1
|
Ramu A, Ak L, Chinnappan J. Identification of prostate cancer associated genes for diagnosis and prognosis: a modernized in silico approach. Mamm Genome 2024; 35:683-710. [PMID: 39153107 DOI: 10.1007/s00335-024-10060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Prostate cancer (PCa) ranks as the second leading cause of cancer-related deaths in men. Diagnosing PCa relies on molecular markers known as diagnostic biomarkers, while prognostic biomarkers are used to identify key proteins involved in PCa treatments. This study aims to gather PCa-associated genes and assess their potential as either diagnostic or prognostic biomarkers for PCa. A corpus of 152,064 PCa-related data from PubMed, spanning from May 1936 to December 2020, was compiled. Additionally, 4199 genes associated with PCa terms were collected from the National Center of Biotechnology Information (NCBI) database. The PubMed corpus data was extracted using pubmed.mineR to identify PCa-associated genes. Network and pathway analyses were conducted using various tools, such as STRING, DAVID, KEGG, MCODE 2.0, cytoHubba app, CluePedia, and ClueGO app. Significant marker genes were identified using Random Forest, Support Vector Machines, Neural Network algorithms, and the Cox Proportional Hazard model. This study reports 3062 unique PCa-associated genes along with 2518 corresponding unique PMIDs. Diagnostic markers such as IL6, MAPK3, JUN, FOS, ACTB, MYC, and TGFB1 were identified, while prognostic markers like ACTB and HDAC1 were highlighted in PubMed. This suggests that the potential target genes provided by PubMed data outweigh those in the NCBI database.
Collapse
Affiliation(s)
- Akilandeswari Ramu
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Lekhashree Ak
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jayaprakash Chinnappan
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Zheng W, Han L, He ZJ, Kang JC. Novel drimane-type sesquiterpenoids and nucleosides from the Helicoma septoconstrictum suppress the growth of ovarian cancer cells. Bioorg Chem 2024; 145:107214. [PMID: 38417190 DOI: 10.1016/j.bioorg.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
Four new drimane-type sesquiterpenoids and two new nucleoside derivatives (1-6), were isolated from the fungus Helicoma septoconstrictum. Their structures were determined based on the combination of the analysis of their HR-ESI-MS, NMR, ECD calculations data and acid hydrolysis. All the isolated compounds were detected for their bio-activities against MDA-MB-231, A549/DDP, A2780 and HepG2 cell lines. Helicoside C (4) exhibited superior cytotoxicity against the A2780 cell line with IC50 7.5 ± 1.5 µM. The analysis of reactive oxygen species (ROS) revealed that Helicoside C induced an increase in intracellular ROS. Furthermore, the flow cytometry and mitochondrial membrane potential (MMP) analyses unveiled that Helicoside C mediated mitochondrial-dependent apoptosis in A2780 cells. The western blotting test showed that Helicoside C could suppress the STAT3's phosphorylation. These findings offered crucial support for development of H. septoconstrictum and highlighted the potential application of drimane-type sesquiterpenoids in pharmaceuticals.
Collapse
Affiliation(s)
- Wen Zheng
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Long Han
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Zhang-Jiang He
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ji-Chuan Kang
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Cao H, Wang D, Gao R, Chen L, Feng Y, Sun P. Zhoushi Qi Ling decoction inhibits the progression of castration-resistant prostate cancer in vivo by regulating macrophage infiltration via IL6-STAT3 signaling. J Tradit Complement Med 2024; 14:19-25. [PMID: 38223804 PMCID: PMC10785149 DOI: 10.1016/j.jtcme.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim Prostate cancer is a leading malignant tumor in men, associated with a high rate of mortality. Androgen deprivation therapy is commonly used to treat prostate cancer, which contributes to the progression of castration-resistant prostate cancer (CRPC). The current therapy has a low survival rate in patients with CRPC. Our study aims to develop a novel effective approach for CRPC treatment and improve survival benefits. Experimental procedure CRPC cell line PC-3-Luc expressing luciferase and the CRPC cell line PC-3-IL6-Luc stably overexpressing IL-6 were used to establish the xenograft tumor mouse model. The tumor was monitored weekly using Bioluminescence imaging. Infiltrated macrophages were quantified by fluorescence-activated cell sorting using flow cytometry. IL6 mRNA level was determined using quantitative real-time PCR. The protein levels of total STAT3 and phosphorylated STAT3 were determined using Western blot. Results and conclusion Zhoushi Qi Ling decoction (ZQD) treatment significantly reduced PC3 the xenograft tumor progression and the number of infiltrated macrophages when compared with saline treatment. IL6 mRNA level was remarkedly suppressed by ZQD treatment. Notably, the protein level of phosphorylated STAT3 was significantly decreased in PC3 the xenograft tumor treated with ZQD compared to saline treatment. Our findings demonstrated that ZQD treatment significantly reduced the progression of prostate cancer, evidenced by the reduced population of infiltrated macrophages and the inhibition of the IL6/STAT3 pathway.
