Groot
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
29
|
Shen F, Li J, Liu F, Sun N, Qiu X, Ding W, Sun X. The efficacy and adverse effects of anlotinib in the treatment of high-grade glioma: A retrospective analysis. Front Oncol 2023; 13:1095362. [PMID: 36874124 PMCID: PMC9982121 DOI: 10.3389/fonc.2023.1095362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Anlotinib, a novel multi-kinase inhibitor, was found to improve progression-free survival (PFS) in brain metastases. Methods This paper retrospectively analyzed 26 newly diagnosed or recurrent high-grade gliomas from 2017 to 2022, and the patients received oral anlotinib during concurrent postoperative chemoradiotherapy or after recurrence. Efficacy was evaluated according to the Response Assessment in Neuro-Oncology (RANO) criteria, and the main study endpoints were PFS at 6 months and overall survival (OS) at 1 year. Results After the follow-up, until May 2022, 13 patients survived and 13 patients died, with a median follow-up time of 25.6 months. The disease control rate (DCR) was 96.2% (25/26), and the overall response rate (ORR) rate was 73.1% (19/26). The median PFS after oral anlotinib was 8.9 months (0.8-15.1), and the PFS at 6 months was 72.5%. The median OS after oral anlotinib was 12 months (1.6-24.4), and the OS at 12 months was 42.6%. Anlotinib-related toxicities were observed in 11 patients, mostly grades 1-2. In the multivariate analysis, patients with Karnofsky Performance Scale (KPS) above 80 had a highermedian PFS of 9.9months (p = 0.02), and their sex, age, IDH mutation, MGMTmethylation, and whether anlotinib was combined with chemoradiotherapy or maintenance treatment had no effect on PFS. Conclusion We found that anlotinib combined with chemoradiotherapy in treating high-grade central nervous system (CNS) tumors can prolong PFS and OS and that it was safe.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ding
- *Correspondence: Wei Ding, ; XiangDong Sun,
| | | |
Collapse
|
30
|
Dinstag G, Shulman ED, Elis E, Ben-Zvi DS, Tirosh O, Maimon E, Meilijson I, Elalouf E, Temkin B, Vitkovsky P, Schiff E, Hoang DT, Sinha S, Nair NU, Lee JS, Schäffer AA, Ronai Z, Juric D, Apolo AB, Dahut WL, Lipkowitz S, Berger R, Kurzrock R, Papanicolau-Sengos A, Karzai F, Gilbert MR, Aldape K, Rajagopal PS, Beker T, Ruppin E, Aharonov R. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. MED 2023; 4:15-30.e8. [PMID: 36513065 PMCID: PMC10029756 DOI: 10.1016/j.medj.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Precision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers. METHODS We present ENLIGHT, a transcriptomics-based computational approach that identifies clinically relevant genetic interactions and uses them to predict a patient's response to a variety of therapies in multiple cancer types without training on previous treatment response data. We study ENLIGHT in two translationally oriented scenarios: personalized oncology (PO), aimed at prioritizing treatments for a single patient, and clinical trial design (CTD), selecting the most likely responders in a patient cohort. FINDINGS Evaluating ENLIGHT's performance on 21 blinded clinical trial datasets in the PO setting, we show that it can effectively predict a patient's treatment response across multiple therapies and cancer types. Its prediction accuracy is better than previously published transcriptomics-based signatures and is comparable with that of supervised predictors developed for specific indications and drugs. In combination with the interferon-γ signature, ENLIGHT achieves an odds ratio larger than 4 in predicting response to immune checkpoint therapy. In the CTD scenario, ENLIGHT can potentially enhance clinical trial success for immunotherapies and other monoclonal antibodies by excluding non-responders while overall achieving more than 90% of the response rate attainable under an optimal exclusion strategy. CONCLUSIONS ENLIGHT demonstrably enhances the ability to predict therapeutic response across multiple cancer types from the bulk tumor transcriptome. FUNDING This research was supported in part by the Intramural Research Program, NIH and by the Israeli Innovation Authority.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isaac Meilijson
- Pangea Biomed Ltd., Tel Aviv, Israel; Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Danh-Tai Hoang
- Biological Data Science Institute, College of Science, The Australian National University, Canberra, ACT, Australia
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joo Sang Lee
- Department of Precision Medicine, School of Medicine & Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ze'ev Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Dejan Juric