Collapse
Affiliation(s)
| | | | | | - Lei Chen
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai, 200032, China
| | - Yigeng Feng
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai, 200032, China
| | - Peng Sun
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai, 200032, China
| |
Collapse
|
4
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M, Aref AR, Salimimoghadam S, Rashidi M, Taheriazam A, Hushmandi K. STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 2023; 158:114168. [PMID: 36916439 DOI: 10.1016/j.biopha.2022.114168] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The categorization of cancers demonstrates that prostate cancer is the most common malignancy in men and it causes high death annually. Prostate cancer patients are diagnosed mainly via biomarkers such as PSA test and patients show poor prognosis. Prostate cancer cells rapidly diffuse into different parts of body and their metastasis is also a reason for death. Current therapies for prostate cancer patients include chemotherapy, surgery and radiotherapy as well as targeted therapy. The progression of prostate cancer cells is regulated by different factors that STAT3 signaling is among them. Growth factors and cytokines such as IL-6 can induce STAT3 signaling and it shows carcinogenic impact. Activation of STAT3 signaling occurs in prostate cancer and it promotes malignant behavior of tumor cells. Induction of STAT3 signaling increases glycolysis and proliferation of prostate cancer cells and prevents apoptosis. Furthermore, STAT3 signaling induces EMT mechanism in increasing cancer metastasis. Activation of STAT3 signaling stimulates drug resistance and the limitation of current works is lack of experiment related to role of STAT3 signaling in radio-resistance in prostate tumor. Calcitriol, capsazepine and β-elemonic are among the compounds capable of targeting STAT3 signaling and its inhibition in prostate cancer therapy. In addition to natural products, small molecules targeting STAT3 signaling have been developed in prostate cancer therapy.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Sanmukh SG, Dos Santos NJ, Nascimento Barquilha C, De Carvalho M, Pintor Dos Reis P, Delella FK, Carvalho HF, Latek D, Fehér T, Felisbino SL. Bacterial RNA virus MS2 exposure increases the expression of cancer progression genes in the LNCaP prostate cancer cell line. Oncol Lett 2023; 25:86. [PMID: 36760518 PMCID: PMC9878357 DOI: 10.3892/ol.2023.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/02/2022] [Indexed: 01/19/2023] Open
Abstract
Bacteriophages effectively counteract diverse bacterial infections, and their ability to treat most types of cancer has been explored using phage engineering or phage-virus hybrid platforms. In the present study, it was demonstrated that the bacteriophage MS2 can affect the expression of genes associated with the proliferation and survival of LNCaP prostate epithelial cells. LNCaP cells were exposed to bacteriophage MS2 at a concentration of 1×107 plaque forming units/ml for 24-48 h. After exposure, various cellular parameters, including cell viability, morphology, and changes in gene expression, were examined. MS2 affected cell viability adversely, reducing viability by 25% in the first 4 h of treatment; however, cell viability recovered within 24-48 h. Similarly, the AKT, androgen receptor, integrin α5, integrin β1, MAPK1, MAPK3, STAT3, and peroxisome proliferator-activated receptor-γ coactivator 1α genes, which are involved in various normal cellular processes and tumor progression, were significantly upregulated, whereas the expression levels of HSP90, ITGB5, ITGB3, HSP27, ITGAV, and PI3K genes were unchanged. Therefore, based on viability and gene expression changes, bacteriophage MS2 severely impaired LNCaP cells by reducing anchorage-dependent survival and androgen signaling. A caveolin-mediated endocytosis mechanism for MS2-mediated signaling in prostate cancer cells was proposed based on reports involving bacteriophages T4, M13, and MS2, and their interactions with LNCaP and PC3 cell lines.
Collapse
Affiliation(s)
- Swapnil Ganesh Sanmukh
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil,Synthetic and Systems Biology Unit, Biological Research Center, Eötvös Loránd Research Network, 6726 Szeged, Hungary,Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Nilton José Dos Santos
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil,Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Caroline Nascimento Barquilha
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil,Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Márcio De Carvalho
- Department of Surgery and Orthopedics, Faculty of Medicine, Sao Paulo State University, Botucatu, São Paulo 18618-687, Brazil
| | - Patricia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, Sao Paulo State University, Botucatu, São Paulo 18618-687, Brazil
| | - Flávia Karina Delella
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Biological Research Center, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - Sérgio Luis Felisbino
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil,Correspondence to: Professor Sérgio Luis Felisbino, Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, 250 Antônio Celso Wagner Zanin, Botucatu, São Paulo 18618-689, Brazil, E-mail:
| |
Collapse
|
6
|
Wang K, Chen YF, Yang YCSH, Huang HM, Lee SY, Shih YJ, Li ZL, Whang-Peng J, Lin HY, Davis PJ. The power of heteronemin in cancers. J Biomed Sci 2022; 29:41. [PMID: 35705962 PMCID: PMC9202199 DOI: 10.1186/s12929-022-00816-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Heteronemin (Haimian jing) is a sesterterpenoid-type natural marine product that is isolated from sponges and has anticancer properties. It inhibits cancer cell proliferation via different mechanisms, such as reactive oxygen species (ROS) production, cell cycle arrest, apoptosis as well as proliferative gene changes in various types of cancers. Recently, the novel structure and bioactivity evaluation of heteronemin has received extensive attention. Hormones control physiological activities regularly, however, they may also affect several abnormalities such as cancer. L-Thyroxine (T4), steroid hormones, and epidermal growth factor (EGF) up-regulate the accumulation of checkpoint programmed death-ligand 1 (PD-L1) and promote inflammation in cancer cells. Heteronemin suppresses PD-L1 expression and reduces the PD-L1-induced proliferative effect. In the current review, we evaluated research and evidence regarding the antitumor effects of heteronemin and the antagonizing effects of non-peptide hormones and growth factors on heteronemin-induced anti-cancer properties and utilized computational molecular modeling to explain how these ligands interacted with the integrin αvβ3 receptors. On the other hand, thyroid hormone deaminated analogue, tetraiodothyroacetic acid (tetrac), modulates signal pathways and inhibits cancer growth and metastasis. The combination of heteronemin and tetrac derivatives has been demonstrated to compensate for anti-proliferation in cancer cells under different circumstances. Overall, this review outlines the potential of heteronemin in managing different types of cancers that may lead to its clinical development as an anticancer agent.
Collapse
Affiliation(s)
- Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan.
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.,Department of Medicine, Albany Medical College, Albany, NY12144, USA
| |
Collapse
|
7
|
Lee CH, Yang H, Park JHY, Kim JE, Lee KW. Piceatannol, a metabolite of resveratrol, attenuates atopic dermatitis by targeting Janus kinase 1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153981. [PMID: 35235887 DOI: 10.1016/j.phymed.2022.153981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Piceatannol is a resveratrol metabolite commonly found in red wine, grapes. Several studies have investigated the immune-modulating effects of piceatannol on processes related to allergic reactions. However, the relationship between piceatannol and atopic dermatitis (AD) has not yet been reported. This study sought to investigate the effects of piceatannol in animal and cell line models. METHODS AD-like symptoms and skin lesions were triggered by repeated topical treatment of Dermatophagoides farinae extract (DFE) on the skin of NC/Nga mice. The molecular mechanism of piceatannol was studied in the TNFα/IFNγ-induced HaCaT cell line. RESULTS Piceatannol attenuated DFE-induced AD-like symptoms, as shown by skin thickness, dermatitis score, scratching time, and skin water loss. Histopathological analysis showed that piceatannol suppressed DFE-induced immune cell infiltration into the skin. These results occurred concomitantly with the downregulation of inflammatory markers, including serum and skin TARC and MDC. Piceatannol decreased phosphorylation of JAK-STAT protein in the TNFα/IFNγ-induced HaCaT cell line. A molecular docking study showed that piceatannol strongly interacts with JAK1, suggesting a possible mode of action. CONCLUSION The study results showed that piceatannol, a metabolite of resveratrol, attenuates atopic dermatitis and provide important implication of development of piceatannol as functional ingredients or therapeutic agents.
Collapse
Affiliation(s)
- Chang Hyung Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hee Yang
- Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea.
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| |
Collapse
|
8
|
Wu C, Wang Z, Tian X, Wang J, Zhang Y, Wu B. Long non-coding RNA DDX11-AS1 promotes esophageal carcinoma cell proliferation and migration through regulating the miR-514b-3p/RBX1 axis. Bioengineered 2021; 12:3772-3786. [PMID: 34281459 PMCID: PMC8806645 DOI: 10.1080/21655979.2021.1940617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most aggressive malignancies with extremely high morbidity and mortality. At present, limited advancement in ESCA treatment has achieved. Therefore, it is urgent to explore the pathogenesis and progression mechanism of ESCA to provide the basis for the formulation of novel therapeutic strategies. Previous studies have found that long non-coding RNA (lncRNA) DDX11-AS1 expression enhances the paclitaxel resistance of ESCA cells. However, the mechanisms underlying the drug resistance conferred by lncRNA DDX11-AS1 in ESCA remains to be elucidated. Our research aims to clarify the role and mechanism of lncRNA DDX11-AS1 in regulating the progression of ESCA. We found that the expression of lncRNA DDX11-AS1 in ESCA tissues and cell lines was significantly upregulated. Subsequently, silencing lncRNA DDX11-AS1 significantly inhibited the proliferation, migration and invasion of ESCA cells, and induced the level of cell apoptosis. In terms of mechanism, our data showed that miR-514b-3p/RING box protein 1 (RBX1) axis played a crucial role in the oncogenic function of lncRNA DDX11-AS1. LncRNA DDX11-AS1 expression impaired the inhibitory function of miR-514b-3p on RBX1 through sponging effect. Taken together, our data support the notion that lncRNA DDX11-AS1 promotes the progression of ESCA through miR-514b-3p/RBX1 axis. Our research uncovers the novel regulatory role of lncRNA DDX11-AS1 in ESCA and lays a theoretical basis for developing novel treatment strategy of ESCA.
Collapse
Affiliation(s)
- Chao Wu
- Department of Anorectal Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhibin Wang
- Department of Oncology, the Fifth Hospital of Wuhan, Wuhan, Hubei, China
| | - Xuetao Tian
- Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianqiang Wang
- Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Hepatobiliary Hernia and Vascular Surgery, Huazhong University of Science and Technology, Wuhan, Zhejiang, China
| | - Yuesong Zhang
- Department of Anorectal Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biao Wu
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thoracic Surgery, Ningbo Yinzhou NO.2 Hospital, Ningbo, China
| |
Collapse
|
9
|
Kim JH, Kordahi MC, Chac D, DePaolo RW. Toll-like Receptor-6 Signaling Prevents Inflammation and Impacts Composition of the Microbiota During Inflammation-Induced Colorectal Cancer. Cancer Prev Res (Phila) 2019; 13:25-40. [PMID: 31771941 DOI: 10.1158/1940-6207.capr-19-0286] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
Tightly regulated immune responses must occur in the intestine to avoid unwanted inflammation, which may cause chronic sequela leading to diseases such as colorectal cancer. Toll-like receptors play an important role in preventing aberrant immune responses in the intestine by sensing endogenous commensal microbiota and delivering important regulatory signals to the tissue. However, the role that specific innate receptors may play in the development of chronic inflammation and their impact on the composition of the colonic microbiota is not well understood. Using a model of inflammation-induced colorectal cancer, we found that Lactobacillus species are lost more quickly in wild-type (WT) mice than TLR6-deficient mice resulting in overall differences in bacterial composition. Despite the longer retention of Lactobacillus, the TLR6-deficient mice presented with more tumors and a worse overall outcome. Restoration of the lost Lactobacillus species suppressed inflammation, reduced tumor number, and prevented change in the abundance of Proteobacteria only when given to WT mice, indicating the effect of these Lactobacillus are TLR6 dependent. We found that the TLR6-dependent effects of Lactobacillus could be dissociated from one another via the involvement of IL10, which was necessary to dampen the inflammatory microenvironment, but had no effect on bacterial composition. Altogether, these data suggest that innate immune signals can shape the composition of the microbiota under chronic inflammatory conditions, bias the cytokine milieu of the tissue microenvironment, and influence the response to microbiota-associated therapies.
Collapse
Affiliation(s)
- Jee-Hyun Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Melissa C Kordahi
- Division of Pathology, Department of Medicine, University of Washington, Seattle, Washington
| | - Denise Chac
- Division of Pathology, Department of Medicine, University of Washington, Seattle, Washington
| | - R William DePaolo
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
10
|
Zang C, Liu X, Li B, He Y, Jing S, He Y, Wu W, Zhang B, Ma S, Dai W, Li S, Peng Z. IL-6/STAT3/TWIST inhibition reverses ionizing radiation-induced EMT and radioresistance in esophageal squamous carcinoma. Oncotarget 2017; 8:11228-11238. [PMID: 28061440 PMCID: PMC5355260 DOI: 10.18632/oncotarget.14495] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023] Open
Abstract
The acquisition of radioresistance by esophageal squamous carcinoma (ESC) cells during radiotherapy may lead to cancer recurrence and poor survival. Previous studies have demonstrated that ionizing radiation (IR) induces epithelial–mesenchymal transition (EMT) of ESC cells accompanied by increased migration, invasion, and radioresistance. However, the underlying molecular mechanisms of IR-induced EMT and radioresistance are not well established, hampering the development of potential solutions. To address this issue, we investigated the role of the IL-6/STAT3/TWIST signaling pathway in IR-induced EMT. We found not only the pathway was activated during IR-induced EMT but also STAT3 inhibition or Twist depletion reversed the EMT process and attenuated radioresistance. These results improve our understanding of the underlying mechanisms involved in IR-induced EMT and suggest potential interventions to prevent EMT-induced acquisition of radioresistance.