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raanan Berger
- Cancer Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Razelle Kurzrock
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Chevilly-Larue, France
| | | | - Fatima Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Padma S Rajagopal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
31
|
[A case-control study of multiple myeloma patients with central nervous system involvement]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:1016-1020. [PMID: 36709107 DOI: 10.3760/cma.j.issn.0253-2727.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: To investigate the treatment options for multiple myeloma patients with central nervous system involvement (CNS-MM) , as well as their clinical characteristics and prognostic factors. Methods: Between January 2011 and January 2022 our center diagnosed 18 people with CNS-MM. A retrospective analysis was done on the clinical information from the initial diagnosis and central nervous system involvement, and it was compared to 1∶3 matched newly diagnosed MM from the same period. Analysis was done on the clinical characteristics and survival rates of the two groups. Results: In patients with CNS-MM, the median time of onset was 14.2 (0.9-79.6) months and the median overall survival (OS) was 30.5 months from initial diagnosis and only 3.8 months in patients after CNS involvement. The CNS-MM patients showed more IgD type (P=0.010) , severer anemia (P=0.014) , a higher proportion of bone marrow plasma cells (P=0.013) , more extramedullary lesions (P=0.001) , and increased lactic dehydrogenase (LDH) (P=0.009) when compared to the control group. Lenalidomide or pomalidomide-based combinations had higher rates of hematology and CNS remission than bortezomib or daratumumab-based regimens (75.0% vs 16.7% , P=0.019) . Patients who received IMiD-based regimens and had 2 high-risk factors at initial diagnosis (high LDH and extramedullary lesions) had a significantly lower incidence of CNS-MM (P=0.026) . At the initial diagnosis, LDH (P=0.008, HR=7.319, 95% CI 1.663-32.219) and extramedullary lesions (P=0.006, HR=8.054, 95% CI 1.828-35.486) were independent risk factors for the occurrence of CNS-MM. Conclusion: Patients with CNS-MM had a poor prognosis. Patients with high LDH or extramedullary lesions at the time of the initial diagnosis are more likely to have CNS-MM. The prognosis of this patient may be improved by immunoregulator-based therapy.
Collapse
|
32
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
33
|
Zhao C, Yang ZY, Zhang J, Li O, Liu SL, Cai C, Shu YJ, Pan LJ, Gong W, Dong P. Inhibition of XPO1 with KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer by activating the p53/mTOR pathway. J Transl Med 2022; 20:434. [PMID: 36180918 PMCID: PMC9524043 DOI: 10.1186/s12967-022-03635-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a highly aggressive malignant cancer in the biliary system with poor prognosis. XPO1 (chromosome region maintenance 1 or CRM1) mediates the nuclear export of several proteins, mainly tumor suppressors. Thus, XPO1 functions as a pro-oncogenic factor. KPT-330 (Selinexor) is a United States Food and Drug Administration approved selective inhibitor of XPO1 that demonstrates good therapeutic effects in hematologic cancers. However, the function of XPO1 and the effect of KPT-330 have not been reported in GBC. METHODS We analyzed the correlation between XPO1 expression levels by q-PCR and clinical features of GBC patients. Cell proliferation assays were used to analyze the in vitro antitumor effects of XPO1 inhibitor KPT-330. mRNA sequencing was used to explore the underlying mechanisms. Western blot was performed to explore the relationship between apoptosis and autophagy. The in vivo antitumor effect of KPT-330 was investigated in a nude mouse model of gallbladder cancer. RESULTS We found that high expression of XPO1 was related to poor prognosis of GBC patients. We observed that XPO1 inhibitor KPT-330 inhibited the proliferation of GBC cells in vitro. Furthermore, XPO1 inhibitor KPT-330 induced apoptosis by reducing the mitochondrial membrane potential and triggering autophagy in NOZ and GBC-SD cells. Indeed, XPO1 inhibitor KPT-330 led to nuclear accumulation of p53 and activated the p53/mTOR pathway to regulate autophagy-dependent apoptosis. Importantly, KPT-330 suppressed tumor growth with no obvious toxic effects in vivo. CONCLUSION XPO1 may be a promising prognostic indicator for GBC, and KPT-330 appears to be a potential drug for treating GBC effectively and safely.