Collapse
Affiliation(s)
- Chunbao Zang
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Xujie Liu
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Bing Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chonqqing Medical University, Chongqing, China
| | - Yanqiong He
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Shen Jing
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Yujia He
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Wenli Wu
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Bingqian Zhang
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Shuhong Ma
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Weiwei Dai
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Shaolin Li
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| | - Zhiping Peng
- Department of Radiological Medicine, Chongqing Medical University, Chonging, China
| |
Collapse
|
11
|
Abd-El-Aziz AS, Alsaggaf AT, Okasha RM, Ahmed HEA, Bissessur R, Abdelghani AA, Afifi TH. Antimicrobial and Antitumor Screening of Fluorescent 5,7-Dihydroxy-4-Propyl-2H-Chromen-2-One Derivatives with Docking Studies. ChemistrySelect 2016. [DOI: 10.1002/slct.201600789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Chemistry Department, Faculty of Science; University of Prince Edward Island; Charlottetown, Prince Edward Island C1 A 4P Canada
| | - Azhaar T Alsaggaf
- Chemistry Department, Faculty of Science; University of Prince Edward Island; Charlottetown, Prince Edward Island C1 A 4P Canada
| | - Rawda M. Okasha
- Chemistry Department, Faculty of Science; University of Prince Edward Island; Charlottetown, Prince Edward Island C1 A 4P Canada
- Chemistry Department, Faculty of Science; Taibah University; 30002 Al-Madinah Al-Munawarah Saudi Arabia
| | - Hany E. A. Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College; Taibah University; Al-Madinah Al-Munawarah Saudi Arabia
| | - Rabin Bissessur
- Chemistry Department, Faculty of Science; University of Prince Edward Island; Charlottetown, Prince Edward Island C1 A 4P Canada
| | - Amani A. Abdelghani
- Chemistry Department, Faculty of Science; University of Prince Edward Island; Charlottetown, Prince Edward Island C1 A 4P Canada
| | - Tarek H. Afifi
- Chemistry Department, Faculty of Science; Taibah University; 30002 Al-Madinah Al-Munawarah Saudi Arabia
| |
Collapse
|
12
|
Seyed MA, Jantan I, Bukhari SNA, Vijayaraghavan K. A Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:725-37. [PMID: 26758628 DOI: 10.1021/acs.jafc.5b05993] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cancer is a diverse class of diseases characterized by uncontrolled cell growth that constitutes the greatest cause of mortality and morbidity worldwide. Despite steady progress, the treatment modalities of cancer are still insufficient. Several new concepts have emerged for therapeutic intervention in malignant diseases with the goal of identifying specific targets and overcoming resistance against current cytotoxic therapies. Many studies have reported the remarkable and significant properties of dietary plant polyphenols such as curcumin, resveratrol, flavopiridol, indirubin, magnolol, piceatannol, parthenolide, epigallocatechin gallate, and cucurbitacin as anticancer agents known for their pleiotropic effects on cancer, immune cells, and inflammation. Piceatannol, an analogue and metabolite of resveratrol, is a natural stilbene commonly found in grape skins and wine. Compared to resveratrol, this molecule exhibits superior bioactivities as an inhibitor of COX-1/2 and the CSN-associated kinase. Piceatannol is thought to be a potent natural compound with many therapeutic effects, such as the prevention of hypercholesterolemia, arrhythmia, atherosclerosis, angiogenesis, and cardiovascular diseases. It also demonstrates vasorelaxation, antioxidant, and anticancer activities. This comprehensive review summarizes the current data regarding the mechanisms of action of piceatannol, its chemopreventive properties, and its possible therapeutic potential against various types of human cancer.
Collapse
Affiliation(s)
- Mohamed Ali Seyed
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), The National University of Malaysia , Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
- School of Life Sciences, B. S. Abdur Rahman University , Seethakathi Estate, Vandalur, 600048 Chennai, India
- Faculty of Medicine, University of Tabuk , Tabuk 71491, Saudi Arabia
| | - Ibrahim Jantan
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), The National University of Malaysia , Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), The National University of Malaysia , Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Kavitha Vijayaraghavan
- School of Life Sciences, B. S. Abdur Rahman University , Seethakathi Estate, Vandalur, 600048 Chennai, India
| |
Collapse
|
13
|
Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:166-77. [PMID: 26001024 DOI: 10.5507/bp.2015.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/07/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The aim of this review is to provide the information about molecular basis of hypoxia-induced chemoresistance, focusing on the possibility of diagnostic and therapeutic use. RESULTS Hypoxia is a common feature of tumors and represents an independent prognostic factor in many cancers. It is the result of imbalances in the intake and consumption of oxygen caused by abnormal vessels in the tumor and the rapid proliferation of cancer cells. Hypoxia-induced resistance to cisplatin, doxorubicin, etoposide, melphalan, 5-flouoruracil, gemcitabine, and docetaxel has been reported in a number of experiments. Adaptation of tumor cells to hypoxia has important biological effects. The most studied factor responsible for these effects is hypoxia-inducible factor-1 (HIF-1) that significantly contributes to the aggressiveness and chemoresistance of different tumors. The HIF-1 complex, induced by hypoxia, binds to target genes, thereby increasing the expression of many genes. In addition, the expression of hundreds of genes can be also decreased in response to hypoxia in HIF-1 dependent manner, but without the detection of HIF-1 in these genes' promoters. HIF-1 independent mechanisms for drug resistance in hypoxia have been described, however, they are still rarely reported. The first clinical studies focusing on diagnosis of hypoxia and on inhibition of hypoxia-induced changes in cancer cells are starting to yield results. CONCLUSIONS The adaptation to hypoxia requires many genetic and biochemical responses that regulate one another. Hypoxia-induced resistance is a very complex field and we still know very little about it. Different approaches to circumvent hypoxia in tumors are under development.
Collapse
Affiliation(s)
- Helena Doktorova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Mohamed Ashraf Khalil
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
14
|
Saha A, Blando J, Silver E, Beltran L, Sessler J, DiGiovanni J. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling. Cancer Prev Res (Phila) 2014; 7:627-38. [PMID: 24691500 DOI: 10.1158/1940-6207.capr-13-0420] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Prostate cancer is the most common nonskin neoplasm and second leading cause of death in men. 6-Shogaol (6-SHO), a potent bioactive compound in ginger (Zingiber officinale Roscoe), has been shown to possess anti-inflammatory and anticancer activity. In the present study, the effect of 6-SHO on the growth of prostate cancer cells was investigated. 6-SHO effectively reduced survival and induced apoptosis of cultured human (LNCaP, DU145, and PC3) and mouse (HMVP2) prostate cancer cells. Mechanistic studies revealed that 6-SHO reduced constitutive and interleukin (IL)-6-induced STAT3 activation and inhibited both constitutive and TNF-α-induced NF-κB activity in these cells. In addition, 6-SHO decreased the level of several STAT3 and NF-κB-regulated target genes at the protein level, including cyclin D1, survivin, and cMyc and modulated mRNA levels of chemokine, cytokine, cell cycle, and apoptosis regulatory genes (IL-7, CCL5, BAX, BCL2, p21, and p27). 6-SHO was more effective than two other compounds found in ginger, 6-gingerol, and 6-paradol at reducing survival of prostate cancer cells and reducing STAT3 and NF-κB signaling. 6-SHO also showed significant tumor growth inhibitory activity in an allograft model using HMVP2 cells. Overall, the current results suggest that 6-SHO may have potential as a chemopreventive and/or therapeutic agent for prostate cancer and that further study of this compound is warranted.
Collapse
Affiliation(s)
- Achinto Saha
- Authors' Affiliations: Division of Pharmacology and Toxicology and Department of Nutritional Sciences, Dell Pediatric Research Institute; and Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Jorge Blando
- Authors' Affiliations: Division of Pharmacology and Toxicology and Department of Nutritional Sciences, Dell Pediatric Research Institute; and Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Eric Silver
- Authors' Affiliations: Division of Pharmacology and Toxicology and Department of Nutritional Sciences, Dell Pediatric Research Institute; and Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Linda Beltran
- Authors' Affiliations: Division of Pharmacology and Toxicology and Department of Nutritional Sciences, Dell Pediatric Research Institute; and Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Jonathan Sessler
- Authors' Affiliations: Division of Pharmacology and Toxicology and Department of Nutritional Sciences, Dell Pediatric Research Institute; and Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - John DiGiovanni
- Authors' Affiliations: Division of Pharmacology and Toxicology and Department of Nutritional Sciences, Dell Pediatric Research Institute; and Department of Chemistry, The University of Texas at Austin, Austin, TexasAuthors' Affiliations: Division of Pharmacology and Toxicology and Department of Nutritional Sciences, Dell Pediatric Research Institute; and Department of Chemistry, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
15
|
Qu Y, Oyan AM, Liu R, Hua Y, Zhang J, Hovland R, Popa M, Liu X, Brokstad KA, Simon R, Molven A, Lin B, Zhang WD, McCormack E, Kalland KH, Ke XS. Generation of prostate tumor-initiating cells is associated with elevation of reactive oxygen species and IL-6/STAT3 signaling. Cancer Res 2013; 73:7090-100. [PMID: 24101153 DOI: 10.1158/0008-5472.can-13-1560] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How prostate cancer is initiated remains a topic of debate. In an effort to establish a human model of prostate carcinogenesis, we adapted premalignant human prostate EPT2-D5 cells to protein-free medium to generate numerous tight prostate spheres (D5HS) in monolayer culture. In contrast to EPT2-D5 cells, the newly generated D5HS efficiently formed large subcutaneous tumors and subsequent metastases in vivo, showing the tumorigenicity of D5HS spheres. A striking production of interleukin (IL)-6 mRNA and protein was found in D5HS cells. The essential roles of IL-6 and the downstream STAT3 signaling in D5HS tumor sphere formation were confirmed by neutralizing antibody, chemical inhibitors, and fluorescent pathway reporter. In addition, elevated reactive oxygen species (ROS) produced upon protein depletion was required for the activation of IL-6/STAT3 in D5HS. Importantly, a positive feedback loop was found between ROS and IL-6 during tumor sphere formation. The association of ROS/IL-6/STAT3 to the carcinogenesis of human prostate cells was further examined in xenograft tumors and verified by limiting dilution implantations. Collectively, we have for the first time established human prostate tumor-initiating cells based on physiologic adaption. The intrinsic association of ROS and IL-6/STAT3 signaling in human prostate carcinogenesis shed new light on this relationship and define therapeutic targets in this setting.
Collapse
Affiliation(s)
- Yi Qu
- Authors' Affiliations: The Gade Institute, Broegelmann Research Laboratory, Department of Clinical Science, Department of Medicine, University of Bergen; Departments of Microbiology and Pathology, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital; KinN Therapeutics AS, Bergen, Norway; College of Pharmacy, Second Military Medical University, Shanghai, PR China; Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, PR China; Swedish Medical Center; and Department of Urology, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kwon GT, Jung JI, Song HR, Woo EY, Jun JG, Kim JK, Her S, Park JHY. Piceatannol inhibits migration and invasion of prostate cancer cells: possible mediation by decreased interleukin-6 signaling. J Nutr Biochem 2012; 23:228-38. [DOI: 10.1016/j.jnutbio.2010.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/08/2010] [Accepted: 11/19/2010] [Indexed: 01/11/2023]
|
17
|
Kwon EM, Salinas CA, Kolb S, Fu R, Feng Z, Stanford JL, Ostrander EA. Genetic polymorphisms in inflammation pathway genes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2011; 20:923-33. [PMID: 21430300 PMCID: PMC3140053 DOI: 10.1158/1055-9965.epi-10-0994] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Chronic inflammation is an important mechanism for the development and progression of prostate cancer (PC). To better understand the potential relationship between genes in the inflammation pathway and PC risk, we evaluated variants in 16 candidate genes. METHODS A total of 143 tagging and amino acid altering single nucleotide polymorphisms (SNPs) were genotyped in Caucasian and African American men participating in one of two population-based, case-control studies (n = 1,458 cases and 1,351 controls). The relative risk of PC was estimated using logistic and polytomous regression models. RESULTS Ten SNPs in seven genes (CXCL12, IL4, IL6, IL6ST, PTGS2, STAT3, and TNF) were nominally associated (P < 0.05) with risk of PC in Caucasians. The most significant effect on risk was seen with rs11574783 in the interleukin 6 signal transducer (IL6ST) gene (OR = 0.08, 95% CI: 0.01-0.63). Cumulatively, four SNPs in genes interleukin 4 (IL4), IL6ST, PTGS2, and signal transducer and activator of transcription 3 (STAT3) conferred a three-fold elevation in PC risk among men carrying the maximum number of high-risk alleles (OR = 2.97, 95% CI: 1.41-6.25, P(trend) = 0.0003). Risk estimates for seven SNPs varied significantly according to disease aggressiveness (P(homogeneity) < 0.05), with SNPs in AKT1, PIK3R1, and STAT3 independently associated with more aggressive PC; OR = 5.1 (95% CI: 2.29-11.40, P(trend) = 3.8 × 10(-5)) for carriers of all high-risk genotypes. CONCLUSIONS These results suggest that variants in genes within the inflammation pathway may play a role in the development of PC, however, further studies are needed to replicate our findings. IMPACT These results underline the potential importance of the inflammation pathway in PC development and progression.