Collapse
Affiliation(s)
- Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Zi-yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Jian Zhang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Ou Li
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Shi-lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Chen Cai
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Yi-jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Li-jia Pan
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| |
Collapse
|
34
|
Otte K, Zhao K, Braun M, Neubauer A, Raifer H, Helmprobst F, Barrera FO, Nimsky C, Bartsch JW, Rusch T. Eltanexor Effectively Reduces Viability of Glioblastoma and Glioblastoma Stem-Like Cells at Nano-Molar Concentrations and Sensitizes to Radiotherapy and Temozolomide. Biomedicines 2022; 10:biomedicines10092145. [PMID: 36140245 PMCID: PMC9496210 DOI: 10.3390/biomedicines10092145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Current standard adjuvant therapy of glioblastoma multiforme (GBM) using temozolomide (TMZ) frequently fails due to therapy resistance. Thus, novel therapeutic approaches are highly demanded. We tested the therapeutic efficacy of the second-generation XPO1 inhibitor Eltanexor using assays for cell viability and apoptosis in GBM cell lines and GBM stem-like cells. For most GBM-derived cells, IC50 concentrations for Eltanexor were below 100 nM. In correlation with reduced cell viability, apoptosis rates were significantly increased. GBM stem-like cells presented a combinatorial effect of Eltanexor with TMZ on cell viability. Furthermore, pretreatment of GBM cell lines with Eltanexor significantly enhanced radiosensitivity in vitro. To explore the mechanism of apoptosis induction by Eltanexor, TP53-dependent genes were analyzed at the mRNA and protein level. Eltanexor caused induction of TP53-related genes, TP53i3, PUMA, CDKN1A, and PML on both mRNA and protein level. Immunofluorescence of GBM cell lines treated with Eltanexor revealed a strong accumulation of CDKN1A, and, to a lesser extent, of p53 and Tp53i3 in cell nuclei as a plausible mechanism for Eltanexor-induced apoptosis. From these data, we conclude that monotherapy with Eltanexor effectively induces apoptosis in GBM cells and can be combined with current adjuvant therapies to provide a more effective therapy of GBM.
Collapse
Affiliation(s)
- Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Felipe Ovalle Barrera
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-58-65625
| |
Collapse
|
35
|
Walker CJ, Chang H, Henegar L, Kashyap T, Shacham S, Sommer J, Wick MJ, Levy J, Landesman Y. Selinexor inhibits growth of patient derived chordomas in vivo as a single agent and in combination with abemaciclib through diverse mechanisms. Front Oncol 2022; 12:808021. [PMID: 36059685 PMCID: PMC9434827 DOI: 10.3389/fonc.2022.808021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Chordoma is a rare cancer that grows in the base of the skull and along the mobile spine from remnants of embryonic notochord tissue. The cornerstone of current treatments is surgical excision with adjuvant radiation therapy, although complete surgical removal is not always possible. Chordomas have high rates of metastasis and recurrence, with no approved targeted agents. Selinexor and eltanexor are selective inhibitors of nuclear export (SINE) that prevent the karyopherin protein exportin-1 (XPO1) from shuttling its cargo proteins through nuclear pore complexes out of the nucleus and into the cytoplasm. As cancer cells overexpress XPO1, and many of its cargos include tumor suppressor proteins and complexes bound to oncogene mRNAs, XPO1 inhibition can suppress oncogene translation and restore tumor suppressor protein activity in different cancer types. SINE compounds have exhibited anti-cancer activity in a wide range of hematological and solid tumor malignancies. Here we demonstrate the preclinical effectiveness of SINE compounds used as single agents or in combination with either the proteasome inhibitor, bortezomib, or the CDK4/6 inhibitor, abemaciclib, against various patient- derived xenograft (PDX) mouse models of chordoma, which included clival and sacral chordomas from adult or pediatric patients with either primary or metastatic disease, with either differentiated or poorly differentiated subtypes. SINE treatment significantly impaired tumor growth in all five tested chordoma models, with the selinexor and abemaciclib combination showing the strongest activity (tumor growth inhibition of 78-92%). Immunohistochemistry analysis of excised tumors revealed that selinexor treatment resulted in marked induction of apoptosis and reduced cell proliferation, as well as nuclear accumulation of SMAD4, and reduction of Brachyury and YAP1. RNA sequencing showed selinexor treatment resulted in differences in activated and repressed signaling pathways between the PDX models, including changes in WNT signaling, E2F pathways and glucocorticoid receptor signaling. This is consistent with SINE-compound mediated XPO1 inhibition exhibiting anti-cancer activity through a broad range of different mechanisms in different molecular chordoma subsets. Our findings validate the need for further investigation into selinexor as a targeted therapeutic for chordoma, especially in combination with abemaciclib.
Collapse
Affiliation(s)
- Christopher J. Walker
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Hua Chang
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Leah Henegar
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Trinayan Kashyap
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Sharon Shacham
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Josh Sommer
- Department of Research, Chordoma Foundation, Durham, NC, United States
| | - Michael J. Wick
- Department of Research, XenoSTART, San Antonio, TX, United States
| | - Joan Levy
- Department of Research, Chordoma Foundation, Durham, NC, United States
| | - Yosef Landesman
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
- *Correspondence: Yosef Landesman,
| |
Collapse
|
36
|
The efficacy of selinexor (KPT-330), an XPO1 inhibitor, on non-hematologic cancers: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2139-2155. [PMID: 35941226 DOI: 10.1007/s00432-022-04247-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Selinexor is a novel XPO1 inhibitor which inhibits the export of tumor suppressor proteins and oncoprotein mRNAs, leading to cell-cycle arrest and apoptosis in cancer cells. While selinexor is currently FDA approved to treat multiple myeloma, compelling preclinical and early clinical studies reveal selinexor's efficacy in treating hematologic and non-hematologic malignancies, including sarcoma, gastric, bladder, prostate, breast, ovarian, skin, lung, and brain cancers. Current reviews of selinexor primarily highlight its use in hematologic malignancies; however, this review seeks to summarize the recent evidence of selinexor treatment in solid tumors. METHODS Pertinent literature searches in PubMed and the Karyopharm Therapeutics website for selinexor and non-hematologic malignancies preclinical and clinical trials. RESULTS This review provides evidence that selinexor is a promising agent used alone or in combination with other anticancer medications in non-hematologic malignancies. CONCLUSION Further clinical investigation of selinexor treatment for solid malignancies is warranted.