Collapse
Affiliation(s)
- Erika M. Kwon
- National Human Genome Research Institute, Cancer Genetics Branch, National Institutes of Health, Building 50, 50 South Drive, Bethesda, MD 20892, USA
- Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Claudia A. Salinas
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1124 Fairview Ave N., Seattle, WA 98103, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1124 Fairview Ave N., Seattle, WA 98103, USA
| | - Rong Fu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1124 Fairview Ave N., Seattle, WA 98103, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Ziding Feng
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1124 Fairview Ave N., Seattle, WA 98103, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1124 Fairview Ave N., Seattle, WA 98103, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Elaine A. Ostrander
- National Human Genome Research Institute, Cancer Genetics Branch, National Institutes of Health, Building 50, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Chandra-Kuntal K, Singh SV. Diallyl trisulfide inhibits activation of signal transducer and activator of transcription 3 in prostate cancer cells in culture and in vivo. Cancer Prev Res (Phila) 2010; 3:1473-83. [PMID: 20959517 DOI: 10.1158/1940-6207.capr-10-0123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor implicated in prostate carcinogenesis. The present study shows that diallyl trisulfide (DATS), a promising cancer-chemopreventive constituent of processed garlic, inhibits phosphorylation of STAT3 in prostate cancer cells in culture and in vivo. Exposure of DU145 and LNCaP human prostate cancer cells to growth-suppressive and pharmacologically relevant concentrations of DATS (20 and 40 μmol/L) resulted in suppression of constitutive (DU145) as well as interleukin-6 (IL-6)-induced (LNCaP) phosphorylation of STAT3 (Tyr(705)), which correlated with inhibition of Janus-activated kinase 2 phosphorylation. Constitutive and/or IL-6-induced nuclear translocation of pSTAT3 and STAT3 dimerization was also markedly inhibited on treatment with DATS in both cell lines. Inhibition of prostate cancer development in transgenic adenocarcinoma of mouse prostate mice by gavage of DATS correlated with a visible decrease in the levels of pSTAT3. Interestingly, the IL-6-mediated activation of STAT3 largely failed to confer protection against proapoptotic response to DATS in both cells. Likewise, DATS-mediated inhibition of cell migration was either not affected or minimally reversed by IL-6 treatment or ectopic expression of constitutively active STAT3. In conclusion, the present study indicates that DATS treatment suppresses STAT3 phosphorylation in prostate cancer cells in culture and in vivo, but activation of this oncogenic transcription factor is largely dispensable for cellular responses to DATS. Ability of DATS to overcome STAT3 activation is a therapeutic advantage for this chemopreventive agent.
Collapse
Affiliation(s)
- Kumar Chandra-Kuntal
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
19
|
Ogawa S, Shih LY, Suzuki T, Otsu M, Nakauchi H, Koeffler HP, Sanada M. Deregulated Intracellular Signaling by Mutated c-CBL in Myeloid Neoplasms. Clin Cancer Res 2010; 16:3825-31. [DOI: 10.1158/1078-0432.ccr-09-2341] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Hahm ER, Singh SV. Sulforaphane inhibits constitutive and interleukin-6-induced activation of signal transducer and activator of transcription 3 in prostate cancer cells. Cancer Prev Res (Phila) 2010; 3:484-94. [PMID: 20233902 PMCID: PMC2853726 DOI: 10.1158/1940-6207.capr-09-0250] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
D,L-sulforaphane (SFN), a synthetic analogue of broccoli-derived L-isomer, inhibits viability of human prostate cancer cells and prevents development of prostate cancer and distant site metastasis in a transgenic mouse model. However, the mechanism underlying the anticancer effect of SFN is not fully understood. We now show that SFN inhibits constitutive and interleukin-6 (IL-6)-inducible activation of signal transducer and activator of transcription 3 (STAT3), which is an oncogenic transcription factor activated in many human malignancies, including prostate cancer. Growth-suppressive concentrations of SFN (20 and 40 micromol/L) decreased constitutive (DU145 cells) and IL-6-induced (DU145 and LNCaP cells) phosphorylation of STAT3 (Tyr(705)) as well as its upstream regulator Janus-activated kinase 2 (Tyr(1007/1008)). Exposure of DU145 and LNCaP cells to SFN resulted in suppression of (a) IL-6-induced transcriptional activity of STAT3 as judged by luciferase reporter assay and (b) nuclear translocation of phospho-STAT3 as revealed by immunofluorescence microscopy. Levels of many STAT3-regulated gene products, including Bcl-2, cyclin D1, and survivin, were also reduced in SFN-treated cells. The IL-6-mediated activation of STAT3 conferred partial but marked protection against SFN-induced apoptosis as evidenced by cytoplasmic histone-associated DNA fragmentation and cleavage of poly(ADP-ribose) polymerase and procaspase-3. Furthermore, knockdown of STAT3 protein using small interfering RNA resulted in a modest yet statistically significant increase in SFN-induced apoptotic DNA fragmentation in DU145 cells. Suppression of STAT3 activation was also observed in cells treated with naturally occurring analogues of SFN. In conclusion, the present study indicates that inhibition of STAT3 partially contributes to the proapoptotic effect of SFN.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- 2.32A Hillman Cancer Center Research Pavilion, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
21
|
Shin DS, Kim HN, Shin KD, Yoon YJ, Kim SJ, Han DC, Kwon BM. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 2009; 69:193-202. [PMID: 19118003 DOI: 10.1158/0008-5472.can-08-2575] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because signal transducer and activator of transcription 3 (STAT3) is constitutively activated in most human solid tumors and is involved in the proliferation, angiogenesis, immune evasion, and antiapoptosis of cancer cells, researchers have focused on STAT3 as a target for cancer therapy. We screened for natural compounds that inhibit the activity of STAT3 using a dual-luciferase assay. Cryptotanshinone was identified as a potent STAT3 inhibitor. Cryptotanshinone rapidly inhibited STAT3 Tyr705 phosphorylation in DU145 prostate cancer cells and the growth of the cells through 96 hours of the treatment. Inhibition of STAT3 Tyr705 phosphorylation in DU145 cells decreased the expression of STAT3 downstream target proteins such as cyclin D1, survivin, and Bcl-xL. To investigate the cryptotanshinone inhibitory mechanism in DU145 cells, we analyzed proteins upstream of STAT3. Although phosphorylation of Janus-activated kinase (JAK) 2 was inhibited by 7 micromol/L cryptotanshinone at 24 hours, inhibition of STAT3 Tyr705 phosphorylation occurred within 30 minutes and the activity of the other proteins was not affected. These results suggest that inhibition of STAT3 phosphorylation is caused by a JAK2-independent mechanism, with suppression of JAK2 phosphorylation as a secondary effect of cryptotanshinone treatment. Continuing experiments revealed the possibility that cryptotanshinone might directly bind to STAT3 molecules. Cryptotanshinone was colocalized with STAT3 molecules in the cytoplasm and inhibited the formation of STAT3 dimers. Computational modeling showed that cryptotanshinone could bind to the SH2 domain of STAT3. These results suggest that cryptotanshinone is a potent anticancer agent targeting the activation STAT3 protein. It is the first report that cryptotanshinone has antitumor activity through the inhibition of STAT3.
Collapse
Affiliation(s)
- Dae-Seop Shin
- Laboratory of Chemical Biology and Chemical Genomics, Korea Research Institute of Bioscience and Biotechnology, 52 Uendong Yoosunggu, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Lewis HD, Winter A, Murphy TF, Tripathi S, Pandey VN, Barton BE. STAT3 inhibition in prostate and pancreatic cancer lines by STAT3 binding sequence oligonucleotides: differential activity between 5' and 3' ends. Mol Cancer Ther 2008; 7:1543-50. [PMID: 18566225 PMCID: PMC2561307 DOI: 10.1158/1535-7163.mct-08-0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signal transducers and activators of transcription (STAT) were originally discovered as components of signal transduction pathways. Persistent aberrant activation of STAT3 is a feature of many malignancies including prostate cancer and pancreatic cancer. One consequence of persistently activated STAT3 in malignant cells is that they depend on it for survival; thus, STAT3 is an excellent molecular target for therapy. Previously, we reported that single-stranded oligonucleotides containing consensus STAT3 binding sequences (13410 and 13411) were more effective for inducing apoptosis in prostate cancer cells than antisense STAT3 oligonucleotides. Control oligonucleotides (scrambled sequences) had no effect. Here, we report that authentic STAT3 binding sequences, identified from published literature, were more effective for inducing apoptosis in prostate cancer cells and pancreatic cancer cells than was oligonucleotide 13410. Moreover, the authentic STAT3 binding sequences showed differing efficacies in the malignant cell lines depending on whether the canonical STAT3 binding sequence was truncated at the 5' or the 3' end. Finally, expression of one STAT3-regulated gene was decreased following treatment, suggesting that STAT3 may regulate the same set of genes in the two types of cancer. We conclude that truncating the 5' end left intact enough of the canonical STAT3 binding site for effective hybridization to the genome, whereas truncation of the 3' end, which is outside the canonical binding site, may have affected binding of required cofactors essential for STAT3 activity, thereby reducing the capacity of this modified oligonucleotide to induce apoptosis. Additional experiments to answer this hypothesis are under way.
Collapse
Affiliation(s)
- H Dan Lewis
- Department of Surgery, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kim KW, Mutter RW, Cao C, Albert JM, Shinohara ET, Sekhar KR, Lu B. Inhibition of signal transducer and activator of transcription 3 activity results in down-regulation of Survivin following irradiation. Mol Cancer Ther 2007; 5:2659-65. [PMID: 17121912 DOI: 10.1158/1535-7163.mct-06-0261] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signal transducer and activator of transcription 3 (Stat3) and Survivin are constitutively up-regulated in various human tumor cells. We previously found Survivin to be significantly reduced in response to radiation in human umbilical vein endothelial cells (HUVEC) but not in tumor cell lines. In this study, we examined the effect of Stat3 on Survivin expression in irradiated HUVECs and breast cancer cells. We also studied how inhibition of Stat3 and Survivin activity affects cell survival and angiogenesis following irradiation. We determined that Survivin was significantly increased by overexpression of an active Stat3 (Stat3-C). Following irradiation, the level of phospho-Stat3 Tyr(705), but not phospho-Stat3 Ser(727), was reduced in HUVECs, whereas it remained unchanged in irradiated breast cancer cells. Correspondingly, Stat3 DNA-binding activity following irradiation was specifically down-regulated in HUVECs but not in breast cancer cells. Mutation of Tyr(705) abolished radiation-induced down-regulation of Survivin. Clonogenic and endothelial cell morphogenesis assays suggested that DN-Stat3 and DN-Survivin together resulted in the greatest radiosensitization of MDA-MB-231, decreasing angiogenesis and cell survival. In summary, Stat3 modulates Survivin, and both are potential therapeutic targets for radiation sensitization in breast cancer.
Collapse
Affiliation(s)
- Kwang Woon Kim
- Department of Radiation Oncology, Vanderbilt University, B-902 The Vanderbilt Clinic, 1301 22nd Avenue South, Nashville, TN 37232-5671, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, Gleave M. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 2005; 65:11083-93. [PMID: 16322258 DOI: 10.1158/0008-5472.can-05-1840] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One strategy to improve therapies in prostate cancer involves targeting cytoprotective genes activated by androgen withdrawal to delay the emergence of the androgen-independent (AI) phenotype. The objectives of this study were to define changes in Hsp27 levels after androgen ablation and to evaluate the functional relevance of these changes in AI progression. Using a tissue microarray of 232 specimens of hormone-naïve and post-hormone ablation-treated prostate cancer, we found that Hsp27 levels increase after androgen ablation to become highly expressed (>4-fold, P < or = 0.01) in AI tumors. Hsp27 overexpression rendered LNCaP cells highly resistant to androgen withdrawal both in vitro and in vivo. Tumor volume and serum prostate-specific antigen levels increased 4.3- and 10-fold faster after castration when Hsp27 was overexpressed. Treatment of LNCaP tumor cells in vitro with Hsp27 antisense oligonucleotides (ASO) or short-interfering RNA suppressed Hsp27 levels in a dose-dependent and sequence-specific manner increased the apoptotic sub-G0-G1 fraction and caspase-3 cleavage >2-fold, as well as decreased signal transducers and activators of transcription 3 (Stat3) levels and its downstream genes, c-fos and sPLA-2. The cytoprotection afforded by Hsp27 overexpression was attenuated by Stat3 knockdown using specific Stat3 ASO. Coimmunoprecipitation and immunofluorescence confirmed that Hsp27 interacts with Stat3 and that Stat3 levels correlated directly with Hsp27 levels. Hsp27 ASO treatment in athymic mice bearing LNCaP tumors significantly delayed LNCaP tumor growth after castration, decreasing mean tumor volume and serum prostate-specific antigen levels by 57% and 69%, respectively. These findings identify Hsp27 as a modulator of Stat3-regulated apoptosis after androgen ablation and as a potential therapeutic target in advanced prostate cancer.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Caspase 3
- Caspases/metabolism
- Cell Growth Processes/genetics
- Cell Line, Tumor
- Disease Progression
- HSP27 Heat-Shock Proteins
- Heat-Shock Proteins/antagonists & inhibitors
- Heat-Shock Proteins/biosynthesis
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Male
- Mice
- Mice, Nude
- Molecular Chaperones
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Neoplasms, Hormone-Dependent/surgery
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Orchiectomy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/surgery
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- STAT3 Transcription Factor/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Palma Rocchi