Collapse
|
37
|
Restrepo P, Bhalla S, Ghodke-Puranik Y, Aleman A, Leshchenko V, Melnekoff DT, Agte S, Jiang J, Madduri D, Richter J, Richard S, Chari A, Cho HJ, Jagannath S, Walker CJ, Landesman Y, Laganà A, Parekh S. A Three-Gene Signature Predicts Response to Selinexor in Multiple Myeloma. JCO Precis Oncol 2022; 6:e2200147. [PMID: 35704796 PMCID: PMC10530420 DOI: 10.1200/po.22.00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Selinexor is the first selective inhibitor of nuclear export to be approved for the treatment of relapsed or refractory multiple myeloma (MM). Currently, there are no known genomic biomarkers or assays to help select MM patients at higher likelihood of response to selinexor. Here, we aimed to characterize the transcriptomic correlates of response to selinexor-based therapy. METHODS We performed RNA sequencing on CD138+ cells from the bone marrow of 100 patients with MM who participated in the BOSTON study, followed by differential gene expression and pathway analysis. Using the differentially expressed genes, we used cox proportional hazard models to identify a gene signature predictive of response to selinexor, followed by validation in external cohorts. RESULTS The three-gene signature predicts response to selinexor-based therapy in patients with MM in the BOSTON cohort. Then, we validated this gene signature in 64 patients from the STORM cohort of triple-class refractory MM and additionally in an external cohort of 35 patients treated in a real-world setting outside of clinical trials. We found that the signature tracks with both depth and duration of response, and it also validates in a different tumor type using a cohort of pretreatment tumors from patients with recurrent glioblastoma. Furthermore, the genes involved in the signature, WNT10A, DUSP1, and ETV7, reveal a potential mechanism through upregulated interferon-mediated apoptotic signaling that may prime tumors to respond to selinexor-based therapy. CONCLUSION In this study, we present a present a novel, three-gene expression signature that predicts selinexor response in MM. This signature has important clinical relevance as it could identify patients with cancer who are most likely to benefit from treatment with selinexor-based therapy.
Collapse
Affiliation(s)
- Paula Restrepo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sherry Bhalla
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Adolfo Aleman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Violetta Leshchenko
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David T. Melnekoff
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sarita Agte
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joy Jiang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deepu Madduri
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Janssen Pharmaceutical Research and Development, Raritan, NJ
| | - Joshua Richter
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shambavi Richard
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hearn Jay Cho
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Multiple Myeloma Research Foundation, Norwalk, CT
| | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Alessandro Laganà
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
38
|
Gousias K, Theocharous T, Simon M. Mechanisms of Cell Cycle Arrest and Apoptosis in Glioblastoma. Biomedicines 2022; 10:biomedicines10030564. [PMID: 35327366 PMCID: PMC8945784 DOI: 10.3390/biomedicines10030564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cells of glioblastoma, the most frequent primary malignant brain tumor, are characterized by their rapid growth and infiltration of adjacent healthy brain parenchyma, which reflects their aggressive biological behavior. In order to maintain their excessive proliferation and invasion, glioblastomas exploit the innate biological capacities of the patients suffering from this tumor. The pathways involved in cell cycle regulation and apoptosis are the mechanisms most commonly affected. The following work reviews the regulatory pathways of cell growth in general as well as the dysregulated cell cycle and apoptosis relevant mechanisms observed in glioblastomas. We then describe the molecular targeting of the current established adjuvant therapy and present ongoing trials or completed studies on specific promising therapeutic agents that induce cell cycle arrest and apoptosis of glioblastoma cells.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
- Medical School, Westfälische Wilhelms University of Muenster, 48149 Muenster, Germany
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
- Correspondence: ; Tel.: +49-2306-773151
| | - Theocharis Theocharous
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
| | - Matthias Simon
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical School, 33617 Bielefeld, Germany;
| |
Collapse
|