- The Prostate Centre, Vancouver General Hospital, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Horinaga M, Okita H, Nakashima J, Kanao K, Sakamoto M, Murai M. Clinical and pathologic significance of activation of signal transducer and activator of transcription 3 in prostate cancer. Urology 2005; 66:671-5. [PMID: 16140113 DOI: 10.1016/j.urology.2005.03.066] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/24/2005] [Accepted: 03/29/2005] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate the association of signal transducer and activator of transcription 3 (STAT3) with the invasiveness and aggressiveness of localized prostate cancer. METHODS Paraffin-embedded specimens from 92 patients with clinically localized prostate cancer who underwent radical prostatectomy without neoadjuvant treatment were analyzed by immunohistochemistry using two antibodies: anti-phospho-specific STAT3 (p-STAT3) antibody, which recognized only activated STAT3, and anti-total STAT3 antibody, which recognized both activated and inactivated STAT3. The patients were separated into one of four groups according to the percentage of the cells with positive nuclear staining using a 0 to 3+ scoring system. The associations between the immunostaining and invasiveness and aggressiveness of clinically localized prostate cancer were analyzed. RESULTS Pathologically, 66 patients (71.7%) had organ-confined disease. Of the 92 tumors examined, 8, 20, 23, and 41 showed staining patterns for p-STAT3 of 0, 1+, 2+, and 3+, respectively. In addition, 0, 3, 2, and 87 tumors showed staining patterns for STAT3 of 0, 1+, 2+, and 3+, respectively. The staining patterns for p-STAT3 correlated significantly with pathologic stage, Gleason score, and extracapsular extension. No significant correlation was found between p-STAT3 immunostaining and microvascular invasion, perineural invasion, or seminal vesicle invasion. Patients with 3+ immunostaining of p-STAT3 had a significantly greater biochemical prostate-specific antigen failure rate than those with 2+ or less immunostaining. CONCLUSIONS Increased p-STAT3 immunoreactivity showed a highly invasive and aggressive potential in patients with localized prostate cancer treated with radical prostatectomy. This suggests that STAT3 signaling contributes to the invasiveness and aggressiveness of prostate cancer.
Collapse
Affiliation(s)
- Minoru Horinaga
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Gao L, Zhang L, Hu J, Li F, Shao Y, Zhao D, Kalvakolanu DV, Kopecko DJ, Zhao X, Xu DQ. Down-regulation of signal transducer and activator of transcription 3 expression using vector-based small interfering RNAs suppresses growth of human prostate tumor in vivo. Clin Cancer Res 2005; 11:6333-41. [PMID: 16144938 DOI: 10.1158/1078-0432.ccr-05-0148] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Signal transducer and activator of transcription 3 (Stat3) is constitutively activated in a variety of cancers and it is a common feature of prostate cancer. Thus, Stat3 represents a promising molecular target for tumor therapy. We applied a DNA vector-based Stat3-specific RNA interference approach to block Stat3 signaling and to evaluate the biological consequences of Stat3 down-modulation on tumor growth using a mouse model. EXPERIMENTAL DESIGN To investigate the therapeutic potential of blocking Stat3 in cancer cells, three small interfering RNAs (siRNA; Stat3-1, Stat3-2, and Stat3-3) specific for different target sites on Stat3 mRNA were designed and used with a DNA vector-based RNA interference approach expressing short hairpin RNAs to knockdown Stat3 expression in human prostate cancer cells in vitro as well as in vivo. RESULTS Of the three equivalently expressed siRNAs, only Stat3-3 and Stat3-2, which target the region coding for the SH2 domain and the coiled-coil domain, respectively, strongly suppressed the expression of Stat3 in PC3 and LNCaP cells. The Stat3-1 siRNA, which targeted the DNA-binding domain, exerted no effect on Stat3 expression, indicating that the gene silencing efficiency of siRNA may be dependent on the local structure of Stat3 mRNA. The Stat3 siRNAs down-regulated the expression of Bcl-2 (an anti-apoptotic protein), and cyclin D1 and c-Myc (cell growth activators) in prostate cancer cells. Inhibition of Stat3 and its related genes was accompanied by growth suppression and induction of apoptosis in cancer cells in vitro and in tumors implanted in nude mice. CONCLUSIONS These data indicate that Stat3 signaling is a promising molecular target for prostate cancer therapy and that vector-based Stat3 siRNA may be useful as a therapeutic agent for treatment of prostate cancer.
Collapse
Affiliation(s)
- Lifang Gao
- Department of Pathophysiology, School of Basic Medicine, Jilin University, Changchun, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jing N, Li Y, Xiong W, Sha W, Jing L, Tweardy DJ. G-quartet oligonucleotides: a new class of signal transducer and activator of transcription 3 inhibitors that suppresses growth of prostate and breast tumors through induction of apoptosis. Cancer Res 2004; 64:6603-9. [PMID: 15374974 DOI: 10.1158/0008-5472.can-03-4041] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stat3 is a signaling molecular and oncogene activated frequently in many human malignancies including the majority of prostate, breast, and head and neck cancers; yet, no current chemotherapeutic approach has been implemented clinically that specifically targets Stat3. We recently developed G-rich oligodeoxynucleotides, which form intramolecular G-quartet structures (GQ-ODN), as a new class of Stat3 inhibitor. GQ-ODN targeted Stat3 protein directly inhibiting its ability to bind DNA. When delivered into cells using polyethyleneimine as vehicle, GQ-ODN blocked ligand-induced Stat3 activation and Stat3-mediated transcription of antiapoptotic genes. To establish the effectiveness of GQ-ODN as a potential new chemotherapeutic agent, we systemically administered GQ-ODN (T40214 or T40231) plus polyethyleneimine or polyethyleneimine alone (placebo) by tail-vein injection into nude mice with prostate and breast tumor xenografts. Whereas the mean volume of breast tumor xenografts in placebo-treated mice increased >7-fold over 18 days, xenografts in the GQ-ODN-treated mice remained unchanged. Similarly, whereas the mean volume of prostate tumor xenografts in placebo-treated mice increased 9-fold over 10 days, xenografts in GQ-ODN-treated mice increased by only 2-fold. Biochemical examination of tumors from GQ-ODN-treated mice demonstrated a significant reduction in Stat3 activation, levels of the antiapoptotic proteins Bcl-2 and Bcl-xL, and an 8-fold increase in the number of apoptotic cells compared with the tumors of placebo-treated mice. Thus, GQ-ODN targeting Stat3 induces tumor cell apoptosis when delivered into tumor xenografts and represents a novel class of chemotherapeutic agents that holds promise for the systemic treatment of many forms of metastatic cancer.
Collapse
Affiliation(s)
- Naijie Jing
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|